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Running of the scalar spectral index from inflationary models
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The scalar spectral indexn is an important parameter describing the nature of primordial density perturba-
tions. Recent data, including those from the Wilkinson Microwave Anisotropy Probe satellite, show some
evidence that the index runs~changes as a function of the scalek at which it is measured! from n.1 ~blue! on
long scales ton,1 ~red! on short scales. We investigate the extent to which inflationary models can accom-
modate such significant running ofn. We present several methods for constructing large classes of potentials
which yield a running spectral index. We show that within the slow-roll approximation, the fact thatn21
changes sign from blue to red forces the slope of the potential to reach a minimum at a similar field location.
We also briefly survey the running of the index in a wider class of inflationary models, including a subset of
those with nonminimal kinetic terms.
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I. INTRODUCTION

Primordial perturbations from inflation currently provid
our only complete model for the generation of structure
the Universe. It is commonly stated that a generic predict
of inflationary models is a scale-invariant spectrum of ad
batic perturbations, characterized by a scalar spectral indn
that obeysn2150. However, this statement is only true fo
very special spacetimes such as a pure de Sitter space
which does not describe our cosmological history. For nea
all realistic inflationary models, the value ofn will vary with
the wave numberk.

Typically, sincen21.0 on the scales probed by the co
mic microwave background~CMB!, the deviations from a
constantn must be small. Nevertheless, increasingly accur
cosmological observations provide information about
scalar spectral index on scales below those accessible to
isotropy measurements of the CMB. Over such a wide ra
of scales, it is entirely possible thatn will exhibit significant
running, a value that depends on the scale on which it
measured. Such running is quantified by the derivat
dn/d ln k and, in fact, recently released data@1# from the
Wilkinson Microwave Anisotropy Probe~WMAP! satellite
indicate that

dn

d ln k
520.0320.018

10.016. ~1!

Furthermore, as pointed out by the WMAP analysis of@2#,
there is some indication that the spectral index quantitn
21 runs from positive values on long length scales to ne
tive values on short length scales~positive to negative within
about 5e-folds!.
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One must bear in mind that the WMAP analysis
dn/d ln k may require modification@3# and that the statistica
significance of this result is questionable@4,5#. Furthermore,
it has been argued that the necessary reionization his
may be in conflict with large running@6#. Nonetheless, since
a running as large as the central value of Eq.~1! is not
inconsistent with the present data, and since it is difficult
produce in common realizations of inflation, it is worthwhi
exploring what such observational data would imply for i
flationary models.

In this paper, we investigate the extent to which a sca
spectral index that runs significantly negatively can be
commodated within inflationary models, within the firs
order slow-roll approximation@7#. One generic result of ou
investigation is that within the slow-roll approximation, the
must be an approximate local minimum in the slow-roll p
rametere ~which measures the slope of the potential! if the
spectral index is to run fromn.1 ~blue! on long length
scales ton,1 ~red! on short length scales. Hence, if obse
vational evidence continues to shown21 running from
positive to negative, one can infer that the inflaton poten
naturally has a locally flat part in the field values of obs
vational interest. Furthermore, the fact thatdn/d ln k is large
in this same field range and the fact that this large va
cannot be sustained for manye-folds ~since inflation will
then end too quickly! together indicate that there must be
flat ‘‘bump’’-like structure in the potential.

Unless the bumps have some kind of singular structure
we will further explain, they generically lead todn/d ln k
,O„(n21)2

…. If n21 never changes sign, then a larg
dn/d ln k can be accommodated without a bump, ev
though the initial field value must still be a special point
the potential. Indeed, the existence of such a special fea
in the potential must be generic since as we will show
©2003 The American Physical Society01-1
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negative running of the order of Eq.~1! requires a large third
~field! derivative while maintaining small first and secon
derivatives@8#.

Our second major set of results concerns methods to
struct potentials with large running and/or potentials
which the scalar index runs from blue on long length sca
to red on short length scales. This task is generically n
trivial due to the difficulty of achieving around 60e-foldings
of inflation after attaining a largedn/d ln k. We develop two
formalisms to generate such viable inflationary potentia
Through one of our formalisms we show that having a b
spectrum on long length scales generically helps to achie
large number ofe-foldings after having attained a larg
dn/d ln k. In this sense, having a blue spectrum with lar
dn/d ln k is not as ‘‘singular’’ as having a red spectrum wi
largedn/d ln k.

The first method of construction, which we will call th
singular method for reasons that will become apparent~al-
though there need not be any true singularities!, is suitable
for generating arbitrarily largedn/d ln k without upsetting
slow roll. However, this method of construction does n
give rise to a change in the sign ofn21 within about 5
e-folds nor does it yield a blue spectrum on large scales.
second method of construction, which we will call the ind
method, gives the potential as a functional of any reason
ansatz forn21. This index method is generic, covering vi
tually all slow-roll models that have a blue spectrum on la
length scales. Within this formalism, we can easily constr
models in whichn21 goes from blue to red. This metho
may also be combined with other formalisms.

In the Appendix, we survey a variety of inflationary mo
els in the literature and show how strongly the spectral in
can run in each case. The survey will allow the reader to g
intuition about the difficulty in achieving strong running o
the spectral index as well as the difficulty in having a sp
trum whose index runs from blue to red. Although there ha
been several recent works concerned with the constructio
potentials that have the strong running properties that we
concerned with@9–12#, for practical reasons we have re
viewed only @9#. We apologize to the other authors who
work we do not review in the Appendix.

This paper is organized as follows. In the next section,
establish our notation and list the well-known constraints
inflationary models. In particular, we show that a large th
derivative of the inflation potential is required to generat
large running of the spectral index. In Sec. III, we devel
our first simple formalism, the singular method, to gener
potentials with large running of the spectral index. In t
section that follows~Sec. IV!, we employ our formalism to
obtain some models of inflation with large running. Comp
menting these sections on the singular method is Sec
where we show how nonminimal kinetic terms can aid
making the construction look more natural. In Sec. VI, w
introduce the index method by deriving an expression for
potential as a functional of any reasonable spectral in
function, and in Sec. VII we use this functional to gener
potentials which give running from blue to red. In Sec. VI
we discuss the result thate generically has an approximat
06350
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local minimum near the point at whichn21 changes sign.
Finally we summarize and offer our conclusions.

II. NOTATIONS AND CONSTRAINTS

Following Garriga and Mukhanov@13#, let us consider the
most general local action for a scalar field coupled to E
stein gravity, which involves at most first derivatives of th
field,

S52
1

16pGE A2gRd4x1E A2gp~X,f!dx4, ~2!

whereR is the Ricci scalar and

X5
1

2
gmn]mf]nf. ~3!

The Lagrangian density for the scalar field is denoted bp
because it plays the role of pressure@14# in cosmological
applications. This action reduces to the usual inflation
model with a canonical kinetic term whenp(X,f)5X
2V(f), but it also describes the more general case in wh
the kinetic term is noncanonical. For completeness, we
derive the properties of the power spectrum for the gen
form of p(X,f) and apply our results to some special cas

For an action of the form in Eq.~2!, the energy density is
given by

E52Xp,X2p, ~4!

wherep,X denotes a partial derivative ofp with respect toX.
The ‘‘sound speed’’cs is then

cs
2[

p,X

E,X
5

E1p

2XE,X
, ~5!

and the power spectrum for the scalar fluctuations is@13#

Pk
z5

16

9

GN
2 E

cs~11p/E!
. ~6!

The spectral index for the scalar mode is given by@13#

n21[
d ln Pk

z

d ln k

523S 11
p

ED2
1

H

d

dt F lnS 11
p

ED G
2

1

H

d

dt
~ ln cs!1•••, ~7!

where the quantities on the right-hand side are evaluate
horizon crossing. Here, we keep only terms that are low
order in the slow-roll parameters (11p/E) and
H21d ln cs/dt.

This allows us to derive an expression for the main qu
tity of interest to us, the running spectral index
1-2
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dn

d ln k
52

3

H

d

dt S 11
p

ED2
1

H2

d2

dt2
F lnS 11

p

ED G
2

1

H2

d2

dt2
~ ln cs!2

1

H H d

dt F lnS 11
p

ED G J d

dt S 1

H D
2

1

H F d

dt
~ ln cs!G d

dt S 1

H D . ~8!

Finally, it is also useful to note that the ratio of the tens
fluctuationsPh to the scalar fluctuationsPz @13# is given by

r[
Ph

Pz
524csS 11

p

ED528csnT , ~9!

wherenT is the tensor spectral index. In principle, the co
sistency conditionr 528nT can be violated for models with
noncanonical terms, sincecs can differ from unity@13,15#.

A. The canonical limit

Let us first apply the above general formulas to the st
dard case of slow-roll inflation. In this case,

p~X,f!5X2V~f!. ~10!

Therefore,cs51 and

11
p

E ;
2X

V
5

ḟ2

V
5

V82

9H2V
5

1

3
M P

2 S V8

V D 2

. ~11!

Furthermore,

d

dt
lnS 11

p

ED5
2V

V8
FV9

V
2S V8

V D 2G ḟ
52

2

3

V

H FV9

V
2S V8

V D 2G . ~12!

In analyzing the inflationary dynamics driven byf, it is
convenient to define the conventional slow-roll paramet
@16–18#

e[
1

2
M p

2S V8

V D 2

, ~13!

h[M p
2S V9

V D , ~14!

where the primes denote differentiation with respect tof and
M p[1/A8pG. Inflation occurs ife!1 anduhu!1. In addi-
tion, we define a third parameter related to the third deri
tive of the potential,

j[M p
4S V8V-

V2 D , ~15!

which is important for the running of the spectral index.
06350
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In terms of the slow-roll parametrization, the power spe
trum becomes

Pk
z5

16

3p2e
S V

M p
4D , ~16!

to leading order. We also recover the well-known expressi
for the spectral index

n2152h26e, ~17!

its derivative

dn

d ln k
522j116eh224e2, ~18!

and @19# the tensor-to-scalar ratio

r 516e. ~19!

B. Noncanonical kinetic terms

Let us now consider a second interesting special case
which p(X,f) takes the following form:

p~X,f!5Z~f!X2V~f!, ~20!

where the potentialV(f) and the functionZ(f) are general
functions. This form ofp(X,f) can arise, for example, from
quantum corrections to the kinetic term, which yieldZ(f)
511cg2ln f ~where c is a constant andg is a coupling
constant!. A similar action arises in brane inflationary mode
@15,20# due to a velocity-dependent potential betwe
D-branes. Finally, note that this form of the nonminimal k
netic term can always be brought back to the canonical fo
~at least over a finite field region! by an appropriate field
redefinition, as we will discuss in detail later.

The energy density is

E5Z~f!X1V~f!, ~21!

and, sincecs
251 in this case, the slow-roll parameters d

pend only on (11p/E), given by

11
p

E 5
2ZX

ZX1V
. ~22!

To determine the classical background ofX, let us con-
sider the equation of motion forf,

Z~f̈13Hḟ !2
1

2
Z8ḟ21V850. ~23!

For slow-roll inflation, f̈!3Hḟ and the potential energy
dominates. It is thus reasonable to assume thatZ8ḟ2/2!V8
and therefore@15#

ḟ52
V8

3HZ
. ~24!

Hence, the classical background value ofX is
1-3
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X5
1

2
ḟ25

1

3

eV

Z2
, ~25!

wheree is the slow-roll parameter defined previously. The
fore, we may write

11
p

E 5
2

3

e

Z S 12
1

3

e

Z
1••• D , ~26!

and

d

dt
lnS 11

p

ED5
1

e

de

df
ḟ2

1

Z

dZ

df
ḟ1•••, ~27!

where we have used

de

df
5S V8

V D ~h22e!. ~28!

Furthermore, we define an analogous set of parameters
the kinetic functionZ(f),

l[M p

Z8

Z
, ~29!

k[M p
2 Z9

Z
. ~30!

The spectral index is then given by

n215
1

Z
~2h26e2A2el!1•••. ~31!

Here, we drop all terms higher order in the slow-roll para
eters. Note that, in the absence of cancellations, smallne
n21 implies

uA2elu!Z. ~32!

Finally, the running spectral index is

dn

d ln k
5

1

Z2
@~22j116eh224e2!

12ek24el21A2el~3h28e!#1•••. ~33!

Again, we neglect terms higher order in the slow-roll para
eters. We also assume that the counting of the numbe
derivatives gives an estimate of the order of the parame
This need not be the case, and some counterexamples
been found@21#.

C. k essence and tachyonlike actions

For completeness, let us mention another form
p(X,f), the so-calledk-essence form@22,23#

p~X,f!5 p̃~X!V~f!. ~34!
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The tachyon action considered in@24# is also of this form.
The pressure and energy density are

p5V~f! p̃~X!,

E5V~f!Ẽ~X!, ~35!

where Ẽ[2Xp̃,X2 p̃(X). Clearly, the functionV(f) does
not enter the expressions forn21 or dn/d ln k. Therefore, in
such models, the constraint from large running become
criterion to be satisfied by the form of the ‘‘kinetic term
p̃(X).

D. Constraints

For inflationary predictions, in this paper we will aim fo
the range of values provided by the WMAP analysis@2#. ~All
error bars correspond to 1s error bars.! These are

Pz~k050.002 Mpc21!58p~2.9531029!

3~0.7760.07!, ~36!

n~k050.002 Mpc21!51.1020.06
10.07, ~37!

dn

d ln k
520.04220.020

10.021, ~38!

r ~k050.002 Mpc21!,0.71. ~39!

This final value significantly constrains the usual slow-r
parametere. The data represent a combined fit to nearly
CMB data, large-scale structure measurements from the
survey, and power spectrum data on the scale of the Lym
a forest ~see@2# and @25# for data definitions and more de
tails of the analysis!. Except where noted, in the analys
below we may ignore the constraint~36! on Pz(k) since, at
least classically, we are free to adjust the height of the in
ton potential.

The number ofe-foldings before the end of inflation a
which a perturbation mode left the horizon is

N~k!'60.41
2

3
ln@g* ~ tRH!#1

1

3
lnS TRH

Ve
1/4D

1 lnS Ve
1/4

1016GeV
D 1 lnS H0 /h

k/a0
D , ~40!

whereVe is a fiducial value of the inflaton potential at th
end of inflation andg* (tRH) is the number of effectively
massless degrees of freedom at the reheating temper
TRH . Settingk/a0'H0 corresponds to a minimum numbe
of e-foldings Nmin typically between 50 and 60, althoug
with some dependence onTRH . In most of our analysis we
will simply take N(k50.002 Mpc21) to be somewhere be
tween 50 and 60 without worrying about the details of
heating.

Note thatdn/d ln k'2dn/dN, so that the magnitude o
dn/d ln k decreases with increasingN. This means that, in
1-4
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general, the magnitude ofdn/d ln k is increased by minimiz-
ing Nmin , which is achieved by low-scale inflationary mo
els. Hence, lowering the reheating temperature and the s
of the inflaton potential generically lead to stronger runn
of the spectral index. For example, ifVe

1/4;1 GeV and
TRH;1 MeV, then we require

N'23, ~41!

which contributes a factor 1/232;0.002 todn/d ln k, rather
than 1/502;0.0004 in the typical high-scale models. How
ever, it is difficult to achieve a successful inflation scenario
such a low energy scale~see, for example,@26#!.

E. Negative running and the requirement
of a large third derivative

In order to achieve negative running of the order of t
central value of Eq.~38!, the running must be dominated b
the j term ~the third-derivative term! of Eq. ~15! in the ca-
nonically normalized inflaton basis.

To see this, supposedn/d ln k is dominated by terms othe
than thej term. Then, using Eqs.~17! and ~18!, we obtain

dn

d ln k
'24e218e~n21!. ~42!

For this to be sufficiently negative, we must have

2~n21!.3e1
0.004

e
. ~43!

Since the right-hand side of this inequality is minimized
e50.035, Eq.~43! forces (n21),20.2, which is ruled out
at around the 5s level by Eq.~37!. Hence, in order to attain
the requisite running, thej term must dominate.

In the case of a nonminimal kinetic term~but still with
two derivatives!, we appear to have extra freedom to adju
dn/d ln k by changingl and k in Eq. ~33!. However, this
freedom in adjusting the cancellation should just corresp
to adjusting the third-derivative termj after canonically nor-
malizing. The nonminimal kinetic models hence must
seen as a convenient way of obtaining a large third deriva
in those situations in which the field redefinition to a cano
cal basis is possible.

III. SINGULAR METHOD

We saw in the last section that to obtain a largedn/d ln k,
one must maximize the third derivativeV-/V while mini-
mizing V8/V andV9/V. In this section we describe a recip
for constructing an inflaton potential with these propertie

We begin by considering a singular limit of what is r
quired, one in whichV-/V diverges whileV8/V and V9/V
remain regular. It is convenient to define a new functi
f (f) by

V5V0ef (f), ~44!

in terms of which
06350
ale
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t

t

d

e
e
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n2152 f 8212 f 9, ~45!

and

dn

d ln k
52 f 8~ f 8 f 92 f-!, ~46!

wheref is evaluated at around 60e-foldings before the end
of inflation, corresponding to the field valuef* . We require
f 8 and f 9 to be regular atf5f* , but f 8 f- to be singular
there. Note that it isinsufficientmerely to choose a function
for which f-(f* ) diverges, since the productf 8 f- may be
regular even thoughf- is irregular.

To construct a suitablef, defineK(f) by

f ~f!5sEf
AK~x!dx, ~47!

wheres561 is a sign. Our condition onf then implies that
K(f) must satisfy

K~f* ! is regular, ~48!

K8

AK
U

f
*

52
d

df
AKU

f
*

is regular, ~49!

K9~f* ! is singular. ~50!

Therefore, we require aC1 functionK(f), for whichK8(f)
is discontinuous atf* andKuf;f

*
Þ0.

Although we cannot rule out the possibility ofKuf;f
*

50, it is difficult to satisfy Eq.~49! in such cases. The
slow-roll parameters can be written in terms ofK as

e5
K

2
, ~51!

h5K1
sK8

2AK
, ~52!

and the corresponding observables are

n2152K1
sK8

AK
, ~53!

dn

d ln k
5sS K8

AK
D K1

1

2 S K8

AK
D 2

2K9. ~54!

Note that the observables take on a much simpler form
terms ofK compared to the expression in terms off. Addi-
tionally, these expressions do not contain large numb
compared to when they are expressed in terms ofe and h.
One of the main challenges in obtaining strong running
now clear; becausee is small, we must chooseK to be small,
but choosingK too small unacceptably increasesn21.
1-5
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Further, in order to have inflation at all we must ensu
that slow roll is valid throughout inflation. In other word
the direction in whichf rolls is the same direction in which
e increases. This implies that

sgnF de

df U
f

*
G52sgn@V8~f* !#, ~55!

although, strictly speaking, this condition need not hold
there are unusual features~‘‘bumps’’ ! in the potential. This
translates into the condition

sgn@K8#52s, ~56!

which essentially fixes the signs.
Having dealt with an idealized singular limit, recall no

that we do not wantdn/d ln k to actually diverge atf* . We
therefore regularize~smooth out! K9. One may accomplish
this either by adding small terms to remove the singular
or by arranging that the inflaton never quite reachesf* .

Let us now restate the findings of this section as a sim
recipe.

~i! Choose a real differentiable functionK(f) which, at
some field valuef* , hasK anddAK/df small but nonzero
and continuous, butK9 diverging negatively.

~ii ! Define K̃(f) as either a smoothed out version
K(f) @such that the singularity inK9 appears inK̃ only in
the limit that some new ‘‘smoothing’’ parameter vanishe
i.e., if l is a parameter introduced for the purpose of re
larizing, liml→0K̃(f* )5K(f* )] or as the originalK(f)
itself if f never reachesf* during inflation.

~iii ! Define the inflaton potential via

V5V0expS sEfAK̃~x!dxD , ~57!

where the signs is chosen bys52sgn@K̃8(fe)#, wherefe

is the end of the inflation determined byK̃(fe)52.
A consequence of this analysis is that we cannot choosK

to be a monomial since then it would vanish at the singu
point. This is why the example of@27#, which we consider in
the Appendix, and for which the potential is of the for
V0exp(2afb), does not result in a sufficiently larg
dn/d ln k.

IV. SINGULAR METHOD EXAMPLES

A. Simple K but complicated V

We begin with a simple example, choosing

K5K01gfa, ~58!

whereK0 , g, anda are nonvanishing constants. This impli

K95ga~a21!fa22, ~59!
06350
e

f
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r

which is singular atf* 50 if a,2. As required,K itself
does not vanish atf5f* , but the magnitude ofK can be
small nearf5f* if K0 is small. The magnitude of

d

df
~AK !5

gafa21

2AK01gfa
~60!

is also small, as required, ifa.1. Finally, we want to make
sureK9 does not truly diverge asf→f* . We can accom-
plish this by introducing a termm2 giving

K̃5K01g~f21m2!a/2, ~61!

K̃95ga~m21f2!(a24)/2@m21f2~a21!#, ~62!

d

df
~AK̃ !5

gaf~m21f2!(a/2)21

2AK01g~m21f2!a/2
, ~63!

which can then be compared with Eqs.~58!, ~59!, and~60!.
The resulting potential is

V~f!5V0expFsE
0

f

dxAK01g~x21m2!aG , ~64!

wheres52sgn@K̃8(fe)# ~so thats52sgn@g# if f.0). We
chooses521 ~corresponding tog.0) so that the field
starts near the origin and rolls away from the origin~since
f* 50). The field value at the end of inflation, determin
by e(fe)5 1

2 @K01g(m21fe
2)a/2#51, is then

fe5AS 22K0

g D 2/a

2m2. ~65!

The observable parameters are then

n2152K02g~m21f2!a/21
sagf~m21f2!(a22)/2

AK01g~m21f2!a/2

~66!

and
1-6
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d ln k 2 K01g~m21f2!a/2

~67!
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Since it is not possible to integrate analytically forfN
*
,

we give numerical results to demonstrate that we can ge
desiredn21 and runningdn/d ln k. We choosea53/2 and
K0'1023, which yields smalle. Requiring that the running
occur about 60e-folds before the end of inflation implies tha
we cannot makeg too small, and we chooseg50.015. This
value of g corresponds toN'55. Finally, we tunem2

'0.01 to obtain

e~f'0!'731024, ~68!

~n21!uf'0'21.531023, ~69!

dn

d ln k U
f'0

'20.07, ~70!

which is the desired result. Heref'0 simply meansf2

!1023. Note that, instead of tuningm2'0.01, we could
have tuned the initial condition forf ~starting slightly away
from 0!, after settingm250. Note also that, to have th
desired inflationary history, the inflaton must begin rollin
very close to the origin. It may be possible, for example,
use thermal effects to place the inflaton at this position.
nally, note that the smoothing ofK through them2 term
yields a potential that is generically well defined, even
negative values off.

B. A simpler V

The potential in the previous example turned out to

complicated because the integral ofAK̃ did not have an ana
lytic expression. Here we chooseK̃ to obtain a simpler look-
ing potential. Choose

K5~K01gfa!2, ~71!

which has

K952agfa22@~a21!K01~2a21!gfa#, ~72!

d

df
~AK !5agfa21. ~73!

Again, we must choose 1,a,2 so thatK behaves appro
priately near the critical pointf5f* 50. To maintain the
simplicity of the potential, we setK̃5K and assume thatf
never reaches the singular pointf50 ~since it is rolling
away from the origin during inflation!. This leads to the po-
tential

V~f!5V0expF2S K0f1
g

11a
f11aD G , ~74!
06350
he

o
i-

r

e

which is well defined for both positive and negative valu
of f if 1 1a5n/r , wherer is an odd integer andn is an
integer relatively prime tor. This form of the potential is
simple, as promised. The end of inflation occurs at

fe5SA22K0

g D 1/a

~75!

and the inflationary parameters are

e~f!5
1

2
~K01gfa!2 ~76!

n21522agfa212~K01gfa!2 ~77!

dn

d ln k
522agfa22~K01gfa!

3~a1K0f1gfa1121!. ~78!

Again, for illustrative purposes, we choosea55/3 and, since
e should not be big, we chooseK051023. Finally g is tuned
to give the desired value ofdn/d ln k520.04 at 60
e-foldings (f5f605531026) by settingg50.317. The re-
sulting inflationary predictions can be written as

e~f60!5531027, ~79!

~n21!ufN
52331024, ~80!

dn

d ln k
520.04. ~81!

Although we have achieved large running, this example, l
the previous one, still suffers from the fact that the spec
index is always negative instead of running from positive
negative.

V. NONCANONICAL KINETIC TERMS AND THE
CONNECTION TO FIELD REDEFINITIONS

Consider again the special case of our general Lagran
given by L5Z(f)X2Ṽ. The field redefinition that brings
the nonminimal kinetic term into a canonical basis is

F~f!5Ef
AZ~x!dx ~82!

for F.0. For any given choice ofṼ(f) one may compute
AZ(f) through the equation
1-7
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lnF Ṽ~f!

V0
G5sEFAK̃~x!dx, ~83!

or, slightly more explicitly,

AZ~f!5
Ṽ8~f!

Ṽ~f!

1

sAK̃@F~f!#
. ~84!

Consider the simple potential given by Eq.~74! with a5 5
3 .

We can choose

Ṽ~f!5V0expF2S K0f31
3g

8
f8D G , ~85!

which gives

AZ~f!53f2. ~86!

Here one sees the important role that may be played by
nonminimal kinetic term: even though the required poten
structure of Eq.~74! is nonanalytic, it can be obtained from
an analytic potential of the form Eq.~85! due to the field
redefinition arising from a nonminimal kinetic structure. U
fortunately, the potential of Eq.~85! is still hard to motivate
from a short-distance physics point of view, although it is
least analytic. In general, however, classifying those mod
with Z(f)Þ0, is more difficult than in the canonical cas
since there are two free functions off that enter the La-
grangian density.

VI. POTENTIAL AS A FUNCTIONAL
OF SPECTRAL INDEX

For convenience, we definej [AK̃, in terms of which

n~f!21[I ~f!52 j 2~f!12s j8~f!, ~87!

which yields

dn

d ln k
52s j~f!

dI~f!

df
. ~88!

Expanding aboutn2150 by lettingI→lI , wherel is a
bookkeeping perturbation parameter, we can write the s
tion in a perturbation series to second order inl,

j ~f!5 j 0~f!1l j 1~f!1l2 j 2~f!, ~89!

where we take thel→1 limit at the end. This yields

j 0~f!5
j 0~f i !

12
j 0~f i !

2s
~f2f i !

, ~90!
06350
he
l

t
s,

u-

j 1~f!5
1

F12
j 0~f i !

2s
~f2f i !G2

3E
f i

f

dy
I ~y!

2s F12
j 0~f i !

2s
~y2f i !G2

, ~91!

j 2~f!5
1

F12
j 0~f i !

2s
~f2f i !G2

3E
f i

f

dy
j 1
2~y!

2s F12
j 0~f i !

2s
~y2f i !G2

, ~92!

wherej 0(f i) is an integration constant. In the familiar case
we require that the potential revert to a constant in the li
that n21 vanishes. Hence, many situations will involv
j 0(f i)50, which implies j 0(f)50. Note that if j 0(f i)
50, then j (f i)50 to all orders inl. In such cases, sinc
e5 j 2/2, we should setf i by the conditione(f i)50. Since
the number ofe-foldings diverges whene50, f i should
generically be set outside of the inflationary field values
j 0(f i)50. However, as we will see below, in order forn
21 to change sign from blue to red during inflation,f i must
be within the domain of inflationary field values. Hence, f
potentials of our interest, we will generally requirej 0(f i)
Þ0 @28#.

Although the order of the perturbation seems to imply th
j 0
2(f)@ j 1(f) has been assumed, this is not true. In fact,

may explicitly check that, whenj 0(f i)50, then j 2(f)
;O(l2) becomes the perturbation term~instead of the
sourceI ) and the perturbative solution can easily be verifi
to be the same as above. The potentialV(f) obtained via Eq.
~89! can be written as

V~f!5
V0

S 12
j 0~f i !

2s
~f2f i ! D 2

3expS sF Ef

j 1~z!dz1Ef

j 2~z!dzG D . ~93!

As long asj 2! j 1, we can neglectj 2(z) in the analysis. On
the other hand, ifj 2(z). j 1(z), even though the perturbatio
approximation has broken down, the potential may s
qualitatively give the desired results, and hence, even in s
cases, it is worth checking the potential to see if the resu
useful.

To gain intuition about this formalism, let us write dow
the formula for the potential in the simplest case, in whi
j 0(f i)50 and j 2(f) has been dropped. We obtain

V~f!'V0expF1

2E
f

dxE
f i

x

dyI~y!G . ~94!

Note that, at this level of approximation~where onlyj 1 has
been kept!, the result is identical to using the approximatio
1-8
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n2152h24e1O~2e!, ~95!

which means that the approximation withj 0(f i) is strictly
only valid in the limit h@e. In cases where we want th
spectrum to run from blue to red, we require thate play some
role to cancel againsth. Hence, for the most interesting cas
we should not setj 0(f i)50. Let us now check our formal
ism with some simple potentials.

A. Monomial potential reconstruction

Consider the monomial potential for which~see the Ap-
pendix!

I ~f!5
2b~21b!

f2
~96!

and

e5
b2

2f2
. ~97!

From Eq. ~96!, we see that the asymptotic expansion ‘‘p
rameter’’ is

d[
b~21b!

f2
. ~98!

Althoughd is a function and not a parameter, we expect th
for those values ofb andf for which d→0, the perturbative
solution will be well approximated by an expansion ind.
This implies that

b5211A11f2d, ~99!

which, when expanded aboutd50, gives

b5
1

2
f2d1O~d2!. ~100!

Hence, to leading order ind, we need only keep the leading
order b dependence in the final potential. Additionally, w
make the simplifying assumption that the potential becom
a constant in theb→0 limit @this is consistent with Eq.~97!#.
Hence, we set

j 0~f i !50. ~101!

Finally, we choosef i5`, since e(`)50. Equation~91!
then gives

j 1~f!5
b~21b!

2sf
. ~102!

Integrating with respect tof, we find

V5V0fb, ~103!

where we have used Eq.~100! and kept the leadingd depen-
dence in the exponent. Of course, strictly speaking, our
06350
,

-

t,

s

p-

proximation breaks down whend;1, which generically oc-
curs before the end of inflation, set bye51. Thus, the
approximation is questionable wheneverj 2(f). j 1(f), for
which we can explicitly show

j 2~f!5
2sb2~21b!2

8f
. ~104!

However, the method allows us at least to make a system
guess regarding the potential, motivated by the spectral
dex. Furthermore, it is important to remember that we ha
made a convenient assumption@ j 0(f i)50# to obtain this
simple form of the potential.

B. Dynamical supersymmetry breaking motivated potential

In the model of Ref.@29#, which is motivated by dynami-
cal supersymmetry breaking~see the Appendix!, the function
obtained forn21 to leading order ina is

I ~f!5
2ap~11p!

f21p
, ~105!

where we have again chosenj 0(f i)50 to yield a constant
potential in thea→0 limit. Integrating Eq.~105!, one finds

j 1~f!52
sap

f11p F12S f

f i
D 11pG , ~106!

where we have again chosenf i5`, sincee(`)50. Note
that, since j 1(f) is an intrinsically negative quantity, we
haves521. Using

dn

d ln k
'2s j1~f!

dI

df
~107!

we find

dn

d ln k
'

22a2p2~21p!~11p!

f2(21p)
, ~108!

which agrees with Eq.~A50!. Finally, from Eq. ~94!, we
obtain

V5V0F11
a

fpG , ~109!

which also agrees with Eq.~A42!.
Thus far, we have not addressed how we would ha

known that Eq.~105! is the correct spectral index function t
use. The difficulty in general is not getting a largedn/d ln k
at any particular time, but having 60e-folds afterwards.
What helps this model work is thatdn/d ln k is large at the
beginning of inflation and decreases during inflation. Duri
inflation, e is decreasing and the potential has a nega
slope given by

sgn@s j1~f!#521, ~110!
1-9



ly,
d

in

en

n

o

is
cia
it
on

st

s

-

CHUNG, SHIU, AND TRODDEN PHYSICAL REVIEW D68, 063501 ~2003!
allowing f to reach larger field values. More generical
using j 1'(1/2s)*f i

f dyI(y).0, one can see that the desire

behavior of the slope of the potential comes simply from

I ~f!.0, ~111!

assuming thate is a monotonic function during inflation. To
summarize, having a blue spectrum naturally aids in atta
ing sufficient inflation after the point at whichdn/d ln k is
large.

C. Wilson line as an inflaton

In the extra dimensional model discussed in the App
dix, the source functionI (f) is given by Eq.~A66!. We thus
find

j 1~f!5
1

2s feff
2 H q1

2F ~f2f i !14
f eff

q1

3S cot
q1f

2 f eff
2cot

q1f i

f eff
D G1I 2J , ~112!

where we have defined

I 2[q2
2sE

f i

f

dx cos
q2x

f eff
csc2

q1x

2 f eff
, ~113!

which can be expressed in terms of hypergeometric fu
tions.

Unfortunately, it is not very easy to reconstruct this p
tential using our method. On the other hand, sinceq2 /q1
@1 ands!1, this model provides the bumps that we d
cussed in the Introduction. This model with bumps is spe
because instead of the bump being at a special location,
a periodic set of bumps, relieving the special initial conditi
problem.

VII. THE INDEX METHOD

To construct a potential of the form~93!, yielding a spec-
tral index that runs from blue to red, we must chooseI (f) to
vanish at a field valuef5fx during inflaton. Moreover, if
f* occurs 60e-folds before the end of inflation, there mu
only be about 5e-folds betweenf5f* and f5fx . This
implies

U E
f

*

fx df

A2e~f!
U'5, ~114!

while sufficient total inflation requires

U E
fx

fe df

A2e~f!
U'55, ~115!

wherefe is the value off at the end of inflation. This mean
that generally
06350
-

-

c-

-

-
l
is

uf* 2fxu!ufx2feu ~116!

is necessary.
Another necessary condition is thatfx lie in the direction

of the slow roll. This results in

sgn@f2fx#5sgnF1

2Ef i

f

dyI~y!G . ~117!

Furthermore, since we demandn21.0 nearf5f* , an
explicit check reveals that the only possibilities are

f* ,f i<fx ~118!

or

fx,f i<f* , ~119!

with n(f i)21>0. Since we do not want manye-folds be-
fore f reachesfx and sincef i is close to the location where
e usually reaches a minimum, we setf i5fx generically. By
making this choice, we have made both thej 1 and j 2 contri-
butions vanish precisely wheren21 changes sign. In choos
ing j 0(f i), we require

j 0
2~f i !

2
!1, ~120!

sincee(f i)5 j 0
2(f i)/2 to all orders in the perturbationl.

To get a better sense of the requirement~116!, let us pa-
rametrizee as

e;5
c1

2

2
~f2fx!

2n11
D2

2
for f,fx,fe

c2
2

2
~f2fx!

2n21
D2

2
for fx,f,fe ,

~121!

whereci , D, andni.0 are constants. This yields

E
f

*

fx df

A2e~f!
;uF ~fx2f* !2S D

c1
D 1/n1G S D

c1
D 1/n1 1

D

1uF S D

c1
D 1/n1

2~fx2f* !G~fx2f* !

D

~122!

and

E
fx

fe df

A2e~f!
;uF ~fe2fx!2S D

c2
D 1/n2G S D

c2
D 1/n2 1

D

1uF S D

c2
D 1/n2

2~fe2fx!G~fe2fx!

D
,

~123!

whereu is a step function withu(z)51 for z.0 andu(z)
50 for z,0 @30#. For sufficiently smallc1, such that
1-10
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5c1
1/n1!D1/n121, ~124!

then we can generically realize

E
f

*

fx df

A2e~f!
'

fx2f*
D

'5, ~125!

while if we require

fe.fx1NtotD ~126!

we can achieve

E
fx

fe df

A2e~f!
'S D

c2
D 1/n2 a

D
'Ntot , ~127!

where a;O(1) and Ntot'55 for a total of 60e-foldings.
Note that, in this setting, we see explicitly the hierarchy

fe2fx.11~fx2f* ! ~128!

as expected. It is important to note that Eq.~128! is a neces-
sary but not sufficient condition to achieve 60e-foldings,
since this also depends on the value ofc2. Generically, it is
very hard to estimate Eq.~127! accurately~hence there is a
large uncertaintya) because the functional form fore over
the entire duration of inflation can be complicated. Furth
more, we must keep in mind that, in some cases, infla
ends becauseh becomes of order 1 beforee.

From Eq.~111!, we have learned that having a blue spe
trum naturally helps one to obtain a largedn/d ln k becausee
can decrease during inflation from the time whendn/d ln k is
large and thus help inflation achieve sufficiente-folds of ex-
pansion. Note that, although Eq.~111! was derived assuming
that j 0(f i)50, it is still a good condition in general. Mor
precisely, if j 0(f i)Þ0, thene is decreasing during inflation
if

sgn@ j 0~f!1 j 1~f!#5sgnF I ~f!

2
1

j 0~f!2

2
1 j 1~f! j 0~f!G .

~129!

Since j 01 j 1.0, the desired behavior ofe is generically
attained if Eq.~111! is satisfied. As we will show more ex
plicitly later, this decrease ine stops at a location nearf
'f i wheren21 approximately vanishes.

To recap, the general recipe for construction is as follo
~i! Write down I (f)'n(f)21, which changes sign a

f5f i .
~ii ! Compute the potentialV using Eq.~93! with j 0 and j 1.
~iii ! Compute the slow-roll parameters using the ex

first-order slow-roll equations.
~iv! Choose the parameters introduced inI to satisfy the

constraint Eqs.~120!, ~125!, ~127!, and

dn

d ln k
~f5f i !'20.02, ~130!

where D and ci are defined in Eq.~121!. Note thatc2 is
generically difficult to define, in which case one must try
06350
-
n

-

.

t

estimate the integral of Eq.~127! some other way. Also Eq
~130! can be replaced bydn/d ln k evaluated atf* instead
and the right-hand side adjusted to achieve the desired
ning.

~v! Check the validity of the approximations by ensurin
that Eq.~124! and Eq.~126! are satisfied.

~vi! Test the total number ofe-folds numerically.
As we discuss in Sec. VIII, the intriguing general featu

of this very wide class of models is thate reaches its mini-
mum approximately wheren21 vanishes.

A. Successful example

We have made a number of attempts to produce a via
model using the method of this section. For example,
simplest functionalI (f)5c(f2fx) gives a spectrum tha
runs from blue to red, but this simple model does not g
sufficient e-folds of inflation. Although there are problem
with the simplest attempts, successful examples can
found, and we present one here. Consider a running in
function of the form

I ~f!5cS 1

f6
2

1

f i
6D . ~131!

The potential generated byj 01 j 1 is not particularly illumi-
nating. However, expanding aboutf5f i to second order,
we obtain a slightly simpler form

V5Ṽ0F11s j0~f i !S ~f2f i !2
c

6f i
3D 1 j 0~f i !

2

3S c2

72f i
6

2
cf i

3~2f23f i !

12
1

3

4
~f2f i !

2D G ,

~132!

where Ṽ0[V0e3c/(8f i
4). Hence, nearf5f i , this is a par-

ticular type of hybrid inflationary potential.
Following our procedure, we now find the relevant slo

parameters to second order in (f2f i),

e'
j 0
2~f i !

2
1

2s3c j0~f i !

2f i
7 ~f2f i !

2, ~133!

n21'
26c

f i
7 ~f2f i !1

21c

f i
8 ~f2f i !

2, ~134!

dn

d ln k
'

6c j0~f i !s

f i
7

1
3c j0~f i !@ j 0~f i !f i214s#

f i
8 ~f2f i !

2
3c$3c17 j 0~f i !f i

5@ j 0~f i !f i28s#%

f i
14 ~f2f i !

2.

~135!

These approximations are valid as long as
1-11
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U f

f i
21U!1. ~136!

The behavior ofe for moderatef2f i , neglecting correc-
tions from j 0(f i), is

e'
c2

8f i
12S f2

6

5
f i1

f i
6

5f5D 2

, ~137!

which implies that the end of inflation is around

fe'6
2A2f i

6

c
1

6

5
f i . ~138!

Let us now choose the parameters for our potential. T
parameters of Eq.~121! are

c15A2s3c j0~f i !

f i
7

, ~139!

n151, D5 j 0~f i !,c25c1 ,n251, ~140!

dn

d ln k
'

6c j0~f i !s

f i
7

, ~141!

where we will see below that settingc25c1 is not a particu-
larly good approximation for finding the total number
e-folds @neither is using Eq.~137!, although that equation
happens to be useful for finding the end of inflation#. The
constraint equations then become

6c j0~f i !s

f i
7

'20.02, ~142!

a

A2sc3 j 0~f i !

f i
7

'Ntot , ~143!

uf i2f* u'5 j 0~f i !, ~144!

where we will see numerically later thata can be as large a
6, meaning thate increases much more slowly than can
extrapolated from the behavior nearf5f i . This is, of
course, what we expected by construction. The first two
these equations can be rewritten as

c'
20.017f i

7

suf i2f* u
, ~145!

Ntot'10a. ~146!

Equations~124! and ~126! then require

5A2s3c j0~f i !

f i
7

,1 ~147!
06350
e

f

and

Ntotj 0~f i !1f i,
6

5
f i1

2A2

c
f i

6 . ~148!

Only the second of these conditions yields the nontrivial c
straint

0,
1

5
f i1S 2848.5

s

f i
210a D j 0~f i !. ~149!

A viable example is then given by choosing$f i51,uf*
2f i u50.1%, for which our equations yield$s521,j 0(f i)
50.02,c'0.167,fe'18%. The potential, the spectral index
and its running for this model are given in Figs. 1 and 2.

VIII. AN APPROXIMATE COINCIDENCE

Here we derive the advertised result that there is an
proximate local minimum ofe at the length scale at which
n21 vanishes.

At the most basic level, it is simple to see how such
consistency condition can arise. By elementary manipula
of the slow-roll parameters, one can write

0 2 4 6 8 10 12 14
φ

0.25

0.5

0.75

1

1.25

1.5

1.75

v/
V

0

0 2 4 6 8 10 12 14
φ

-0.2

0

0.2

0.4

0.6

0.8

1

ε,
η

FIG. 1. The upper figure shows the potential as a function of
inflaton fieldf. The vertical long-dashed curve in the upper figu
corresponds to a field value 63e-folds before the end of inflation. In
the lower figure, the solid curve corresponds to the behavior oh
while the short-dashed curve corresponds to the behavior ofe. Note
that inflation ends due toh and note. Also, one can clearly see tha
e has a minimum nearf51 wheren21 changes sign. About 10
e-folds after, the dashed line corresponds tof'1.1.
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n21

A2e
1A2e56

e8~f!

e
, ~150!

where the upper sign is forV8.0 whereas the lower sign i
for V8,0. This means that the minimum ofe is reached
whenn21'22e, which means thatn21 vanishes slightly
before the value at whiche reaches its minimumf5fc .
Linearizinge andh aboutfx wheren(fx)2150, we can
solve for fc . We can then compute the number ofe-folds
DN that elapse betweenfc andfx ,

DN'
e~fx!

j~fx!210e2~fx!
'

e~fx!

0.01210e2~fx!
. ~151!

Thus, if e(fx),0.01, thenDN,1 @31#.
From the perspective of the index formalism, the appro

mate minimum fore occurs nearfx because of Eqs.~118!
and ~119!. Namely, sincee'( j 01 j 11 j 2)2, we have thej 1
and j 2 contributions vanishing precisely atf i , which is be-
tween the field valuef* and the valuefx . Of course, one
must note that, strictly speaking,f i is not the value at which
the derivative ofe vanishes. The effect is merely the same
saying that then21 term in Eq.~150!, which dominates in
general, just happens to be very small nearn2150.

From a practical standpoint, it is not clear whether t
can be confirmed by measuring tensor perturbations.
reason is simply that this coincidence occurs most accura
for small e, which in turn implies that the tensor-to-scal
amplitude ratio is negligible.

FIG. 2. n21 anddn/d ln k as a function ofNtot2N, whereN is
the number ofe-folds before the end of inflation andNtot'63 is the
total number ofe-folds.
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IX. SUMMARY AND CONCLUSIONS

Motivated by recent data, including those from th
WMAP satellite, we investigate the extent to which the sc
lar spectral indexn that runs strongly negatively can be a
commodated within inflationary models. We found that
running as large as the central value of Eq.~1! is difficult to
achieve in common realizations of slow-roll inflation as
requires a large third~field! derivative while maintaining
small first and second derivatives. Aside from the fact tha
is difficult to motivate potentials with these features from
fundamental theory, it is not easy to sustain a large num
of e-foldings ~at least 60! for models with largedn/d ln k.
Therefore, if current observations hold up, the large runn
of the scalar spectral index could pose new challenges
inflationary model building.

In view of these difficulties, we develop two methods
systematically construct inflationary potentials with lar
running. The first method, which we call the singul
method, allows us to generate arbitrarily large running wi
out upsetting the slow-roll requirements. However, th
method by itself does not give rise to a change in sign on
21 within the range of the observable length scales~about 5
e-folds! nor does it give rise to a blue spectrum on lar
scales—features that are suggested by the recent cosmo
cal data including the WMAP data. The second meth
which we call the index method, covers a broad range
slow-roll models that have a blue spectrum on large sca
and is designed to construct models in whichn21 runs from
blue to red. Obviously, these methods can be combined~as
well as with other formalisms! to construct a large variety o
inflationary models.

We also uncover a fairly generic implication of stron
negative running of the scalar spectral indexn. We show that
in many situations, there is an approximate local minimu
of the slow-roll parametere at the length scale at whichn
21 vanishes. This approximately implies that the strong r
ning of the spectral index requires a bumplike structure~de-
fined by a region where the slope of the potential reache
local minimum! in the inflaton potential.

At a more formal level, we also explore the extent
which the constraints on the inflaton potential can be rela
if the kinetic term of the inflaton is noncanonical. We foun
that we have extra freedom in adjusting a large running wh
maintaining a smalln21 because of the new contribution
from the field-dependent kinetic term. Of course, this ex
freedom simply corresponds to adjusting the third derivat
of the inflaton potential after we canonically normalize t
field. However, such noncanonical kinetic terms may be s
as a convenient way to generate inflaton potentials with
usually large third derivatives starting from potentials th
are more physically motivated~e.g., potentials that are ana
lytic functions of the inflaton fields, etc.!. Furthermore, non-
minimal kinetic terms are quite generic as they often app
in supersymmetric models, as well as in string theory. The
fore, cosmological data such as the running spectral in
may tell us something about the Ka¨hler potential. We hope to
return to this and related issues in the future.
1-13
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APPENDIX: MODELS WITH CANONICAL
KINETIC TERMS

In this appendix, we analyze a sample of inflationa
models to see how large a value ofdn/d ln k can be obtained
and at what price. We apologize to many authors wh
models we did not review due to practicality constraints
much more extensive review of older models can be foun
@26#.

1. Monomials

The best-known and most robust inflationary models
those exhibiting chaotic inflation. This may be implement
with the simplest of potentials, namely monomials.

Consider a potential of the form

V~f!5V0S f

M p
D b

, ~A1!

whereb is a dimensionless parameter. The slow-roll para
eters for this model are

e5
b2M p

2

2f2
, ~A2!

h5
~b21!bM2

f2
, ~A3!

and the third-derivative parameter is given by

j5
~b22!~b21!b2M p

4

f4
. ~A4!

In general in inflationary models, inflation ends when t
first of the slow-roll conditions is violated. This occurs at
field valuefe defined bye(fe)51. For the monomial po-
tential this yields

fe5
bMp

A2
. ~A5!

Furthermore, the value of the fieldf when there remainN
e-foldings before the end of inflation is given by
06350
-
,

e

l

e

e

in

e
d

-

f~N!5M pAb~b14N!

2
. ~A6!

The quantities of primary interest in this paper, name
the scalar spectral index and its scale dependence, are g
by

n215
22~21b!

b14N
, ~A7!

dn

d ln k
5

4

~b14N!
~n21!. ~A8!

Now, is it possible to obtain significantdn/d ln k in these
models? The important point here is thatN>50. Therefore,
even for large values ofb we end up with a smalldn/d ln k.
As an example, considerb520, which givesn21520.2,
but a relatively small valuedn/d ln k520.004. Thus, only
minor running of the spectral index is possible in minim
models with monomial potentials. For reference, note t
the relative sizes of the terms contributing todn/d ln k are

22j525.631022, ~A9!

16eh52.531021, ~A10!

22e2522.031021, ~A11!

and soeh and e2 are both larger than the third derivativ
term.

2. Potentials with powers in the exponent

We now turn to a model that was originally proposed@27#
to obtain large running of the scalar index. Consider the f
lowing inflaton potential:

V~f!5V0e2afb
, ~A12!

whereb is a dimensionless constant anda is a constant with
dimensions of@mass#2b. The slow-roll and third-derivative
parameters become

e5
a2M p

2b2

2
f2(b21), ~A13!

h5aM p
2fb22b@11b~afb21!#, ~A14!

j5a2M p
4f2(b22)b2@213b~afb21!

1b2~a2f2b23afb11!#. ~A15!

As expected, the value of the scalar spectral index depe
on the field valuef, yielding

n~f!2152aM p
2fb22b@b~afb12!22#, ~A16!

dn

d ln k
522a2M p

4f2(b22)~b21!b2

3~b221afbb!. ~A17!
1-14
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To complete the analysis, it is important also to know th
inflation ends at a field value

fe5S A2

aM pbD 1/(b21)

, ~A18!

and the number ofe-folds before the end of inflation at an
given value off,fe is

N~f!5
1

b~22b!M p
2a

~fe
22b2f22b!, ~A19!

wheref i is the value off at the beginning of inflation.
Using the above expressions, we can rewrite the relev

quantities as

n2152F2b~b21!

y
1b2~aM p

b!22xy2xG , ~A20!

dn

d ln k
5F2b~b21!

y2
1x

b2~aM p!22x

y11x Gb~22b!,

~A21!

with

y[F 212b/2

aM p
bb22bG 1/(b21)

2Nb~22b!. ~A22!

By carefully tuning parameters, one may obtain values of
inflationary observables that are close to those that we s
Our best case is shown in Table I. However, given this res
this type of potential is probably not favorable for the lar
values ofdn/d ln k that may be required.

Once again, for reference, note that the relative size
the terms contributing todn/d ln k are

22j521.231022, ~A23!

16eh51.131021, ~A24!

22e2521.031021, ~A25!

and so eh and e2 are again both larger than the third
derivative term and hence an analysis with just the third
rivative is inappropriate.

Since the above expressions leading to our conclusion
somewhat complicated, it is instructive to consider the lim
fe@f and to assumeb.2. This then yields

TABLE I. Inflation characterization with the model choice$b
52.01,a50.013%.

n21 20.185

dn

d ln k
20.007

e 0.065
h 0.10
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N~f!'
f22b

b~b22!M p
2a

, ~A26!

which, in this limit, allows us to express everything in term
of N(f). We obtain

n215
2x

N
2

1

~b22!x
~aMbb!22x

1

Nx
, ~A27!

where

x[
2~b21!

b22
. ~A28!

Furthermore, sincedn/d ln k'2dn/dN, we have

dn

d ln k
;~n21!/N. ~A29!

Since un21u,0.1 and N'50, we can expectdn/d ln k
;O(1)31023, with at bestdn/d ln k;1022, which is close
to the numbers obtained from our rigorous analysis abov

3. Running mass potentials

Another class of potentials which may lead to a lar
scale dependence of the spectral index are the so-called
ning mass potentials~see, for example,@26,32–35#!. Con-
sider

V5V0H 12cF lnS f

f*
D2

1

2G S f

M D 2J , ~A30!

where the constantV0 term dominates. In this model th
slow-roll condition

e5

8c2M p
2f2ln2S f

f*
D

F4M p
21cf222cf2lnS f

f*
D G2,1 ~A31!

is satisfied ifcf2!M p
2 . In this case, we have

e'
c2

2 S f

M p
D 2

ln2S f

f*
D . ~A32!

The other slow-roll parameter and the third-derivative p
rameter are

h5

2cF11 lnS f

f*
D G

11c
f2

4M p
2

2c
f2

2M p
2

lnS f

f*
D , ~A33!
1-15
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j5

2c lnS f

f*
D

F11c
f2

4M p
2

2c
f2

2M p
2

lnS f

f*
D G 2 .

~A34!

Now consider the situation in which the end of inflation
controlled by another field direction, as in hybrid inflation.
this case, the condition for the end of inflation is note→1
while rolling in the f direction. Instead, one possibility i
that inflation abruptly ends whenf reaches a critical value
fc ~because of running off into another field direction! @36#.
One can easily carry out the required integration to obta

N~f!'2
1

c H lnF lnS f

f*
D G2 lnF lnS fc

f*
D G J , ~A35!

which yields

f5f* S fc

f*
D e2cN

, ~A36!

where the minus sign comes from the fact that ln(f/f* )
,0. Clearly the double exponential sensitivity toN seems to
be the key to obtaining a large running of the spectral ind

After some algebra, the above expressions allow us
write

n21522cF11e2cNlnS fc

f*
D1OS cf

*
2

M2~fc /f* !2e2cND G ,

~A37!
06350
x.
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and

dn

d ln k
'c~n2112c!. ~A38!

To obtain dn/d ln k;O(1022), we must choosec
;1021. Unfortunately, this gives exp(2cN)'0.006, which
would give too small a suppression factor. To fight this su
pression one must choose, for example,fc /f* 510223, for
which e250cln(fc /f* )520.36. This logarithm is too large
for the perturbative radiative ‘‘correction’’ to be valid.

If we nevertheless neglect the physics of the potential
allow such a large logarithm, then, settingf* 5M p , Eq.
~A35! implies that a sufficient number~say 50! of e-foldings
can be obtained only if the initial value off is approxi-
mately 0.7f* . This results inn21520.13 anddn/d ln k
50.007.

Of course, choosingfc even smaller results in a large
dn/d ln k, but the price is fine-tuning the end of inflatio
~controlled parametrically byfc and realistically by the po-
tential in the other field direction!. For example, one obtain
dn/d ln k50.018 andn21520.017 withfc510260f* .

Once more, for reference, note that, in the case offc
510260f* , the relative sizes of the terms contributing
dn/d ln k are

22j5731023, ~A39!

16eh52331024, ~A40!

22e2522.3331026, ~A41!

and so the third-derivative term dominates in this examp
t

4. Potentials motivated by dynamical supersymmetry breaking

Reference@29# considers a potential of the form

V~f!5V0S 11
a

fpD ~A42!

which can be motivated from dynamical SUSY breaking. One can easily compute

e5
a2p2

2f2~a1fp!2
, ~A43!

n215
ap$2@11p#fp2a~p22!%

f2~a1fp!2
, ~A44!

dn

d ln k
5

2a2p2$~p22!a@a12~p11!fp#2~11p!~21p!f2p%

f4~a1fp!4
, ~A45!

N5sgn@a#H fe
22f2

2p
1

fe
p122fp12

ap~21p! J , ~A46!

wherefe is the field value at the end of inflation. If the inflationary scenario is to be hybrid,ufpu@uau. In that case, we mus
havea.0 to have a blue spectrum@37#. Hence, the field behaves as
1-16
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f~N!'@fe
21p2aNp~21p!#1/(21p) ~A47!

and the relevant expressions become

e5
a2p2

2
@fe

21p2aNp~21p!#22(11p)/(21p)522(413p)/(21p)~ap!2/(21p)S n21

11pD 2(11p)/(21p)

, ~A48!

n215
2ap~11p!

f21p
5

2ap~11p!

fe
21p2aNp~21p!

, ~A49!

dn

d ln k
5

22a2p2~11p!~21p!

@fe
21p2aNp~21p!#2

5
2~21p!

2~11p!
~n21!2, ~A50!
e

t

ot
t

m

th

-

t

th

tive

ated

ario

um

ne
nder

of
where we have the restrictione(N),1. As long asfe is
chosen such that

fe@@60ap~21p!#1/(21p), ~A51!

we can easily get greater than 60e-folds. As one can see, on
can obtain

dn

d ln k
;2O„~n21!2

… ~A52!

which can be large if (n21)'0.2 but the running does no
change sign to the red part of the spectrum.

From a field theoretic point of view, this potential is n
very natural because one generically expects terms of
form V0f2 to spoil the potential. Not only must such a ter
be less thanV0, but it must also be less thanV0a/fp. Be-
cause of this second constraint, one can easily show
even after introducing a fine-tuning ina, f2.a/fp if one
wants to haven21'0.2 atN560.

5. Wilson line as an inflaton

The works of Refs.@38,39# propose an inflationary sce
nario in which the inflaton is a Wilson line fieldu of a
five-dimensionalU(1) gauge field whose fifth componen
A5 is integrated around the extra fifth dimension. Ifu is
coupled to an extra dimensional field charged under
06350
he

at

is

gauge symmetry, the 4D effective potential foru reduces to
that of a pseudo-Nambu-Goldstone boson with an effec
decay constant of

f eff5
1

2pg4R
, ~A53!

whereg4 is the 4D effective gauge coupling constant. Ifg4
!1, then, even ifR@1 ~in Planck units!, f eff@1 can be
arranged, thereby alleviating the usual problems associ
with natural inflation@40#, namely that of making one of the
slow-roll parameters

h;
1

f eff
2

~A54!

much smaller than unity. The great advantage of this scen
is that, due to the nonlocal nature of the fieldu and gauge
invariance, the effective potential is protected from quant
corrections that can spoil the inflationary slow roll.

Based on this scenario, the authors of Ref.@9# proposed a
method of obtaining a large running. They introduce o
massive and one massless fermion in the bulk, charged u
the extra-dimensionalU(1) gauge group, with chargesq1
and q2, respectively, giving rise to an effective potential
the form
,

ry
V~u!5
3

64p6R4 (
n51

`
1

n3 Fcos~nq1u!

n2
1e2n2pRM2S ~2pRM2!2

3
1

~2pRM2!

n
1

1

n2D cos~nq2u!G , ~A55!

whereM2 is the mass of the massive fermion. Keeping only then51 term, redefiningu5f/ f eff , and adding a constant term
they obtain the potential

V5V0F11E~s!2cosS q1f

f eff
D2s cosS q2f

f eff
D G , ~A56!

where 11E(s);O(1) is a term independent of the inflaton fieldf added to make the potential vanish at the minimum~the
s and V0 definitions trivially follow from matching!. When E(s)5s50, the potential is the usual natural inflationa
potential. To obtain a large running, the authors have, by adding the massive fermion, introduceds!1 dependent terms which
1-17
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modulate the original potential with small amplitude wiggles~when q2@q1). The running they attain is of order (n
21)3/2Ae/s which, because of phenomenological restrictions, has an order of magnitude limit of (n21)2, similar to Ref.
@29#. However, the model defined in Eq.~A56! has the advantage of being able to run from blue to red.

To see how the running occurs, consider the slow-roll parameters. Expanding in powers ofs in the limit thatsq1,2!1,
while sq2

2;O(1) ~andq1!q2), we find

e;
1

2S 12cos
q1f

f eff
D 2

q1
2

f eff
2

sin2
q1f

f eff
1O~sq2!, ~A57!

h;F cos
q2f

f eff

12cos
q1f

f eff

G S q2

f eff
D 2

s1
q1

2

f eff
2 F cos

q1f

f eff

12cos
q1f

f eff

G1OS ~sq2!2,s
q1

2

f eff
2 D , ~A58!

j5
21

S 12cos
q1f

f eff
D 2

f eff
4

S q1
4sin2

q1f

f eff
1sq1q2

3sin
q1f

f eff
sin

q2f

f eff
D1O~sq2!. ~A59!
e

l
(

l

ons
Away from any special points inf, we require

e;
q1

2

f eff
2

, ~A60!

h;
q2

2

f eff
2

s2e, ~A61!

and

j;2S q1
4

f eff
4

1s
q1q2

3

f eff
4 D ;2S e21~h1e!

q1q2

f eff
2 D

~A62!

all to be small. Furthermore,h must not change sign mor
than once within about 10e-folds. This requires

q2

f eff
~Df!;10A2e~h1e!/s;10A2

q1q2

f eff
2

,p. ~A63!

Finally, to have 60e-folds, we must have

N;
~p/2! f eff

q1A2e
;

p

2A2e
;60, ~A64!
.

06350
which requires

e,0.02. ~A65!

Sinceh must cancel againste to run from blue to red, it must
be true thath,4e;0.08. Hence, without fine-tuning initia
conditions, one expects a maximum running of ordern
21)3/2Ae/s;uhq1q2 / f eff

2 u,0.02. A more careful analysis
by Ref. @9# indicates that even with fine-tuning of the initia
conditions, the running is of the order (n21)2 ~note that if
the initial conditions are fine-tuned such thatq1f/ f eff is
close top, e is suppressed and therefore tensor perturbati
are suppressed!.

For completeness, we write the formula forn21 corre-
sponding to this model in the limit prescribed for Eq.~A58!
as

n21'
q1

2

f eff
2 S 122csc2

q1f

2 f eff
D1s

q2
2

f eff
2

cos
q2f

f eff
csc2

q1f

2 f eff
.

~A66!
in
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