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Dynamical system approach to cosmological models with a varying speed of light
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The methods of dynamical systems have been used to study homogeneous and isotropic cosmological
models with a varying speed of light~VSL!. We propose two methods for the reduction of the dynamics to the
form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The

solutions are analyzed on two-dimensional phase space in the variables (x,ẋ) wherex is a function of a scale
factor a. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that
the models with a negative curvature overcome the horizon and flatness problems. The presented method of
reduction can be adapted to the analysis of the dynamics of the Universe with the general form of the equation
of statep5g(a)e. This is demonstrated using as an example the dynamics of VSL models filled with a
noninteracting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying
speed of light. Singularity-free oscillating universes are also admitted for a positive cosmological constant. We
consider a quantum VSL Friedmann-Robertson-Walker closed model with radiation and show that the highest
tunneling rate occurs for a constant velocity of light ifc(a)}an and21,n<0. It is also proved that the class
of models considered is structurally unstable for the case ofn,0.

DOI: 10.1103/PhysRevD.68.063511 PACS number~s!: 98.80.Cq, 95.30.Sf
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I. INTRODUCTION

Although the standard cosmological model is usually
lieved to be a correct picture of our Universe@1#, it still has
some difficulties, among which the flatness and horiz
problems are most widely known. The existence of lar
scale structure in the Universe extending to the limit of
deepest surveys is another mystery. Its very presence im
the appearance of some seeds for this structure in the e
Universe. In the standard big-bang scenario they should
built in, which is a rather undesirable feature of the theo
Therefore, great attention has been paid to inflationary u
verse models, which, albeit invoking exotic~if not hypotheti-
cal! physics, were able to provide at least some hope fo
consistent explanation of both the flatness and horizon p
lems as well as the origin of the seeds for the large-sc
structure. The results of early universe physics lead us
expect the occurrence of phase transitions when the Univ
was young, hot, and dense.

The varying speed of light~VSL! cosmology, seen as a
alternative to the inflation theory, was proposed by Mof
@2,3#, who conjectured that a spontaneous breaking of
local Lorentz invariance and diffeomorphism invariance
sociated with a first order phase transition can lead to va
tion of the speed of light in the early Universe. This idea w
revived by Albrecht and Magueijo@4# and was given further
consideration by Barrow@5,6#. Barrow showed that the con
ception of a VSL can lead to a solution of the flatness, ho
zon, and monopole problems if the speed of light falls at
appropriate rate. The dynamics of a VSL has been wid
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studied in theoretical as well as empirical contexts@7–16#.
The main motivation for the study of VSL models is

seek explanations for some unusual properties of the U
verse and to overcome some of the shortcomings of the
flation scenario@17#. In particular, there is empirical evi
dence of the fine structure constant varying with time in
context of the consistency of quasar absorption spectra@18#.
Moreover, unlike inflation, the VSL theory provides a sol
tion of the cosmological constant problem. However, it ca
not solve the isotropy problem. It is also interesting to eva
ate the power of this model in explaining the accelerat
problem@19,20#.

Of course, the VSL model as well as other models d
cussed in the literature have anad hocelement~variablec)
not yet firmly founded within any existing physical theorie
This feature does not seem to be exotic enough to disc
these models from discussion in the scientific commun
Some brilliant arguments justifying this approach are giv
by Albrecht and Magueijo@4#.

The varying speed of light models which provide dece
fits to the real Universe are characterized by a speed of l
or gravitational coupling which varies with time in the ve
early Universe but is nearly constant today. Because there
stringent bounds on how fast these constants can vary
time after the first few seconds, the models whose dynam
we study in the paper are relevant only in the very ea
Universe. This should be made very clear by using the ph
space approach and its tools for classifying the qualita
types of solutions@21,22#.

The present paper is a continuation of previous pap
@23,24# on the dynamics of VSL cosmology. We introduce
simple framework which allows us to study the dynamics
VSL models in a general way, independent of any spec
assumption about the equation of state, or the behavior o
©2003 The American Physical Society11-1
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scale factora(t) near the spatial singularity. We formulate
VSL Friedmann-Robertson-Walker cosmology as a tw
dimensional dynamical system and we discuss its prope
using phase portraits where the trajectories represent al
lutions for all physically admissible initial conditions. Th
methods of dynamical systems allow us to indicate how
existence of certain desired physical effects depends on
choice of initial conditions and to analyze how these init
conditions determining the corresponding solutions are
tributed in the phase space.

Our main goal was to perform a global analysis of t
dynamics of VSL cosmological models. We avoid the a
sumption of power type evolution in the VSL models, whi
are represented by critical points~singular solutions! in the
phase space. We analyze the dynamics of the models on
phase plane and discuss how different trajectories repres
ing nonsingular solutions can solve cosmological puzz
We conclude that models with negative curvature and p
tive cosmological constant are preferred~in the sense tha
they have the largest set of initial conditions leading to
solution of the flatness and horizon problems!.

On the other hand, we present two arguments that dis
guish the Friedmann-Robertson-Walker~FRW! models with
constant velocity of light. The theoretical one is that the V
FRW models are structurally unstable ifc(a)}an and n
,0, contrary to classical FRW models. The quantum m
chanical one is that if a closed universe was born from
quantum fluctuation via the quantum tunneling process t
the most probable universe is that withc5const. In this
interval the potential function preserves its classical cha
ter and the universe tunnels from a zero size.

The dynamics of the cosmological models considered
reduced to the dynamics of a unit mass particle in a o
dimensional potential. Then different physical properties l
the flatness, horizon, and cosmological constant probl
can be formulated in terms of the diagram of the poten
function of the system.

II. THE METHOD OF DYNAMICAL SYSTEM STABILITY

First of all, equations describing a cosmological mod
should be reduced to the form of a dynamical system

ẋi5
dxi

dt
5 f i~x1 , . . . ,xn!, i 51, . . . ,n,

in such a way that the solution with a static microspace~or
other solutions of interest! is a critical point of the system
(x1* , . . . ,xn* ), i.e., for every i, f i(x1* , . . . ,xn* )50 (i
51, . . . ,n).

If a critical point is nondegenerate, i.e., at this point
real parts of the eigenvalues Rel i of the linearization matrix

Aj
i 5

] f i

]xj
U

x5x*
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do not vanish, then there is a one-to-one continuous map
of a neighborhood of this point which transforms trajector
of the original system into trajectories of the lineariz
system

dxi

dt
5(

] f i

]xj
~x* !~xj2xj* !.

In this sense, the qualitative behavior of the original syst
is equivalent to the behavior of its linearized part.
(j i

1 , . . . ,j i
n) are eigenvectors of the linearization matrixAj

i ,
the solution of the linearized system has, in general, the
lowing form:

xi~ t !2xi* 5Re(
k51

n

Ckj i
kelkt,

where Ck are constants. A nondegenerate critical point
called an attracting point if, for all eigenvalues, Rel i,0. In
this case, all trajectories from the neighborhood of this po
go to it whent→`. A nondegenerate critical point is calle
a repulsing point if, for all eigenvalues, Rel i.0. In this
case, all trajectories from the neighborhood of this point
to it when t→2`. A nondegenerate critical point is said t
be an unstable saddle point if a dynamical system has
(x1* , . . . ,xn* ), d eigenvalues with positive real parts andn
2d eigenvalues with negative real parts (d51, . . . ,n21).

When investigating the stability of solutions with a sta
microspace the following theorem proves to be of spec
interest. If x* is a nondegenerate critical point and if th
dynamical system has, atx* , d eigenvaluesl1 , . . . ,ld with
negative real parts, then there exists~locally! an invariant
d-dimensional stable manifoldWst

d , on which all trajectories
of the system go tox* as t→`. A manifold M is said to be
an invariant manifold of a system if every trajectory pass
through a nondegenerate point ofM lies entirely inM ~for
2`,t,1`). For every such solution, there exists th
asymptotic

lim
t→`

t21lnH (
j 51

n

@xj~ t !2xj* #2J 1/2

5a i ~1!

for a certaini. Similarly, if at the critical pointx* the system
hask eigenvalues with positive real parts then there exists
invariantk-dimensional unstable manifoldWunst

k on which all
trajectories go away from the critical point@21#.

From the above theorem it follows that, for a saddle po
there are two invariant manifoldsWst

d and Wunst
n2d containing

this point and filled with trajectories~separatrices! going to
and away from the critical point. All other trajectories~not
contained inWst

d or in Wunst
n2d) do not meet the critical point in

question.
For the complete construction of phase portraits in a pl

it is necessary to know how the trajectories of a dynami
system behave at infinity. Let us take as an example
two-dimensional system

ẋ5P~x,y!, ~2!
1-2
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ẏ5Q~x,y!. ~3!

In the case of polynomial right-hand sides one usually int
duces projective coordinates, e.g.,z51/x, u5y/x or v
51/y, w5x/y. Two maps (z,u) and (v,w) are equivalent if
and only if uÞ0 andvÞ0. Infinitely distant points of the
(x,y) plane correspond to a circleS1 which can be covered
by two linesz50, 2`,u,`, andw50, 2`,v,`. The
original system in the projective coordinates (z,u) and after
the time reparametrizationt→t1 :dt15xdt assumes the
form

ż5zP* ~z,u!, ~4!

u̇5Q* ~z,u!2uP* ~z,u!, ~5!

where

P* ~z,u!5z2P~1/z,u/z!,

Q* ~z,u!5z2Q~1/z,u/z!,

and the overdot denotes differentiation with respect to
new timet1.

In a similar way, in the projective coordinates (v,w) and
in the new timet2 :dt25ydt, we obtain

v̇52vQ* ~v,w!, ~6!

ẇ5P* ~v,w!2wQ* ~v,w!, ~7!

where

P* ~v,w!5v2P~1/v,w/v !,

Q* ~v,w!5v2Q~1/v,w/v !,

and the overdot denotes differentiation with respect to ti
t2.

The idea of structural stability was introduced by A
dronov and Pontryagin@25#. A dynamical systemS is said to
be structurally stable if there exist dynamical systems in
space of all dynamical systems that are close, in the me
sense, toS or are topologically equivalent toS. Instead of
finding and analyzing an individual solution of a model, t
space of all possible solutions is investigated. A given phy
cal property is believed to be ‘‘realistic’’ if it can be attrib
uted to large subsets of models within a space of all poss
solutions or if it possesses a certain stability, i.e., if it is a
shared by a slightly perturbed model. There is a well est
lished opinion among specialists that realistic models sho
be structurally stable. What does structural stability mean
physics? The problem is in principle open in higher than
two-dimensional case where according to Smale there
large subsets of structurally unstable systems in the spac
all dynamical systems@26#. For two-dimensional dynamica
systems, as in the considered case, Peixoto’s theorem
that structurally stable dynamical systems on compact m
folds form open and dense subsets in the space of all
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namical systems on the plane. Therefore, it is reasonabl
require the model of a real two-dimensional problem to
structurally stable.

In our further considerations we will investigate the d
namics of dynamical systems in a finite domain of pha
space as well as at infinity. At this point we would like
recommend the presentation of the actual state of the a
the field of application of dynamical systems to general re
tivity @27#.

III. BASIC EQUATIONS OF THE THEORY

Albrecht and Magueijo@4# and Barrow@5# set up a useful
framework to discuss the VSL models, assuming that
time variablec should not introduce changes in the curvatu
terms of the gravitational field equations and that the E
stein equations must hold. Because varyingc breaks Lorentz
invariance, the VSL cosmology requires a specific refere
frame ~including a specific choice of a time coordinate! in
which changes in the field equations are minimal and o
postulates that it coincides with the cosmological comov
frame.

In the case of the VSL version of the FRW models~with
L50) the scale factor obeys the following dynamical equ
tions:

S ȧ

a
D 2

5
8pG~ t !r

3
2

Kc2~ t !

a2~ t !
, ~8!

ä~ t !

a
52

4pG~ t !

3 S r1
3p

c2~ t !
D . ~9!

Equation~9! is called the Raychaudhuri equation, and fro
the above system one can build a generalized conserva
equation

ṙ13
ȧ

a S r1
p

c2~ t !
D 52r

Ġ

G
1

3Kc2

8pGa2

ċ

c
, ~10!

in which the time dependence of fundamental constants
explicitly taken into account. Alternatively, one can think
the Raychaudhuri equation together with the generali
conservation equation as a fundamental system for which
~8! is a first integral.

The fundamental difficulty concerning the system~8!–
~10! is that it is a nonautonomous system with unknow
functionsG(t) and c(t). In order to be specific in furthe
analysis, we adopt Barrow’s power-law ansatz

G~ t !5G0a~ t !q, c~ t !5c0a~ t !n. ~11!

Moreover, we assume the hydrodynamical ener
momentum tensor with the equation of state for the non
teracting multifluid
1-3
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p5

(
i 51

l

g ir ic
2

(
i 51

l

r ic
2

e5g~a!rc2, ~12!

wherer i5r i0a23(g i11) and the energy densitye5rc2.
In the special case of a matter and radiation mixture,

factor g(a) depending on the scale factora takes the form

g~a!5
1

3

1

aa11
, p501

1

3
e r , e5em1e r ~13!

wherea5rm0 /r r0.
If we substitutel 51 into Eq.~12! then we obtain models

filled with single matter and with the equation of statep
5grc2. Generally, for noninteracting fluids with pressu
p5( ig ir ic

2, the equation of state assumes the formp
5g(a)rc2 where the factorg can be parametrized by th
scale factor. This fact is crucial for the reduction procedu

The power-law ansatz~11! turns the field equations bac
into an autonomous system. Now we can think about ex
sions of the baseline equations. One can include the cos
logical constantL in a straightforward way by introducing
the pressurepL and energy densityrL :

pL52rLc2~ t !, ~14!

rL5
Lc2~ t !

8pG~ t !
. ~15!

The system~8!–~10! with a cosmological constant can b
cast into the form

S ȧ

a
D 2

5
8pG~ t !r

3
2

Kc2~ t !

a2~ t !
1

Lc2~ t !

3
, ~16!

ä

a
52

4pG~ t !

3 S r1
3p

c2~ t !
D 1

Lc2~ t !

3
, ~17!

ṙ13
ȧ

a S r1
p

c2
c2~ t !D 52r

Ġ

G
1

3Kc2

8pGa2

ȧ

a
. ~18!

Equation ~18! is easy to solve only for the case ofc
5const. Therefore, in our consideration of the general f
mulation of the dynamics we cannot use an explicit form
a solution of Eq.~18!. To avoid this difficulty we consider a
special procedure of reduction.

IV. REDUCTION TO A PLANAR HAMILTONIAN
SYSTEM: THE GENERAL SOLUTION OF A DYNAMICAL

PROBLEM

To construct a dynamical system we assume the form
the equation of statep5g(a)rc2 and calculate the densityr
using both equation~15! and ~16!. For simplicity we focus
our attention on the case ofS50 corresponding to the VSL
06351
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model with matter in the multifluid form. Then we obtai
from Eq. ~16!

8pGr

3
5

ȧ2

a2
1

Kc2~ t !

a2
2

Lc2

3
~19!

and from Eq.~17!

2
8pGr

3
5

1

113g~a!
S 2ä

a
2

2Lc2

3
D . ~20!

By adding the sides of the above equations we obtain a
ond order nonlinear equation with respect to the variablea,

ä1c~a!ȧ21k~a!50, ~21!

where

c~a!5
113g~a!

2a
,

k~a!5F K

2a
@113g~a!#2

L

2
a@1

1g~a!#Gc2~a!

and only the termk(a) depends on the cosmological co
stant.

Equation~21! can be rewritten as an autonomous dynam
cal system

ȧ5p, ~22!

ṗ52c~a!p22k~a!. ~23!

To apply dynamical system theory, it is useful to reduce
system~22!,~23! to a form with polynomial right-hand sides

a85
da

dh
5pa, ~24!

p85
dp

dh
52

1

2
@3g~a!11#p22f~a!, ~25!

where f(a)5ak(a) and t→h:dt/a5dh. The solution of
Eqs. ~24!,~25! represents a phase curve in the phase sp
(a,p)5(a,ȧ).

The solution of Eq.~21! may be given after the substitu
tion ȧ5p(a) or equivalently by taking the quotient of Eqs
~22! and ~23!. Then we obtain

p
dp

da
1c~a!p21k~a!50. ~26!

Equation~26! takes the form of the Bernoulli equation an
after the standard substitutionu(a)5p2, u85du/da we ob-
tain the nonautonomous system
1-4
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u812c~a!u12k~a!50. ~27!

Finally, the solution of Eq.~21!, passing through the poin
„a0 ,p0(a0)…, can be given in the following form:

u~a!5expS 22E
a0

a

c~a!daD Fp0
2~a0!

2E
a0

a

2k~a!expS 2E
a0

a

c~a!daD daG ,
i.e.,

p2~a!5expS 2E
a0

a 3g~a!11

a
daD H p0

2~a0!

22E
a0

a FK@113g~a!#

2a
2La@g~a!

11#GexpS E
a0

a 3g~a!11

a
daD daJ .

To consider the case of a mixture of matter and radiati
we substitute the special form ofg(a) from the formula~13!
and then we obtain

p2~a!5
a0

2~aa11!

a2~aa011!
H p0

2~a0!

22E
a0

a a2

aa11
daFK@113g~a!#

2a

2LaS 11
1

3~aa11! D Gc2~a!J ~28!

and the general solution of Eq.~27! has the form

u~a!5expS 22E
a0

a

c~a!daD
3FC22E

a0

a

k~a!expS 2E
a0

a

c~a!daD daG . ~29!

This allows us to formulate an expression that can be tre
as a first integral of the system~24!,~25!. It is characteristic
for dynamical systems of general relativity and cosmolo
that a first integral can be used in constructing a Hamilton
function. A first integral can be represented as algeb
curves in the phase space. These algebraic curves are
by

p2~a!expS 2E
a0

a

c~a!daD 12E
a0

a

k~a!expS 2E
a0

a

c~a!daD da

5C. ~30!

Thus in the case considered we obtain
06351
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ȧ2
a2

aa11
12E

a0

a

k~a!
a2

aa11
da5C. ~31!

Now if we introduce a new variablex such that

1

A2
dx5

ada

Aaa11

Eq. ~31! can be written as

ẋ2

2
1V~x!5V~a0!5const, ~32!

where

V~x!52Exk@a~x!#a~x!

aa~x!11
dx

plays the role of the potential witha(x):(1/A2)x
5(2/3a2)Aaa11(aa22).

This procedure works successfully for any functionc(a).
It is sufficient to replace the expressiona2/(aa11) in the
considered case by exp@2*ac(a)da#[f2.

In the special case ofa50 we obtain thatp5e/3 and we
can use the standard formalism considered in@28#.

Now we can see from formula~28! that algebraic curves
on which lie trajectories of the system take a complica
form. Therefore it is useful to visualize them in the pha
space. Using the form of the first integral~32!, we can also
classify all possible solutions by considering a limiting cur
ẋ50 and derive the relationL(a) as was presented in th
classical case@28#.

There are two kinds of different methods of reducing E
~21! to the form of a Newtonian equation of motion in
one-dimensional configuration space. First, after introduc
the new rescaled variablea→x, we obtain the dynamics in
the form ẍ52]V/]x. Second, after introducing the ne
time variable, sayt(t), defined in such a way that the term
c(a)ȧ2 can be dropped in this parametrization, we obtain
dynamics in the formx95d2a/dt252]V/]a.

Let us note that the functionV„a(x)… plays the role of the
potential for a particle whose position is given byx and
motion described by

ẍ52
dV„a~x!…

dx
.

Szydłowskiet al. @28# showed that the choice of new var
ablesx5x(a) allows one to reduce the dynamics of classic
FRW models with matter or radiation to a one-dimensio
Newtonian equation of motion. It is also interesting th
there is a similar possibility of reducing the system~21! to
the Hamiltonian form for any equation of stateg5g(a), for
example, for any mixture of noninteracting fluids. To pe
form this let us consider a general nonlinear reparametr
tion of the variablea such that

x5aD[g(a)]5aD(a). ~33!
1-5
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It can be shown that Eq.~21! can be reduced to the form o
a Newtonian equation of motion,ẍ52dV(x)/dx, if the
multiplicative coefficient appearing inȧ2 vanishes. This con-
dition gives us the following:

Daa~ ln a!1
2Da

a
2

D

a2 S Daln a1
D

a D 2

5c~a!S Daln a1
D

a D ,

~34!

whereDa5]D/]a. In the special case ofg(a)5const (Da
50), the classical results can be recovered@28#; we have
D52 for pure radiation,D53/2 for dust, andD5 3

2 (11g)
for a perfect fluid withp5gr. If g5g(a) is any function of
a thenD(a) is a solution of Eq.~34!. After the simple sub-
stitution

Da~ ln a!1
D~a!

a
5z~a!, ~35!

we obtain thatz(a) is a solution of the equation

z1
1

z

dz

da
5c~a!. ~36!

In this new variable

ẍ52k@a~x!#z@a~x!#x52
]V

]x
,

and the dynamics is reduced to the case of a nonlinear o
lator with ‘‘springlike’’ tensionk(x)5k(a)z(a).

The information about the equation of state is hidden
the functionc(a) and after finding the solutionz(a) for a
specific form of the equation of state it should be easy to fi
D(a) from Eq. ~35!. It can be easily shown that the corr
sponding equation determiningz(a) is the Bernoulli equa-
tion, for which the solution is

z~a!5
f~a!

Ea

f~a!da

5
d

da
lnS Ea

f~a!daD ,

wheref(a)[exp@*c(a)da#. If we put z(a) into Eq. ~35! we
can find that

D~a!5

lnEa

f~a!da

ln a
5 logaEa

f~a!da.

For the case of a mixture of radiation and dust it has
simple form

z~a!55
3a2

2 U a

~aa11!~aa22!
U for aÞ0,

3

2a
for a5`,

2

a
for a50,
06351
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where f(a)5a/Aaa11 and *af(a)da
5(2/3a2)uAaa11(aa22)u.

Therefore we obtain for the case of noninteracting ma
and radiation

D~a!55
logaS 2Aaa11uaa22u

3a2 D for aÞ0,

2 for a50,

3

2
for a5`.

It can be proved that in a general situation we have the
lowing relation:

Ea

f~a!da5x~a!5Ea
Aa expS 3

2E
a g~a8!

a8
da8D da

~37!

and

x~a!5H aloga(2Aaa11uaa22u/3a2) for aÞ0,

a2 for a50,

a3/2 for a5`,

i.e., for any fluid~or its mixture! that satisfies the equation o
state for so-called ‘‘quintessence’’ matterp5g(a)rc2(a) we
can always find the correspondingD(a).

Due to Eq.~37! the equation of motion can be rewritten
the simplest form

ẍ52k@a~x!#f@a~x!#, V~x!5Ex

k@a~x!#f@a~x!#dx.

~38!

Let us note that there is also the possibility of generaliz
such a result to the case of nonvanishing shear inB(I ) or
B(V) models whens}x3/2.

In the second approach it is useful to reparametrize
time variablet in such a way that

t→t:dt5f@a~t!#dt, ~39!

wheref(a) is a yet-to-be-determined function which shou
be chosen in such a way that the termc(a)ȧ2 is absent in
Eq. ~21!. We can do that provided thatf satisfies the condi-
tion

f[expEa

c~a!da. ~40!

Then Eq.~21! assumes a form similar to the equation for t
motion of a nonrelativistic particle in the external field wi
the potentialV(a), namely,

d2a

dt2
[a952

]V

]a
~41!

and
1-6
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V~a!5Ea

k~a!f2~a!da, ~42!

where

c~a!5
113g~a!

2a
,

k~a!5F K

2a
@113g~a!#2

L

2
a@1

1g~a!#Gc2~a!.

Therefore for such a system the Hamiltonian takes the fo

H~a,p!5
p2

2
1V~a!5E5const, ~43!

where the correspondence with the vacuum case is rea
after puttingE50 andg(a)50.

The advantage of this procedure of reduction is its s
plicity. The new time variablet is a monotonic function of
Newtonian timet and motion is represented in the form of
one-dimensional Hamiltonian system with the potential

V~a!5Ea

k~a!f2~a!da5c0
2EaF K

2a
@113g~a!#2

L

2
a@1

1g~a!#Ga2nf2~a!da. ~44!

By comparison of the potentials~32! and ~44!, we can
observe that both procedures give rise to the same form
the potential function as a function ofa. Whereas the secon
approach seems to be simpler, the first one has the advan
that it allows one to discuss the dynamics in the origin tim
In both cases we do not explicitly integrate the continu
equation~18! which gives us the relationr(a). The effect of
matter content is included inr(a) and the energy constantE.

For the special case of matter content in the form of n
interacting matter and radiation, we obtain

V~a!5
Kc0

2

2 Ea ~aa12!a2n11

~aa11!2
da

1
Lc0

2

2 Ea ~3aa14!a2n13

~aa11!2
da, ~45!

where integrals in the above form of the potential can
given explicitly.

In the special case ofL5n50 we have

V~a!5
Ka4

2~aa11!
. ~46!

Therefore the dynamics is given by the Hamiltonian eq
tions
06351
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a85
]H
]p

, ~47!

p852
]H
]a

, ~48!

which constitute the two-dimensional dynamical system. T
entire evolution is represented by an evolutional path on
plane (a,p). The domain of accelerationä(t).0 is deter-
mined by the condition

a92~a8!2c~a!.0. ~49!

The above condition can be rewritten as

2
]V

]a
2~a8!2c~a!.0. ~50!

Let us note that Eq.~50! can be formulated equivalently a
the following condition in some domain of the configuratio
space$a:a>0%:

2
]V

]a
22@E2V~a!#c~a!.0 ~51!

or

1

c~a!

]V

]a
22V~a!,22E, ~52!

where]V/]a52k(a)f2(a) andc(a)5@113g(a)#/2a.

V. EVOLUTION OF THE VSL DYNAMICAL SYSTEM
IN PHASE DIAGRAMS

A. Background

In the further qualitative analysis of the dynamical syste
~22!,~23! we consider the matter as a mixture of radiati
and dust. Then the system~22!,~23! takes the form of an
autonomous system with rational right-hand sides:

ȧ5p, ~53!

ṗ52
aa12

2a~aa11!
p22S K~aa12!

2a~aa11!

2
3aa14

6~aa11!
LaD c2~a!, ~54!

wherec2(a)5c0
2a2n, n<0, a5em0 /e r0 @for regularization

of the system ata50 it is useful as in Eqs.~24!,~25! to
introduce the timeh:dt/a5dh]. Of course the above system
possesses the first integral in the form~28!.

In the finite domain, the system~53!,~54! has at most one
critical point, which corresponds to an extremum of the fun
tion V(a):(dV/da)ua5a0

50, p0(a0)50. The stability of
this point is determined from the convexity of a diagram
the potential functionV(a). There are two limit cases corre
sponding to the equation of state: of dust (a→`) and of
1-7
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pure radiation (a50). From the system~53!,~54! in the lat-
ter case we obtain the VSL system with pure radiation

ȧ5p, ~55!

ṗ52
1

a
p22S K

a
2

2

3
LaD c2~a!. ~56!

In the above system instead ofa in the spirit of the first
approach we introduce a new variablex[a2 and we obtain
the system in a simpler form:

ẋ5y, ~57!

ẏ522S K2
2

3
LxD c2@a~x!#, ~58!

where c2@a(x)#5c0
2a2n5c0

2xn. The phase portraits of th
system~57!,~58! for n522 are presented on Fig. 1.

In the projective coordinates (z,u) the above system take
the form

ż52zu, ~59!

u̇522S Kz2
2

3
L D c0

2z2n2u2. ~60!

This form of the system is useful in the analysis of the b
havior of trajectories at infinity, becausez50 corresponds a
circle at infinity, x5`, which bounds the phase plane. T
phase portraits of the system~59!,~60! for n522 are pre-
sented on Fig. 2.

In this case the first integral~28! takes the form

ẋ2

2
12E S K2

2

3
LxD c2~x!dx5C̄5const. ~61!

Let us note that in the special cases ofn521 andn5
22 the potential takes the particular formV(x)52@K ln x
2(2/3)Lx#, V(x)52@2K/x2(2/3)L ln x#.

It is clear that the first integral~61! is in fact the integral
of energy, because the system~57!,~58! is a Hamiltonian dy-
namical system with the Hamiltonian

H~p,x!5
p2

2
12S Kxn11

n11
2

2

3
L

xn12

n12D[C̄5const.0.

Now the integral of energy can be used in the classifica
of all possible evolutions modulo their quantitative~i.e., in
accuracy to differential type! properties.

In the qualitative classification, for any case ofg(a), the
first integral~28! may be useful as in the method of classi
cation previously used in@28#. It assumes the form

p2

2
1V„a~x!…5V~a0! ~62!

where
06351
-

n

V~a!5Ea(x) a2

aa11 FK@113g~a!#

2a

2LaS 11
1

3~aa11! D Gc2~a!da,

V(a0)5const.0, x5(2A2/a2)t2(t21), t5Aaa11, and
x5a2 for a50.

From Eq.~62!, after imposing the conditionp50, we can
calculateL from the expression of the functionL(a) which
constitutes a boundary of the domain of configuration sp
admissible for motion:

p2>0⇔V~a!2V~a0!,0

and

L~a!>
Ea

@a~aa12!/2~aa11!2#Kc2~a!da2V~a0!

Ea

@~3aa14!a2/3~aa11!2#c2~a!da

.

~63!

By consideration of the boundary]D:$(a,L):L(a)50%
and construction of the levelsL5const we obtain a qualita
tive classification of all possible trajectories in the spa
(L,a) or (L,x).

B. Interpretation of the acceleration of scale factors
and the absence of a particle horizon

A great advantage of the phase-space dynamical des
tion is the ability to discuss the distribution of models wi
given properties. In other words, one can imagine an
semble of models starting from different initial condition
and ask how a given property is distributed in the ensem
Now we formulate sufficient conditions for solving the fla
ness and horizon problems in terms of phase-space relat
Let us recall that the flatness problem is solved whenever
scale factor’s acceleration is positive,

ä~ t !.0.

This condition is satisfied in the subspaceDflat of the phase
space:

Daccel5H ~a,ȧ!:2
aa12

2a~aa11!
p22S K~aa12!

2a~aa11!

2
3aa14

6~aa11!
LaD c2~a!.0J . ~64!

This means that trajectories representing the histories of V
universes undergo an accelerated expansion while stayin
the regionDflat . One can restate relation~64! using the
Hamiltonian constraintp252@V(a0)2V(a)#. It is easy to
see that the corresponding condition expressed purely
terms of configuration space reads
1-8
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FIG. 1. The phase portrait for the system~57!,~58! for n522. For the cases (K521,L51), (K521,L50), (K50,L51) the
qualitative structure of the phase space is the same. In the finite domains of phase space there are no critical points. The typical
represent the solution starting from the singularity-free stagex5` at t50, then reaching the stagex5x0 ,y50, and going to infinity. In
these three cases the trajectories pass through the acceleration region~the shaded region!. The largest acceleration region is for (K5
21,L51). These models accelerate for a finite interval of time, and this acceleration happens to models without a cosmological
The closed models for (K51,L50) are the typical oscillating models. There is no acceleration for (K51,L50), (K50,L50). In the case
of (K51,L51) a saddle appears and we have two additional types of evolution: the Lemaiˆtre model with a quasistatic stage of evolutio
and the aforementioned open and flat models. The acceleration region is in the middle of the quasistatic phase of evolution of theˆtre
model.
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FIG. 2. The phase portrait for the system~59!,~60! for n522 in the projective coordinatesz51/x,u5y/x. All critical points at infinity
correspond toz050. There are two types of critical points (z0 ,u0)5(0,0) and (z0 ,u0)5(2L/3K,0). For all points trA50 ~whereA is a
linearization matrix of the system considered!, i.e., at least one of the eigenvalues is zero. If (L.0, K51) we have a saddle point at (z0,0).
The presence of degenerate points at infinity (0,0) indicates that the system is structurally unstable, in contrast to models with
cosmological constant and constant velocity of light where (0,A4L/3) represents a stable node~the de Sitter stage!. For n.0 there is no
critical point at (0,0) and the models are structurally stable.
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Daccel5H a:2
aa12

a~aa11!
@V~a0!2V~a!#2S K~aa12!

2a~aa11!

2
3aa14

6~aa11!
LaD c2~a!.0J . ~65!

Analogous criteria for acceleration if the dynamics is co
ered by Eqs.~47!,~48! are given by Eq.~50! in phase space
and Eq.~52! in the configuration space.

Another interesting question concerns the horizon pr
lem. It is easy to prove the following criterion for avoidin
the horizon problem.

Theorem 1.The FRW cosmological model does not ha
an event horizon near the singularity ifȧ(t)c21(t) tends to a
constant whilea(t) tends to zero.

Proof.When all events whose coordinates at past time
located beyond some distancedH can never communicat
with the observer at the coordinater 50 in the Robertson-
Walker metric, we can define the distancedH as the past
event horizon distance. It is given by

dH~ t !5a~ t !E
0

t0 dt8c~ t8!

a~ t8!
5a~ t !I .

WheneverI diverges ast→0 there is no past event horizo
in the space time geometry. On the other hand, whenI con-
verges the space time exhibits a past horizon

E
t

t0 dtc~ t !

a~ t !
5E

t

t0 anda

ada/dt
5E

t

t0 1

c21ȧ

da

a
.

Let c21(t)ȧ,A; then

I>
1

AE0

a0 da

a
5

1

A
~ ln a01`!.

On the other hand, whenȧ,Ā is bounded then

I 5E
t

t0 dtc~ t !

a~ t !
5E

t

t0 anda

ada/dt
5E

t

t0
an21

da

ȧ

and I>(1/Ā)*0
a0an21da or

ĀE
t

t0 dtc~ t !

ȧ~ t !
>

an

n
.

06351
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ThereforeI diverges asa→0 if n,0 andȧ,Ā. j
The above criterion can be reformulated in the langua

of phase space in the form

a→0 and c21~ t !ȧ~ t !→const,

i.e., a22nS da

dt D
2

→~const!2.

For example, for the radiation casea5Ax and then the pas
horizon is eliminated only ifẋ2x22n21→const asx→0. Af-
ter substituting the first integral~61! we obtain that there is
an n such that the horizon disappears if and only ifn,
21. Let us note that the above proof is based on the Ham
tonian constraint and is independent of any specific assu
tion about an equation of state ora(t) near the singularity. If
we assume power-law behavior ofa(t) then Barrow’s result
can be simply achieved@17#, namely, a(t)}t2/3(g21) if 2
>2n13(g11).

C. The potential function for a mixture of dust and radiation

The boundary of the domain in the configuration spacex
space ora space! admissible for motion is determined by th
expression

V„a~x!…5Kc0
2Ea(x) a112n~aa12!

~aa11!2
da

2Lc0
2Ea(x) ~3aa14!a312n

3~aa11!2
da

5V~a0!.0.

The equationV„a(x)…2V„a0(x0)…50 can be represented i
the space (L,a) or more correctly in the space (L,x) as a
boundary curve for the classification. Instead of the inve
function a(x) ~it is difficult to give it in a simple form!, we
take the functionx(a) as

V~a0!2Kc0
2Ea a112a

2~aa11!
da2Kc0

2Ea a112n

2~aa11!2
da

1Lc0
2F Ea a312n

3~aa11!
da1

1

3E
a a312n

~aa11!2
daG50,

where the physical domain isV(a0)2V(a).0, i.e.,
L>

2V~a0!1
1

2
Kc0

2Ea

@a112n/~aa11!#da1
1

2
Kc0

2Ea

@a112n/~aa11!2#da

c0
2F Ea

@a312n/3~aa11!#da1
1

3E
a

@a312n/~aa11!2#daG ,
1-11
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where

E da

am~aa11!
5 (

k51

m21
~21!kak21

~m2k!!am2k

1~21!mam21ln
aa11

a
,

E da

al~aa11!2
52

1

a F 1

al~aa11!

1 l S (
k51

l
~21!kak21

~ l 112k!!al 112k

1~21! l 11a l ln
aa11

a D G .

On Figs. 3–5, for simplicity of presentation without lo
of generality, it is assumed thatc051, V(a0)51, K, a are
parameters, andn is chosen as21, 22, 23.

VI. TUNNELING IN n DECAYING COSMOLOGIES

In the classical VSL cosmology a particle trajectory
determined through a knowledge of both a positionx and a
canonically conjugate momentumpx . In the quantum VSL
cosmology the notion of trajectories loses its classical me
ing due to the uncertainty relation (x andpx are replaced by
noncommuting operators!. The Wheeler-DeWitt equation

FIG. 3. The relationship betweenL andx for K51. The quali-
tative evolution of the models is represented by levels ofL
5const. The domain under the characteristic curvesL(a) is clas-
sically forbidden~apart from the case ofn522 andL,0!. For
n521 andL,0 all models start from a singularity and oscillat
For n521 and L.0 all models start from the singularity an
expand. Forn522 andL,0 all models start from a finite scal
factor and expand. Forn522 andL.0 there are oscillating uni-
verses which start from a finite scale factor. Forn523 all models
are oscillating and have no singularity.
06351
n-

F ]2

]x2
2V~x!Gc~a!50 ~66!

is identical to the one-dimensional time-independent Sch¨-
dinger equation for a one-half unit particle of energyE sub-
ject to the potentialV(x) @c(a) is known as the wave func
tion of the Universe#.

FIG. 4. The relationship betweenL andx for K50. The quali-
tative evolution of the models is represented by levels ofL
5const. The domain under the characteristic curvesL(a) is clas-
sically forbidden~apart from the case ofn522 andL,0!. For
n521 andL,0 all models oscillate. Forn521 andL.0 the
models evolve from a singularity to infinity. Forn522 and L
,0 the models expand. Forn522 and L.0 the models also
oscillate starting from a singularity. Forn523 andL,0 there is
no solution. Forn523 andL.0 all models oscillate.

FIG. 5. The relationship betweenL and x for K521. The
qualitative evolution of the models is represented by levels ofL
5const. The domain under the characteristic curvesL(a) is clas-
sically forbidden~apart from the case ofn522 andL,0!. For
n521 andL,0 there is no solution. Forn521 andL.0 the
models start from finite size and expand. Forn522 andL,0 all
models oscillate without a singularity. Forn522 and L.0 the
models start from a finite size of the scale factor tox5`. For n
523 all models oscillate with a singularity.
1-12
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The ‘‘particle-universe’’ can quantum mechanically tunn
through the potential barrier. Let us consider the case w
the region beneath the barrier 0,a,a0 is classically forbid-
den whereas the regiona>a0 is classically allowed.

We can adopt a simple method of calculating the am
tude for the quantum creation of the VSL FRW univer
from zero size toa5a05A3(n12)/2(n11)L:

zVSLFRW~a0!unothing& z25P>expF2
2

\E0

x0A2~E2V!dxG .
~67!

The above formula~called Gamov’s formula! gives us the
tunneling probability because the quantized VSL FRW u
verse is mathematically equivalent to a one-dimensional
ticle of unit mass.

As an example, let us go back to the previously cons
ered case of the compact vacuum VSL model. The Ham
tonian for this case can be obtained if we putE50 into
H(p,x).

The region of the barrier 0,x,x0 is classically forbid-
den for a zero energy particle. Therefore one can find
probability that a particle atx50 can tunnel to x
5x0 :V(x0)50; x053(n12)/2(n11)L.

After rescaling the variablex°x/x05k we obtain for Eq.
~67!

P>expF2
4

\ S 3~n12!K

2~n11!L D (n13)/2G E
0

1

kn/2Ak~12k!dk,

~68!

where we assumeK51, L>0, and21,n,0; the poten-
tial V(x)5xn11(11x) has two extrema and two zeros. Th
relation ~68! can be rewritten in the form

P>expF2
2

\
F~n!G ~69!

where

F~n!5F 3~n12!

2~n11!LG (n13)/2Ap

2

G~~n13!/2!

G~31n/2!
. ~70!

It is most probable that the closed and vacuum VSL FR
model with 21,n,0 is created when we have the max
mum permissible energy density or the least sizea0. It oc-
curs that the creation of a universe with constantc (n50) is
most probable when classical spacetime emerges via
quantum tunneling process, whereasc(a) is a decreasing
function during the evolution of the Universe.

VII. CONCLUSIONS

Let us assume that one takes the idea of the varying sp
of light seriously as a physical effect that might have ha
pened in the very early Universe and today is confined t
very narrow range admissible by the inaccuracy of exist
bounds on the variability ofc. One of the problems arising
then is to see how this modification of physics would chan
06351
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the evolution of standard Friedmann-Robertson-Walker c
mological models. So far only specific qualitative results a
known concerning the solution of the flatness and horiz
problems in VSL models. In the present work we attemp
to extend this qualitative discussion in the sense that by c
structing phase-space portraits of VSL cosmological mod
we were able to obtain a global view of their dynamics.
order to achieve this we used a power-law ansatz for
function c(t) and investigated the classical Einstein equ
tions with c allowed to be a function of time.

Two procedures of reduction of the dynamics are p
posed. In the first case we reduced the dynamics of V
models to a two-dimensional Hamiltonian dynamical syst
with a quadratic kinetic energy form and a potential functi
depending on a generalized scale factor. In the second
we reparametrized the time variable but the scale factor
mained a state variable. In both cases the shape of the po
tial and the existence of the energy integral were used
classify possible evolutions of VSL models. These possib
ties comprise models evolving from a singularity to infinit
oscillatory behavior between initial and final singularitie
Einstein–de Sitter type models evolving from a singularity
the static world, Lemaiˆtre-Eddington type models evolvin
from the static Einstein solution to infinity, models expan
ing to infinity from a finite size, and finally models startin
and ending with finite scale factors.

We have dealt with the full global dynamics of VSL mod
els. From the theoretical point of view the size of the class
models without horizon or with solved cosmological puzz
is important. We call this class of models generic if the
inset in the open phase is open or has nonzero measure.
point of view is justified by the fact that if the solution of
cosmological puzzle is an attribute of a trajectory with giv
initial conditions, it should also be an attribute of anoth
trajectory which starts with neighboring initial conditions.

We have shown that the assumed time dependence o
speed of light leads to a uniform evolution pattern of VS
models on the phase space. The criteria for solving the
ness and horizon problems were formulated in terms of
phase space. It is an advantage of the phase-space app
that one can trace the patterns of evolution for all poss
initial conditions. We have depicted, on respective phase p
traits, the regions where the flatness problem is solved.
models where the region of initial conditions leading to fla
ness and horizon problem avoidance is large play a dis
guished role. From this perspective open (K521) models
with positive cosmological constantL.0 are preferred in
the class of VSL FRW models filled with radiation.

The formalism presented in this paper can easily be
tended to the case where the matter content of the mode
mixture of different types of matter and to the case of mod
with shear~e.g., Bianchi type I or V models!.

This formalism can also be treated as a starting point
the application of quantum cosmology to the description
early stages of evolution of the Universe@29,30#. The tun-
neling rate with an exact prefactor can be calculated to
first order in\ for the closed VSL FRW model with a de
caying variable velocity of light termc(a). The tunneling
probability P can be calculated in the WKB approximatio
1-13
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given in theV@E limit by Eq. ~67!. We consider closed
vacuum VSL FRW models for which the potential is qua
tatively classical. This implies that21,n. In the interval
21,n<0 the probability of tunneling increases asF(n)
monotonically decreases with increasingn. It is shown that
the highest tunneling rate occurs forn50; it corresponds to
the standard FRW model.

In our work we showed the effectiveness of dynami
system methods in the investigation of VSL FRW mode
namely, in the class of open models with a cosmologi
constant the acceleration has ‘‘transitional’’ character, i
there is a finite time when the trajectories are in the ac
eration region, and the measure of this region normalize
the area of the phase plane is finite, even in the case oL
50.
D
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r,

06351
l
,
l

.,
l-
to

We can argue that the VSL models considered are st
turally unstable~Fig. 2! because of the presence of degen
ate critical points at infinity forn,0. From the theoretica
point of view such a situation seems to be unsatisfact
because in the space of all dynamical systems on the p
they form a set of zero measure~the Peixoto theorem!.

The advantage of representing the dynamics in terms
the Hamiltonian is to allow discussion of how trajectori
with interesting properties are distributed on the phase pla

ACKNOWLEDGMENT

M.S. acknowledges the support of 2002/2003 Jagiellon
University Rector’s Scholarship.
r,

-

R

n-

it.
@1# E.W. Kolb and M.S. Turner,The Early Universe~Wiley, New
York, 1990!.

@2# J.W. Moffat, Int. J. Theor. Phys. D2, 351 ~1993!.
@3# J.W. Moffat, Found. Phys.23, 411 ~1993!.
@4# A. Albrecht and J. Magueijo, Phys. Rev. D59, 043516~1999!.
@5# J.D. Barrow, Phys. Rev. D59, 043515~1999!.
@6# J.D. Barrow, Gen. Relativ. Gravit.32, 1111~2000!.
@7# A. Albrecht, in COSMO98 Proceedings, 1999, edited by

Caldwell, astro-ph/9904185.
@8# S.H.S. Alexander, J. High Energy Phys.11, 017 ~2000!.
@9# P.P. Avelino and C.J.A.P. Martins, Phys. Lett. B459, 486

~1999!.
@10# P.P. Avelino, C.J.A.P. Martins, and G. Rocha, Phys. Lett

483, 210 ~2000!.
@11# J.D. Barrow and J. Magueijo, Phys. Lett. B443, 104 ~1998!.
@12# J.D. Barrow and J. Magueijo, Class. Quantum Grav.16, 1435

~1999!.
@13# B.A. Bassett, S. Liberati, C. Molina-Paris, and M. Visse

Phys. Rev. D62, 103518~2000!.
@14# M.A. Clayton and J.W. Moffat, Phys. Lett. B460, 263 ~1999!.
@15# I.T. Drummond, gr-qc/9908058.
@16# J.W. Moffat, astro-ph/9811390.
@17# J.D. Barrow, Phys. Lett. B564, 1 ~2003!.
.

@18# J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwate
and J.D. Barrow, Phys. Rev. Lett.82, 884 ~1999!.

@19# S. Perlmutteret al., Nature~London! 391, 51 ~1998!.
@20# B.P. Schmidtet al., Astrophys. J.507, 46 ~1998!.
@21# O.I. Bogoyavlensky,Methods in Qualitative Theory of Dy

namical Systems in Astrophysics and Gas Dynamics~Springer-
Verlag, New York, 1985!.

@22# M. Szydłowski and M. Biesiada, Phys. Rev. D41, 2487
~1990!.

@23# M. Biesiada and M. Szydłowski, Phys. Rev. D62, 043514
~2000!.

@24# M. Biesiada, Astrophys. Space Sci.283, 511 ~2003!.
@25# A.A. Andronov and L.S. Pontryagin, Dokl. Akad. Nauk SSS

14, 247 ~1937!.
@26# S. Smale,Mathematics of Time~Springer-Verlag, New York,

1980!.
@27# Dynamical Systems in Cosmology, edited by J. Wainwright and

G.F.R. Ellis ~Cambridge University Press, Cambridge, E
gland, 1997!.

@28# M. Szydłowski, M. Heller, and Z. Golda, Gen. Relativ. Grav
16, 877 ~1984!.

@29# A. Vilenkin, Phys. Lett.117B, 25 ~1982!.
@30# A. Vilenkin, Phys. Rev. D27, 2848~1983!.
1-14


