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1ÕR curvature corrections as the source of the cosmological acceleration
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Corrections to Einstein’s equations that become important at small curvatures are considered. The field
equations are derived using a Palatini variation in which the connection and metric are varied independently. In
contrast with the Einstein-Hilbert variation, which yields fourth order equations, the Palatini approach produces
second order equations in the metric. The LagrangianL(R)5R2a2/R is examined and it is shown that it leads
to equations whose solutions approach a de Sitter universe at late times. Thus, the inclusion of 1/R curvature
terms in the gravitational action offers an alternative explanation for the cosmological acceleration.
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INTRODUCTION

One of the most interesting aspects of modern cosmol
concerns the acceleration of the cosmological expansion.
cent supernovae@1–4# and cosmic microwave backgroun
radiation@5–10# observations indicate that the expansion
the universe is accelerating, contrary to previous expe
tions.

Most attempts to explain this acceleration involve the
troduction of dark energy as a source of the Einstein fi
equations. The nature of the dark energy is unknown bu
behaves like a fluid with a large negative pressure. One p
sible candidate for the dark energy is a very small cosm
logical constant. Another, possibly related, problem involv
the existence of dark matter. Observations of spiral galax
elliptical galaxies and galactic clusters indicate that these
jects contain a large amount of dark matter. The differe
between dark energy and dark matter is that dark matter c
ters with the visible matter and dark energy is more or l
uniformly spread throughout the universe.

Of course, one possibility is that we do not understa
gravity on these large scales. Since dark energy and
matter are needed to explain phenomena in regions of
curvature, we can attempt to modify Einstein’s theory
adding corrections that become important when the curva
is small~see@13–16# for other approaches that involve mod
fications of Einstein’s theory!. Recently two attempts@11,12#
to explain the cosmic acceleration along these lines h
been made. They involve adding a term proportional to 1R
to the Einstein-Hilbert action and varying the action w
respect to the metric~see@17,18# for other papers that con
sider nonpolynomial terms in the action!. This approach
leads to complicated fourth order equations that can be s
plified by performing a canonical transformation and intr
ducing a fictitious scalar field. It was shown in these pap
that the modified field equations can produce the obser
cosmological acceleration without the need of dark energ

In this paper, I also consider a correction to the action t
is proportional to 1/R, but I use the Palatini variational prin
ciple to derive the field equations. In this approachgmn and
Gmn

a are taken as independent variables. In Einstein gra
the variation with respect toGmn

a gives the usual relationshi
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betweenGmn
a and the metric, i.e.Gmn

a is the Christoffel sym-
bol associated with the metricgmn . The variation with re-
spect togmn gives Rmn(G)2 1

2 gmnR(G)52kTmn , wherek
58pG. Thus, the Palatini variation is equivalent to th
Einstein-Hilbert variation in Einstein’s theory. This is not th
case however for other Lagrangians. In fact, it has b
shown @19,20# that the Palatini variation gives the usu
vacuum Einstein equations for generic Lagrangians of
form L(R). This is to be contrasted with they purely metr
variation that produces fourth order equations. If matter
included the Palatini variation still produces second or
equations, but they are no longer identical to Einstein’s eq
tions. In this paper, I show that the Palatini variation of t
LagrangianL(R)5R2a2/R, wherea is a constant, leads to
field equations that give an accelerating universe at
times.

THE FIELD EQUATIONS

The field equations follow from the variation of the a
tion,

S5E F2
1

2k
L~R!1LM GAgd4x ~1!

where

Rmnb
a 5]bGmn

a 2]nGmb
a 1Gmn

l Gbl
a 2Gmb

l Gnl
a , ~2!

Rmn5Rman
a , R5gmnRmn , k58pG, and LM is the matter

Lagrangian. Here we consider a Palatini variation of the
tion, which treatsgmn andGmn

a as independent variables.
Varying the action with respect togmn gives

L8~R!Rmn2 1
2 L~R!gmn52kTmn ~3!

whereTmn is the energy-momentum tensor and is given b

Tmn52
2

Ag

dSM

dgmn
. ~4!

Varying the action with respect toGmn
a gives
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“a@L8Aggmn#2 1
2“s@L8Aggsm#da

n 2 1
2“s@L8Aggsn#da

m

50. ~5!

By contracting overa and m it is easy to see that this i
equivalent to

“a@L8~R!Aggmn#50. ~6!

This equation can be solved for the connection using a s
lar approach to that used in general relativity. Alternative
one can define a metrichmn5L8gmn and it is easy to see tha
Eq. ~6! implies that the connection is the Christoffel symb
with respect to the metrichmn . A conformal transformation
back to the metricgmn gives ~see @21# for the details on
conformal transformations!

Gmn
a 5H a

mnJ 1
1

2L8
@2d (m

a ]n)L82gmngab]bL8# ~7!

where the first term is the Christoffel symbol with respect
the metricgmn . At first sight it might appear that this doe
not really define the connection sinceL8 contains derivatives
of the connection. However, if we contract the field equat
~3! we get

RL8~R!22L~R!52kT. ~8!

If this equation can be solved forR5R(T), as we will as-
sume here, then the terms in Eq.~7! involving L8(R) can be
expressed as derivatives ofT. SinceT contains only the met-
ric and not its derivatives, the connection will involve on
first derivatives of the metric and the field equations w
then be second order in the metricgmn .

The Ricci tensor and Ricci scalar are given by

Rmn5Rmn~g!2 3
2 ~L8!22

“mL8“nL81~L8!21
“m“nL8

1 1
2 ~L8!21gmnhL8 ~9!

and

R5R~g!13~L8!21hL82 3
2 ~L8!22

“mL8“mL8 ~10!

where Rmn(g) is the usual expression forRmn in terms of
gmn andR5gmnRmn .

If T50 then the solutions to Eq.~8! will be constants and
this implies thatRmn5Rmn(g), and R5R(g). Thus, in a
vacuum the field equations will reduce to the Einstein fi
equations with a cosmological constant for a genericL(R)
~see@19,20# for the vacuum case!. The field equations~3! can
be written in the Einstein form

Rmn~g!2 1
2 R~g!gmn52kSmn ~11!

with a modified sourceSmn given by
06351
i-
,

l
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l

Smn5~L8!21Tmn2
1

k F3

2
~L8!22

“mL8“nL8

2~L8!21
“m“nL82

1

2
gmn~L8!21hL8

1
1

2 S R2
L

L8
D gmnG . ~12!

Now consider the Lagrangian

L~R!5R2
a2

3R
~13!

wherea is a positive constant with the same dimensions aR
and the factor of 3 is introduced to simplify future equation
The field equations for this Lagrangian are

F11
a2

3R2GRmn2
1

2 FR2
a2

3RGgmn52kTmn . ~14!

Contracting the indices gives

R22kTR2a250 ~15!

and the solution to this algebraic equation is

R5 1
2 @kT6Ak2T214a2#. ~16!

For large uTu we expect the above to reduce toR5kT,
which follows from the Einstein field equations. Thus, ifT
.0 we need to select the positive sign and ifT,0 we need
to select the negative sign. In a universe filled with an id
fluid, T52(r23P), so thatT,0 if the dominant energy
condition holds~i.e., r.0 andr>3uPu). Thus we have

R5 1
2 @kT2Ak2T214a2#. ~17!

The vacuum solution is

R52a ~18!

so that at late times, asT→0, the universe will approach a
de Sitter spacetime and the expansion of the universe
accelerate.

From Eqs.~14! and ~16!, we see that the field equation
reduce to the Einstein equations ifukTu@a. Thus, in a dust
filled universe the evolution will be governed by the Einste
field equations at early times. Eventually the corrections
the equations of motion will become important and the u
verse will make a transition to a de Sitter universe at l
times. To match the observations of the cosmological ac
eration we must takea;10267 (eV)2;10253 m22. Note
that in a vacuum we get the Einstein field equations plu
small cosmological constant, so that this theory will pass
the solar system tests that general relativity has passed.
also interesting to note that in a radiation dominated u
verse,T50 so that the dynamics is not governed by t
Einstein’s equations even at large curvature. As we will s
0-2
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below @see Eq.~24!# the equations of motion are the Einste
field equations with a cosmological constant and a modi
Newton’s constant.

Now consider the evolution of a universe with metric,

ds252dt21a~ t !2@dx21dy21dz2# ~19!

at late times, whena@kT. In this regime

Rmn.Rmn~g!1
1

L8
“m“nL81

1

2L8
gmnhL8, ~20!

R. 1
2 kT2a, ~21!

L.2
2

3
aF12

kT

a G ~22!

L8.
4

3 F11
kT

4a G , ~23!

and the field equations are

Rmn.2
1

4
agmn2kF3

4
Tmn2

5

16
TgmnG . ~24!

The matter in the present universe can be approximated
dust withT5r0 /a3, wherer0 is a constant. The nonvanish
ing components of the Ricci tensor are

Rtt5
3ä

a
1

9kr0

8aa3 F ä

a
23S ȧ

a
D 2G ~25!

and

Ri j 52Faä12ȧ21
3kr0

8aa S ä

a
1

ȧ2

a2D Gd i j . ~26!

At late times the universe will almost be in a de Sitter pha
and we can take
,

.

06351
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a~ t !5eHt1b~ t ! ~27!

where ub(t)u!eHt and a512H2. To lowest order inb the
field equations are

b̈2H2b52
kr0

12
e22Ht ~28!

and

b̈14Hḃ25H2b5
kr0

4
e22Ht. ~29!

Subtracting these two equations gives the first order equa

ḃ2Hb5
kr0

12H
e22Ht, ~30!

and the particular solution to this equation is

b~ t !52
kr0

36H2
e22Ht. ~31!

Thus, at late times the universe approaches a de Sitter sp
time exponentially fast. This behavior is analogous to
cosmic no hair theorem for fourth order gravity discussed
Kluske and Schmidt@22#.

CONCLUSION

Using a Palatini variation the field equations for a nonl
ear gravitational Lagrangian coupled to matter were fou
The vacuum field equations are the Einstein equations wi
cosmological constant. Thus, at late times asTmn→0 our
universe will approach a de Sitter spacetime. The inclus
of matter gives field equations that differ from Einstein
equations. Using these equations it was shown that the
proach to de Sitter space is exponentially fast when theR
term dominates. Thus, the inclusion of nonpolynomial c
vature terms in the gravitational action offers an alternat
explanation for the cosmological acceleration.
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