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Dynamical system approach to cosmological models with a varying speed of light
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The methods of dynamical systems have been used to study homogeneous and isotropic cosmological
models with a varying speed of ligk¥SL). We propose two methods for the reduction of the dynamics to the
form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The
solutions are analyzed on two-dimensional phase space in the variabt@smherex is a function of a scale
factora. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that
the models with a negative curvature overcome the horizon and flatness problems. The presented method of
reduction can be adapted to the analysis of the dynamics of the Universe with the general form of the equation
of statep=+y(a)e. This is demonstrated using as an example the dynamics of VSL models filled with a
noninteracting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying
speed of light. Singularity-free oscillating universes are also admitted for a positive cosmological constant. We
consider a quantum VSL Friedmann-Robertson-Walker closed model with radiation and show that the highest
tunneling rate occurs for a constant velocity of light{g)=a" and—1<n=<0. Itis also proved that the class
of models considered is structurally unstable for the case<dd.
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I. INTRODUCTION studied in theoretical as well as empirical contexts 16).
The main motivation for the study of VSL models is to

Although the standard cosmological model is usually beseek explanations for some unusual properties of the Uni-
lieved to be a correct picture of our UniverisH, it still has  verse and to overcome some of the shortcomings of the in-
some difficulties, among which the flatness and horizorflation scenario[17]. In particular, there is empirical evi-
problems are most widely known. The existence of largedence of the fine structure constant varying with time in the
scale structure in the Universe extending to the limit of thecontext of the consistency of quasar absorption spét8h
deepest surveys is another mystery. Its very presence implidgoreover, unlike inflation, the VSL theory provides a solu-
the appearance of some seeds for this structure in the earipn of the cosmological constant problem. However, it can-
Universe. In the standard big-bang scenario they should beot solve the isotropy problem. It is also interesting to evalu-
built in, which is a rather undesirable feature of the theory.ate the power of this model in explaining the acceleration
Therefore, great attention has been paid to inflationary uniproblem[19,20.
verse models, which, albeit invoking exoti€ not hypotheti- Of course, the VSL model as well as other models dis-
cal) physics, were able to provide at least some hope for @ussed in the literature have ad hocelement(variablec)
consistent explanation of both the flatness and horizon probaot yet firmly founded within any existing physical theories.
lems as well as the origin of the seeds for the large-scal@his feature does not seem to be exotic enough to discard
structure. The results of early universe physics lead us tthese models from discussion in the scientific community.
expect the occurrence of phase transitions when the Universgome brilliant arguments justifying this approach are given
was young, hot, and dense. by Albrecht and Magueij$4].

The varying speed of lightVSL) cosmology, seen as an  The varying speed of light models which provide decent
alternative to the inflation theory, was proposed by Moffatfits to the real Universe are characterized by a speed of light
[2,3], who conjectured that a spontaneous breaking of ther gravitational coupling which varies with time in the very
local Lorentz invariance and diffeomorphism invariance as-early Universe but is nearly constant today. Because there are
sociated with a first order phase transition can lead to variastringent bounds on how fast these constants can vary with
tion of the speed of light in the early Universe. This idea wastime after the first few seconds, the models whose dynamics
revived by Albrecht and Magueijpt] and was given further we study in the paper are relevant only in the very early
consideration by Barrows,6]. Barrow showed that the con- Universe. This should be made very clear by using the phase
ception of a VSL can lead to a solution of the flatness, horispace approach and its tools for classifying the qualitative
zon, and monopole problems if the speed of light falls at artypes of solution$21,22.
appropriate rate. The dynamics of a VSL has been widely The present paper is a continuation of previous papers

[23,24] on the dynamics of VSL cosmology. We introduce a

simple framework which allows us to study the dynamics of
*Electronic address: uoszydlo@cyf-kr.edu.pl VSL models in a general way, independent of any specific
"Electronic address: uukrawie@cyf-kr.edu.pl assumption about the equation of state, or the behavior of the
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scale factora(t) near the spatial singularity. We formulate a do not vanish, then there is a one-to-one continuous mapping

VSL Friedmann-Robertson-Walker cosmology as a two-of a neighborhood of this point which transforms trajectories

dimensional dynamical system and we discuss its propertiesf the original system into trajectories of the linearized

using phase portraits where the trajectories represent all sgystem

lutions for all physically admissible initial conditions. The

methods of dynamical systems allow us to indicate how the dx; S i

existence of certain desired physical effects depends on the dt ,9_)(j(x )X —X]).

choice of initial conditions and to analyze how these initial

conditions determining the corresponding solutions are dish this sense, the qualitative behavior of the original system

tributed in the phase space. is equivalent to the behavior of its linearized part. If
Our main goal was to perform a global analysis of the(gil, ...,&") are eigenvectors of the linearization mam}g

dynamics of VSL cosmological models. We avoid the as-the solution of the linearized system has, in general, the fol-

sumption of power type evolution in the VSL models, which lowing form:

are represented by critical poin{singular solutionsin the

phase space. We analyze the dynamics of the models on the . i Kot

phase plane and discuss how different trajectories represent- Xi(t) =X = RekZl Cyéiex,

ing nonsingular solutions can solve cosmological puzzles. -

We conclude that models with negative curvature and poSiyhere C, are constants. A nondegenerate critical point is
tive cosmological constant are preferréd the sense that gjjed an attracting point if, for all eigenvalues, Re<0. In

they have the largest set of initial conditions leading to apjs case, all trajectories from the neighborhood of this point
solution of the flatness and horizon problems _ . go to it whent—o. A nondegenerate critical point is called
On the other hand, we present two arguments that.dIStIna repulsing point if, for all eigenvalues, Re>0. In this
guish the Friedmann-Robertson-WalkéiRW) models with 456 al trajectories from the neighborhood of this point go
constant velocity of light. The theoretical one is that the VSL;, it whent— — . A nondegenerate critical point is said to

3 n
FRW models are structurally unstable afa)=a” andn  pe an ynstable saddle point if a dynamical system has, at

<0, contrary to classical FRW models. The quantum mE'(Xic, ... x*), d eigenvalues with positive real parts and

chanical one is that if a closed universe was born from ay eigenvalues with negative real parts=<(1, . .. n—1).

quantum fluctuation via the quantum tunneling process then When investigating the stability of solutions with a static

the mc:stth probtabltg Iupwe;se Is that W'ﬁ?t: colnst.' Inl thr:S microspace the following theorem proves to be of special
intervat the potential function preserves Its classical charaCyarest 1fx* is a nondegenerate critical point and if the
ter and the universe tunnels from a zero size.

.dynamical system has, &t, d eigenvalues\,, ... \q with

The dynamics of th? cosmolog!cal models ponsldered I?‘1egative real parts, then there exigkscally) an invariant
reduced to the dynamics of a unit mass particle in a one-

. . . ; . @ T~ d-dimensional stable manifold/%;, on which all trajectories
dimensional potential. Then different physical properties like f the svstem o to* astco. A manifold M is said to be
the flatness, horizon, and cosmological constant problem% he sy 90 ' ; . .
can be formulated in terms of the diagram of the potential n invariant manifold of a system |f.every trajectory passing
function of the system hrough a nondegenerate point Mf lies entirely inM (for

' —o<t<+®). For every such solution, there exists the

asymptotic

Il. THE METHOD OF DYNAMICAL SYSTEM STABILITY n 112

im tlln[ > [xj(t)—xj*]z] =q (1)
oo =1

I
t*)

First of all, equations describing a cosmological model
should be reduced to the form of a dynamical system

for a certaini. Similarly, if at the critical poinix* the system

hask eigenvalues with positive real parts then there exists an
=fi(Xy, ... Xy, i=1,...n, invariantk-dimensional unstable manifowﬁnston which all
trajectories go away from the critical poif21].

From the above theorem it follows that, for a saddle point,
there are two invariant manifold&/, and W9 containing
this point and filled with trajectorieéseparatricesgoing to
and away from the critical point. All other trajectoriésot
contained ifW, or in Wi~ ) do not meet the critical point in
Iquestion.

For the complete construction of phase portraits in a plane
it is necessary to know how the trajectories of a dynamical
system behave at infinity. Let us take as an example the

o, two-dimensional system

. dXi
Xi :E
in such a way that the solution with a static microspéme
other solutions of interesis a critical point of the system
(X3, ...xy), ie, for everyi, fi(xj,...x})=0 (i
=1,...n).

If a critical point is nondegenerate, i.e., at this point al
real parts of the eigenvalues Rgeof the linearization matrix

i_
o) x=P(Xx,y), 2
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y=Q(x,y). (3) nami_cal systems on the plane. Th_erefor.e, it is reasonable to
require the model of a real two-dimensional problem to be

In the case of polynomial right-hand sides one usually introStructurally stable.
duces projective CoordinateS, e.qgsr 1/)(, u:y/x or v In our further considerations we will inVeStigate the dy‘
::I_/y’ w= X/y Two maps Z,u) and (U,W) are equiva|ent if namics of dynamical- S-ys.tems in-a flnlte domain Of- phase
and only if u#0 andv#0. Infinitely distant points of the SPace as well as at infinity. At this point we would like to-
(x,y) plane correspond to a circ®* which can be covered recommend thg presentation of_the actual state of the art in
by two linesz=0, —w<u<o, andw=0, —o<p<w. The thg field of application of dynamical systems to general rela-
original system in the projective coordinatesy) and after  tivity [27].
the time reparametrizatiomr— 7,:d7;=xd7 assumes the

form IIl. BASIC EQUATIONS OF THE THEORY

z=zP*(z,u), (4) Albrecht and Magueij¢4] and Barrow{5] set up a useful
framework to discuss the VSL models, assuming that the
u=Q*(z,u)—uP*(zu), (5)  time variablec should not introduce changes in the curvature
terms of the gravitational field equations and that the Ein-
where stein equations must hold. Because varyirtyyeaks Lorentz
invariance, the VSL cosmology requires a specific reference
P*(z,u)=2?P(1/z,ulz), frame (including a specific choice of a time coordingta
which changes in the field equations are minimal and one
Q*(z,u)=22Q(1/z,u/z), postulates that it coincides with the cosmological comoving
frame.
and the overdot denotes differentiation with respect to the In the case of the VSL version of the FRW modeélsth
new time 7. A =0) the scale factor obeys the following dynamical equa-
In a similar way, in the projective coordinates,{v) and  tions:
in the new timer,:dr,=ydr, we obtain

s\ 2
b=—vQ*(v,W), () E) _87G(vp _ Kei(t) ®
a 3 a’(t)
w=P* (v,wW) —WQ* (v,w), 7)
where é‘(_t)_ _ A4nG(Y) 3p
a2 3 p+ 20 . 9

P*(v,wW)=0v2P(1lv,wl/v),

Equation(9) is called the Raychaudhuri equation, and from

*(v,wW)=0v2Q(1/l,w . . .
Q" (0. W) =v"Q(1lv,Wlv), the above system one can build a generalized conservation

and the overdot denotes differentiation with respect to timé&auation

T2.

The idea of structural stability was introduced by An- Y p G 3Ke? ¢
dronov and Pontryagif25]. A dynamical systen$is said to p+3a Pt = —p6+ 2 c (10
be structurally stable if there exist dynamical systems in the c(t) 8nGa

space of all dynamical systems that are close, in the metric

sense, tcS or are topologically equivalent t8. Instead of in which the time dependence of fundamental constants was
finding and analyzing an individual solution of a model, the explicitly taken into account. Alternatively, one can think of
space of all possible solutions is investigated. A given physithe Raychaudhuri equation together with the generalized
cal property is believed to be “realistic” if it can be attrib- conservation equation as a fundamental system for which Eq.
uted to large subsets of models within a space of all possiblgg) is a first integral.

solutions or if it possesses a certain stability, i.e., if itis also  The fundamental difficulty concerning the systéB)—
shared by a slightly perturbed model. There is a well estab¢10) is that it is a nonautonomous system with unknown
lished opinion among specialists that realistic models shoulgunctions G(t) andc(t). In order to be specific in further

be structurally stable. What does structural stability mean imnalysis, we adopt Barrow’s power-law ansatz

physics? The problem is in principle open in higher than the
two-dimensional case where according to Smale there are
large subsets of structurally unstable systems in the space of
all dynamical systemp26]. For two-dimensional dynamical
systems, as in the considered case, Peixoto’'s theorem salyoreover, we assume the hydrodynamical energy-
that structurally stable dynamical systems on compact manimomentum tensor with the equation of state for the nonin-
folds form open and dense subsets in the space of all dyteracting multifluid

G(t)=Gpa(t)%, c(t)=coa(t)". (11
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model with matter in the multifluid form. Then we obtain

E Yipic from Ed. (16)
—,— a 12 )
P= s €= v@pe (12 87Gp a’ +K02(t) Ac? 19
2 P 3 @ @ 3 9
wherep;=pioa 3*1) and the energy density=pc?. and from Eq.(17)
In the special case of a matter and radiation mixture, the )
factor y(a) depending on the scale factartakes the form 877Gp 1 2a 2Ac? 20
L L 3  1+3yala 3 (20
=— =0+ = =€nt 1 . . . .
(@) 3aat1l’ P 0 36 T emTE (13 By adding the sides of the above equations we obtain a sec-

ond order nonlinear equation with respect to the variable
wherea = pmo/pro-

If we substitutd =1 into Eq.(12) then we obtain models a+y(a)a’+«(a)=0, (21
filled with single matter and with the equation of staie
= ypc?. Generally, for noninteracting fluids with pressure where
p=23,;yipic? the equation of state assumes the fopm
= y(a)pc? where the factory can be parametrized by the ~1+3y(a)
scale factor. This fact is crucial for the reduction procedure. y(a)= 2a '
The power-law ansatl1) turns the field equations back
into an autonomous system. Now we can think about exten-
sions of the baseline equations. One can include the cosmo- k(a)=
logical constantA in a straightforward way by introducing
the pressur@, and energy densityg, :

K A
5[14‘37’(3)]—58[1

+y(a)]|c*(a)
PA=—paCi(H), (14
5 and only the termx(a) depends on the cosmological con-
_Aci(t) (15 stant.
PA™ 87wG(t)’ Equation(21) can be rewritten as an autonomous dynami-
cal system
The system(8)—(10) with a cosmological constant can be _
cast into the form a=p, (22
(g ° 87G(h)p KcA(1) | A 6 b= y(a)p?— x(a). 23)
al] 3 2 3
(v To apply dynamical system theory, it is useful to reduce the
. ’ system(22),(23) to a form with polynomial right-hand sides:
a_ 477G(t) Ac (t) 1
a 2(0 o a’—%— a (24
= d 7] = p ,
( +3é1 L 2(t)> G 3Ke? a (18 d 1
— —cC =—p= .
GRCIL 6" grcaa P'= g F8@ P da), (@29

Equation (18) is easy to solve only for the case af

=const. Therefore, in our consideration of the general for-
mulation of the dynamics we cannot use an explicit form of
a solution of Eq(18). To avoid this difficulty we consider a (&,P)=(a, a).

where ¢(a)=ax(a) andt— n:dt/a=d». The solution of
Egs. (24),(25) represents a phase curve in the phase space

special procedure of reduction. The solution of Eq(21) may be given after the substitu-
tion a=p(a) or equivalently by taking the quotient of Egs.
IV. REDUCTION TO A PLANAR HAMILTONIAN (22) and(23). Then we obtain
SYSTEM: THE GENERAL SOLUTION OF A DYNAMICAL dp
PROBLEM pﬁ+ y(a)p?+ k(a)=0. (26)

To construct a dynamical system we assume the form of
the equation of state= y(a)pc? and calculate the densify ~ Equation(26) takes the form of the Bernoulli equation and
using both equatioril5) and (16). For simplicity we focus after the standard substitutiar{a) = p?, u’=du/da we ob-
our attention on the case @f=0 corresponding to the VSL tain the nonautonomous system
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u’+2y(a)u+2«(a)=0. 2 ., a? a a?
paur2s @0 a2 +2f x(a)———da=C. (31)
. . . . aa+1 ao aa+1
Finally, the solution of Eq(21), passing through the point
(a0, Po(@0)), can be given in the following form: Now if we introduce a new variable such that
a 1 ada
u<a>=exp( —2J y(a)da || pj(ac) dx=
&0 \/5 Vaa+1
a a .
_f 2K(a)ex;:<2f Y(a)dal|dal, Eqg. (31) can be written as
2o 2o 2
ie., E+V(x):V(aO)=const, (32
a3y(a)+1 where
pz(a):ex% —f Tda) [ p(z)(ao)
a° . (xxalax)
2[K[1+3(a)] V=2 f Tea()+1
-2 T—Aa[y(a)
0 plays the role of the potential witha(x):(1/y2)x
i1 a?’y(a)Jrld q =(2/3a?) Jaa+1(aa—2).
ljex a ajdar. This procedure works successfully for any functiofa).
ag

It is sufficient to replace the expressiaf/(aa+1) in the

To consider the case of a mixture of matter and radiationconsidered case by ejgfy(a)da]=¢"

we substitute the special form gfa) from the formula(13) In the special case af=0 we obtain thap= ¢/3 and we
and then we obtain can use the standard formalism consideref2#i.

Now we can see from formulé8) that algebraic curves
aX( on which lie trajectories of the system take a complicated
olaa+1) o . . .
p?(a)= ————1 pa(ao) form. Therefore it is useful to visualize them in the phase
a%(e@ap+1) space. Using the form of the first integi@?2), we can also
classify all possible solutions by considering a limiting curve

x=0 and derive the relation (a) as was presented in the
classical casg28].
There are two kinds of different methods of reducing Eq.
cz(a)} (28) (21) to the form of a Newtonian equation of motion in a
one-dimensional configuration space. First, after introducing
the new rescaled variabke—x, we obtain the dynamics in

the form x=—4dV/ox. Second, after introducing the new
time variable, sayr(t), defined in such a way that the term

(a)a? can be dropped in this parametrization, we obtain the
dynamics in the fornx”=d?%a/d %= — gVl da.

B fa a® da[K[1+3y(a)]

apaatl 2a

—Aal 1+

3(aa+1l)

and the general solution of ER7) has the form

u(a)=ex;{ —2fa¢(a)da
2

a a Let us note that the functiov(a(x)) plays the role of the
X C—Zj K(a)exp(zj Y(a)daldal|. (29  potential for a particle whose position is given kyand
o o motion described by
This allows us to formulate an expression that can be treated . dV(a(x))
as a first integral of the systef@4),(25). It is characteristic X=- T dax -

for dynamical systems of general relativity and cosmology

that a first integral can be used in constructing a Hamiltoniarszydtowskiet al. [28] showed that the choice of new vari-

function. A first integral can be represented as algebraigplesx=x(a) allows one to reduce the dynamics of classical

curves in the phase space. These algebraic curves are giveRW models with matter or radiation to a one-dimensional

by Newtonian equation of motion. It is also interesting that
there is a similar possibility of reducing the systé2i) to

a a a o= .
p?(a)ex ZJ Hayda +2J «(a)ex ZJ Ha)da|da the Hamiltonian form for any equation of stafe= y(a), for
ap ag ag example, for any mixture of noninteracting fluids. To per-
form this let us consider a general nonlinear reparametriza-
=C. (30 tion of the variablea such that
Thus in the case considered we obtain x=aPl@l=gb(@) (33
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It can be shown that Eq21) can be reduced to the form of
a Newtonian equation of motiorx=—dV(x)/dx, if the
multiplicative coefficient appearing @’ vanishes. This con-
dition gives us the following:

2

=y(a)

Da

D
D Jna+ —
a

2
D.a(lna)+

(39

D D
—; Dalna+g

whereD,=dD/da. In the special case of(a)=const O,
=0), the classical results can be recovef2d]; we have
D=2 for pure radiationD =3/2 for dust, andD=3(1+ )
for a perfect fluid withp=yp. If v=y(a) is any function of
athenD(a) is a solution of Eq(34). After the simple sub-
stitution

D(a)
Da(lna)+T=z(a), (35
we obtain thatz(a) is a solution of the equation
1dz 36
Z+ E d_a l//(a) ( )

In this new variable

. v
x=—k[a(x)]z[a(x)]x=— x

PHYSICAL REVIEW D 68, 063511 (2003

where ¢p(a)=alJaat+l
=(2/3a?)|Jaa+ 1(aa—2)|.

Therefore we obtain for the case of noninteracting matter
and radiation

and

Je¢(a)da

2\Jaa+1llaa—2
Ioga( ¢ |2a |) for a#0,
3a
D(a)=¢ 2 for a=0,
3
— for a=oo,
2

It can be proved that in a general situation we have the fol-
lowing relation:

fad)(a)da:x(a):fa\/aexp(gfa 7(5 )daf)da
(37)

and

aloga(2¢aa+1laa72|/3a2) for a#0,

2

x(a)=4 a for =0,

3/2

a for a=ox,

i.e., for any fluid(or its mixture that satisfies the equation of
state for so-called “quintessence” maties y(a) pc?(a) we
can always find the correspondiifa).

and the dynamics is reduced to the case of a nonlinear oscil- Due to Eq.(37) the equation of motion can be rewritten in

lator with “springlike” tensionk(x) = x(a)z(a).

the simplest form

The information about the equation of state is hidden in

the functiony(a) and after finding the solutiom(a) for a

specific form of the equation of state it should be easy to find
D(a) from Eg. (35). It can be easily shown that the corre-

sponding equation determinirg(a) is the Bernoulli equa-
tion, for which the solution is

__¢®
fa¢(a)da

d a
z(a) zﬁln(f $(a)da

where ¢(a)=exd [¢(a)da]. If we putz(a) into Eq.(35) we
can find that

Infaqb(a)da

D(a)= Ina

= Iogafaqﬁ(a)da.

For the case of a mixture of radiation and dust it has the

simple form
2

( —3a a ‘ for a#0,
2 |(aa+1)(aa—2)|
3
2
— for a=0,
a

x=—«[a(x)]gla(x)], V(x)= fxf«[a(x)]¢[a(><)]d><-
(38)

Let us note that there is also the possibility of generalizing
such a result to the case of nonvanishing sheaB(ih) or
B(V) models wheroox®?,

In the second approach it is useful to reparametrize the
time variablet in such a way that

t—rdt=¢[a(7)]dT, (39

where¢(a) is a yet-to-be-determined function which should

be chosen in such a way that the tegrfa)a? is absent in
Eg. (21). We can do that provided that satisfies the condi-
tion

p=exp j az,b( a)da. (40)

Then Eq.(21) assumes a form similar to the equation for the
motion of a nonrelativistic particle in the external field with
the potentialV(a), namely,

2

o
o]

j— al! — &V

> - (41)

o

and

063511-6
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V(a)= f "r(a)dA(a)da, 42
where

1+3y(a)

¢(a):T,

K A
£[1+37(a)]—53[1

k(a)=

+y(a)]|c(a).

PHYSICAL REVIEW D 68, 063511 (2003

, OH 4
a_ﬁ’ (47)
= 48
P==7 (48)

which constitute the two-dimensional dynamical system. The
entire evolution is represented by an evolutional path on the

plane @,p). The domain of acceleratioa(t)>0 is deter-
mined by the condition

a’—(a')?y(a)>0. (49)

The above condition can be rewritten as

Therefore for such a system the Hamiltonian takes the form

2
H(a,p)= IO74—V(a)=E=const, (43

where the correspondence with the vacuum case is reach

after puttinge=0 and+y(a)=0.

The advantage of this procedure of reduction is its sim-
plicity. The new time variable- is a monotonic function of
Newtonian timet and motion is represented in the form of a

one-dimensional Hamiltonian system with the potential

a al K A
V(a)=J K(a)qu(a)da:céj [5[1+3'y(a)]—5a[1

+ y(a)]|a®"¢?(a)da. (44)

N 2
—5—(51 ) ip(a)>0. (50

Let us note that Eq(50) can be formulated equivalently as
élae following condition in some domain of the configuration
space{a:a=0}:

oV
~ 52 2E-V(a)]¥(a)=0 (5
or
V
WE_ZV(a)<_2E’ (52

wheredV/da= — k(a) >(a) and y(a)=[1+3vy(a)]/2a.

V. EVOLUTION OF THE VSL DYNAMICAL SYSTEM

By comparison of the potential82) and (44), we can IN PHASE DIAGRAMS

observe that both procedures give rise to the same form of
the potential function as a function af Whereas the second
approach seems to be simpler, the first one has the advantage
that it allows one to discuss the dynamics in the origin time.
In both cases we do not explicitly integrate the continuity
equation(18) which gives us the relatiop(a). The effect of
matter content is included im(a) and the energy constaht

For the special case of matter content in the form of non-

A. Background

In the further qualitative analysis of the dynamical system
(22),(23) we consider the matter as a mixture of radiation
and dust. Then the syste(@2),(23) takes the form of an
autonomous system with rational right-hand sides:

interacting matter and radiation, we obtain a=np. (53

a+2 K(aa+2)

K c2 1 9)g2n+1 ___“ 2
Via)= S [* (aat2)a” P~ Za(ear1)” | 2a(aat 1)
2 (aa+1)?
3aa+4 )
Ac} (a (3aa+4)a?*3 T Blaar D) 2)C (@) (54)
— | —————da, (45
2 (aa+1)?

wherec?(a)=c3a?", <0, a= eno/ € [for regularization
where integrals in the above form of the potential can beof the system ag=0 it is useful as in Eqs(24),(25) to
given explicitly. introduce the timey:dt/a=d»]. Of course the above system
In the Specia| case of =n=0 we have possesses the first integral in the fo(’%)
In the finite domain, the syste®3),(54) has at most one
Ka* critical point, which corresponds to an extremum of the func-
(46)  tion V(2):(dV/da)|,-4,=0, po(ap)=0. The stability of
this point is determined from the convexity of a diagram of
Therefore the dynamics is given by the Hamiltonian equathe potential function/(a). There are two limit cases corre-
tions sponding to the equation of state: of dust—¢o) and of

V(a)=m.
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pure radiation &=0). From the systen(63),(54) in the lat-
ter case we obtain the VSL system with pure radiation

a=p, (55)

1,
p=—3p

3 c’(a).

(56)

2A
§a

In the above system instead afin the spirit of the first
approach we introduce a new variablea? and we obtain
the system in a simpler form:

X=Yy, (57)

2
y=—2(K—§Ax ca(x)], (58

where ¢ a(x)]=c5a?"=c3x". The phase portraits of the
system(57),(58) for n=—2 are presented on Fig. 1.

In the projective coordinatez () the above system takes
the form

z=—27\, (59

’ 2 2,-n 2
u=-2 Kz—§A cgz” "—u“. (60

PHYSICAL REVIEW D 68, 063511 (2003

Via)= fa(X)

—Aa

a2

aa+1

K[1+3y(a)]
2a

1+ c’(a)da,

3(aa+1)

V(ag)=const-0, x=(22/a?)t?(t—1), t=\ea+1, and
x=a? for a=0.

From Eq.(62), after imposing the conditiop=0, we can
calculateA from the expression of the functiok(a) which
constitutes a boundary of the domain of configuration space
admissible for motion:

p?=0sV(a)—V(ay) <0

and

Ja[a(aa+ 2)/2(aa+1)?]Kc?(a)da—V(ag)
A(a)=

fa[(3aa+ 4)a%/3(aa+1)?]c*(a)da
(63

By consideration of the boundawD:{(a,A):A(a)=0}
and construction of the levels = const we obtain a qualita-
tive classification of all possible trajectories in the space
(A,a) or (A,X).

This form of the system is useful in the analysis of the be-

havior of trajectories at infinity, becauge=0 corresponds a

circle at infinity, x=c0, which bounds the phase plane. The

phase portraits of the syste(89),(60) for n=—2 are pre-
sented on Fig. 2.
In this case the first integr&P8) takes the form

x2 zf
>+

Let us note that in the special casesnst —1 andn=
—2 the potential takes the particular forsf(x)=2[K Inx
—(2/3)Ax], V(x)=2[ —K/x—(2/3)A Inx].

It is clear that the first integrdbl) is in fact the integral
of energy, because the systéf),(58) is a Hamiltonian dy-
namical system with the Hamiltonian

2 _
K- §Ax)c2(x)dx=C=const. (61)

p2 KXn+l n+2

H(p,X):7+2

2

n+1 3

X

—— =C=const>0.

Now the integral of energy can be used in the classification

of all possible evolutions modulo their quantitatities., in
accuracy to differential typeproperties.

In the qualitative classification, for any casefa), the
first integral(28) may be useful as in the method of classifi-
cation previously used if28]. It assumes the form

2

5 +V(a(x))=V(ap)

(62

where

B. Interpretation of the acceleration of scale factors
and the absence of a particle horizon

A great advantage of the phase-space dynamical descrip-
tion is the ability to discuss the distribution of models with
given properties. In other words, one can imagine an en-
semble of models starting from different initial conditions
and ask how a given property is distributed in the ensemble.
Now we formulate sufficient conditions for solving the flat-
ness and horizon problems in terms of phase-space relations.
Let us recall that the flatness problem is solved whenever the
scale factor’s acceleration is positive,

a(t)>0.

This condition is satisfied in the subspéabg,; of the phase
space:

— N aa+2 ) K(aa+2)

accel= | (3,2):~ S o P | Zataar 1)
3aat+4 A ) 0 64
m alc(a)>0;¢. (64

This means that trajectories representing the histories of VSL
universes undergo an accelerated expansion while staying in
the regionDy,. One can restate relatio64) using the
Hamiltonian constrainp?=2[V(a,)—V(a)]. It is easy to

see that the corresponding condition expressed purely in
terms of configuration space reads
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K=-1, A=1 K=-1, A=0

FIG. 1. The phase portrait for the systd&ir),(58) for n=—2. For the casesK=—-1A=1), (K=-1A=0), (K=0,A=1) the
qualitative structure of the phase space is the same. In the finite domains of phase space there are no critical points. The typical trajectories
represent the solution starting from the singularity-free stagec att=0, then reaching the stage=x,,y=0, and going to infinity. In
these three cases the trajectories pass through the acceleration (tbgishaded region The largest acceleration region is fdk €
—1,A=1). These models accelerate for a finite interval of time, and this acceleration happens to models without a cosmological constant.
The closed models fol{=1,A =0) are the typical oscillating models. There is no accelerationketr {,A=0), (K=0,A=0). In the case
of (K=1,A=1) a saddle appears and we have two additional types of evolution: the ttemmaidel with a quasistatic stage of evolution
and the aforementioned open and flat models. The acceleration region is in the middle of the quasistatic phase of evolution ofrthe Lemai
model.
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K=-1, A=1 K=-1, A=0

FIG. 2. The phase portrait for the syst€59),(60) for n=—2 in the projective coordinates= 1/x,u=y/x. All critical points at infinity
correspond t@,=0. There are two types of critical pointgg(ug) =(0,0) and g,,ug) =(2A/3K,0). For all points tA=0 (whereA is a
linearization matrix of the system consideyeice., at least one of the eigenvalues is zeroAIf{0, K=1) we have a saddle point aty(0).

The presence of degenerate points at infinity (0,0) indicates that the system is structurally unstable, in contrast to models with a positive
cosmological constant and constant velocity of light where/40,/3) represents a stable no@tee de Sitter stageFor n>0 there is no
critical point at (0,0) and the models are structurally stable.
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N +2 K(aa+2) Thereforel diverges ag—0 if n<0 anda<A. [
Dageer= | 81— m[V(ao)—V(a)]— 2a(aa+1) The above criterion can be reformulated in the language
of phase space in the form
3aa+4 A 2 )>O} 65
- ————Aajc(a : :
6(aa+1) a—0 and c~(t)a(t)—const,

Analogous criteria for acceleration if the dynamics is cov-

ered by Eqs(47),(48) are given by Eq(50) in phase space )

and Eq.(52) in the configuration space. 1.€., a
Another interesting question concerns the horizon prob-

lem. It is easy to prove the following criterion for avoiding For example, for the radiation case= \/x and then the past

the horizon problem. _ horizon is eliminated only ik?x 2"~ *— const asx—0. Af-
Theorem 1.The FRW cosmological model does not have ey supstituting the first integrdb1) we obtain that there is

an event horizon near the singularityaift)c~(t) tendstoa an n such that the horizon disappears if and onlyni&

constant whilea(t) tends to zero. —1. Let us note that the above proof is based on the Hamil-
Proof. When all events whose coordinates at past time argonian constraint and is independent of any specific assump-

located beyond some distandg can never communicate tion about an equation of state aft) near the singularity. If

with the observer at the coordinate=0 in the Robertson- we assume power-law behavior aft) then Barrow’s result

Walker metric, we can define the distandg as the past can be simply achievefll7], namely, a(t)«t?3(~1) jf 2

2

da
—(cons?.

dt

event horizon distance. It is given by =2n+3(y+1).
to dt’c(t") C. The potential function for a mixture of dust and radiation
dy(t)= f a(t’) =alyl. The boundary of the domain in the configuration space (

space ol space admissible for motion is determined by the
Whenever diverges ag— 0 there is no past event horizon expression
in the space time geometry. On the other hand, wheon-

verges the space time exhibits a past horizon a0 al*2"(aa+2)

V(a(x))chgf

+1)?
fto dtc(t)_fto a"da _J’to 1 da (aa+1)
¢ a(t) J; adaidt J; o153 a’ N ZF(X) (3aa+4)a3+2”d
. ° 3(aa+1)?2
Let c (t)a<A; then
=V(ay)>0.
1(oda_1 Th tiorV(a(x))— V —0canb ted |
|>_f — = (Inag+x). e equationvV(a(x))—V(ag(xg))= ) can be represented in
Alo a A the space 4,a) or more correctly in the space\(x) as a
o boundary curve for the classification. Instead of the inverse
On the other hand, whea<A is bounded then functiona(x) (it is difficult to give it in a simple form, we
take the functiorx(a) as
| fto dtc(t) fto a"da Jto ., da
= = = a - 1+2a 1+2n
t a(t) t ada/dt t a zfa a Zfa a
V(ag)—Kc§| =———=da—Kc — da
(@)K | 2(aa+1) °) 2(aa+1)2

and|=(1/A) [5%a" 'da or

a g3+an 1ra g3*2n ]
+Ac? f —da+—f ———da|=0,
Kfto dtc(t)  a” 1) 3eatD) " 3) (aa+1)?
. =—,
t o a(t) n where the physical domain ¥(ag) —V(a)>0, i.e.,

1 a 1 a
—V(ao)+§chf [al"2"/(aa+ 1)]da+§chf [al"?"/(aa+1)?]da
A=

2
Co

a 1 (a
f[a3+2”/3(aa+1)]da+§f [a®"2"(aa+1)?]da
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|
0 1 2 3 4
X

FIG. 3. The relationship betweek andx for K=1. The quali-
tative evolution of the models is represented by levels Aof
=const. The domain under the characteristic curdé¢a) is clas-
sically forbidden(apart from the case afi=—2 and A<0). For
n=—1 andA <0 all models start from a singularity and oscillate.
For n=—1 and A>0 all models start from the singularity and
expand. Fon=—2 andA <0 all models start from a finite scale
factor and expand. Far=—2 andA >0 there are oscillating uni-
verses which start from a finite scale factor. Fer —3 all models
are oscillating and have no singularity.

where
J da & (—Dkek?
aM(aa+1) k=1 (m—k)lamk
aa+1
+(=1)Ma™ tn :
a
f da 1 1
a(aa+1)? «|a(aa+l)
I k k-1
-1
11> ("1 e
k=1 (I+1—k)la't1k
at+1
+( 1)'*101'|naa )

On Figs. 3-5, for simplicity of presentation without loss

of generality, it is assumed thay=1, V(ay)=1, K, a are
parameters, and is chosen as-1, —2, —3.

VI. TUNNELING IN n DECAYING COSMOLOGIES

PHYSICAL REVIEW D 68, 063511 (2003

'
I3
I.' I I.'
W~

H |
0 1 2 3 4
X

FIG. 4. The relationship betweekx andx for K=0. The quali-
tative evolution of the models is represented by levels Aof
=const. The domain under the characteristic curkéa) is clas-
sically forbidden(apart from the case ai=—-2 and A<0). For
n=-1 andA <0 all models oscillate. Fon=—1 andA>0 the
models evolve from a singularity to infinity. Far=—2 and A
<0 the models expand. Far=—-2 and A>0 the models also
oscillate starting from a singularity. For=—3 andA <0 there is
no solution. Fom=—3 andA >0 all models oscillate.

(a)=0 (66)

(92
{Q—V(X)

is identical to the one-dimensional time-independent Schro
dinger equation for a one-half unit particle of enekggub-
ject to the potentiaV(x) [ #(a) is known as the wave func-
tion of the Universg

|
0 1 2 3 4
X

FIG. 5. The relationship betweefn and x for K=—1. The
qualitative evolution of the models is represented by levels\ of
=const. The domain under the characteristic curkéa) is clas-

In the classical VSL cosmology a particle trajectory iS sically forbidden(apart from the case ai=—2 and A<0). For
determined through a knowledge of both a positicand a 1= 1 andA <0 there is no solution. Fan=—1 andA>0 the

canonically conjugate momentupy. In the quantum VSL  models start from finite size and expand. Fer —2 andA <0 all
cosmology the notion of trajectories loses its classical meanmodels oscillate without a singularity. For=—2 and A>0 the
ing due to the uncertainty relatiox @ndp, are replaced by models start from a finite size of the scale factorxte®. Forn
noncommuting operatorsThe Wheeler-DeWitt equation =—3 all models oscillate with a singularity.
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The “particle-universe” can quantum mechanically tunnel the evolution of standard Friedmann-Robertson-Walker cos-
through the potential barrier. Let us consider the case whemological models. So far only specific qualitative results are
the region beneath the barriek@<a is classically forbid-  known concerning the solution of the flatness and horizon
den whereas the regiar=a, is classically allowed. problems in VSL models. In the present work we attempted

We can adopt a simple method of calculating the amplito extend this qualitative discussion in the sense that by con-
tude for the quantum creation of the VSL FRW universestructing phase-space portraits of VSL cosmological models
from zero size ta=ay=3(n+2)/2(n+1)A: we were able to obtain a global view of their dynamics. In
5 rx order to achieve this we used a power-law ansatz for the
|VSLFRW(aO)|nothin@|2=Pzexp{— _f °mdx fgnctlor] c(t) and investigated th.e clas§|cal Einstein equa-

filo tions with c allowed to be a function of time.
67) Two procedu_res of reduction of the dynamic§ are pro-
posed. In the first case we reduced the dynamics of VSL

The above formulgcalled Gamov’s formulagives us the m_odels toa two—dimgnsional Hamiltonian dynam?cal syst_em
tunneling probability because the quantized VSL FRW uni-with a q.uadratlc kinetic energy form and a potential function
verse is mathematically equivalent to a one-dimensional padéPending on a generalized scale factor. In the second one
ticle of unit mass. we reparametrized the time variable but the scale factor re-
As an example, let us go back to the previously considmained a state _variable. In both cases _the shape of the poten-
ered case of the compact vacuum VSL model. The Hamilfidl and the existence of the energy integral were used to
tonian for this case can be obtained if we fE#0 into qlassn‘y po_SS|bIe evqutlons.of VSL mod.els. Th_ese p_os.5|_b|I|—
H(p,X). tles'comprlse mo_dels evolvmg'fr.qm a smgulanty to |nf|.n_|ty,
The region of the barrier @x<x, is classically forbid- oscﬂla_tory behawor between initial _and final S|_ngular|_t|es,
den for a zero energy particle. Therefore one can find th&instein—de Sitter type models evolving from a singularity to
probability that a particle atx=0 can tunnel to x the static world, Leméaie-Eddington type models evolving

=%0:V(X0)=0: Xo=3(n+2)/2(n+1)A. from the static Einstein solution to infinity, models expand-
After rescali,ng the variable— x/x,= x we obtain for Eq. ing to infinity from a finite size, and finally models starting
67) 0 and ending with finite scale factors.

We have dealt with the full global dynamics of VSL mod-
4 1 els. From the theoretical point of view the size of the class of
Pzex;{ % f k"2\k(1-k)dxk, models without horizon or with solved cosmological puzzles
0 69) is important. We call this class of models generic if their
inset in the open phase is open or has nonzero measure. This
where we assumE=1, A=0, and—1<n<0; the poten- Point of view is justified by the fact that if the solution of a
tial V(x)=x""1(1+x) has two extrema and two zeros. The c0Smological puzzle is an attribute of a trajectory with given
relation (68) can be rewritten in the form initial conditions, it should also be an attribute of another
trajectory which starts with neighboring initial conditions.
We have shown that the assumed time dependence of the
(69 speed of light leads to a uniform evolution pattern of VSL
models on the phase space. The criteria for solving the flat-

3(n+2)K | ()12
2(n+ 1)A>

_ 2
P=exp — %F(n)

where ness and horizon problems were formulated in terms of the
phase space. It is an advantage of the phase-space approach

3(n+2) |32 /7 I'((n+3)/2) that one can trace the patterns of evolution for all possible

F(n)= 2(n+—1)A 2 T(3+n2) " (70 initial conditions. We have depicted, on respective phase por-

traits, the regions where the flatness problem is solved. The
It is most probable that the closed and vacuum VSL FRwmodels where the region of initial conditions leading to flat-
model with —1<n<0 is created when we have the maxi- ness and horizon problem avoidance is large play a distin-
mum permissible energy density or the least sigelt oc-  guished role. From this perspective opaf=—1) models
curs that the creation of a universe with cons@@m=0) is  With positive cosmological constadt>0 are preferred in
most probable when classical spacetime emerges via tHge class of VSL FRW models filled with radiation.
guantum tunne“ng process, Wheraa(g) is a decreasing The formalism presented in this paper can easily be ex-

function during the evolution of the Universe. tended to the case where the matter content of the model is a
mixture of different types of matter and to the case of models
VII. CONCLUSIONS with shear(e.g., Bianchi type | or V models

This formalism can also be treated as a starting point for
Let us assume that one takes the idea of the varying spedhle application of quantum cosmology to the description of
of light seriously as a physical effect that might have hap-early stages of evolution of the Univer§29,30. The tun-
pened in the very early Universe and today is confined to aeling rate with an exact prefactor can be calculated to the
very narrow range admissible by the inaccuracy of existindirst order in# for the closed VSL FRW model with a de-
bounds on the variability of. One of the problems arising caying variable velocity of light terne(a). The tunneling
then is to see how this modification of physics would changerobability P can be calculated in the WKB approximation
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given in theV>E limit by Eq. (67). We consider closed We can argue that the VSL models considered are struc-
vacuum VSL FRW models for which the potential is quali- turally unstablg[Fig. 2) because of the presence of degener-
tatively classical. This implies that 1<n. In the interval  ate critical points at infinity fom<0. From the theoretical
—1<n=<0 the probability of tunneling increases &gn) point of view such a situation seems to be unsatisfactory
monotonically decreases with increasinglt is shown that  because in the space of all dynamical systems on the plane
the highest tunneling rate occurs for=0; it corresponds to they form a set of zero measuftae Peixoto theoreim
the standard FRW model. The advantage of representing the dynamics in terms of
In our work we showed the effectiveness of dynamicalthe Hamiltonian is to allow discussion of how trajectories

system methods in the investigation of VSL FRW models yith interesting properties are distributed on the phase plane.
namely, in the class of open models with a cosmological

constant the acceleration has “transitional” character, i.e.,

therg is a f_|n|te time when the trajectories are in the .accel- ACKNOWLEDGMENT

eration region, and the measure of this region normalized to
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