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Possible end of the universe in a finite future from dark energy withwËÀ1
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The occurrence of a big smash singularity which ends the universe in a finite time in the future is investi-
gated in the context of superquintessence, i.e. dark energy with an effective equation of state parameterw,

21 andḢ.0. The simplest toy model of superquintessence based on a single nonminimally coupled scalar
field exhibits big smash solutions which are attractors in phase space.
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A new picture of the Universe has emerged in rec
years: the data from the Boomerang@1# and MAXIMA @2#
experiments confirm that we live in a spatially flat (V51)
universe, whereV5V (m)1V (q) is the total energy density
expressed in units of the critical density@3#. Baryonic and
dark matter only account forV (m).0.3 of the total energy
densityV, while the rest is due to a yet unknown form
dark energy. Studies of type Ia supernovae@4# and of radio
galaxies@5# show that the present expansion of the Unive
is accelerated, i.e.,ä.0, wherea(t) is the scale factor of the
Friedmann-Robertson-Walker line element

ds252dt21a2~ t !~dx21dy21dz2! ~1!

describing our Universe in comoving coordinates (t,x,y,z).
The Friedmann equation

ä

a
52

k

6
~r13P!, ~2!

wherer andP are, respectively, the energy density and pr
sure of the source of gravity, shows that in order to ha
accelerated expansion the pressure of the dark energy d
nating the dynamics must be negative,P,2r/3. A cosmo-
logical constantL as the explanation of dark energy is r
jected by most cosmologists because of the cosmolog
constant problem@6# and of the cosmic coincidence problem
The vacuum energy density predicted by high energy phy
with a Planck scale cutoff is wrong by 120 orders of mag
tude ~or 40 orders of magnitude if the cutoff is at the QC
scale!. Solving thecosmic coincidence problemof why the
dark energy came to dominate the dynamics only recently~at
redshiftz;1) requires extreme fine tuning ofL. One would
rather haveL exactly equal to zero due to some yet unkno
mechanism than this extreme fine tuning, and it is prefera
to explain the present cosmic acceleration with a dynam
vacuum energy calledquintessence. Many models of quin-
tessence, most of which based on scalar fields, have
proposed.

Observational efforts aim at determining the effecti
equation of state parameter of the universew[P/r. It was
pointed out that the current data allow for@7,5,8,9#, or even
favor @10–15#, values of this parameter in thew,21 range.
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Were a valuew,21 to be confirmed by observations,
would be a most interesting finding, because such val
cannot be explained by Einstein gravity with a minima
coupled scalar, if one assumes positivity of the energy d
sity. In fact in such ‘‘canonical’’ models the scalar field ha
energy density and pressure

r5
~ḟ !2

2
1V~f!, P5

~ḟ !2

2
2V~f!, ~3!

and an effective equation of state parameter

w5
x21

x11
, ~4!

where x[(ḟ)2/(2V)>0 if V.0, giving 21<w<1 ~the
minimum ofw being attained by de Sitter solutions!. In these
models one only obtainsw,21 by assumingV,2(ḟ)2/2
<0, which in turn implies a negative energy density~3!, and
r,0 is hardly an acceptable proposition. Corresponding
the Friedmann equation

Ḣ52
k

2
~r1P! ~5!

tells us that, for a minimally coupled scalar in Einstein
gravity it is Ḣ52k(ḟ)2/2<0 ~the extreme caseḢ50 again
corresponding to de Sitter solutions!. A regime with
w,21 is associated toḢ.0 and is calledsuperaccelera-
tion; a form of dark energy capable of sustaining superac
eration was dubbedsuperquintessence@16# or phantom en-
ergy @10#.

Models have been proposed to explain superaccelera
regimes, including scalar fields nonminimally coupled to t
Ricci curvature, actions with the ‘‘wrong’’ sign of the kineti
energy of the scalar, supergravity-inspired models with n
canonical kinetic energy terms and zero potential~k-
essence!, Brans-Dicke-like fields in scalar-tensor gravity,
stringy matter@17#. If the universe superaccelerates, its e
pansion becomes so fast that it risks ending its existence
finite time, a(t)→` as t→t0 with t0 finite. For solutions
with this property ~big smash or big rip solutions!
@10,18,19,12,14# the energy density of superquintessencein-
creaseswith time instead of redshifting away as the matter
radiation energy densitiesr (m)}a23, r (r )}a24, or as the
©2003 The American Physical Society08-1
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energy density of ‘‘ordinary’’ quintessence. Big smash so
tions occur in the theory of ordinary differential equatio
~ODEs! when the solutions of an ODE cannot be maxima
extended to an infinite interval. An example of ODE whi
does not admit maximal extension of its solutions is

dy~x!

dx
5Ay2~x!; ~6!

if A.0 the rate of change of the solution is fed by t
increasing value ofy itself in a positive feedback mechanis
that makesy(x) grow so fast that it explodes in a finite time
while this behavior is absent ifA<0. As we shall see, Eq
~6! is similar to the equation satisfied by the Hubble para
eter of a superaccelerating universe.

A big smash can be avoided in certain models of sup
quintessence~e.g.@11#! but is a generic feature in other mod
els @10#. Whether the big smash is unavoidable or not d
pends, of course, on the model adopted@20#: here we
consider what is perhaps the simplest model of superquin
sence, namely a single scalar fieldf coupled nonminimally
to the Ricci curvature, described by the action

S5E d4xA2gFR

2 S 1

k
2jf2D2

1

2
gcd¹cf¹df2V~f!G

1S(m), ~7!

wherej is a dimensionless coupling constant andS(m) is the
action for ordinary matter. Nonminimal coupling is intro
duced by renormalization even if it is absent at the class
level and is required in classical general relativity by t
Einstein equivalence principle@21#. The field equations are

Gab5kTab@f#, ~8!

Tab@f#5¹af¹bf2
1

2
gab¹

cf¹cf2Vgab1j~gabh2¹a¹b!

3~f2!1jGabf
2. ~9!

The gravitational coupling in Eq.~8! is the usual constan
k58pG and not the effective time-dependent coupli
ke f f5k(12kjf2)21 recurring in the literature and corre
sponding to a different way of writing the field equatio
@22#. Moreover, the scalar field stress-energy tensor~9! ~‘‘im-
proved energy-momentum tensor’’@23#! is covariantly con-
served,¹bTab@f#50. In the metric~1!, the field equations
become

6@12j~126j!kf2#~Ḣ12H2!2k~6j21!ḟ224kV

16kjf
dV

df
50, ~10!

k

2
ḟ216jkHfḟ23H2~12kjf2!1kV50, ~11!

f̈13Hḟ1jRf1
dV

df
50. ~12!
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Only two of these equations are independent, as the Kl
Gordon equation~12! can be derived from the conservatio
equationr (f)˙ 13H(P(f)1r (f))50 whenḟÞ0, where

r (f)5
ḟ2

2
1V~f!13jHf~Hf12ḟ ! ~13!

and

P(f)5
ḟ2

2
2V~f!2j@4Hfḟ12ḟ212ff̈

1~2Ḣ13H2!f2# ~14!

are, respectively, the effective energy density and pressur
the fluid equivalent to the nonminimally coupled scalar. No
that the Hamiltonian constraint~11! can be written as

H25
k

3
r (f), ~15!

which is consistent withr (f)>0. This is not the case with
other definitions of effective energy-momentum tens
Tab@f# used in the literature~see the discussion in Re
@22#!. In order to investigate the fate of the universe w
respect to big smash solutions, we neglect the matter pa
the actionS(m); this assumption is justified by the fact tha
when a superacceleration regime sets in, the superquin
sence energy densityr (f) quickly grows to dominate the
matter energy density, which instead fades away.

Only the two variablesH andf are needed to describe th
dynamics of the system~10!–~12!, and the phase space is
two-dimensional manifold with a rather complex structu
@24#. This is best seen by rewriting the field equations as@24#

ḟ526jHf6
1

2k
AF~H,f!, ~16!

Ḣ5F3~2j21!H213j~6j21!~4j21!kH2f2

7j~6j21!AFHf1~122j!kV

2kjf
dV

dfG 1

11kj~6j21!f2
, ~17!

where

F~H,f!58k2F3H2

k
2V~f!13j~6j21!H2f2G . ~18!

The appearance of the6 signs in Eqs.~16! and~17! requires
a clarification: the phase space curved manifold is compo
of two sheets, corresponding to the upper and lower s
and there typically is a region forbidden to the dynam
corresponding toF(H,f),0; the two sheets join each othe
at the boundary of this forbidden region, which needs not
simply connected. Orbits of solutions lying in the ‘‘upper
sheet can switch to the ‘‘lower’’ sheet at these points, a
8-2
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vice versa@24#. Far from the forbidden region’s boundar
the orbit of a solution is forced to stay in one sheet a
cannot cross over to the other sheet without approaching
forbidden region and touching its boundary. Hence, for la
values ofH andf only one sign in Eqs.~16! and~17! applies
to each solution. SinceH(t) andf(t) grow so quickly when
the superacceleration regime sets in, it is meaningful to
form an asymptotic analysis for large values of these v
ables when searching for big smash solutions. We cons
conformal couplingj51/6, which is a stable infrared fixe
point of the renormalization group@25#, and consider as a to
model the potential

V~f!5
m2f2

2
1lf4, ~19!

wherel will be required to be negative. This does not ha
the positivity of the energy densityr (f) when jÞ0. Equa-
tions ~16! and ~17! then reduce to

ḟ.2Hf6A22lf2, ~20!

Ḣ.22H21mf2, ~21!

where m[km2/6. We look for big smash solutions of th
form

a~ t !5
a*

ut2t0ua6
, ~22!

and

f~ t !5
f*

ut2t0ub6
, ~23!

with a6 ,b6.0, consistently with the approximation o
large H and f employed, and wheret0 , a* and f* are
constants;t0 will be approached from below. The substit
tion of Eqs.~22! and ~23! into Eqs.~20! and ~21! yields

a65
6A2l~2m1l!2~m1l!

m14l
, ~24!

b651, ~25!

f
*
656

11a6

A22l
. ~26!

By taking the positive sign in Eq.~24!, one immediately see
that there are big smash solutions (a.0) in the range of
parameters

1,
m

ulu
,4. ~27!

Next, one would like to know whether these big smash
lutions are stable or if they disappear when perturbed.
equations for the perturbationsdH and df are sufficiently
involved to defy a direct analytical investigation. It is co
06350
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venient, instead, to focus on the projection onto the (H,f)
plane of the two sheets composing the phase space. As
ing Ḣ,ḟÞ0, as is legitimate during the late stages of a s
peracceleration regime, one obtains the vector field

dH

df
5

Ḣ

ḟ
5

2u22m

u7A22l
, ~28!

whereu[H/f. The identity

dH

df
5u1f

du

df
~29!

then yields

du

df
5

u26A22lu2m

u7A22l
S 1

f D . ~30!

It is straightforward to see that exact solutions of Eq.~30!
with u5constÞ6A22l exist and are given by

H5
7A22l6A22l14m

2
f. ~31!

Equation~31! includes the big smash solutions~22!–~26!. In
fact, simple algebra shows that for the latter

u5
a6

f*
52

A4m22l1A22l

2
, ~32!

which reproduces a special case of Eq.~31!.
Let us proceed to study the stability with respect to line

perturbations of the solutions of Eq.~30!, which can be re-
written as

H5g if, ~33!

where the constantg i can assume the values

g15
2A22l1A4m22l

2
.0, ~34!

g25
2A22l2A4m22l

2
,0, ~35!

g352g1,0, ~36!

g452g2.0 ~37!

@the big smash solutions~22!–~26! corresponding tog2].
The perturbationsdu in

u~f!5u01du5g i1du~f! ~38!

satisfy the equation

d~du!

df
5

2u0du6A22l

u07A22l

du

f
~39!
8-3
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which yields

du5efd i, ~40!

wheree is a constant and

d i5
2g i6A22l

g i7A22l
. ~41!

There are the following possibilities ford i , corresponding to
the four values ofg i and to the upper and lower sign in E
~41!:

d1a5
2A4m2l

23A22l1A4m2l
, ~42!

which is positive ifm/ulu.17/12.1.4167; this range of val-
ues of the parameters corresponds to growing perturbat
and instability, while the finite range 0,m/ulu,17/12 cor-
responds to stability.

d1b52
A4m2l22A22l

A22l1A4m2l
~43!

is positive ifm/ulu.7/24.0.2917; this range corresponds
instability.

d2a5
2A4m2l

22A22l2A4m2l
,0 ~44!

corresponds to the big smash solutions and to stability
any value of the parametersl,0 andm; on the other hand
the possibility

d2b52
A4m2l12A22l

A4m2l2A22l
.0 ~45!

corresponds to instability. The remaining cases give the
ues ofd

d3a5d1b , d3b5d1a ,

d4a5d2b , d4b5d2a ~46!

already considered.
The big smash solutions are stable against linear pe

bations and behave as attractors in phase space. Thus,
is a finite chance that a universe described by the mo
considered here end its existence in a finite time due to a
smash with infinite expansion, in which the energy dens
diverges instead of being diluted away and bound syst
are gradually ripped apart@14#.

A few considerations are in order: first, the value of t
effective equation of state parameterw is still subject to un-
certainty and a valuew,21 associated with superacceler
tion is not yet confirmed; second, even if such a value w
supported by future experiments, it does not automatic
imply that the universe will end in a big smash. Third, t
toy model of superquintessence employed here should
06350
ns

r

l-

r-
ere
el
ig
y
s

e
ly

be

generalized to more realistic models, which, however, are
constrained sufficiently well by the presently available da
Potentials used to model quintessence are usually diffe
from Eq. ~19!, but the latter is a very common potential
scalar field cosmology and is easier to study as a toy mo
~it is difficult to reach conclusions about the existence of b
smash solutions with other potentials, and even more d
cult to perform a stability analysis!. The presence and stabi
ity of big smash solutions in a finite future for a wide ran
of parameters leads one to regard a big smash as a ge
feature of scalar field models of superquintessence that
clude a nonminimal coupling to gravity. This can be of t
simple form described by the action~7!, or of a more genera
form as in scalar-tensor theories, which have been know
contain smash solutions for a long time@26#. The action~7!
can be explicitly reformulated as a scalar-tensor theory w
a variable Brans-Dicke parameter

v~w!5
Gw

4j~12Gw!
, ~47!

and

w5
12kjf2

G
, ~48!

but more general forms of the coupling functionv(f) are
possible. Since the field equations for the coupled variab
H andf in scalar-tensor gravity exhibit terms similar to th
right-hand side of Eq.~6!, solutions with explosive growth
are possible in these theories.

The most stringent constraint on the theory of the no
minimally coupled scalar comes from Solar System exp
ments. The Brans-Dicke-like fieldw mediates a long range
force that is constrained by tests of general relativity. Sincw
varies on a cosmological time scale, it is appropriate to
proximatew with its present valuew0 and v(w).v(w0)
[v0. The lower bound onv0 is1 uv0u.500 @29,30#, which
yields

uv0u5U12kjf0
2

4kjf0
2 U.500. ~49!

Although the present day value off is unknown, a weak
coupling regime in whichkujuf0

2!1 is plausible@27#, given
that typical values ofj predicted by renormalization are o
the order of 1021–1022, and thatf0 cannot exceed the
Planck massmpl5G21/2 by too much without causing fine
tuning problems in the parametersm andl ~the energy scale
V must be below the Planck energy scalempl

4 ). In the weak
coupling regimekujuf0

2!1 and assuming thatAkuf0u.1
~corresponding tof0.0.2mpl), one obtainsuju,531024

~this limit is weakened ifufu!mpl). This constraint limits
the amount of superacceleration that is present today~see,
e.g. Ref.@28#!, but it should be kept in mind that even

1The more stringent bounduv0u.3300@31# yields a constraint on
uju of the same order of magnitude.
8-4
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small amount of superacceleration can eventually lead
big smash. Stringent limits onuju can be satisfied and the bi
smash will occur later: whether this amounts to fine tun
the value ofj is determined by the still unknown value of th
parameterw which quantifies the present amount of super
celeration~assuming that the universe really does superac
erate, i.e. thatw,21). It is hoped that the observation
determination of the value ofw will soon clarify this issue.

To conclude, even if the departures of gravity from ge
eral relativity are small today in the Solar System, on a la
scale they may have a catastrophic effect on the future of
universe. Usually, research on scalar-tensor cosmology
focussed on how scalar-tensor theories can depart from
a-
o

t

3

.

s.
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stein’s gravity in the early universe and converge to it at la
epochs. Here, the issue is rather the one of a cosmolog
solution of scalar-tensor gravity that is close to a gene
relativistic solution today~when superacceleration is sti
moderate andw close to21), but will dramatically depart
from it in the future. If the universe really superaccelerat
the concern about a big smash is legitimate. It is intrigu
that observational data place our present Universe so clos
the boundaryw521 between the possibility of a big smas
and certain evolution into infinite dilution in an infinite time
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