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Fluid interpretation of Cardassian expansion
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A fluid interpretation of Cardassian expansion is developed. Here, the Friedmann equation takes the form
H25g(rM) whererM contains only matter and radiation~no vacuum!. The functiong(rM) returns to the usual
8prM /(3mpl

2 ) during the early history of the Universe, but takes a different form that drives an accelerated
expansion after a redshiftz;1. One possible interpretation of this function~and of the right-hand side of
Einstein’s equations! is that it describes a fluid with total energy densityr tot5(3mpl

2 /8p)g(rM)5rM1rK

containing not only matter density~mass times number density! but also interaction termsrK . These interac-
tion terms give rise to an effective negative pressure which drives cosmological acceleration. These interac-
tions may be due to interacting dark matter, e.g. with a fifth force between particlesF;r a21. Such interactions
may be intrinsically four dimensional or may result from higher dimensional physics. A fully relativistic fluid
model is developed here, with conservation of energy, momentum, and particle number. A modified Poisson’s
equation is derived. A study of fluctuations in the early Universe is presented, although a fully relativistic
treatment of the perturbations including gauge choice is as yet incomplete.
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I. INTRODUCTION

Recent observations of type IA supernovae@1,2#, as well
as concordance with other observations, including the mic
wave background@3# and galaxy power spectra@4#, indicate
that the Universe is flat and accelerating. Many authors h
explored possible explanations for the acceleration: a cos
logical constant, time-dependent vacuum energy such
quintessence@5–10#, and gravitational leakage into extra d
mensions@11#.

Recently, Freese and Lewis@12# ~paper I! proposed an
explanation for the acceleration which involves only mat
and radiation, invoking no vacuum energy or cosmologi
constant whatsoever. In their model, called Cardassian,
Universe has a flat geometry as required by measuremen
the cosmic background radiation@3# and yet consists only o
matter and radiation. The Friedmann equation is modifi
from its usual form,H25(8p/3mpl

2 )rM , to

H25g~rM !, ~1!

whereH5ȧ/a is the Hubble constant~as a function of time!,
a is the scale factor of the Universe, and the energy den
rM contains only ordinary matter and radiation. The functi
g(rM) reduces to (8p/3mpl

2 )rM in the early Universe, so
that Eq.~1! reduces to the ordinary Friedmann equation d
ing early epochs including primordial nucleosynthesis. O
at redshiftsz,O(1) does the functiong(rM) differ from the
ordinary Friedmann-Robertson-Walker~FRW! case; during
these late epochs,g(rM) gives rise to accelerated expansio
In paper I, the specific form ofg(r) that was considered wa
the power law Cardassian model:

H25
8p

3mpl
2

rM1BrM
n , ~2!
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with

n,2/3. ~3!

The second term only becomes important oncez,O(1), at
which point it dominates the equation and causes the U
verse to accelerate. Other possible functionsg(r) @13# are
discussed further below.

There remains the question of the fundamental origin
these modifications to the Friedmann equation. There is
unique four-dimensional or even higher-dimensional the
that gives Cardassian evolution. We consider two differ
motivations for these modifications:

~1! These functions may arise from fundamental theor
of gravity in higher dimensions, as was discussed in@12#.
Chung and Freese@14# showed that, generically, the Fried
mann equations are modified as a consequence of embed
our Universe as a three-dimensional surface~3-brane! in
higher dimensions.

~2! Alternatively these functions may arise in a pure
four-dimensional theory in which the modified right-han
side of the Friedmann equation is due to an extra contri
tion to the total energy density. The right-hand side is trea
as a single fluid, with an extra contribution to the energ
momentum tensor in~ordinary four dimensional! Einstein’s
equations.

The two motivations may or may not be linked, in that t
fluid interpretation may be intrinsically four dimensional,
it may be an effective description of higher dimension
physics.

In this paper we restrict our discussion to four dime
sions, and treat the right-hand side of Einstein’s equation
a single fluid. We consider models with an extra energy d
sity associated with matter that contributes in such a way
to drive acceleration. This extra energy density may be
©2003 The American Physical Society09-1
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trinsically four dimensional or may serve as an effective
scription of higher dimensional physics. We take the to
energy density of the matter

r tot5
3mpl

2

8p
g~r!5rM1rK ~4!

~plus possible internal thermal energy which is unimport
on cosmological scales! to contain not only the ordinary
mass densityrM ~mass times number density! but also an
additional contributionrK . For example, in Eq.~2!,

rK5
3mpl

2

8p
BrM

n . ~5!

Given this total energy density, we can now compute
accompanying pressure, and find that the Cardassian co
bution has anegative pressure, pK,0. This negative pres
sure is responsible for the Universe’s acceleration. In f
one can obtain any negative equation of statewK5pK /rK
,0, includingwK,21.

The fluid approach has several advantages:~i! it is fully
relativistic, ~ii ! it allows for the conservation of energy an
momentum as well as of particle number,~iii ! it admits a
sensible weak-field limit which leads to a modified Poisso
equation, and~iv! it permits the study of fluctuations in th
early Universe, the study of effects on the cosmic microwa
background anisotropies, and other observables.

The primary purpose of this paper is to examine this fl
approach. However, we briefly speculate on a possible or
for this extra termrK in the energy density. It may arise from
~dark! matter self-interactions that contribute a negative pr
sure, for example, through a long-range confining fo
which may be of gravitational origin or may be a fifth forc
This self-interacting dark matter is different from any su
component considered in the past, in that it has a nega
rather than a positive pressure. We speculate on a form o
force between particles that may be responsible for such
interaction,F;r a21, although this Newtonian form must o
course be modified on horizon scales. This description o
self-interacting dark fluid may be an effective description
a more fundamental theory. The fluid approach does not
on the validity of such an interpretation of self-interacti
dark matter, e.g., the interactions may be an effective
scription of higher dimensional physics.

We begin by reviewing the idea of Cardassian expans
in Sec. II. We present a general fluid formulation in Sec.
and then give specific examples in Sec. IV. In Sec. V
address the growth of density perturbations, and in Sec
we speculate on the possible origin of an interaction ene
with negative pressure.

II. REVIEW OF CARDASSIAN MODELS

The general form of a Cardassian model was describe
Eq. ~1!, in which a general function of matter density r
places the ordinary energy density in the Friedmann eq
tion. The simplest version, the power law Cardassian mo
of Eq. ~2!, can equivalently be written as
06350
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H25
8pG

3
rMF11S rM

rCard
D n21G . ~6!

For n,2/3, the new term is negligible initially, and onl
comes to dominate at redshiftz;1 ~oncerM;rCard); once it
dominates, it causes the Universe to accelerate. We can
sider the contribution of ordinary matter, with

rM5rM ,0~a/a0!23 ~7!

to this new term. Here, subscript 0 refers to today. Once
new term dominates the right-hand side of the equation,
have accelerated expansion. When the new term is so l
that the ordinary first term can be neglected, the solution
Eq. ~2! is

a}t2/3n ~8!

so that the expansion is superluminal~accelerated! for n
,2/3.

The Cardassian model also has the attractive feature
matter alone is sufficient to provide a flat geometry. T
numerical value of the critical mass density for which t
Universe is flat can be modified. For example, in paper
was shown that in the model of Eq.~2!, the value of the
critical mass density can be 0.3 of the usual value. Hence
matter density can have exactly this new critical value a
satisfy all the observational constraints, such as those g
by the baryon cluster fraction and the galaxy power sp
trum.

In a ‘‘generalized Cardassian model,’’ other functio
g(rM) of the matter~or radiation! density on the right-hand
side of the Friedmann equation can also drive an acceler
expansion in the recent past of the Universe without affe
ing its early history@13#. Several of these alternative func
tions will be discussed below@see Eqs.~48! and ~52!#.

III. BASIC EQUATIONS

A. Perfect fluid

We use the ordinary four-dimensional Einstein’s equatio

Gmn58pGTmn . ~9!

On the right-hand side, we take as our ansatz that the ene
momentum tensor is made only of matter and radiation,
has the perfect fluid form,

Tmn5pgmn1~p1r!umun, ~10!

wherep is the pressure,r is the total energy density of the
matter and radiation, andum is the fluid four-velocity. Here
the total energy density for matter includes not only the ma
densityrM ~mass times number density! but also any inter-
actions or additional terms@corresponding to the new term
on the right-hand side of Eq.~1!#. In general,p and r are
functions of the mass densityrM and of thermodynamic
variables. We assume that at recent times matter is n
relativistic, i.e. the typical speeds involved are much sma
than the speed of light, but we do not assume thatp!r.
9-2
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FLUID INTERPRETATION OF CARDASSIAN EXPANSION PHYSICAL REVIEW D68, 063509 ~2003!
As our ansatz, we take the total energy density of the fl
during the matter dominated era to arise from the sum
three terms:

r5rM1r internal1rK , ~11!

p5pM1pK , ~12!

where

rM5mnM ~13!

is the ordinary matter density of some particle of massm and
number densitynM , r internal andpM are the ordinary interna
energy density and pressure of matter~for example, for an
ideal monoatomic gas at temperatureTM , r internal5

3
2 nMTM

andpM5nMTM), andrK andpK are extra~Cardassian! con-
tributions to energy and pressure. With regard to the gr
properties of the Universe~such as its expansion!, we can
ignorer internal compared torM and pM compared topK for
nonrelativistic matter; however, in the context of galaxi
r internal andpM can be important.

Equation~11! is quite general. Even in those cases wh
the total energy density is not a simple linear sum of ter
~see Secs. II B and II C!, one can always write Eq.~11! in
this fashion.

In Cardassian models we assume there is no vacuum
tribution to the energy density. We also assume that the
~Cardassian! contributionsrK and pK are only functions of
rM , i.e., the Cardassian fluid is barotropic. For example
paper I, we took

rK5brM
n , ~14!

where

b5
3mpl

2

8p
B ~15!

with B as in Eq.~2!.
Note that, throughout the rest of this paper, we will foc

on the matter-dominated era and hence concentrate on
matter contribution to the fluid~rather than the radiation!.

With the ansatz of Eqs.~11! and ~12!, Eq. ~1! can be
rewritten

H258pGr/3. ~16!

Hence we recover the ordinary FRW equations, but wit
modified energy density on the right-hand side.

One can think of this total energy density as including
effects of an interaction term: perhaps this term is simply
effective term on large scales~possibly arising from extra
dimensions! describing the expansion of the Universe;
perhaps this term is due to the interaction energy of the d
matter. A possible origin of an interaction energy with
negative pressure is described in Sec. VI. We iterate a
that the fluid approach is only one of the many ways t
Cardassian expansion of Eq.~1! could result.
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B. Conservation laws

The Bianchi identities guarantee the conservation of
ergy and momentum,

Tmn
;n50. ~17!

One can follow the evolution of the energy density alo
each fluid world line using the general relativistic fluid flo
equations. In a comoving frame, energy-momentum con
vation gives the~fully relativistic! energy conservation an
Euler equations@15,16#

ṙ52um
;m~r1p!, ~18!

u̇m52
hm

n p;n

r1p
, ~19!

where the dot denotes a derivative with respect to comov
time and the tensorhmn5gmn2umun projects onto comoving
hypersurfaces.

We impose in addition that mass~or equivalently particle
number! is conserved,

~rMum! ;m50. ~20!

This will give us the usual dependence of the matter m
density on the scale factor of the Universe.

C. Thermodynamics

General thermodynamic relations connectp andr. In par-
ticular, consider the first law of thermodynamics,Td(sV)
5d(rV)1pdV. In an adiabatic expansion,d(sV)50. To-
gether with mass conservation,d(rMV)50, this equation
leads to

p5rMS ]r

]rM
D

s

2r, ~21!

which allowsp to be computed from an expression forr. It
also allows the speed of sound to be written as

cs
25S ]p

]r D
s

5rMS ]2r

]rM
2 D

s

Y S ]r

]rM
D

s

. ~22!

We can definew5p/r, which in general will not be con-
stant.

Using the ansatz given in Eqs.~11! and ~12! in Eq. ~21!,
we can now relate the Cardassian contributions to energy
pressure via

pK5rMS ]rK

]rM
D

s

2rK . ~23!

Again we can definewK5pK /rK , which in general will dif-
fer from w5p/r and will not be a constant.
9-3
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D. Newtonian limit

Now we obtain the basic equations in the Newton
limit. In Minkowski space, we writeua5g(1,vW ) and the
metric hab5diag(21,1,1,1), whereg51/A12v2 and vW is
the 3-dimensional fluid velocity. Then, Tmn

5diag(2r,p,p,p).
We can obtain the gravitational field equations. In a we

static field produced by a nonrelativistic mass density,
time-time component of the metric tensor is approximat
given byg00.2(112f). Heref is the Newtonian poten
tial for the gravitational fieldgW 52¹W f. The Ricci scalarR
.G00.2¹2f. Poisson’s equation follows from R
58pGTm

m as

¹2f54pG~r13p!. ~24!

We also have

¹W 3gW 50. ~25!

In the same weak field limit, and for a fluid moving no
relativistically, the energy conservation and Euler’s equati
can be found following Ref.@17#, but without assumingp
!r. From T0b

;b50 we find

]r

]t
1¹W •@~r1p!vW #50. ~26!

From Tib
;b50, we find Euler’s equation,

]vW

]t
1~vW •¹W !vW 52

¹W p

r1p
2¹W f. ~27!

Notice that we do not assumep!r in the right-hand side of
Eqs.~24!–~27!.

With the additional constraint of particle number cons
vation, we have the ordinary continuity equation for matt

]rM

]t
1¹W •~rMvW !50. ~28!

Using this equation, and in those situations where the in
nal energy and pressure can be neglected~e.g. when consid-
ering the overall expansion of the Universe!, we can rewrite
Eq. ~26! in the following way:

vW •¹W pK1S rK1pK2rM

]rK

]rM
D¹W •vW 50. ~29!

Note that Eq.~29! in the homogeneous background of o
Universe reproduces Eq.~23!, here in the Newtonian limit.
Hence our basic nonrelativistic equations are Eqs.~24!–~28!.

E. Friedmann-Robertson-Walker models

As mentioned above, Friedmann-Robertson-Walker c
mological models take the usual form@17#. The scale factor
of the Universea obeys the equation
06350
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52

4pG

3
~r13p! ~30!

and the Friedmann equation

H25
8pG

3
r2

k

a2
, ~31!

wherek50,61 fixes the curvature of the spatial sections a
H5ȧ/a is the Hubble parameter. As mentioned previous
we consider only a flat Universe withk50, as motivated by
microwave background data@3#. Of course, the total energ
density here contains new terms and is given by Eq.~11!.

Cardassian expansion requires that the Universe be a
erating today. From Eq.~30!, at matter densities of the orde
of the matter density in the Universe today,rM'rM0, we
requirer05r(rM0) andp05p(rM0) to satisfy

r013p0,0 ~32!

so as to have an accelerating Universe. WithpK given in Eq.
~23!, one can see that acceleration results ifrM22rK
13rM(]rK /]rM),0. In the limit whererK@rM , one can
see that acceleration results as long asrK goes to zero faste
thanrM

2/3 ~for rK5brM
n , this requirement becomesn,2/3 as

stated previously!.
The energy conservation equation in an FRW model i

ṙ523H~r1p!. ~33!

Particle number conservation gives

ṙM523HrM , ~34!

from which we obtain the usual scalingrM;a23 that was
used in Eq.~7!.

IV. EXAMPLES

In this section we discuss three different examples
barotropic Cardassian models, where the new contributio
the energy density is a function only of the mass dens
~mass times number density!, rK[rK(rM). In another paper
we examine the consequences for supernova data of t
three models@18#.

A. Original power law Cardassian model

In the original Cardassian model of Ref.@12#,

rK5brM
n 5rMS rCard

rM
D 12n

, ~35!

with n,2/3 as in Eqs.~2! and ~6!. The pressure associate
with this model in the fluid approach follows from Eq.~23!
as

pK52~12n!rMS rCard

rM
D 12n

. ~36!
9-4
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Notice that

pK52~12n!rK . ~37!

This model therefore has a constant negativewK5pK /rK
52(12n). Then

pK1rK5nS rCard

rM
D 12n

rM . ~38!

The speed of sound in this model

cs
252

n~12n!

n1S rM

rCard
D 12n ~39!

is not guaranteed to be positive. So this model should
considered as an effective description at scales wherecs

2

.0.

1. Basic equations in the Newtonian limit for the power law
Cardassian model

For thern Cardassian model, the basic Newtonian eq
tions become

]vW

]t
1~vW •¹W !vW 52

¹W p

r1p
1gW , ~40!

vW •¹W pK1FpK1~12n!S rCard

rM
D 12n

rM G¹W •vW 50, ~41!

¹W 3gW 50, ~42!

¹W •gW 524pGFrM2~223n!S rCard

rM
D 12n

rM G , ~43!

]rM

]t
1¹W •~rMvW !50. ~44!

2. Problem on galactic scales

The fluid approach to thern model cannot be used o
galactic scales. From Eqs.~40! and ~38!, we see that

dvW

dt
52

¹W pM1¹W pK

rM@11n~rCard/rM !12n#
1gW ~45!

where we have droppedpM!rM andr internal!rM in the de-
nominator. In standard cosmology, one would have

dvW

dt
52

¹W pM

rM
1gW , ~46!

where pM is quite small and gravity dominates. Here, t
fluid version of thern Cardassian cosmology has an ad
tional term in both numerator and denominator. SincerCard
!rM throughout most of the interiors of galaxies, we c
ignore the second term in the denominator. However,
06350
e
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second term in the numerator can have drastic effects. Le
consider, e.g., the position of the Sun in the Milky Way. T
local energy density of matter is roughlyrM'104rCard.
Hence we haverM@rK , so that one might expect to be ab
to ignore any effects of Cardassian terms. However, th
expectations are not true, because of the Cardassian pres
which in this case dominates:upKu@pM . Hence there is a
new force that acts due to the second term in the numer
of Eq. ~45!,

dvW

dt
U

new

52
¹W pK

rM
51n~12n!S rCard

rM
D 12n ¹W rM

rM
. ~47!

This force destroys flat rotation curves~velocities tend to
increase as one goes out to large radii in an unaccept
way!. The argument in the preceding paragraph has b
presented using nonrelativistic equations, and as such is
complete. However, we have found that the result tha
problematic new force arises on galactic scales remains
in a fully relativistic treatment based on the Oppenheim
Volkov equation.

The fluidrn Cardassian case must therefore be though
as an effective model, which applies only on cosmologi
scales. The examples in the following two sections, on
contrary, can be treated as fluid models on all scales, inc
ing cosmological scales as well as galactic scales.

B. Polytropic Cardassian model

Another class of models has

r5r internal1rCardF11S rM

rCard
D qG1/q

~48!

with qÞ0. This model can be used on all scales~see below!,
but it does not quite fit the criteria of the Cardassian mo
as defined in Eq.~1!; at late times in the future of the Uni
verse, whenrM!rCard, this model becomes cosmologic
constant dominated withL5rCard. Phenomenologically, this
energy density is very similar to a model that was deriv
earlier @11# motivated by gravitational leakage into extra d
mensions.

In this model, the pressure is

p5pM2rCardF11S rM

rCard
D qG (1/q)21

. ~49!

When the ordinary internal energy densityr internal and the
ordinary pressurepM can be neglected, this model obeys
polytropic equation of state

p52rCardS r

rCard
D 12q

, ~50!

with negative pressure and negative polytropic indexN5
21/q. For q.1, the speed of sound in this model is pos
tive,
9-5



an
c

tie

s

l

e
-
c

io
wi

us

nd

io
n

t

ns

or-

ed
ated

er-

P. GONDOLO AND K. FREESE PHYSICAL REVIEW D68, 063509 ~2003!
cs
25

q21

11S rM

rCard
D q . ~51!

Thus this fluid model can be used on all scales.
We must make sure that at the scales of galaxies

galaxy clusters the Cardassian pressure can be negle
compared to the ordinary pressure. At large matter densi
the Cardassian pressure isupKu.rM

12qrCard
q . In a galaxy or

cluster with velocity dispersions, the ordinary pressure i
pM.rMs2. We wantupKu/pM.(rCard/rM)q/s2!1. Taking
s.300 km/s and assumingpK is unimportant out to
'100 kpc whererM'102rCard, this condition amounts to
q*3. It is remarkable that this value ofq is compatible with
supernova data@18#.

C. Modified polytropic Cardassian model

A Cardassian model that can be used on all scales is

r5r internal1rMF11S rCard

rM
D qnG1/q

. ~52!

For q51 this reduces to the originalrn Cardassian mode
with n512n. The pressure follows as

p5pM2nrMF11S rCard

rM
D qnG (1/q)21S rCard

rM
D qn

. ~53!

This model is interesting because the two parametersn andq
are important on different scales. The parametern sets the
current value ofw.2n, and so can be chosen to fit th
supernova data, while the parameterq governs the suppres
sion of the Cardassian pressure at high densities, and
therefore be chosen not to interfere with galactic rotat
curves and cluster dynamics. Concrete comparisons
data will be presented in@18#.

V. PERTURBATIONS

A. Newtonian theory

Here we calculate the behavior of small fluctuations,
ing the nonrelativistic equations derived above in Eqs.~24!–
~28!. As discussed below, there are gauge choices that re
the Newtonian theory inadequate, yet we can learn from
nonetheless. We will write down the general perturbat
equations for any generalized Cardassian model, and the
an example will solve them in thern form of the Cardassian
equations~of paper I! to illustrate the type of results tha
occur.

For the zero-order solution@superscript~0!# we take the
simple spatially uniform solution with

rM
(0)5rM ,0F a0

a~ t !G
3

~54!

vW (0)5
ȧ~ t !

a~ t !
rW ~55!
06350
d
ted
s,

an
n
th

-

er
it
n
as

gW (0)52
4pG~r (0)13p(0)!

3
rW. ~56!

We now seek a perturbed solution@superscript~1!# by
adding to the zero-order solution the small perturbatio
rM

(1) , vW (1), pM
(1) and gW (1). Following @17#, we find that the

hydrodynamic equations~24!–~28! then give, to first order in
these perturbations,

vẆ (1)1
ȧ

a
vW (1)52

1

rM1rK
~¹W pM

(1)1¹W pK
(1)!1gW (1), ~57!

ṙM
(1)13

ȧ

a
rM

(1)1rM¹W •vW (1)50, ~58!

¹W 3gW (1)50, ~59!

¹W •gW (1)524pGF11
]

]rM
~rK13pK!GrM

(1) . ~60!

We have dropped the superscript~0! from zero-order quanti-
ties. In deriving these equations we have neglectedr internal
andpM with respect torM .

We take the perturbations to be adiabatic, so that the
dinary pressure perturbation is given by

pM
(1)5vs

2rM
(1) ~61!

wherevs is the ordinary speed of sound. In the generaliz
Cardassian model with pressure and energy density rel
by Eq. ~23!, the perturbation equations require

pK
(1)5rM

]2rK

]rM
2

rM
(1) . ~62!

Newtonian perturbation equations for thern Cardassian case

For the case of paper I in Eq.~2!, Eqs. ~62! and ~59!
become

¹W •gW (1)524pG@11n~3n22!brM
n21#rM

(1) ~63!

and

pM
(1)5bn~n21!rM

n21rM
(1) . ~64!

B. Newtonian theory: Non-expanding case

First, let us consider the non-expanding case with unp
turbed velocityvW 5(ȧ/a)rW50. A combination of the pertur-
bation equations~57!–~60! yields

]2dM

]t2 5vs,new
2 ¹2dM14pGrM ,newdM . ~65!

This is the usual perturbation equation for

dM5
rM

(1)

rM
, ~66!
9-6
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with vs
2 replaced by

vs,new
2 5

rM

rM1rK
S vs

21rM

]2rK

]rM
2 D ~67!

andrM replaced by

rM ,new5rM

]

]rM
~r13p!5rM1rM

]

]rM
~rK13pK!.

~68!

The equations are spatially homogeneous, so we expe
find plane-wave solutions. We takedM}exp@ i (kW•xW2vt)# to
find

v25k2vs,new
2 24pGrM ,new. ~69!

If v2,0, then the perturbation is unstable to collapse. He
we find the Jeans length

lJ5
2p

kJ
5Ap

vs,new

AGrM ,new

. ~70!

Perturbations on scales larger than the Jeans length can
lapse.

In particular for thern Cardassian case of paper I in E
~2!, we have

vs,new
2 5

vs
22bn~12n!rM

n21

11nbrM
n21

~71!

and

rM ,new5rM@12bn~223n!rM
n21#. ~72!

Then the Jeans length becomes

lJ5A p

GrM

vs
22bn~12n!rM

n21

@11nbrM
n21#@12bn~223n!rM

n21#
. ~73!

The Jeans length for ordinary cold dark matter was tiny, a
the modifications here do not change it substantially eno
to make it interesting.

C. Newtonian theory: Expanding case

Here we consider the expanding case withvW 5(ȧ/a)rW
Þ0. We take the plane wave form for the solutions,

rM
(1)~rW,t !5rM~ t !d~rW,t !, ~74!

d~rW,t !5d~ t !expF irW•qW

a~ t !
G . ~75!

After some algebra, we find

d̈1
2ȧ

a
ḋ1S vs,new

2 q2

a2 24pGrM ,newD d50, ~76!
06350
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wherevs,new
2 andrM ,new are given in Eqs.~67! and ~68!.

For the power lawrn Cardassian model of Eq.~2!, which
is an effective model on large scales, we can drop theq2

term. We have solved the resulting equation numerically
ter changing independent variable fromt to a(t). The solu-
tion for d(a) ~for modes withl@lJ) is given in Fig. 1 for
varying values of the Cardassian indexn. In the figure,aCard
is defined to be the scale factor at which the Cardassian t
starts to dominate in the Friedmann equation, i.e. wh
rM(aCard)5rK(aCard). Today,a0 /aCard is a factor of a few,
but the figure extends to much higher values ofa to show the
behavior of the solutions. The vertical axis is normalized
that the solution becomesa/aCard at early times; namely,
using the solution in Ref.@19# for the growth of matter fluc-
tuations in the radiation and matter-dominated eras of a c
mologically flat model,

D~a!5
d~a!

d init

2aeq

3aCard
, ~77!

whered init is the initial value of the pertubation andaeq is the
scale factor at matter-radiation equality. One can see in Fi
that perturbation growth is suppressed oncea.aCard for 0
<n,1. As a reminder,n51 corresponds to ordinary matte
whereasn50 corresponds to a cosmological constant.
remind the reader, this figure corresponds to perturba
growth in an expanding Newtonian fluid in a box with th
sides being pulled out.

D. General-relativistic theory

Since we do not neglect the pressurep with respect to the
energy densityr, the perturbations should in fact be studie
in a general-relativistic theory. The problem arises of t

FIG. 1. Growth factorD(a) for matter density perturbations in
the originalrK5brM

n Cardassian model as a function of the sca
factor a. The normalization scale factoraCard is defined by
rM(aCard)5rK(aCard). Curves are labeled by the Cardassian ind
n. The curve withn51 corresponds to the usual growth in a matte
dominated Universe, whilen50 corresponds to a cosmologica
constant.
9-7
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choice of gauge. In order to define the energy density per
bation throughout spacetime, one needs to choose a s
hypersurfaces; i.e., one needs to choose a gauge.
choices are common:

~1! The comoving gauge corresponds to the set of com
ing hypersurfaces, defined as those which are orthogon
the comoving world lines, i.e., to the world lines which fo
low the flow of energy.

~2! The synchronous gauge corresponds to the hyper
faces which are orthogonal to geodesics.1

The value of density perturbations depends on the ch
of gauge. However, typically, if one looks inside the horiz
and well into the matter-dominated era, the value of the d
sity perturbation becomes the same in all gauges.

In the case of Cardassian cosmology, we have the unu
circumstance that, even inside the horizon and well into
matter-dominated era, the value of the density perturba
depends on the choice of gauge.

The evolution of density perturbations in the Univer
using a fluid flow approach was discussed in Ref.@16#. In the
comoving gauge, withw5p/r and the relationdp/dr5cs

2

~true for barotropic Cardassian models!, we find that the frac-
tional perturbationd5dr/r of momentumk obeys the equa
tion @16#

H22d̈1@223~2w2cs
2!#H21ḋ2

3

2
~126cs

218w23w2!d

52S k

aHD 2

cs
2d. ~78!

The pertubationds in the synchronous gauge is related tod
by @16#

d2ds53H~11w!E
0

t dp

r1p
dt, ~79!

if one drops the ‘‘gauge mode.’’ In ordinary cosmologie
where there is no Cardassian pressure term, the integra
the right-hand side has a fixed value after matter dominat
obtained by settingdp50 in the matter-dominated era.
few Hubble times into the matter-dominated era it becom
negligible compared to the time scales of interest so that
comoving and synchronous gauges become identical. H
ever, the values of the density perturbations in the t
gauges do not become equal in Cardassian cosmology, w
the Cardassian pressuredpK is present. This term contribute
to the integral in Eq.~79! all the way to the present time, an
the comoving and synchronous gauges are not identical e
today. This creates a problem of interpretation for fluctu
tions in the present Universe, which must be addresse
future studies.

1There are, in fact, an infinity of synchronous gauges, but auth
typically drop the so-called ‘‘gauge mode’’ solution so that the sy
chronous gauge becomes unique.
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VI. ORIGIN OF INTERACTION ENERGY
WITH NEGATIVE PRESSURE

Here we speculate on a possible origin for an interact
energy with a negative pressure. Dark matter particles m
be subject to a new interparticle force which is long-ran
and confining,

F~r !}r a21 ~80!

with a.0. This force may be of gravitational origin o
maybe a fifth force.

To be more quantitative, let us write the new interpartic
potential as

Ui j 5Ari j
a , ~81!

wherer i j is the distance between particles andA is a normal-
ization constant. The total new interaction energy of a sys
of N particles occupying a volume of radiusR will be

Unew.AN2Ra, ~82!

to within a numerical factor of order 1 dependent on t
geometry. The total gravitational potential energy of t
same system is, also within a factor of order unity,

Ugrav.
GM2

R
, ~83!

whereM is the total mass of the system. To play a cosm
logical role at the present time, the new energy must be
the same order of the gravitational energy whenR.RH , the
current size of the horizon. Imposing thatUnew.Ugrav at R
.RH gives us the normalization

A5
Gm2

RH
a11

, ~84!

wherem5M /N is the mass of a single particle.
We can now find the magnitude of the new force on g

lactic scales. We have

Ui j ~r !.
Gm2

RH
S r

RH
D a

. ~85!

Thus the new force per unit mass on a particle of massm at
distanceRg from a system ofN particles is of order

Fnew

m
.

u¹W Unewu
m

.a
GM

RH
2 S Rg

RH
D a21

. ~86!

Compared with the gravitational force

Fgrav

m
.

GM

Rg
2

, ~87!

this gives

rs
-

9-8
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Fnew

Fgrav
.aS Rg

RH
D a11

. ~88!

For Rg of the order of galactic scales, i.e.Rg!RH the new
force is negligible compared to the gravitational force. It
clear that fora.0 the new force is only important on ver
large scales. This Newtonian formulation must of course
modified at large distances because of the finite spee
light and issues of causality.

We want to comment on the equation of state of a sys
subject to long-range confining forces. If such a syst
reaches thermal equilibrium~that it does so in the presenc
of long-range confining forces is not at all clear!, then simple
statistical mechanics considerations based on the scalin
the partition function lead to the equation of state~see the
Appendix for details!

p52
a

3
r. ~89!

This is the equation of state of the force mediators. For
ample, the Coulomb force~although not confining! hasa5
21 and equation of statep5r/3, which is that of photons. If
a51 ~as in QCD! or a52, the mediators are strings an
two-dimensional objects, respectively, and their equation
state arep52(1/3)r andp52(2/3)r, which are those of a
network of strings and of domain walls, respectively. Fina
one obtains the vacuum equation of statep52r for a53.
Notice that the Cardassian indexn in the power lawrn

model is connected to the exponenta in the confining force
law througha53(12n) @cf. e.g. Eqs.~37! and~89!#. That a
confining force can give rise to an effective negative press
is well known in particle physics, where the MIT bag mod
is just such an effective description of quark confineme
The cosmological negative pressure may be an indica
that our observable Universe is in a big bag. This sugg
that the dark energy may be the interaction energy assoc
to a long-range confining force.

VII. CONCLUSIONS

There is no unique four-dimensional or even high
dimensional theory that gives Cardassian expansion.
have considered two different motivations for the modifi
Friedmann equations. First, we considered the possib
that these modifications arise from braneworld theories
gravity in higher dimensions@12,14#. In this paper we con-
sidered the alternative possibility that these modificatio
arise in a purely four-dimensional theory in which the righ
hand side of the Friedmann equation has an extra contr
tion to the total energy density.

An interpretation of Cardassian expansion as an inter
ing dark matter fluid with negative pressure is develop
The Cardassian term on the right-hand side of the Friedm
equation~and of Einstein’s equations! is interpreted as an
interaction term. So the total energy density contains
only the matter density~mass times number density! but also
interaction terms. These interaction terms give rise to an
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fective negative pressure which drives cosmological ac
eration.

These interactions may be due to interacting dark ma
e.g. with a long-range confining force or a fifth force b
tween particles. Alternatively, such interactions may be
effective description of higher dimensional physics. We ha
said that matter alone can be responsible for accelerated
havior. However, if the Cardassian behavior results from
tegrating out extra dimensions, then one may ask what
havior of the radii of the extra dimensions is require
Similarly, if we follow a QCD bag or other description o
self-interacting dark matter, one may wonder if an equival
vacuum description can be constructed. Further work
search of a fundamental origin of Cardassian expansion m
be studied to answer these questions in detail.

A fully relativistic fluid model of Cardassian expansio
has been developed, in which energy, momentum, and
ticle number are conserved, the modified Poisson’s equat
have been derived, and a preliminary study of density fl
tuations in the early Universe has been presented.

One of the goals of this study is to allow predictions
various observables that will serve as tests of the model.
Cardassian model will have unique predictions, particula
due to the modified Poisson’s equations. For example,
can now calculate the effect on the integrated Sachs-W
effect in the cosmic microwave background@20#. In addition,
one can now calculate the effect on cluster abundances
function of redshift. These predictions can then be tes
against existing and upcoming measurements of these q
tities. Comparison with existing and upcoming superno
data is being studied in another paper@18#. We reiterate that
this fluid approach is only one of the ways that Cardass
expansion may result.
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APPENDIX: EQUATION OF STATE FOR A SYSTEM
SUBJECT TO CONFINING FORCES

We give here the details of the derivation of the equat
of statep52(a/3)r for the mediators of a confining inter
particle potentialU5Ara. Our derivation assumes that th
gas is nonrelativistic and in thermodynamical equilibriu
We stress that it is not at all clear that a system of partic
subject to long-range confining forces may reach therm
equilibrium. For our application to dark energy, it is not ev
clear that it could reach equilibrium on a time scale sh
compared to the age of the Universe. Therefore, the con
of this appendix may be of somewhat academic inter
9-9
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Nevertheless, we present it for completeness.
The partition function of a nonrelativistic gas ofN par-

ticles subject to a confining interparticle potentialU5Ara is

Z~V,T!5)
i 51

N E
V
d3r iE d3pi

~2p!3
expF2(

j

pj
2

2mT
2(

j ,k

Ar jk
a

T G
~A1!

whereT is the temperature andV is the volume occupied by
the system.

If we rescaleV→l3V andT→laT, and then change in
tegration variablesr→lr 8, p→la/2p8, we can prove that
the partition function scales as

Z~l3V,laT!5l3N1(3/2)aNZ~V,T!. ~A2!

Now the free~ideal gas! partition function

Z0~V,T!5VNS mT

2p D (3/2)N

~A3!

scales in the same way,

Z0~l3V,laT!5l3N1(3/2)aNZ0~V,T!. ~A4!

It follows that

Z~V,T!5Z0~V,T!Z1~T3/Va!, ~A5!

whereZ1(x) is a function of the ratioT3/Va, which is in-
variant under the rescalingV→l3V, T→laT.
tte

c

ett

06350
Pressure, entropy, and energy density can then be c
puted from the free energy

F52T ln Z~V,T!52T ln Z0~V,T!2T ln Z1~T3/Va!

~A6!

as

P52S ]F

]VD
T

5
NT

V
2

aNT

V
f ~T3/Va!, ~A7!

U5F2TS ]F

]TD
V

5
3

2
NT13NT f~T3/Va!, ~A8!

where

f ~x!5
1

N

x

Z1

dZ1

dx
. ~A9!

The first terms on the right-hand sides of Eqs.~A7! and~A8!
correspond to the ideal gas. The second terms are the p
surep and the energyrV due to the confining forces. The
obey the relation

p52
a

3
r. ~A10!

Although we have not quantized the interaction, we draw
the analogy with electromagnetism described in the m
text and call Eq.~A10! the equation of state for the forc
mediators.
dt,
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