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1/R curvature corrections as the source of the cosmological acceleration
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Corrections to Einstein’s equations that become important at small curvatures are considered. The field
equations are derived using a Palatini variation in which the connection and metric are varied independently. In
contrast with the Einstein-Hilbert variation, which yields fourth order equations, the Palatini approach produces
second order equations in the metric. The Lagranbi@®) = R— o?/R is examined and it is shown that it leads
to equations whose solutions approach a de Sitter universe at late times. Thus, the inclusowtaiure
terms in the gravitational action offers an alternative explanation for the cosmological acceleration.
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INTRODUCTION betweenl';;, and the metric, i.el';, is the Christoffel sym-
bol associated with the metrig,,,. The variation with re-

One of the most interesting aspects of modern cosmologgpect tog,,, givesR,,,(I') — %gwR(F) =—«T,,, Wherek
concerns the acceleration of the cosmological expansion. Re=87G. Thus, the Palatini variation is equivalent to the
cent supernovagl—4] and cosmic microwave background Einstein-Hilbert variation in Einstein’s theory. This is not the
radiation[5—10] observations indicate that the expansion ofcase however for other Lagrangians. In fact, it has been
the universe is accelerating, contrary to previous expectsshown [19,2( that the Palatini variation gives the usual
tions. vacuum Einstein equations for generic Lagrangians of the

Most attempts to explain this acceleration involve the in-form L(R). This is to be contrasted with they purely metric
troduction of dark energy as a source of the Einstein field/ariation that produces fourth order equations. If matter is
equations. The nature of the dark energy is unknown but imclud_ed the Palatini variation st]II prpduces .seco_nd order
behaves like a fluid with a large negative pressure. One pogduations, but they are no longer identical to Einstein's equa-
sible candidate for the dark energy is a very small cosmolions. In_thls paper, | sgow that the _Palatlnl variation of the
logical constant. Another, possibly related, problem involveg‘.agrang'a”.‘(R):R_ @ /R, wherea is a constant, leads to
the existence of dark matter. Observations of spiral galaxie{'i;lgsequat'ons that give an accelerating universe at late
elliptical galaxies and galactic clusters indicate that these ob- '
jects contain a large amount of dark matter. The difference
between dark energy and dark matter is that dark matter clus- THE FIELD EQUATIONS
ters with the visible matter and dark energy is more or less The field equations follow from the variation of the ac-
uniformly spread throughout the universe. tion,

Of course, one possibility is that we do not understand

gravity on these large scales. Since dark energy and dark

matter are needed to explain phenomena in regions of low SZJ [— 5 LR +Lu Vodix (1)
curvature, we can attempt to modify Einstein’s theory by

adding corrections that become important when the curvaturg oo

is small(see[13-16 for other approaches that involve modi-

fications of Einstein’s theojy Recently two attemptsl1,12] a _ a _ 9 1a N pa T\ pa

to explain the cosmic acceleration along these lines have Riuns= 6l = Ol st DLy =Ll @
been made. They involve adding a term proportional ¥ 1/ _pa R=g"'R,,, k=87G, andLy is the matter

. ; , ; o Ry =R _ dLy Is t

tro the tEthtLemmHI:tr)ie(srt a[clﬂ?o?aapdr vta;]rylrng ther "ﬁt'?n V‘r’:th Lagrangian. Here we consider a Palatini variation of the ac-

espect o the metrtsee] 17, L9 Tor oIher papers that co tion, which treatgy,,, andI'?  as independent variables.

sider nonpolynomial terms in the actjoriThis approach varving the acti%n with #evs oct ves

leads to complicated fourth order equations that can be sim- ying pectg,, g

plified by performing a canonical transformation and intro-

ducing a fictitious scalar field. It was shown in these papers

that the modified field equations can produce the observed . .
. : : whereT ,, is the energy-momentum tensor and is given by

cosmological acceleration without the need of dark energy. ®

In this paper, | also consider a correction to the action that
is proportional to 1R, but | use the Palatini variational prin- T = 2 Sy @)

L,(R)R,u,v_%L(R)g,uV:_KT,uV (3)

ciple to derive the field equations. In this approagh, and g sgrr
I';, are taken as independent variables. In Einstein gravity
the variation with respect tb;,, gives the usual relationship Varying the action with respect B, gives
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V.[L'Vgg*" -3V, [L'Jgg"*16,— 3V [L'gg 15"
=0. (5

By contracting overa and w it is easy to see that this is

equivalent to

V.IL'(R)Wgg*"]=0. (6)

This equation can be solved for the connection using a simi-
lar approach to that used in general relativity. Alternatively,
one can define a metrit,,=L'g,, and it is easy to see that
Eq. (6) implies that the connection is the Christoffel symbol

with respect to the metrib,,,. A conformal transformation
back to the metricg,, gives (see[21] for the details on
conformal transformations

o
1
FW=[W] +Z[25‘”&”L —0,,9%,L'1 (7
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1
S V:(L,)_:LT/.LV—;

3 r—2 ’ ’
» S(L)72V,LV,L

ry—1 ’ 1 -1 ’
—(L"H"Vv,V,L —EgM(L ) L
! R = 12
+3 o Ouv|- (12
Now consider the Lagrangian
L(R)=R _az 13

wherea is a positive constant with the same dimensionRas
and the factor of 3 is introduced to simplify future equations.
The field equations for this Lagrangian are

where the first term is the Christoffel symbol with respect tocontracting the indices gives

the metricg,,, . At first sight it might appear that this does

not really define the connection sinté contains derivatives

of the connection. However, if we contract the field equation

(3) we get

RL(R)—2L(R)=—«T. (8)

If this equation can be solved f&®=R(T), as we will as-
sume here, then the terms in E@) involving L' (R) can be
expressed as derivatives Bf SinceT contains only the met-

1+ o R L R o =—«T 14
3R2 ) 3R g,uv_ K mv ( )
R2— kTR—a?=0 (15)
and the solution to this algebraic equation is
R=1[ T+ Jk?T?+4a?]. (16)

For large |T| we expect the above to reduce B=«T,
which follows from the Einstein field equations. Thus,Tif
>0 we need to select the positive sign and #0 we need

to select the negative sign. In a universe filled with an ideal

ric and not its derivatives, the connection will involve only g .4 1= —(p—3P), so thatT<0 if the dominant energy

first derivatives of the metric and the field equations will

then be second order in the metgg,, .
The Ricci tensor and Ricci scalar are given by

R,,=R,(9)—3(L") 3V, L'V L +(L") "'V, VL’

+3(L") 1, 0L 9

and

R=R(g)+3(L") " 'OL'=3(L") "2V ,L'V~L" (10)
whereR,,,(g) is the usual expression fdR,, in terms of
gu» aNdR=g*"R,,,,.

If T=0 then the solutions to Eg8) will be constants and
this implies thatR,,=R,,(g), and R=R(g). Thus, in a

vacuum the field equations will reduce to the Einstein field

equations with a cosmological constant for a genefiR)
(se€[19,2(Q for the vacuum caseThe field equation£3) can
be written in the Einstein form

RMV(g)_%R(g)g}LV:_KS}LV (11)

with a modified sourc&,,, given by

condition holds(i.e., p>0 andp=3|P|). Thus we have

R=3[«T—Vk*T?+4a7]. (17
The vacuum solution is
R=—-« (18

so that at late times, a6—0, the universe will approach a
de Sitter spacetime and the expansion of the universe will
accelerate.

From Eqgs.(14) and (16), we see that the field equations
reduce to the Einstein equationg #T|> «. Thus, in a dust
filled universe the evolution will be governed by the Einstein
field equations at early times. Eventually the corrections to
the equations of motion will become important and the uni-
verse will make a transition to a de Sitter universe at late
times. To match the observations of the cosmological accel-
eration we must takex~107%" (eV)?~10 > m 2. Note
that in a vacuum we get the Einstein field equations plus a
small cosmological constant, so that this theory will pass all
the solar system tests that general relativity has passed. It is
also interesting to note that in a radiation dominated uni-
verse, T=0 so that the dynamics is not governed by the
Einstein’s equations even at large curvature. As we will see
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below[see Eq(24)] the equations of motion are the Einstein a(t)=e"'+b(t) (27
field equations with a cosmological constant and a modified
Newton’s constant. Where|b(t)|<th and a=12H?. To lowest order inb the
Now consider the evolution of a universe with metric, field equations are
— _At2 27 42 2 2 .. K
ds?=—dt?+a(t)dx?+ dy?+ d 2] (19 b—H2b=—§e‘2H‘ 29
at late times, whem> «T. In this regime
and
R,,=R )+ 1V V.,L'+ ! aL’ (20
~ - i , . : K
=R Q VLV S O b+ aHb—5H?b= =, e 2", (29
R=3kT—a, (21)  subtracting these two equations gives the first order equation
2 kT . _ KpPo —2Ht
L——§a 1—7 (22) b Hb—ﬁe ) (30)
4 KT and the particular solution to this equation is
L= § + E , (23)
__ KPo o
) . b(t)=— e . (3D
and the field equations are 36H?
3 Thus, at late times the universe approaches a de Sitter space-
Ru=— Z“gw_" ZTMV_ ETQW . (24) time exponentially fast. This behavior is analogous to the

cosmic no hair theorem for fourth order gravity discussed by
The matter in the present universe can be approximated bgluske and Schmidf22].

dust withT=p, /a3, wherep, is a constant. The nonvanish-

ing components of the Ricci tensor are CONCLUSION

3 9 - )\ 2 Using a Palatini variation the field equations for a nonlin-
nZ—a KPo §_3<§) (25) ear gravitational Lagrangian coupled to matter were found.
a gea’la a The vacuum field equations are the Einstein equations with a

cosmological constant. Thus, at late timesTgg—0 our
and universe will approach a de Sitter spacetime. The inclusion
.y of matter gives field equations that differ from Einstein’s
. -, 3Kkpp[a a
aa+2a“+ -+ —

R.=—

ij= 5jj

-

(26) equations. Using these equations it was shown that the ap-
8aa la g2 proach to de Sitter space is exponentially fast when tRe 1/
term dominates. Thus, the inclusion of nonpolynomial cur-
At late times the universe will almost be in a de Sitter phasevature terms in the gravitational action offers an alternative

and we can take explanation for the cosmological acceleration.
[1] J.L. Tonryet al, astro-ph/0305008. 044020(2003; hep-th/0208096.
[2] S. Perlmutteret al,, Astrophys. J517, 565 (1999. [15] G. Dvali, A. Gruzinov, and M. Zaldarriaga, Phys. Rev.6B,
[3] A.G. Riesset al, Astron. J.116, 1009(1998. 024012(2003.
[4] S. Perlmutteret al., Bull. Am. Astron. Soc29, 1351(1997. [16] G. Dvali and M. Turner, astro-ph/0301510.
[5] C.L. Bennettet al., astro-ph/0302207. [17] H. Kleinert and H.-J. Schmidt, Gen. Relativ. Graa4, 1295
[6] C.B. Netterfieldet al., Astrophys. J571, 604 (2002. (2002.
[7] N.W. Halversonet al.,, Astrophys. J568 38 (2002. [18] R. Brandenberger, V. Mukhanov, and A. Sornborger, Phys.
[8] A.H. Jaffeet al, Phys. Rev. Lett86, 3475(200J). Rev. D48, 1629(1993.
[9] A.E. Langeet al, Phys. Rev. D63, 042001(2001). [19] M. Ferraris, M. Francaviglia, and I. Volovich, Nuovo Cimento
[10] A. Melchiorri et al,, Astrophys. J. Lett536, L63 (2000. Soc. ltal. Fis., B108B, 1313(1993.
[11] S.M. Carroll, V. Duvvuri, M. Trodden, and M. Turner, [20] M. Ferraris, M. Francaviglia, and I. Volovich, Class. Quantum
astro-ph/0306438. Grav. 11, 1505(1994.
[12] S. Capozziello, S. Carloni, and A. Troisi, astro-ph/0303041. [21] S.W. Hawking and G.F.R. EllisThe Large Scale Structure of
[13] C. Deffayet, G. Dvali, and G. Gabadadze, Phys. Re\63) SpacetiméCambridge University Press, Cambridge, 198
044023(2002. 42.

[14] G. Dvali, G. Gabadadze, and M. Shifman, Phys. Rev6 D [22] S. Kluske and H.-J. Schmidt, Astron. NacB@.7, 337 (1996.

063510-3



