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Fluid interpretation of Cardassian expansion
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A fluid interpretation of Cardassian expansion is developed. Here, the Friedmann equation takes the form
H2=g(pn) Wherep,, contains only matter and radiati¢éno vacuun. The functiong(py) returns to the usual
8mpym /(3m§,) during the early history of the Universe, but takes a different form that drives an accelerated
expansion after a redshii~1. One possible interpretation of this functiéand of the right-hand side of
Einstein’s equationsis that it describes a fluid with total energy dens,a':t(ygtz(Smf,|/87-r)g(pM)=p,\,,+pK
containing not only matter densitynass times number densitigut also interaction termgy . These interac-
tion terms give rise to an effective negative pressure which drives cosmological acceleration. These interac-
tions may be due to interacting dark matter, e.g. with a fifth force between pafiicle$ ™ *. Such interactions
may be intrinsically four dimensional or may result from higher dimensional physics. A fully relativistic fluid
model is developed here, with conservation of energy, momentum, and particle number. A modified Poisson’s
equation is derived. A study of fluctuations in the early Universe is presented, although a fully relativistic
treatment of the perturbations including gauge choice is as yet incomplete.
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I. INTRODUCTION with
Recent observations of type |IA supernoyae?], as well n<2/3. 3

as concordance with other observations, including the micro-

wave backgroundi3] and galaxy power spectfd], indicate  The second term only becomes important omeg?(1), at

that the Universe is flat and accelerating. Many authors havghich point it dominates the equation and causes the Uni-

explored possible explanations for the acceleration: a cosmererse to accelerate. Other possible functigiip) [13] are

logical constant, time-dependent vacuum energy such agiscussed further below.

quintessencg5-10], and gravitational leakage into extra di-  There remains the question of the fundamental origin of

mensiond 11]. these modifications to the Friedmann equation. There is no
Recently, Freese and Lew|42] (paper ) proposed an ynique four-dimensional or even higher-dimensional theory

explanation for the acceleration which involves only matterihat gives Cardassian evolution. We consider two different

and radiation, invoking no vacuum energy or cosmologicainotivations for these modifications:

constant whatsoever. In their model, called Cardassian, the (1) These functions may arise from fundamental theories

Universe has a flat geometry as required by measurements gf gravity in higher dimensions, as was discussedig].

the cosmic background radiati$8] and yet consists only of chung and Freesgl4] showed that, generically, the Fried-

matter and radiation. The Friedmann equation is modifiegnann equations are modified as a consequence of embedding

from its usual formH?= (8/3m; ) p , to our Universe as a three-dimensional surfa8ebrang in
H2= ) ) higher dimensions.
=9(pm). (2) Alternatively these functions may arise in a purely

whereH = a/a is the Hubble constarias a function of timg four-dimensional theory in which the modified right-hand
a is the scale factor of the Universe, and the energy densit .|de of the Friedmann equation Is d_ue to an extra _contnbu-
py contains only ordinary matter and radiation. The function ion to the total energy density. The right-hand side is treated

9(py) reduces to (&/3m,2)|)PM in the early Universe, so as a single fluid, with an extra contribution to the energy-

that Eq.(1) reduces to the ordinary Friedmann equation dur—momentum tensor ifordinary four dimensionalEinstein’s

. . . . . . equations.

ng early epochs including pr|mor(_j|al nuclec_)synthe5|s. Only The two motivations may or may not be linked, in that the

2:éﬁ]isrhm§i§ d%(;r)mq%?)sbg;tesgunrlwglgéglg\)/\/? 'igrsg_ogqutr?ne fluid interpretation may be intrinsically four dimensional, or
y . . ' 9 it may be an effective description of higher dimensional

these late epochg(py) gives rise to accelerated expansion.

o . physics.
In paper |, the specific fprm @(p) .that was considered was In this paper we restrict our discussion to four dimen-
the power law Cardassian model:

sions, and treat the right-hand side of Einstein’s equations as
a single fluid. We consider models with an extra energy den-

8m : . , : :
H2= > PmT Bpopy » (2)  sity associated with matter that contributes in such a way as
3my, to drive acceleration. This extra energy density may be in-
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n—1
2 .
Pcar

For n<2/3, the new term is negligible initially, and only
4) comes to dominate at redshift-1 (oncepy~ pcard; ONCe it
dominates, it causes the Universe to accelerate. We can con-

o o sider the contribution of ordinary matter, with
(plus possible internal thermal energy which is unimportant

trinsically four dimensional or may serve as an effective de- ) 871G
scription of higher dimensional physics. We take the total H= 3 Pwm 1
energy density of the matter

3mj,
Prot= g g(p)=pm+px

on cosmological scalgsto contain not only the ordinary pm=pwmol@/ag) 3 (7)
mass densitypy (mass times number densitiut also an
additional contributiorpy . For example, in Eq(2), to this new term. Here, subscript O refers to today. Once the
new term dominates the right-hand side of the equation, we
3mf,I N have accelerated expansion. When the new term is so large
PK="g— BPw- 5 that(tzr;e ordinary first term can be neglected, the solution to
Eq.(2) is

Given this total energy density, we can now compute the
accompanying pressure, and find that the Cardassian contri-

bution has anegative pressurep<0. This negative pres- g, hat the expansion is superlumir@ccelerated for n
sure is responsible for the Universe’s acceleration. In fact<2/3

one can obtain any negative equation of staje=px/pk The Cardassian model also has the attractive feature that

<0, |ncIUQ|nng<—1. . matter alone is sufficient to provide a flat geometry. The
The fluid approach has several advantagasit is fully  merical value of the critical mass density for which the

relativistic, (ii) it allows for the conservation of energy and Universe is flat can be modified. For example, in paper | it

momentum as well as of particle numbéii) it admits a was shown that in the model of E), the value of the
sensible weak-field limit which leads to a modified Poisson’s.itical mass density can be 0.3 of the usual value. Hence the
equation, andiv) it permits the study of fluctuations in the ater density can have exactly this new critical value and
early Universe, the study of effects on the cosmic microwaveagisty all the observational constraints, such as those given
background anisotropies, and other observables.  , the baryon cluster fraction and the galaxy power spec-
The primary purpose of this paper is to examine this fluid |, 1,
approach. However, we briefly speculate on a possible origin |, 5 “generalized Cardassian model,” other functions
for this extra ternpy in the energy density. It may arise from 9(py) of the matter(or radiation density on the right-hand
(dark matter self-interactions that contribute a negative presgjqe of the Friedmann equation can also drive an accelerated
sure, for example, through a long-range confining force,,nansion in the recent past of the Universe without affect-
which may be of gravitational origin or may be a fifth force. ;g jts early history{13]. Several of these alternative func-

This self-interacting dark matter is different from any suchiions will be discussed belofsee Eqs(48) and (52)]
component considered in the past, in that it has a negative '

rather than a positive pressure. We speculate on a form of the

force between particles that may be responsible for such an

interaction,F ~r<~1, although this Newtonian form must of A. Perfect fluid

course be modified on horizon scales. This description of a

self-interacting dark fluid may be an effective description of

a more fundamental theory. The fluid approach does not rely G,,=87GT,,. (9)

on the validity of such an interpretation of self-interacting # .

dark matter, e.g., the interactions may be an effective de©n the right-hand side, we take as our ansatz that the energy-

scription of higher dimensional physics. momentum tensor is made only of matter and radiation, and
We begin by reviewing the idea of Cardassian expansiomas the perfect fluid form,

in Sec. Il. We present a general fluid formulation in Sec. III,

and then give specific examples in Sec. IV. In Sec. V we T#=pgt”+(p+p)uru”, (10

address the growth of density perturbations, and in Sec. VI

we speculate on the possible origin of an interaction energyherep is the pressurep is thetotal energy density of the

with negative pressure. matter and radiation, angt is the fluid four-velocity. Here

thetotal energy density for matter includes not only the mass

densitypy, (mass times number densitiput also any inter-

actions or additional termgorresponding to the new terms
The general form of a Cardassian model was described inn the right-hand side of Ed1)]. In general,p and p are

Eqg. (1), in which a general function of matter density re- functions of the mass density,, and of thermodynamic

places the ordinary energy density in the Friedmann equarsariables. We assume that at recent times matter is non-

tion. The simplest version, the power law Cardassian modeielativistic, i.e. the typical speeds involved are much smaller

of Eq. (2), can equivalently be written as than the speed of light, but we do not assume thép.

acct?d (8)

Ill. BASIC EQUATIONS

We use the ordinary four-dimensional Einstein’s equations

Il. REVIEW OF CARDASSIAN MODELS
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As our ansatz, we take the total energy density of the fluid B. Conservation laws
during the matter dominated era to arise from the sum of e pjanchi identities guarantee the conservation of en-
three terms: ergy and momentum,

P=pmT Pinternart Pk » (13) T+?.,=0. (17)
P=Pm+ Pk, (12 One can follow the evolution of the energy density along
each fluid world line using the general relativistic fluid flow
where equations. In a comoving frame, energy-momentum conser-
vation gives the(fully relativistic) energy conservation and
pm=Mny (13 Euler equation$15,16]
is the ordinary matter density of some particle of miaissnd = — Uk (p+p) (18)
number densityy, , pinterna@Ndpy are the ordinary internal P PR,
energy density and pressure of matter example, for an ,
ideal monoatomic gas at temperatig, pinema= 5w Tm U= h.P;v (19

andpy=nuTn), andpk andpy are extraCardassiancon- # p+p’

tributions to energy and pressure. With regard to the gross

properties of the Universésuch as its expansipnwe can  where the dot denotes a derivative with respect to comoving

IgNOre pipemal cOmpared tgpy and py compared tgp for  time and the tensdr,,,=g,,,— u,u, projects onto comoving

nonrelativistic matter; however, in the context of galaxies,hypersurfaces.

Pinternal @Nd Py can be important. We impose in addition that magsr equivalently particle
Equation(11) is quite general. Even in those cases wherenumbeyj is conserved,

the total energy density is not a simple linear sum of terms

(see Secs. IIB and Il one can always write Eq11) in (pmu*).,=0. (20)

this fashion.

_In Cardassian models we assume there is no vacuum COfjs will give us the usual dependence of the matter mass
tribution to the energy density. We also assume that the neyensity on the scale factor of the Universe.
(Cardassiancontributionspy and px are only functions of
gg‘;elr.el:,vtlr;etgoirdasaan fluid is barotropic. For example, in C. Thermodynamics

General thermodynamic relations conngeindp. In par-

pk=bpy, (14)  ticular, consider the first law of thermodynamicsd(sV)
=d(pV)+pdV. In an adiabatic expansiod(sV)=0. To-
where gether with mass conservatiod(pyV)=0, this equation
leads to
b 3y B (15) J
~Bn _ _P) _
p PM(apM . P (21)

with B as in Eq.(2).

Note that, throughout the rest of this paper, we will focuswhich allowsp to be computed from an expression far It
on the matter-dominated era and hence concentrate on tlaso allows the speed of sound to be written as
matter contribution to the fluidrather than the radiation

With the ansatz of Eqs(11) and (12), Eqg. (1) can be ap prs P
rewritten 02=(—) = (—p / (—p) (22)
P/ dpy s Pwm/ g
H2=8mGpl3. (16)
) ) _ We can definen=p/p, which in general will not be con-
Hence we recover the ordinary FRW equations, but with agnt.
modified energy density on the right-hand side. Using the ansatz given in Eq&ll) and (12) in Eq. (21),

One can think of this total energy density as including thewe can now relate the Cardassian contributions to energy and
effects of an interaction term: perhaps this term is simply arpressure via

effective term on large scalgpossibly arising from extra
dimensiong describing the expansion of the Universe; or 9
- . . . Pk
perhaps this term is due to the interaction energy of the dark pszM<a—> - pPK - (23
matter. A possible origin of an interaction energy with a Pm/s
negative pressure is described in Sec. VI. We iterate again
that the fluid approach is only one of the many ways thatAgain we can definevx = py/pk , which in general will dif-
Cardassian expansion of Ed.) could result. fer from w=p/p and will not be a constant.
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D. Newtonian limit

a TG
Now we obtain the basic equations in the Newtonian 2= 3 (P3P (30
limit. In Minkowski space, we writeu®= y(l,J) and the
metric 7%f=diag(—1,1,1,1), wherey=1/J/1—0v2 andv is  and the Friedmann equation
the  3-dimensional  fluid  velocity. ~ Then, T,,
=diag(~ p.p.p.p). pe8TC Kk 31
3 a?

We can obtain the gravitational field equations. In a weak
static field produced by a nonrelativistic mass density, the
time-time component of the metric tensor is approximatelywherek=0,*1 fixes the curvature of the spatial sections and
given bygoo=—(1+2¢). Here¢ is the Newtonian poten- H=a/a is the Hubble parameter. As mentioned previously,
tial for the gravitational fieldy= —V ¢. The Ricci scalaR  we consider only a flat Universe with=0, as motivated by
=Gy=2V?¢. Poisson’s equation follows fromR  microwave background daf8]. Of course, the total energy
=8wmGTH, as density here contains new terms and is given by (E&j.

Cardassian expansion requires that the Universe be accel-
erating today. From Ed30), at matter densities of the order
of the matter density in the Universe today,~ pmo, We

requirepo=p(pmo) andpo=p(pwmo) to satisfy

V2p=47G(p+3p). (24)

We also have

Vxg=0. (25) po+3py<0 (32
In the same weak field limit, and for a fluid moving non- so as to have an accelerating Universe. Vigithgiven in Eq.
relativistically, the energy conservation and Euler’s equation$23), one can see that acceleration resultspjf—2pg
can be found following Ref[17], but without assumingp +3pm(dpkdppm)<0. In the limit wherepc>py, one can
<p. From TOB;Bzo we find see that acceleration results as longagyoes to zero faster
thanpz,\,,/3 (for px=bpy, , this requirement becomes<2/3 as

ap - - stated previous
V- Lp+p)u]=0. previously

ot (26) The energy conservation equation in an FRW model is
From TiB;Bzo, we find Euler’s equation, p=—3H(p+p). (33
o . . Vp . Particle number conservation gives
E-F(U'V)U:—m—vq'). (27 o 3Hon, a

Notice that we do not assunge<p in the right-hand side of £, Wwhich we obtain the usual scaling,~a 2 that was

Egs.(24-(27). _ . used in Eq(7).
With the additional constraint of particle number conser-

vation, we have the ordinary continuity equation for matter,

J N >
TPV L% (py0)=0.

o (28

IV. EXAMPLES

In this section we discuss three different examples of
barotropic Cardassian models, where the new contribution to
the energy density is a function only of the mass density

Using this equation, and in those situations where the intertmass times number densityx=pk(pn). In another paper

nal energy and pressure can be negleéteg. when consid-
ering the overall expansion of the Universee can rewrite
Eq. (26) in the following way:

07PK)» -
Pkt Pk—pu=—1V-v=0.
K K MapM

v-Vpg+ (29

Note that Eqg.(29) in the homogeneous background of our

Universe reproduces E@23), here in the Newtonian limit.
Hence our basic nonrelativistic equations are E24)—(28).

E. Friedmann-Robertson-Walker models

As mentioned above, Friedmann-Robertson-Walker cos-

mological models take the usual forfh7]. The scale factor
of the Universea obeys the equation

we examine the consequences for supernova data of these
three model$18].

A. Original power law Cardassian model

In the original Cardassian model of R¢12],

pCard) e
Pwm

PK:bP?A:PM( , (35

with n<2/3 as in Eqs(2) and (6). The pressure associated
with this model in the fluid approach follows from E@3)
as

1-n
Pcard

(36)

Pk= _(1_n)PM( o
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Notice that
(37)

This model therefore has a constant negative=pg/px
=—(1-—n). Then

pk=—(1-n)pg.

pcard)
ar
pK+PK:n( Pm - (38

Pm
The speed of sound in this model

n(l—n)

ci=-— PSR (39
n-+ Md)
Pcar

PHYSICAL REVIEW D58, 063509 (2003

second term in the numerator can have drastic effects. Let us
consider, e.g., the position of the Sun in the Milky Way. The
local energy density of matter is roughlyy~10*pcar-
Hence we havey,>py, so that one might expect to be able

to ignore any effects of Cardassian terms. However, these
expectations are not true, because of the Cardassian pressure,
which in this case dominate$py|>p),. Hence there is a
new force that acts due to the second term in the numerator
of Eq. (45),

dv \Y
_U :_ﬁ:-kn(l—n)
dt| . Pm

pCard) t=n VQPM @

Pm Pwm

W

This force destroys flat rotation curvéselocities tend to
increase as one goes out to large radii in an unacceptable

is nqt guaranteed to be_positive. _SQ this model should bgay). The argument in the preceding paragraph has been
considered as an effective description at scales wiére presented using nonrelativistic equations, and as such is in-

>0.

1. Basic equations in the Newtonian limit for the power law
Cardassian model

complete. However, we have found that the result that a
problematic new force arises on galactic scales remains true
in a fully relativistic treatment based on the Oppenheimer-

Volkov equation.

For thep" Cardassian model, the basic Newtonian equa- The fluid p" Cardassian case must therefore be thought of

tions become

(90+ e Vp i 40
ot T Ve=—mre s (40)
> 2 Pcard| " > >
v-Vpg+| pct(1-n) P pm|V-0=0, (41)
M
Vxg=0, 42
5 c pcard) "
V.g=—4nG pM—(2—3n)( ar) pul, (43
Pm
] N .
%JrV-(va):O. (44)

2. Problem on galactic scales

The fluid approach to the" model cannot be used on

galactic scales. From Eg&10) and (38), we see that
dv Vpu+ Vpk
_ — g
dt pul1+n(pcaral o) "

where we have droppeoly,<pym andpinema<pem in the de-
nominator. In standard cosmology, one would have

(49

dv Vpu -
dv_ pM_’_g'
dt Pm

(46)

where py is quite small and gravity dominates. Here, the

as an effective model, which applies only on cosmological
scales. The examples in the following two sections, on the
contrary, can be treated as fluid models on all scales, includ-
ing cosmological scales as well as galactic scales.

B. Polytropic Cardassian model

Pm d) d
Pcar
with g# 0. This model can be used on all scalsse below,
but it does not quite fit the criteria of the Cardassian model
as defined in Eq(l); at late times in the future of the Uni-
verse, whenpy <pca,» this model becomes cosmological
constant dominated with = p,,4. Phenomenologically, this
energy density is very similar to a model that was derived
earlier[11] motivated by gravitational leakage into extra di-

mensions.
In this model, the pressure is

PMG)q
Pcar
When the ordinary internal energy denspyema and the

ordinary pressurg,, can be neglected, this model obeys a
polytropic equation of state

ki)
Car Pcar ,

Another class of models has

1/q

(48)

P= Pinternar™ PCarc{ 1+

(1/g)—-1

(49)

p= pM_PCarc{l"'

(50

fluid version of thep" Cardassian cosmology has an addi-

tional term in both numerator and denominator. Sipggq

with negative pressure and negative polytropic indéx

<py throughout most of the interiors of galaxies, we can—1/q. For q>1, the speed of sound in this model is posi-
ignore the second term in the denominator. However, theive,
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1 R 47G(p©@+3p©) .
c§=%. (51) g9=- 3 r. (56)
M
[ 2
Pcar We now seek a perturbed solutidauperscript(1)] by

. . adding to the zero-order solution the small perturbations
Thus this fluid model can be used on all scales. 9 P

We must make sure that at the scales of galaxies anair s v, p%/ll) and 9(1)' Following [17], we find that the
galaxy clusters the Cardassian pressure can be neglectBydrodynamic equation@4)—(28) then give, to first order in
compared to the ordinary pressure. At large matter densitied€S€ perturbations,
the Cardassian pressure|s|=py %4 In a galaxy or

) a. . .
cluster with velocity dispersiom, the ordinary pressure is 7 W4 —p D=— (Vp{P+Vpd) +§®, (57)
pu=pwo?. We want|pil/pu=(pcard pu)¥/o?<1. Taking a Pt pK
0=300 km/s and assumin@y is unimportant out to 3
~100 kpc wherepy,~10pcaq this condition amounts to bM(1)+35p'(\A1)+pMV*.5(1):o, (58)

g=3. Itis remarkable that this value gfis compatible with
supernova datfl8].

Vxg®=o, (59)
C. Modified polytropic Cardassian model 3
A Cardassian model that can be used on all scales is V- gW=—-4nG|1+ Er. (pk+3pK) |pfy).  (60)
qvll/lg
Pcard - i-
P=pinternart Pl 1+ ) } _ (520  We have dropped the superscrip} from zero-order quanti
Pwm ties. In deriving these equations we have neglegtgdna
) o i and py, with respect tooy, .
Forg=1 this reduces to the origingl" Cardassian model We take the perturbations to be adiabatic, so that the or-
with n=1-v. The pressure follows as dinary pressure perturbation is given by
qv](La)-1 qv (1)_..2 (1)
D= py— vpy| 1+ ( P,;:':rd (PCard . (53 Pv’ =vspn (61)

whereuv is the ordinary speed of sound. In the generalized
This model is interesting because the two parametensdq  Cardassian model with pressure and energy density related
are important on different scales. The parametesets the by Eq.(23), the perturbation equations require
current value ofw=—w», and so can be chosen to fit the
supernova data, while the parametegoverns the suppres- (1)_ 7 pk (1)
sion of the Cardassian pressure at high densities, and can Pk™= 2 Pv7 (62)
therefore be chosen not to interfere with galactic rotation
curves and cluster dynamics. Concrete comparisons with
data will be presented ifL8].

Newtonian perturbation equations for the" Cardassian case

For the case of paper | in Eq2), Egs. (62) and (59
V. PERTURBATIONS become

A. Newtonian theory V.gWM=—47G[1+n(3n—2)bpl, 1p{¥ (63)

Here we calculate the behavior of small fluctuations, us-
ing the nonrelativistic equations derived above in Egd)— and
(28). As discussed below, there are gauge choices that render 1) _ _ n-1 (1)
the Newtonian theory inadequate, 3et sve can learn from it Pu=bn(n=D)on “pir’- €4
nonetheless. We will write down the general perturbation
equations for any generalized Cardassian model, and then as B. Newtonian theory: Non-expanding case
an example will solve them in the" form of the Cardassian First, let us consider the non-expanding case with unper-
equations(of paper ) to illustrate the type of results that ,eq velocitys = (a/a)F=0. A combination of the pertur-

occur. ; ; ;
For the zero-order solutiofsuperscript(0)] we take the bation equations57)~(60) yields
simple spatially uniform solution with 3?8 5 5
3 W:Us,newV 5M+47TGPM,nevﬁM . (65)
Pi=Prg 20 (54
“la(t) This is the usual perturbation equation for
: (1)
- a(t) - Pm
v@= %r (55) O = o (66)
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With Ug replaced by 102 E LLLBULLLL LILLLLLY LILLLL LY T TT17T Il;
0 C ]
2 Pm »2 PK) L “
v —— | vitpu—o (67)

s,new PVET Us pM&P%/I oL i
andp,, replaced by - i
O (p+30)= put P ——(px+ 3PK) ORS E
— = — _ = 1E 5
PM,new™ PM apu pPTOP)=ppT oM Iy PK TSPk : ;
(68 i 3
The equations are spatially homogeneous, so we expect to 01F E
find plane-wave solutions. We taly<exfi(K-x— wt)] to : ]
find L ]
Ool | \I\Illll | I\IIIHl 1 \Hlllll | II\IIII| IR

kzvs new™ 4TGPM new- (69) 102 0.1 1 10 102 108

a/a Card

If w2<0, then the perturbation is unstable to collapse. Hence

we find the Jeans length

2@ Us, new
Ny = [ osnen (70
kJ \/GPM,new

FIG. 1. Growth factoiD(a) for matter density perturbations in
the original px=bpy, Cardassian model as a function of the scale
factor a. The normalization scale factoac,q is defined by
pm(@card = pr(@cad- Curves are labeled by the Cardassian index
n. The curve witm=1 corresponds to the usual growth in a matter-
dominated Universe, while=0 corresponds to a cosmological

Perturbations on scales larger than the Jeans length can cabnstant.

In particular for thep" Cardassian case of paper | in Eq. whereuS new aNd py new @re given in Eqs(67) and(68).

lapse.
(2), we have
2 n—-1
ve—bn(1—n)py,
03 new=— P (71)
and
M, new=Pm[ 1—bN(2—3n)pf 1. (72

Then the Jeans length becomes

)\_\/77 2—bn(1—n)pp* 23
7 N Gpy [1+nbp Y[1—bn(2—3n)p} 79

The Jeans length for ordinary cold dark matter was tiny, and
the modifications here do not change it substantially enough

to make it interesting.

C. Newtonian theory: Expanding case

Here we consider the expanding case Witk (a/a)r
#0. We take the plane wave form for the solutions,

pP(r,t)=pu(t)8(r 1), (74)

5(r t)= 5(t)exp{Ir a

an |’ (75

After some algebra, we find

2a 2
b+ b+

vS new A2

—47Gppy new) 0=0, (76)

For the power Iav\p Cardassian model of E¢R), which
is an effective model on large scales, we can dropghe
term. We have solved the resulting equation numerically af-
ter changing independent variable frano a(t). The solu-
tion for §(a) (for modes withA>\ ;) is given in Fig. 1 for
varying values of the Cardassian indexin the figure,acaq
is defined to be the scale factor at which the Cardassian term
starts to dominate in the Friedmann equation, i.e. when
pm(@card = pr(@card - Today,ag/acyqis a factor of a few,
but the figure extends to much higher valuesidd show the
behavior of the solutions. The vertical axis is normalized so
that the solution becomea/ac,q at early times; namely,
using the solution in Ref.19] for the growth of matter fluc-
tuations in the radiation and matter-dominated eras of a cos-
mologically flat model,

d(a) 2ag

a)= : (77)

Sinit 33card

whered,;; is the initial value of the pertubation amg, is the
scale factor at matter-radiation equality. One can see in Fig. 1
that perturbation growth is suppressed o@aceac,.y for 0
=n<1. As aremindem=1 corresponds to ordinary matter
whereasn=0 corresponds to a cosmological constant. To
remind the reader, this figure corresponds to perturbation
growth in an expanding Newtonian fluid in a box with the
sides being pulled out.

D. General-relativistic theory

Since we do not neglect the presspreith respect to the
energy density, the perturbations should in fact be studied
in a general-relativistic theory. The problem arises of the
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choice of gauge. In order to define the energy density pertur- VI. ORIGIN OF INTERACTION ENERGY
bation throughout spacetime, one needs to choose a set of WITH NEGATIVE PRESSURE

hypersurfaces; i.e., one needs to choose a gauge. Two . - . .
Here we speculate on a possible origin for an interaction

choices are common: . ) .
(1) The comoving gauge corresponds to the set of comovENeray with a negative pressure. Dark matter particles may

ing hypersurfaces, defined as those which are orthogonal tg)ﬁdsggjn?;i;o a new interparticle force which is long-range
the comoving world lines, i.e., to the world lines which fol- 9
low the flow of energy. F(r)ore? (80)

(2) The synchronous gauge corresponds to the hypersur-
faces which are orthqgonal to ge_odeécs. . with «>0. This force may be of gravitational origin or

The value of density perturbations depends on the Cho'cﬁwaybe a fifth force.
of gauge. However, typically, if one looks inside the horizon To be more quantitative, let us write the new interparticle
and well into the matter-dominated era, the value of the denbotential as '
sity perturbation becomes the same in all gauges.

In the case of Cardassian cosmology, we have the unusual Ui =Are 81)
circumstance that, even inside the horizon and well into the 4 v
matter-dominated era, the value of the density perturbatio
depends on the choice of gauge.

The evolution of density perturbations in the Universe
using a fluid flow approach was discussed in R&8). In the
comoving gauge, wittw=p/p and the relation§p/5p=c§ U nen=ANZR?, (82)
(true for barotropic Cardassian modelse find that the frac-
tional perturbations= dp/p of momentunk obeys the equa- to within a numerical factor of order 1 dependent on the
tion [16] geometry. The total gravitational potential energy of the

same system is, also within a factor of order unity,

Wherer; j is the distance between particles g a normal-
ization constant. The total new interaction energy of a system
of N particles occupying a volume of radiiswill be

. .3
H™26+[2—3(2w—c?)H 16— = (1—6c2+8w—3w?) s

2 GM?
k|2 Ugravz R ' (83
=-l35 c2s. (78)
a whereM is the total mass of the system. To play a cosmo-

logical role at the present time, the new energy must be of
The pertubation, in the synchronous gauge is relatedsto the same order of the gravitational energy wiieaRy;, the
by [16] current size of the horizon. Imposing thidf,e,~ Uy, at R
=Ry gives us the normalization

B Gm?

to
o— 5S=3H(1+W)f —pdt, (79 -
Op+p Rﬁ+l1

(84)

if one drops the “gauge mode.” In ordinary cosmologies, Wherem=M/N is the mass of a single particle.

where there is no Cardassian pressure term, the integral on e can now find the magnitude of the new force on ga-
the right-hand side has a fixed value after matter dominatiof@ctic scales. We have
obtained by settingdp=0 in the matter-dominated era. A

few Hubble times into the matter-dominated era it becomes Ui(r)=
negligible compared to the time scales of interest so that the .
comoving and synchronous gauges become identical. How-

ever, the values of the density perturbations in the twolhus the new force per unit mass on a particle of nmasg
gauges do not become equal in Cardassian cosmology, whélistanceR, from a system oN particles is of order

the Cardassian pressusp is present. This term contributes

Gn?
Ry

r a
R—H) . (85

to the integral in Eq(79) all the way to the present time, and Fnew |ﬁUnEVJ GM [ Ry a1
the comoving and synchronous gauges are not identical even m__m ¢ R2 R_H . (86)
today. This creates a problem of interpretation for fluctua- H
tions in the present Universe, which must be addressed i&ompared with the gravitational force
future studies.
FgraV: ﬂ (87)
There are, in fact, an infinity of synchronous gauges, but authors m Rg '

typically drop the so-called “gauge mode” solution so that the syn-
chronous gauge becomes unique. this gives
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Frew Ry atl fective negative pressure which drives cosmological accel-
za(R—H> (88  eration.

These interactions may be due to interacting dark matter,
e.g. with a long-range confining force or a fifth force be-
tween particles. Alternatively, such interactions may be an
effective description of higher dimensional physics. We have
said that matter alone can be responsible for accelerated be-
vior. However, if the Cardassian behavior results from in-
grating out extra dimensions, then one may ask what be-
We want to comment on the equation of state of a syste hgvi_or of _the radii of the extra dimensions is _re_quired.

imilarly, if we follow a QCD bag or other description of

SUinCt tt?] Iong;rang$bc_or£|;]1|?gt ;orces. If. StL:]Ch a Syste”%elf—interacting dark matter, one may wonder if an equivalent
reaches thermal equilibriumthat it does so In th€ presence ..,y description can be constructed. Further work in

O,I I?ntg—ralmge chonf!nmg forggs |stlnot aé all Cfahetﬂ S'mp'l‘? search of a fundamental origin of Cardassian expansion must
statistical mechanics considerations based on the scaling studied to answer these questions in detail.

the partition function lead to the equation of stésee the A fully relativistic fluid model of Cardassian expansion

Appendix for detail has been developed, in which energy, momentum, and par-
ticle number are conserved, the modified Poisson’s equations

p=— a (89) have been derived, and a preliminary study of density fluc-

3P tuations in the early Universe has been presented.

One of the goals of this study is to allow predictions of
This is the equation of state of the force mediators. For exvarious observables that will serve as tests of the model. The

ample, the Coulomb forcélthough not confininghasa = Cardassian model will have unique predictions, particularly
—1 and equation of stag= p/3, which is that of photons. If due to the modified Poisson’s equations. For example, one
a=1 (as in QCD or a=2, the mediators are strings and can now calculate the effect on the integrated Sachs-Wolfe

two-dimensional objects, respectively, and their equations offect in the cosmic microwave backgrouf]. In addition,

state ar@= — (1/3)p andp= — (2/3)p, which are those of a One can now calculate the effect on cluster abundances as a
network of strings and of domain walls, respectively. Finally,function of redshift. These predictions can then be tested
one obtains the vacuum equation of stpte —p for a=3. against existing and upcoming measurements of these quan-
Notice that the Cardassian indexin the power lawp" fities. Comparison with existing and upcoming supernova
model is connected to the exponentin the confining force  data is being studied in another pajpeg]. We reiterate that
law througha=3(1—n) [cf. e.g. Eqs(37) and(89)]. That a this fluid approach is only one of the ways that Cardassian
confining force can give rise to an effective negative pressur&xpansion may result.

is well known in particle physics, where the MIT bag model
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Friedmann equations. First, we considered the possibility

that .the_se modifications_ arise from bra_neworld theories of  \ppENDIX: EQUATION OF STATE FOR A SYSTEM

gravity in higher dimensionf12,14]. In this paper we con- SUBJECT TO CONFINING FORCES

sidered the alternative possibility that these modifications

arise in a purely four-dimensional theory in which the right- We give here the details of the derivation of the equation

hand side of the Friedmann equation has an extra contribwef statep= —(a/3)p for the mediators of a confining inter-

tion to the total energy density. particle potentiall =Ar<. Our derivation assumes that the
An interpretation of Cardassian expansion as an interacgas is nonrelativistic and in thermodynamical equilibrium.

ing dark matter fluid with negative pressure is developedWe stress that it is not at all clear that a system of particles

The Cardassian term on the right-hand side of the Friedmansubject to long-range confining forces may reach thermal

equation(and of Einstein’s equatiohss interpreted as an equilibrium. For our application to dark energy, it is not even

interaction term. So the total energy density contains notlear that it could reach equilibrium on a time scale short

only the matter densitymass times number densityut also  compared to the age of the Universe. Therefore, the content

interaction terms. These interaction terms give rise to an efef this appendix may be of somewhat academic interest.

F grav

For Ry of the order of galactic scales, i.B;<Ry the new
force is negligible compared to the gravitational force. It is
clear that fora>0 the new force is only important on very
large scales. This Newtonian formulation must of course b
modified at large distances because of the finite speed q
light and issues of causality.
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Nevertheless, we present it for completeness. Pressure, entropy, and energy density can then be com-
The partition function of a nonrelativistic gas bf par-  puted from the free energy
ticles subject to a confining interparticle potentik= Ar< is 3
F=—TIZ(V,T)==TInZy(V,T)—TInZ(T3/V%)

N d%p; p? Ar (A6)
_ 3 I i ik
ZV.T) i[[l vd r,f (2w)3ex% 2 2mT ,Zk T as
(A1) gF\ NT aNT_ _. -
whereT is the temperature and is the volume occupied by - _(W)T_T B Tf(T V9, (A7)
the system.
If we rescaleV— A3V and T—\*T, and then change in- JF 3
tegration variables —\r’, p—A*?p’, we can prove that UZF—T(ﬁ =5 NT+ BNTH(T3/VY), (A8)
the partition function scales as v
Z(ABV,\OT) = N3N+ (32)aNzy T). (A2) ~ Where
. . . 1 x dz;
Now the free(ideal ga$ partition function f(X)=— = — (A9)
N Z; dx
mT)\ (372N
Zo(V,T) =VN(—) (A3)  The first terms on the right-hand sides of E¢fs7) and(A8)
2 correspond to the ideal gas. The second terms are the pres-
scales in the same way, surep and the energyV due to the confining forces. They
' obey the relation

Zo(N3V NT) = \3NFERaNZ (v T, (A4) .

It follows that P 3P (ALO)
Z(V,T)=Zo(V,T)Zy(T3IVY), (A5) Although we have not quantized the interaction, we draw on

the analogy with electromagnetism described in the main
whereZ,(x) is a function of the ratiolr®/V®, which is in-  text and call Eq(A10) the equation of state for the force
variant under the rescaling— A3V, T—\°T. mediators.
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