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The scalar spectral indexis an important parameter describing the nature of primordial density perturba-
tions. Recent data, including those from the Wilkinson Microwave Anisotropy Probe satellite, show some
evidence that the index rurishanges as a function of the schlat which it is measuredrom n>1 (blue) on
long scales t;<<1 (red) on short scales. We investigate the extent to which inflationary models can accom-
modate such significant running of We present several methods for constructing large classes of potentials
which yield a running spectral index. We show that within the slow-roll approximation, the fachthat
changes sign from blue to red forces the slope of the potential to reach a minimum at a similar field location.
We also briefly survey the running of the index in a wider class of inflationary models, including a subset of
those with nonminimal kinetic terms.
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I. INTRODUCTION One must bear in mind that the WMAP analysis of
dn/d In k may require modificatioh3] and that the statistical
Primordial perturbations from inflation currently provide significance of this result is questionalpg5]. Furthermore,
our only complete model for the generation of structure init has been argued that the necessary reionization history
the Universe. It is commonly stated that a generic predictiormay be in conflict with large runningp]. Nonetheless, since
of inflationary models is a scale-invariant spectrum of adiag running as large as the central value of EL. is not
batic perturbations, characterized by a scalar spectral indexinconsistent with the present data, and since it is difficult to
that obeyshn—1=0. However, this statement is only true for produce in common realizations of inflation, it is worthwhile
very special spacetimes such as a pure de Sitter spacetimgploring what such observational data would imply for in-
which does not describe our cosmological history. For nearlflationary models.
all realistic inflationary models, the value ofwill vary with In this paper, we investigate the extent to which a scalar
the wave numbek. spectral index that runs significantly negatively can be ac-
Typically, sincen—1=0 on the scales probed by the cos- commodated within inflationary models, within the first-
mic microwave backgroundCMB), the deviations from a order slow-roll approximatiofi7]. One generic result of our
constann must be small. Nevertheless, increasingly accuraténvestigation is that within the slow-roll approximation, there
cosmological observations provide information about themust be an approximate local minimum in the slow-roll pa-
scalar spectral index on scales below those accessible to ammetere (which measures the slope of the potentifithe
isotropy measurements of the CMB. Over such a wide ranggpectral index is to run froom>1 (blue) on long length
of scales, it is entirely possible thatwill exhibit significant  scales ton<1 (red) on short length scales. Hence, if obser-
running a value that depends on the scale on which it isyational evidence continues to shom—1 running from
measured. Such running is quantified by the derivativeyositive to negative, one can infer that the inflaton potential
dn/dInk and, in fact, recently released ddth] from the naturally has a locally flat part in the field values of obser-
Wilkinson Microwave Anisotropy Prob€WMAP) satellite  vational interest. Furthermore, the fact tidat/d Ink is large
indicate that in this same field range and the fact that this large value
cannot be sustained for mamgsfolds (since inflation will
dn then end too quicklytogether indicate that there must be a
Tk —0.03°35:8. (1) flat “bump”-like structure in the potential.
Unless the bumps have some kind of singular structure, as
we will further explain, they generically lead tn/d Ink
Furthermore, as pointed out by the WMAP analysid 2 <0O((n—1)?). If n—1 never changes sign, then a large
there is some indication that the spectral index quantity dn/dIink can be accommodated without a bump, even
—1 runs from positive values on long length scales to negathough the initial field value must still be a special point in
tive values on short length scalgmsitive to negative within the potential. Indeed, the existence of such a special feature
about 5e-folds). in the potential must be generic since as we will show, a
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negative running of the order of E(L) requires a large third local minimum near the point at whiah—1 changes sign.
(field) derivative while maintaining small first and second Finally we summarize and offer our conclusions.
derivatives[8].

Our second major set of results concerns methods to con- Il. NOTATIONS AND CONSTRAINTS
struct potentials with large running and/or potentials in ) ) .
which the scalar index runs from blue on long length scales Following Garriga ar]d Mukhand.3], Igt us consider the'
to red on short length scales. This task is generically nonMost general local action for a scalar field coupled to Ein-
trivial due to the difficulty of achieving around &8foldings ﬁ:ael(ljn gravity, which involves at most first derivatives of the
of inflation after attaining a largén/d Ink. We develop two '
formalisms to generate such viable inflationary potentials. 1
Through one of our formalisms we show that having a blue ~ S=— RJ \/—_ng4x+f J=gp(X,¢)dxt,  (2)
spectrum on long length scales generically helps to achieve a
large number_ofefoldings gfter having attained a large \\hereR is the Ricci scalar and
dn/dInk. In this sense, having a blue spectrum with large
dn/dInkis not as “singular” as having a red spectrum with 1
largedn/d Ink. X=59"9,4d,9. 3

The first method of construction, which we will call the
singular method for reasons that will become appafteht  The Lagrangian density for the scalar field is denotedhby
though there need not be any true singularjtiés suitable  because it plays the role of pressitied] in cosmological
for generating arbitrarily largeln/dInk without upsetting applications. This action reduces to the usual inflationary
slow roll. However, this method of construction does notmodel with a canonical kinetic term whep(X,¢)=X
give rise to a change in the sign af-1 within about 5 —V(¢), but it also describes the more general case in which
e-folds nor does it yield a blue spectrum on large scales. Théhe kinetic term is noncanonical. For completeness, we will
second method of construction, which we will call the indexderive the properties of the power spectrum for the general
method, gives the potential as a functional of any reasonabl®rm of p(X,¢) and apply our results to some special cases.
ansatz fom— 1. This index method is generic, covering vir-  For an action of the form in Ed2), the energy density is
tually all slow-roll models that have a blue spectrum on largediven by
length scales. Within this formalism, we can easily construct
models in whichn—1 goes from blue to red. This method
may also be combined with other formalisms. wherep x denotes a partial derivative pfwith respect toX

In the Appendix, we survey a variety of inflationary mod- The “soﬁ(nd speedt. is then '
els in the literature and show how strongly the spectral index P s
can run in each case. The survey will allow the reader to gain
intuition about the difficulty in achieving strong running of ci=22 = , (5)
the spectral index as well as the difficulty in having a spec- x  2XEx
trum whose index runs from blue to red. Although there have ,
been several recent works concerned with the construction G1d the power spectrum for the scalar fluctuationsl &
potentials that have the strong running properties that we are 2
concerned with[9-12], for practical reasons we have re- P5=1—6 Gné 6)
viewed only[9]. We apologize to the other authors whose K79 cy(1+plé)°
work we do not review in the Appendix.

This paper is organized as follows. In the next section, we The spectral index for the scalar mode is given[b§]
establish our notation and list the well-known constraints on
inflationary models. In particular, we show that a large third _ din Pli
derivative of the inflation potential is required to generate a n-1= dink
large running of the spectral index. In Sec. Ill, we develop
our first simple formalism, the singular method, to generate
potentials with large running of the spectral index. In the
section that followgSec. 1), we employ our formalism to
obtain some models of inflation with large running. Comple- _ i E(In ot )
menting these sections on the singular method is Sec. V, H dt S '
where we show how nonminimal kinetic terms can aid in
making the construction look more natural. In Sec. VI, wewhere the quantities on the right-hand side are evaluated at
introduce the index method by deriving an expression for thénorizon crossing. Here, we keep only terms that are lowest
potential as a functional of any reasonable spectral inderrder in the slow-roll parameters ¢p/&) and
function, and in Sec. VIl we use this functional to generateH ~'d In c,/dt.
potentials which give running from blue to red. In Sec. VIII,  This allows us to derive an expression for the main quan-
we discuss the result thatgenerically has an approximate tity of interest to us, the running spectral index

E=2Xpx—Pp, 4
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dn 34 p 1 d2 P In terms of the slow-roll parametrization, the power spec-
dInk:_ﬁa(lJrE)__Z_Z[l (1 E” trum becomes
) ;. 16 [V
——d—(lnc) in[1+ > d Pk:B 2¢\ M) (18
2420 ¥ H|dt gl dtiH me\Mp
17d d/1 to leading order. We also recover the well-known expressions
—Z|=(ncy| == (g)  for the spectral index
H|dt Sldt\H)
Finally, it is also useful to note that the ratio of the tensor n—1=27—06e, (17)
fluctuationsP" to the scalar fluctuationB? [13] is given by . o
its derivative
_P Py _ dn
I'ZE—24CS 1+E =—8cgnT, 9 m:_2§+1667’_24€2’ (18)
whereny is the tensor spectral index. In principle, the con-and[19] the tensor-to-scalar ratio
sistency conditiom = —8ny can be violated for models with
noncanonical terms, sinag can differ from unity[13,15. r=16e. (19)
A. The canonical limit B. Noncanonical kinetic terms
Let us first apply the above general formulas to the stan- Let us now consider a second interesting special case, in
dard case of slow-roll inflation. In this case, which p(X, ¢) takes the following form:
P(X,p)=X—V(). (10) P(X,)=Z($)X—V(g), (20
Therefore,cs=1 and where the potentia¥/(¢) and the functiorZ(¢) are general

functions. This form ofp(X, ¢) can arise, for example, from
p 2X ¢2 V2?2 1 2 quantum corrections to the kinetic term, which yiel@e)
1+ STV V oy §M§(V) . (12) =1+cg?ln ¢ (wherec is a constant andy is a coupling
9H?V constank A similar action arises in brane inflationary models
[15,20 due to a velocity-dependent potential between
D-branes. Finally, note that this form of the nonminimal ki-
” , netic term can always be brought back to the canonical form
iln(1+ E) _ ﬂ[v__(v_) }(ﬁ (at least over a finite field regiorby an appropriate field
dt gl vV \V redefinition, as we will discuss in detail later.
The energy density is

!

Furthermore,

2 V[V (V)2
2y v_(v) W E=Z(HXIV( ), (21)

In analyzing the inflationary dynamics driven iy it is ~ @nd, sincecg=1 in this case, the slow-roll parameters de-
convenient to define the conventional slow-roll parameter®end only on (1 p/¢), given by

[16-19 L P 22X ’?
1o[V'|? TETZX+ Vv (22
€= EMp V , (13)
To determine the classical backgroundXflet us con-
Vi sider the equation of motion fap,
nEM§<V>, (14 L
Z($+3H¢)—§z'¢2+v'=o. (23

where the primes denote differentiation with respeaptand

Mp=1/y87G. Inflation occurs ife<1 and|7|<1. Inaddi- o glow-roll inflation, $<3H¢ and the potential energy
tion, we define a third parameter related to the third deriva-

: ; dominates. It is thus reasonable to assume Ma?/2<V’

tive of the potential, and thereford15]

V!v//!
V2

.V
*="3nz

, (19 (24)

which is important for the running of the spectral index.  Hence, the classical background valuexois
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1. 1ev The tachyon action considered [i84] is also of this form.
X= §¢2:§ 2 (25  The pressure and energy density are
=V($)p(X),
wheree is the slow-roll parameter defined previously. There- P=V(#)P(X)
fore, we may write &= v<¢>’é<x>, (35)

. (26) where €=2Xpx—p(X). Clearly, the functionV(¢) does
not enter the expressions for-1 ordn/d In k. Therefore, in
such models, the constraint from large running becomes a

and criterion to be satisfied by the form of the “kinetic term”
d (,, P|_1de. 1dzZ. ) P(X).
&n +E _E@(b_Z@QH”" (27) )
D. Constraints
where we have used For inflationary predictions, in this paper we will aim for
) the range of values provided by the WMAP analy& (All
de . \ o 28 error bars correspond toolerror bars. These are
dé |V (n—2¢). (28

P¢(ko=0.002 Mpc 1)=8m(2.95x10 °)
Furthermore, we define an analogous set of parameters for

the kinetic functionZ(¢), x(0.77£0.07), (3§
7 n(ko,=0.002 Mpc)=1.10"55%, (37
N=Mp—, (29 )
.y Tk~ 0042555, (38)
K=M2—-. (30)
z r(ko=0.002 Mpc 1)<0.71. (39)
The spectral index is then given by This final value significantly constrains the usual slow-roll
1 parametefe. The data represent a combined fit to nearly all
1 T(o e o CMB data, large-scale structure measurements from the 2dF
n-1= Z(277 Be—2en)+ . (3Y) survey, and power spectrum data on the scale of the Lyman

« forest(see[2] and[25] for data definitions and more de-
Here, we drop all terms higher order in the slow-roll param-tails of the analysijs Except where noted, in the analysis
eters. Note that, in the absence of cancellations, smallness bélow we may ignore the constraif86) on P¢(k) since, at

n—1 implies least classically, we are free to adjust the height of the infla-
ton potential.
|V2eN|<Z. (32) The number ofe-foldings before the end of inflation at

which a perturbation mode left the horizon is
Finally, the running spectral index is

2 1 TRH

I (264 16en- 20 N(k)=~60.4+ ZInlg, (trw]+ 3| Ty

dink ol 726+ 16en—24¢%) e
24 | v [ Ho/h "
+2exk—4eN“+\2eN(3p—8¢)]+---. (33 +in ey i o) @0

Again, we neglect terms higher order in the slow-roll param- . N . .
etgers We alsgo assume thgt the counting of the nuFr)nber d/yhereve is a fiducial value of the inflaton potential at the
derivatives gives an estimate of the order of the parametergnd of inflation andg, (try) is the number of effectively

This need not be the case, and some counterexamples h ssless.degrees of freedom at the reh_egting temperature
been found21] rH- Settingk/ag~H, corresponds to a minimum number

of effoldings N, typically between 50 and 60, although
with some dependence drgy. In most of our analysis we
will simply take N(k=0.002 Mpc ') to be somewhere be-
For completeness, let us mention another form oftween 50 and 60 without worrying about the details of re-

C. k essence and tachyonlike actions

p(X,®), the so-callek-essence forni22,23 heating.
5 Note thatdn/d Ink~—dr/dN, so that the magnitude of
p(X,d)=p(X)V(¢p). (34 dn/dInk decreases with increasig. This means that, in
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general, the magnitude din/d Ink is increased by minimiz- n—1=—f'2+2f", (45)
ing Npin, Which is achieved by low-scale inflationary mod-

els. Hence, lowering the reheating temperature and the sca#nd

of the inflaton potential generically lead to stronger running

: \91/4 dn
of the spectral index. For. example, Y;"~1 GeV and — 2/ (F 1), (46)
Try~1 MeV, then we require dink
N~23, (41)  where¢ is evaluated at around @8foldings before the end

_ i of inflation, corresponding to the field valuf, . We require
which contributes a factor 1/23-0.002 todn/d Ink, rather f' andf” to be regular ah= ¢, , butf'f” to be singular

than ,1/5@70,-0004 in the typical high-scale models. How- there. Note that it isnsufficientmerely to choose a function
ever, it is difficult to achieve a successful inflation scenario as, \which f7(4,) diverges, since the produétf” may be

such a low energy scalsee, for exampld,26]). regular even though” is irregular.
To construct a suitablg defineK(¢) by

¢
f(q§)=sJ VK(x)dx, (47

E. Negative running and the requirement
of a large third derivative

In order to achieve negative running of the order of the
central value of Eq(38), the running must be dominated by ) ) - o
the ¢ term (the third-derivative termof Eq. (15) in the ca- Wheres==1 is a sign. Our condition ohthen implies that

nonically normalized inflaton basis. K(¢#) must satisfy
To see this, supposin/d Ink is dominated by terms other .
than the¢ term. Then, using Eq$17) and (18), we obtain K(¢,) isregular, (48)
dn ~24e’>+8e(n—1) (42 K’ 2 d JK i | (49)
T -1). —| =2— is regular,
dink K, “Zae, g
For this to be sufficiently negative, we must have
K"(¢,) Iissingular. (50
0.004
—(n=1)>3e+ € (43 Therefore, we require @ functionK(¢), for whichK’ ()

is discontinuous ap, andK|,-4 #0.

Since the right-hand side of this inequality is minimized at  Although we cannot rule out the possibility P
€=0.035, Eq/(43) forces i—1)<—0.2, which is ruled out =0, it is difficult to satisfy Eq.(49) in such cases. The

at arounq _the & Ie_vel by Eq.(37). Hence, i_n order to attain slow-roll parameters can be written in termskofs
the requisite running, thé term must dominate.

In the case of a nonminimal kinetic terfbut still with K
two derivative$, we appear to have extra freedom to adjust €e=— (51
dn/dInk by changing\ and « in Eq. (33). However, this
freedom in adjusting the cancellation should just correspond
to adjusting the third-derivative tergafter canonically nor- sK’
malizing. The nonminimal kinetic models hence must be ”:K-"ﬁ’ (52
seen as a convenient way of obtaining a large third derivative
in those_ s_ituation_s in which the field redefinition to a canoni-gng the corresponding observables are
cal basis is possible.

sK’
Ill. SINGULAR METHOD n—1 K+ \/R, (53
We saw in the last section that to obtain a ladygd In k,
one must maximize the third derivativg”/V while mini- dn K’ 1/ k" \?
mizing V'/V andV"/V. In this section we describe a recipe —=s(— K+ = —) —K”. (549
for constructing an inflaton potential with these properties. dink VK 2\ VK

We begin by considering a singular limit of what is re-
quired, one in whichv”/V diverges whileV'/V and V"/V Note that the observables take on a much simpler form in

remain regular. It is convenient to define a new functionterms ofK compared to the expression in termsfoAddi-

f(¢) by tionally, these expressions do not contain large numbers
compared to when they are expressed in terms ahd 7.
V=V,e'®), (44)  One of the main challenges in obtaining strong running is
now clear; becauseis small, we must chood¢ to be small,
in terms of which but choosingK too small unacceptably increases 1.
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Further, in order to have inflation at all we must ensurewhich is singular at¢, =0 if «<2. As required K itself
that slow roll is valid throughout inflation. In other words, does not vanish a$h= ¢, , but the magnitude oK can be
the direction in which¢ rolls is the same direction in which small near¢= ¢, if K, is small. The magnitude of
€ increases. This implies that

sgr{g—e 1=—sgr[V’(¢*)], (55 N L 60)
¢ly, dé 2Ko+gop®

although, strictly speaking, this condition need not hold if

there are unusual featuré$%umps”) in the potential. This s also small, as required, if>1. Finally, we want to make

translates into the condition sureK” does not truly diverge ag— ¢, . We can accom-
plish this by introducing a terrm? giving

sgrK’]=-s, (56)

which essentially fixes the sigh K=Ko+g(p?+m?)*?, (61)
Having dealt with an idealized singular limit, recall now
that we do not wantin/d Ink to actually diverge at, . We
therefore regularizésmooth out K”. One may accomplish <, 2L 2\ (a— ) 2 o 42
this either by adding small terms to remove the singularity, K'=ga(m™+ ¢%) Im’+¢%(a—1)], (62
or by arranging that the inflaton never quite reaclgs
Let us now restate the findings of this section as a simple

reci_pe. _ _ _ _ d H(MP+ $2) /D1
(i) Choose a real differentiable functidf(¢) which, at _(\/ﬁ): ga (63)
some field valuap, , haskK andd\K/d¢ small but nonzero d¢ 2K o+ g(m?+ ¢?) 2’

and continuous, but” diverging negatively.
(i) Define K(¢) as either a smoothed out version of

K(¢) [such that the singularity ii” appears irK only in  \which can then be compared with E@S8), (59), and (60).
the limit that some new “smoothing” parameter vanishes, The resulting potential is

i.e., if A is a parameter introduced for the purpose of regu-
larizing, IimHO'R(¢*)=K(¢*)] or as the originalK(¢)
itself if ¢ never reacheg, during inflation.

[
(iii ) Define the inflaton potential via V(d’):Voexl{Sfo dx\Ko+g(x2+m?)¢|, (64

V=V0ex;{sf¢\/R(x)dx , (57)

wheres=—sgf K’ (¢e)] (so thats= —sgrg] if $>0). We
o =, chooses=—1 (corresponding tog>0) so that the field
where the sigrs is chosen bys=—sgriK'(¢e)], wherede  giarts near the origin and rolls away from the origsince

is the end of the inflation determined By ¢c)=2. ¢, =0). The field value at the end of inflation, determined
A consequence of this analysis is that we cannot chéose 1, €(he) = L[Ko+g(m?+ $D)]=1, is then

to be a monomial since then it would vanish at the singular
point. This is why the example ¢27], which we consider in

the Appendix, and for which the potential is of the form K\ Za
Voexp(—a¢®), does not result in a sufficiently large o= ( 0) —m2. (65)
dn/dInk. g

IV. SINGULAR METHOD EXAMPLES The observable parameters are then

A. Simple K but complicated V
We begin with a simple example, choosing

Sag¢(m2+ ¢2)(a72)/2
K=Kq+go®, (58) n—1=—Ky—g(m?+ ¢?)*?+

Ko+ g(m?+ ¢7) 7
(66)

whereK,, g, anda are nonvanishing constants. This implies
K'=ga(a—1)¢* 72, (590 and
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ag¢2(m2+ ¢2)a/2
Ko+g(m?+ ¢?)*?

= %ga(m2+ ¢?) VA —2[m?*+ (a—1)$*]+ +2sp(m?+ ¢?) VKo +g(m?+ ¢2)“’21-

(67)

dink

Since it is not possible to integrate analytically fqbg,*, which is well defined for both positive and negative values
we give numerical results to demonstrate that we can get th@f ¢ if 1+a=n/r, wherer is an odd integer and is an
desiredn—1 and runningdn/d Ink. We choosex=3/2 and  integer relatively prime ta. This form of the potential is
Ko~10"3, which yields smalle. Requiring that the running Simple, as promised. The end of inflation occurs at
occur about 6@-folds before the end of inflation implies that

we cannot makeg too small, and we choosg=0.015. This b= \/E— Ko He (75)
value of g corresponds toN~55. Finally, we tunem? e g
~0.01 to obtain
4 and the inflationary parameters are
e(p~0)~7x10*, (68
1
(N=1)[4~0~—15x10"%, (69) e($)=5(Kotgep™)? (76)
dn
dink| __~ 007 (70 n—1=—2ag¢" '~ (Kot+gg")? (77
¢~0

which is the desired result. Her¢~0 simply meansg? dn ——2 a=2(K +qdb?
<10 3. Note that, instead of tuningh>~0.01, we could dink @g¢” (Kot g¢*)
have tuned the initial condition fap (starting slightly away il
from 0), after settingm?=0. Note also that, to have the X(a+Kod+gep® " —1). (78)

desired inflationary history, the inflaton must begin rolling Again, for illustrative purposes, we choose=5/3 and, since
ery close to the origin. It may be possible, for example, to ’ X ' T Y
very clos nd! y D€ possi xamp € should not be big, we choosg,=10"3. Finally g is tuned

use thermal effects to place the inflaton at this position. Fi- . - -
nally, note that the smoothing d€ through them? term tof I%'Ye the_des[ed Val%e boﬂn/q In k:_0'04 ar;[ 60
yields a potential that is generically well defined, even for®'0/dINgs (6= hoo=5x10") by setlingg=0.317. The re-

negative values oé. sulting inflationary predictions can be written as
— —7
B. A simpler V €(heo) =5x10"7, (79

The potential in the previous example turned out to be (n—1)|¢N=—3>< 1074, (80
complicated because the integral& did not have an ana-
lytic expression. Here we choogeto obtain a simpler look- dn
ing potential. Choose dink - —0.04. (81

K=(Ko+g¢*)?, (71)

Although we have achieved large running, this example, like
which has the previous one, still suffers from the fact that the spectral
index is always negative instead of running from positive to

K'=2ag¢p® [ (a—1)Ko+(2a—1)gep*], (72  negative.

d
d_(‘/R): age® L (73 V. NONCANONICAL KINETIC TERMS AND THE
¢ CONNECTION TO FIELD REDEFINITIONS

Again, we must choose<da<2 so thatK behaves appro- Consider again the special case of our general Lagrangian
priately near the critical poiny= ¢, =0. To maintain the given by £=Z7(¢)X—V. The field redefinition that brings
simplicity of the potential, we séf =K and assume thap  the nonminimal kinetic term into a canonical basis is

never reaches the singular poitt=0 (since it is rolling

away from the origin during inflation This leads to the po-

¢
tential ¢(¢):f VZ(x)dx (82

, (74  for ®>0. For any given choice d¥(¢) one may compute
VZ(¢) through the equation

V<¢>=voexp[—( Ko+ 1f—a¢““)
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v ®
In \(/;:5) =sf K(x)dx, (83
or, slightly more explicitly,
Vi) 1
VZ($)= (84)

V(¢) sVR[D(¢)]

Consider the simple potential given by Ed4) with a=32.
We can choose

v(d’):VoeXF{_(Ko(ﬁs"‘ 3§g¢8”, (85
which gives
VZ(p)=3°. (86)

PHYSICAL REVIEW D68, 063501 (2003

1
ji(e)= . .
Jo( i)
{1_2—S(¢_¢i)}
¢ 1(y) jo( o) 2
XLsidyE 1= 2s (y_d’i)} , (9
() !
Jo(@)= - 5
Jo( i)
s D[ io(d) 2
Xf(/)idy 2s 1- 29 (y—¢| ., (92

wherejq(¢;) is an integration constant. In the familiar cases,
we require that the potential revert to a constant in the limit
that n—1 vanishes. Hence, many situations will involve
jo(#i)=0, which impliesjy,(¢)=0. Note that if jo(¢;)
=0, thenj(¢;)=0 to all orders in\. In such cases, since
e=]?/2, we should set; by the conditione(;)=0. Since

Here one sees the important role that may be played by thg." number ofe-foldings diverges where=0, ¢, should

nonminimal kinetic term: even though the required potential
structure of Eq(74) is nonanalytic, it can be obtained from

an analytic potential of the form Eq85) due to the field

generically be set outside of the inflationary field values if
jo(¢;)=0. However, as we will see below, in order for
—1 to change sign from blue to red during inflatiah), must

redefinition arising from a nonminimal kinetic structure. Un- be within the domain of inflationary field values. Hence, for

fortunately, the potential of Ed85) is still hard to motivate

from a short-distance physics point of view, although it is at
least analytic. In general, however, classifying those models
with Z(¢)+#0, is more difficult than in the canonical case, .

since there are two free functions @f that enter the La-
grangian density.

VI. POTENTIAL AS A FUNCTIONAL
OF SPECTRAL INDEX

For convenience, we defifje= \/ﬁ in terms of which

n(¢)—1=I(¢)=—j%($)+2sj'(¢), 87
which yields
dn ) di(¢)
dink~SI@) 5 (88)

Expanding aboub—1=0 by lettingl —\I, where\ is a

potentials of our interest, we will generally requirg( ¢;)

#0 [28].

' Although the order of the perturbation seems to imply that
J§(¢)>j1(¢) has been assumed, this is not true. In fact, we
may explicitly check that, wherjy(¢;)=0, then j?(¢)
~0O(N?) becomes the perturbation terginstead of the
sourcel) and the perturbative solution can easily be verified
to be the same as above. The potentigp) obtained via Eq.
(89) can be written as

Vo

jo( i)
1-— (=4

xexp(s

As long asj,<<j,, we can negleci,(z) in the analysis. On
the other hand, if,(z)>j(2), even though the perturbation
approximation has broken down, the potential may still
qualitatively give the desired results, and hence, even in such

V(g)=

2

¢. ¢.
fjl(z)derf j2(2)dz|]. (93

bookkeeping perturbation parameter, we can write the solucases, it is worth checking the potential to see if the result is

tion in a perturbation series to second ordeiin

i()=Jo(d)+Nj2(P)+N%] (), (89

where we take tha — 1 limit at the end. This yields

jo( i)

o) |
1- =5 (b= )

Jo(o)= (90)

useful.

To gain intuition about this formalism, let us write down
the formula for the potential in the simplest case, in which
jo(¢))=0 andj,(#) has been dropped. We obtain

. (94)

1(¢ X
V(¢)~Voexr{§f de)idyl(y)

Note that, at this level of approximatidwhere onlyj; has
been kept the result is identical to using the approximation
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n—1=27n—4e+0(2¢), (95
which means that the approximation with( ¢;) is strictly
only valid in the limit »>e¢€. In cases where we want the
spectrum to run from blue to red, we require thgtlay some
role to cancel againsg. Hence, for the most interesting case,
we should not sefy(#;)=0. Let us now check our formal-
ism with some simple potentials.

A. Monomial potential reconstruction

Consider the monomial potential for whidkee the Ap-
pendix

()= —22FD) (96)
¢2
and
b2
€= ?452 (97)

From Eg.(96), we see that the asymptotic expansion “pa-
rameter” is

b(2+b)
#?

(98)

PHYSICAL REVIEW B8, 063501 (2003

proximation breaks down whef~ 1, which generically oc-
curs before the end of inflation, set by=1. Thus, the
approximation is questionable wheneye(®)>j,(¢), for
which we can explicitly show

~ —sb’(2+b)?
)_—8¢ :

However, the method allows us at least to make a systematic
guess regarding the potential, motivated by the spectral in-
dex. Furthermore, it is important to remember that we have
made a convenient assumptipjy(¢;)=0] to obtain this
simple form of the potential.

ja(op (104)

B. Dynamical supersymmetry breaking motivated potential

In the model of Ref[29], which is motivated by dynami-
cal supersymmetry breakirigee the Appendjx the function
obtained fom—1 to leading order inx is

2ap(1+p)
(@)= =

where we have again chosgg(¢;)=0 to yield a constant
potential in thew— 0 limit. Integrating Eq.(105), one finds
sap

d) 1+p
¢l+p a)

(105

jule)=— ; (106)

Although ¢ is a function and not a parameter, we expect that,

for those values db and ¢ for which 6— 0, the perturbative
solution will be well approximated by an expansion dn
This implies that

b=—1+ 1+ ¢35, (99
which, when expanded abodt=0, gives
1
b= §¢25+ 0(8?%). (100

Hence, to leading order ia, we need only keep the leading-
order b dependence in the final potential. Additionally, we

where we have again chosef=«, sincee(~)=0. Note
that, sincej.(¢) is an intrinsically negative quantity, we
haves=—1. Using

dn ) dl 10
m~—311(¢)ﬁ (107
we find
dn  —2a%p%(2+p)(1+
_ ~2a°pA(2+p)( p)' (108
dink ¢2(2+p)

make the simplifying assumption that the potential becomewhich agrees with Eq(A50). Finally, from Eq.(94), we

a constant in th&— 0 limit [this is consistent with Eq97)].
Hence, we set
jo(¢1)=0. (101

Finally, we chooseg;=x, since e(«)=0. Equation(91)
then gives

. _ b(2+b) 102
ja(p)= “os4 (102

Integrating with respect te, we find
V=V,y¢P, (103

where we have used EQLO0 and kept the leading depen-

dence in the exponent. Of course, strictly speaking, our ap-

obtain

V=V, : (109

o
1+—
d,p

which also agrees with E¢A42).

Thus far, we have not addressed how we would have
known that Eq(105) is the correct spectral index function to
use. The difficulty in general is not getting a larde/d In k
at any particular time, but having 66folds afterwards.
What helps this model work is thatn/d Ink is large at the
beginning of inflation and decreases during inflation. During
inflation, e is decreasing and the potential has a negative
slope given by

sgrisji(é)]=—-1, (110
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allowing ¢ to reach larger field values. More generically, |y — b <| y— bl (116
usingj1%(1/25)f"’idyl(y)>0, one can see that the desired

behavior of the slope of the potential comes simply from IS necessary. . o o
Another necessary condition is thaj lie in the direction

1(¢)>0, (111  of the slow roll. This results in
assuming that is a monotonic function during inflation. To sgri ¢— ¢, ]=sg }fd)dyl(y) _ (117
summarize, having a blue spectrum naturally aids in attain-

ing sufficient inflation after the point at whictin/d Ink is .
large. Furthermore, since we demamd-1>0 near¢=¢, , an

explicit check reveals that the only possibilities are
C. Wilson line as an inflaton b, <di<b, (118

In the extra dimensional model discussed in the Appen-
dix, the source functioh(¢) is given by Eq(A66). We thus ~ OF

find
¢x< ¢i = d’* ' (119)
f
jild)=— {qi[(¢—¢i)+4iﬁ with n(¢;)—1=0. Since we do not want marsfolds be-
2sfeg 1 fore ¢ reachesp, and sincep, is close to the location where
& b, € usually reaches a minimum, we sgt= ¢, generically. By
thl Cotql 1,1, (112  making this choice, we have made both theandj, contri-
2f o fet butions vanish precisely where- 1 changes sign. In choos-
ing jo(¢;), we require
where we have defined 9lo(#1) a
12
(i)
q1x Jo ¢| <1, (120)
l,= qzof dxcosaZcs@ X (113 2
feit 2f o’

sincee(gbi):jé(qsi)/Z to all orders in the perturbatiox.
which can be expressed in terms of hypergeometric func- To get a better sense of the requiremétit6), let us pa-
tions. rametrizee as
Unfortunately, it is not very easy to reconstruct this po-

tential using our method. On the other hand, siogéq; ci 2

>1 ando<1, this model provides the bumps that we dis- 2 (d=¢)*Mt o for $<dy<de

cussed in the Introduction. This model with bumps is special e~y , ) (121
becaL_Jse_ instead of the bump _being at a s_pe(_:ia_ll_ Iocatior_1,_ it is 2(¢_ b,) 22+ A_ for ¢ <d<e,

a periodic set of bumps, relieving the special initial condition 2

problem.

wherec;, A, andn;>0 are constants. This yields

A 1/n11
Sl

VIlI. THE INDEX METHOD

by dqﬁ [ A ) 1y
. . . _ ~ 0 — —_ —
To construct a potential of the for93), yielding a spec f <) (dx=¢)—| g
tral index that runs from blue to red, we must chob&g) to

vanish at a field valueb= ¢, during inflaton. Moreover, if g (dy— by)
¢, occurs 60e-folds before the end of inflation, there must +6 (c_) ) ey —
only be about Se-folds betweeny= ¢, and ¢= ¢,. This !
implies (122
and
f ~5, (114
26(d> fd)e de [( ) A\ 2] [ A\ T2 q
P Eihe
N c C A
while sufficient total inflation requires « V2e(d) 2 2
A\t (¢e— ¢ )
+6 C—) ~(de= ) |5
f ~55, (1195 2
26(¢ (123

wheredg, is the value ofp at the end of inflation. This means where# is a step function with9(z)=1 for z>0 and 4(z)
that generally =0 for z<0 [30]. For sufficiently smalkc,, such that

063501-10



RUNNING OF THE SCALAR SPECTRAL INDEX FROM. ..

5ciM<ptnt (124

then we can generically realize
o d -

while if we require

$e> byt Nigtd (126)
we can achieve

¢e do A\Y2 o
[ amla) S

where a~0(1) andN,,=~55 for a total of 60e-foldings.
Note that, in this setting, we see explicitly the hierarchy

¢e_ ¢x> 11( d’x_ ¢*)

as expected. It is important to note that EtR8) is a neces-
sary but not sufficient condition to achieve @oldings,
since this also depends on the valuecef Generically, it is
very hard to estimate Eq127) accurately(hence there is a
large uncertaintyr) because the functional form fer over

(128

the entire duration of inflation can be complicated. Further
more, we must keep in mind that, in some cases, inflatio

ends because becomes of order 1 before

From Eq.(111), we have learned that having a blue spec-

trum naturally helps one to obtain a large/d In k because
can decrease during inflation from the time whibid Ink is
large and thus help inflation achieve sufficierfblds of ex-
pansion. Note that, although E@.11) was derived assuming
that jo(¢;)=0, it is still a good condition in general. More
precisely, ifjo(¢;) #0, thene is decreasing during inflation
if
| jo($)?
swﬁd¢wﬂﬂ¢n=w{5§1+E%QHHﬂ¢na¢ﬁ

(129

Since jo+j1>0, the desired behavior of is generically
attained if Eq.(111) is satisfied. As we will show more ex-
plicitly later, this decrease im stops at a location neap
~ ¢, wheren—1 approximately vanishes.

n
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estimate the integral of Eq127) some other way. Also Eq.
(130 can be replaced bgin/d Ink evaluated atp, instead
and the right-hand side adjusted to achieve the desired run-
ning.

(v) Check the validity of the approximations by ensuring
that Eq.(124) and Eq.(126) are satisfied.

(vi) Test the total number ad-folds numerically.

As we discuss in Sec. VIII, the intriguing general feature
of this very wide class of models is thatreaches its mini-
mum approximately whera— 1 vanishes.

A. Successful example

We have made a number of attempts to produce a viable
model using the method of this section. For example, the
simplest functional (¢)=c(¢— ¢,) gives a spectrum that
runs from blue to red, but this simple model does not give
sufficient e-folds of inflation. Although there are problems
with the simplest attempts, successful examples can be
found, and we present one here. Consider a running index
function of the form

1 1
|(¢))=C E—;IG .

The potential generated Ly + j4 is not particularly illumi-

(131

nating. However, expanding abougt= ¢; to second order,
we obtain a slightly simpler form

V:vO

. c .
1+5Jo(¢i)< (¢— i) — ;’53) +ioli)?

oo

(132

¢z chl2¢—3¢4) 3
X(72¢>16_ 17 +Z(¢—¢i)

~ 4. ) .
where Vy=V,e3“(4)  Hence, nearp= ¢, , this is a par-

ticular type of hybrid inflationary potential.
Following our procedure, we now find the relevant slow
parameters to second order i { ¢;),

_i5(4)  —s3cio(4)

€

To recap, the general recipe for construction is as follows.

(i) Write down I (¢)~n(¢)—1, which changes sign at
b=o;.
(ii) Compute the potential using Eq.(93) with j, andj;.

—-6C 21c )
—(p—oi) + ?w—@) : (134

n—1~

(iii) Compute the slow-roll parameters using the exact

first-order slow-roll equations.
(iv) Choose the parameters introduced ito satisfy the
constraint Eqs(120), (125, (127), and

dn o

(130

where A and ¢; are defined in Eq(121). Note thatc, is

dn _6cjo(¢)s  3cio(di)lio(bi) b~ 14s]
T " (6= )
3c{3c+7jo( i) ¢7Lio(4i) 4~ 8
_ 3c{3c+7jo(¢ i?d¢ sl Y
(139

generically difficult to define, in which case one must try to These approximations are valid as long as
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‘ ¢ 175 i
——1|<1. 136
o ( ) 1.5 ‘
. . 1.25 |
The behavior ofe for moderate¢— ¢;, neglecting correc-
tions fromjo( i), is ° o
612 > 075 |
02 ( 6 ¢i )
e~ ¢— — ¢ + — , (137) 0.5
8¢i*\ " 57 5¢° 025 | |
which implies that the end of inflation is around ) | 2 4 6 3 10 12 14
@
2J2¢7 6
b~ *tc i (138 .
Let us now choose the parameters for our potential. The 0.8
parameters of Eq121) are 06
[—s3cjo( i) S04
€= —7|, (139 02
b '
) 0
nl:]., A:]0(¢i),C2:Cl,n2:1, (140) 02
g 6cio( ) % 2 4 e(ps 10 12 14
n c i)S
~ Jo a i , (141)
dink fox FIG. 1. The upper figure shows the potential as a function of the

inflaton field ¢. The vertical long-dashed curve in the upper figure
where we will see below that settirg=c; is not a particu-  corresponds to a field value @¥olds before the end of inflation. In
larly good approximation for finding the total number of the lower figure, the solid curve corresponds to the behaviay of
e-folds [neither is using Eq(137), although that equation while the short-dashed curve corresponds to the behavier bte
happens to be useful for finding the end of inflajiofhe that inflation ends due tg and note. Also, one can clearly see that
constraint equations then become € has a minimum neay=1 wheren—1 changes sign. About 10
e-folds after, the dashed line correspondspte 1.1.

6Cjo(¢i)s
—7'~ ~0.02, (142 and
|
. 6 22 .
;%Nmt, (143 Niot) o(¢i)+¢i<§ i+ TCbi - (148
—SC3jo( i)
o/ Only the second of these conditions yields the nontrivial con-
straint
|¢i— b |~5jo( i), (144
1 S
where we will see numerically later thatcan be as large as 0<§ i+ — 848.5(; - 10a) jo( ). (149
I

6, meaning that increases much more slowly than can be
extrapolated from the behavior ne@r=¢;. This is, of . . . .
course, what we expected by construction. The first two of A Viable example is then given by choosifigi = 1] ¢,

these equations can be rewritten as —¢i|=0.1, for which our equations yields=—1,o(;)
=0.02c~0.167¢~18}. The potential, the spectral index,
—0,017¢i7 and its running for this model are given in Figs. 1 and 2.
S (149
VIIl. AN APPROXIMATE COINCIDENCE
Niot=~ 10a. (146 ) . )
Here we derive the advertised result that there is an ap-
Equations(124) and(126) then require proximate local minimum ok at the length scale at which
n—1 vanishes.
—s3Cjo( i) At the most basic level, it is simple to see how such a
54/——=—<1 (147  consistency condition can arise. By elementary manipulation
bi of the slow-roll parameters, one can write
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IX. SUMMARY AND CONCLUSIONS

0.1 Motivated by recent data, including those from the
WMAP satellite, we investigate the extent to which the sca-
L lar spectral index that runs strongly negatively can be ac-
s commodated within inflationary models. We found that a
running as large as the central value of EL.is difficult to
-0.05 achieve in common realizations of slow-roll inflation as it
requires a large thirdfield) derivative while maintaining
small first and second derivatives. Aside from the fact that it

’ : * e ® ’ " is difficult to motivate potentials with these features from a
fundamental theory, it is not easy to sustain a large number
o of e-foldings (at least 60 for models with largedn/d Ink.
Therefore, if current observations hold up, the large running
-0.01 of the scalar spectral index could pose new challenges for
~0.02 inflationary model building.

In view of these difficulties, we develop two methods to
systematically construct inflationary potentials with large
0.04 running. The first method, which we call the singular
method, allows us to generate arbitrarily large running with-
out upsetting the slow-roll requirements. However, this
n - . - method by itself does not give rise to a change in sigm of

Neot -N —1 within the range of the observable length scasout 5
e-folds) nor does it give rise to a blue spectrum on large
scales—features that are suggested by the recent cosmologi-
cal data including the WMAP data. The second method,
which we call the index method, covers a broad range of
, slow-roll models that have a blue spectrum on large scales,
n-1 +\2e=+ €'(¢) (150 and is designed to construct models in which 1 runs from
\/Z blue to red. Obviously, these methods can be combiasd
well as with other formalismso construct a large variety of

where the upper sign is for’ >0 whereas the lower sign is inflationary models.

.03

dn/dlnk
S

-0.05

o
N

FIG. 2.n—1 anddn/d Ink as a function oN;,;— N, whereN is
the number oe-folds before the end of inflation ardi,;~ 63 is the
total number ofe-folds.

for V/<0. This means that the minimum e&f is reached We also uncover a fairly generic implication of strong
whenn—1~ —2¢, which means that— 1 vanishes slightly ~negative running of the scalar spectral inaeXVe show that
beforethe value at whiche reaches its minimump= ¢, . in many situations, there is an approximate local minimum
Linearizing e and » about ¢, wheren(¢,)—1=0, we can of the slow-roll parametee at the length scale at which
solve for ¢.. We can then compute the numberesfolds  —1 vanishes. This approximately implies that the strong run-
AN that elapse betweeg, and ¢, , ning of the spectral index requires a bumplike structae
fined by a region where the slope of the potential reaches a
e(by) e(by) local minimum in the inflaton potential.
AN~ 5 ~ 5 . (15) At a more formal level, we also explore the extent to
&(¢y) —10e“(py) 0.01-10e(by) which the constraints on the inflaton potential can be relaxed
if the kinetic term of the inflaton is noncanonical. We found
Thus, if e(¢,)<0.01, thenAN<1 [31]. that we have extra freedom in adjusting a large running while

From the perspective of the index formalism, the approxi-maintaining a smalh—1 because of the new contributions
mate minimum fore occurs nearp, because of Eqg118) from the field-dependent kinetic term. Of course, this extra
and (119. Namely, sinces~(jo+j,+],)? we have thg;  freedom simply corresponds to adjusting the third derivative
andj, contributions vanishing precisely &, which is be-  of the inflaton potential after we canonically normalize the
tween the field valuep, and the valuep,. Of course, one field. However, such noncanonical kinetic terms may be seen
must note that, strictly speaking; is not the value at which as a convenient way to generate inflaton potentials with un-
the derivative ofe vanishes. The effect is merely the same asusually large third derivatives starting from potentials that
saying that then—1 term in Eq.(150), which dominates in are more physically motivate@.g., potentials that are ana-
general, just happens to be very small nearl=0. lytic functions of the inflaton fields, etc.Furthermore, non-

From a practical standpoint, it is not clear whether thisminimal kinetic terms are quite generic as they often appear
can be confirmed by measuring tensor perturbations. Thi supersymmetric models, as well as in string theory. There-
reason is simply that this coincidence occurs most accuratelfjpre, cosmological data such as the running spectral index
for small €, which in turn implies that the tensor-to-scalar may tell us something about the Kar potential. We hope to
amplitude ratio is negligible. return to this and related issues in the future.

063501-13



CHUNG, SHIU, AND TRODDEN PHYSICAL REVIEW D68, 063501 (2003

ACKNOWLEDGMENTS b(b+4N)
. . . d(N)=M,\/| —— (AB)
We thank Jim Cline, Joanne Cohn, Scott Dodelson, Rich- 2

ard Easther, Lisa Everett, Zoltan Haiman, Edward Kolb, - . ) ) )
Julien Lesgourgues, Antonio Riotto, Uros Seljak, Dominik  The quantities of primary interest in this paper, namely
Schwarz, and Liantao Wang for helpful discussions. wehe scalar spectral index and its scale dependence, are given
would like to thank the Kavli Institute for Theoretical Phys- by
ics, where this work was begun, for kind hospitality and

support. This work was supported in part by the National n—1= ﬂ (A7)
Science FoundatiofiNSP under Grant No. PHY-9907949. b+4N

The work of G.S. is supported in part by funds from the

University of Wisconsin. The work of M.T. is supported in ﬂ: 4 (n—1) (A8)
part by the NSF under Grant No. PHY-0094122, and the dink (b+4N) )

Research Corporation. o . o i
Now, is it possible to obtain significanin/d Ink in these

APPENDIX: MODELS WITH CANONICAL models? The important point here is tlidie=50. Therefore,
KINETIC TERMS even for large values df we end up with a smatin/d Ink.
As an example, considdr=20, which givesn—1=-0.2,

In this appendix, we analyze a sample of inflationarybut a relatively small valueln/d Ink=—0.004. Thus, only
models to see how large a valuedi/d In k can be obtained, minor running of the spectral index is possible in minimal
and at what price. We apologize to many authors whosenodels with monomial potentials. For reference, note that
models we did not review due to practicality constraints. Athe relative sizes of the terms contributingdo/d Ink are
much more extensive review of older models can be found in

[26]. —2¢=-5.6X102, (A9)
— —1
1. Monomials 16ep=2.5<10" -, (A10)
The best-known and most robust inflationary models are —2e?=-2.0x10"1, (A11)
those exhibiting chaotic inflation. This may be implemented
with the simplest of potentials, namely monomials. and soen and €2 are both larger than the third derivative
Consider a potential of the form term.
V()=V, Mi) ’ (A1) 2. Potentials with powers in the exponent
P We now turn to a model that was originally propo$ed]

to obtain large running of the scalar index. Consider the fol-

whereb is a dimensionless parameter. The slow-roll param-~ =< ;
lowing inflaton potential:

eters for this model are

b2M2 V() =Voe ", (A12)
p
= A2 . . i .
¢ 242 (A2) whereb is a dimensionless constant ands a constant with
dimensions of mas3 . The slow-roll and third-derivative
(b—1)bM?2 parameters become
n= 2 (A3) 201212
¢ a"Mib
€= Tqﬁz‘b‘”, (A13)
and the third-derivative parameter is given by
(b_2)(b_1)b2M4 7]=aM'2)¢b_2b[l+b(a¢b—l)], (A14)
p
= . (A4) B
»* £=a®M;p?®~ b2+ 3b(ap”— 1)
In general in inflationary models, inflation ends when the +b%(a®¢™—3a ¢ +1)]. (A15)

first of the slow-roll conditions is violated. This occurs at a
field value ¢, defined bye(¢.)=1. For the monomial po-
tential this yields

As expected, the value of the scalar spectral index depends
on the field valuep, yielding

n(¢)—1=—aM>¢" 2b[b(ag®+2)—2], (Al6)

fom (A5)
) \/E . dn 2n1 4 12(b—2 2
Jink- —2e°Mpo ®=2(p—1)b
Furthermore, the value of the field when there remaimN
e-foldings before the end of inflation is given by X(b—2+ad’b). (A17)
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TABLE I. Inflation characterization with the model choi¢b ¢2_b
=2.012=0.013. N(¢p)~ ————, (A26)
b(b—2)Mje
n—-1 —0.185
d which, in this limit, allows us to express everything in terms

_an ~0.007 of N(¢). We obtain

dink

€ 0.065
—X 1 1

7 0.10 n—-1=—-— (aMPb)2™*—_  (A27)
N (b—2)* NX

To complete the analysis, it is important also to know thatynpere
inflation ends at a field value

5 | Ub-1) E2(b—1)

and the number oé-folds before the end of inflation at any Furthermore, sincen/d Ink~-—dr/dN, we have
given value of¢p< ¢, is

dn

m’“(n—l)/N. (A29)

N(¢)= (¢2 P—¢? "),  (A19)

b(2—b)Mje
Since |[n—1/<0.1 and N~50, we can expectn/dInk
where ¢; is the value of¢ at the beginning of inflation. ~0O(1)x103, with at bestdn/d Ink~10"2, which is close
Using the above expressions, we can rewrite the relevartb the numbers obtained from our rigorous analysis above.

guantities as

3. Running mass potentials

n_lz_[m+

2 by2—xy,—
b*(aMp) Yy X}' (A20) Another class of potentials which may lead to a large
scale dependence of the spectral index are the so-called run-
2b(b—1) b2(aM 2% ning mass potentialésee, for example26,32—-35). Con-
p

b(2—b), sider
2
o2

bi| 2
1(b-1) where the constan¥, term dominates. In this model the
—Nb(2—-hb). (A22) slow-roll condition

dn 3
dink

y2 y1+x
(A21)

V=V0( 1-c
with

21—b/2
y=

bp2—b
al\/lpb

By carefully tuning parameters, one may obtain values of the 8c2M 2¢2|n2(i)
inflationary observables that are close to those that we seek. P by
Our best case is shown in Table I. However, given this result, ) 5 o | @
this type of potential is probably not favorable for the large AMp+co —2ceoIn .
values ofdn/d Ink that may be required. *

}2
Once again, for reference, note that the relative sizes OIfS satisfied ifc¢2<M2 In this case. we have
the terms contributing tdn/d Ink are P '

1 (A31)

€=

—2£=-1.2x102, A23 c? 2
¢ (A23) e~ Mi) In? % . (A32)
16ep=1.1x10"1, (A24) P *
0e? 10x 101 (A25) The other slow-roll parameter and the third-derivative pa-
Tee =74 ’ rameter are
and soezn and € are again both larger than the third-
derivative term and hence an analysis with just the third de- —cl1+In i”
rivative is inappropriate. . Py A33
Since the above expressions leading to our conclusion are n= $? #? b ' (A33)
somewhat complicated, it is instructive to consider the limit 1+c—2—c—2In(—)
$e> ¢ and to assumb>2. This then yields 4Mp2Mp | s
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( ¢) and
—clIn| —
_ Px n
&= 5 5 PN Jink ~C(n—1+20). (A38)
1+C—2—C—2|n<¢—)
My 2My * To obtain dn/dInk~0O(10 %), we must choosec

(A34) ~10"1. Unfortunately, this gives exp(cN)~0.006, which
Now consider the situation in which the end of inflation is would give too small a suppression factor. To fight this sup-
controlled by another field direction, as in hybrid inflation. In Pression one must choose, for exampbg/ ¢, =102°, for
this case, the condition for the end of inflation is met:1  Which e >¥In(¢./¢,)=—0.36. This logarithm is too large
while rolling in the ¢ direction. Instead, one possibility is for the perturbative radiative “correction” to be valid.
that inflation abruptly ends whee reaches a critical value ~If we nevertheless neglect the physics of the potential and
é. (because of running off into another field directig@6].  allow such a large logarithm, then, setting, =M, Eq.
One can easily carry out the required integration to obtain (A35) implies that a sufficient numbésay 50 of e-foldings
mately 0.%p, . This results inn—1=—0.13 anddn/d Ink
. (A3 —p.007.
which yields dn/dInk, but the price is fine-tuning the end of inflation
(controlled parametrically byp. and realistically by the po-

—In

1
N(¢)~—E[In

can be obtained only if the initial value ap is approxi-
¢ bc
In| — In| —
b b _ :
Of course, choosingb. even smaller results in a larger

. bc|® - tential in the other field directionFor example, one obtains
$=bul | (A36) " 4n/dInk=0.018 andh— 1= —0.017 with ¢p,= 10~%, .
Once more, for reference, note that, in the caseppf
where the minus sign comes from the fact thatplih,) =105, , the relative sizes of the terms contributing to

<0. Clearly the double exponential sensitivityNoseems to  dn/d Ink are
be the key to obtaining a large running of the spectral index.

After some algebra, the above expressions allow us to —2£=7x1073, (A39)
write
16enp=—3%X10 4, (A40)
—cN ¢c Cd)i 2 — 6
n—-1=-2c|1+e ““Inl—|+0 > =N | | —2e€°=—2.33X10°, (A41)
b M= (P! dye)c

(A37) and so the third-derivative term dominates in this example.

4. Potentials motivated by dynamical supersymmetry breaking

Referencd 29| considers a potential of the form

o
V(¢p)=Vp| 1+ ﬁ (A42)
which can be motivated from dynamical SUSY breaking. One can easily compute
a2p2
IR — A43
T 2¢%(at ¢P)? A9
p_ _

_,_ ap21+pléP-alp—2)} (Add)

P*(a+ ¢P)?

dn  2a°p*{(p—2)afa+2(p+1)¢P]—(1+p)(2+p)¢*’}

— , (A45)

dink d*a+ pP)*

- pe—d* PP P2

N=sgH «] T + ap(2rp) | (A46)

where g, is the field value at the end of inflation. If the inflationary scenario is to be hyjti}>|«/|. In that case, we must
havea>0 to have a blue spectrup37]. Hence, the field behaves as

063501-16



RUNNING OF THE SCALAR SPECTRAL INDEX FROM. .. PHYSICAL REVIEW B8, 063501 (2003

d(N)=[ 2" P—aNp(2+p)]VE+P (A47)

and the relevant expressions become

a2p2 —1\2@@+p)/(2+p)
6=T[¢g+p—aNp(2+ p)]*2(1+p)/(2+9)=2*(4+3p)/(2+p)(ap)2/(2+p) 1Tp) ' (A48)
2 1+ 2 1+
noqo2RUtR)  2ap(tp) 19
P> P ¢e P—aNp(2+p)
dn  —2a?p¥(1+p)(2+ —(2+
PPALEPI2EP) (24P A50)

dink  [¢ZP—aNp(2+p)]?  2(15P)

where we have the restrictioa(N)<1. As long as¢. is  gauge symmetry, the 4D effective potential #reduces to
chosen such that that of a pseudo-Nambu-Goldstone boson with an effective
decay constant of

¢e>[60ap(2+p) M, (A51)
1
we can easily get greater than éfolds. As one can see, one fef=5——25., (A53)
can obtain
dn whereg, is the 4D effective gauge coupling constantg]f
ik~ ~OUn- 1)%) (A52) <1, then, even ifR>1 (in Planck unity, fs>1 can be

arranged, thereby alleviating the usual problems associated

which can be large ifif—1)~0.2 but the running does not With natural inflation[40], namely that of making one of the
change sign to the red part of the spectrum. slow-roll parameters

From a field theoretic point of view, this potential is not
very natural because one generically expects terms of the 1
form V2 to spoil the potential. Not only must such a term - fT
be less thaV,, but it must also be less thartya/ ¢°. Be- eff

cause of this second constraint, one can easily show that . . :
even after introducing a fine-tuning i, ¢2> a/ ¢ if one much smaller than unity. The great advantage of this scenario

wants to haven—1~0.2 atN=60. is that, due to the nonlocal nature of the figldand gauge
invariance, the effective potential is protected from quantum
corrections that can spoil the inflationary slow roll.

Based on this scenario, the authors of Ref.proposed a
The works of Refs[38,39 propose an inflationary sce- method of obtaining a large running. They introduce one
nario in which the inflaton is a Wilson line field of a  massive and one massless fermion in the bulk, charged under

five-dimensionalU(1) gauge field whose fifth component the extra-dimensional (1) gauge group, with chargesg
As is integrated around the extra fifth dimension.dfis  andq,, respectively, giving rise to an effective potential of
coupled to an extra dimensional field charged under thishe form

(A54)

5. Wilson line as an inflaton

cognq, ) + @~ N27RM,

(2mRM,)?  (27RM,)
> +

3 1
V(O)=—— 2 = 3 =

647°R* i=1 n3

1
+= cos(nqza)l, (A55)
n n
whereM, is the mass of the massive fermion. Keeping onlyrikel term, redefiningd= ¢/f.%, and adding a constant term,

they obtain the potential

V:VO

' (A56)

q1¢) S{de’
— o0 CO

feff

1+ E(O')—COS<

feff

where 1+ E(0)~0(1) is a term independent of the inflaton fieldadded to make the potential vanish at the minim(time
o and V, definitions ftrivially follow from matchingg When E(o)=0=0, the potential is the usual natural inflationary
potential. To obtain a large running, the authors have, by adding the massive fermion, introd€itetependent terms which
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modulate the original potential with small amplitude wiggleshen g,>q,). The running they attain is of ordem (
—1)%2/el o which, because of phenomenological restrictions, has an order of magnitude linnit-df)¢, similar to Ref.

[29]. However, the model defined in EGA56) has the advantage of being able to run from blue to red.

To see how the running occurs, consider the slow-roll

parameters. Expanding in poweis tffie limit thatoq, ,<1,

while ¢q3~0(1) (andqg;<q,), we find
1 2
gl |n2q1¢ +0(aqy), (A57)
a1
2(1 Cos—/— )
feff
coqud) coschd)
n~ al (% 0'+q—21 —"_14+0| (oan) ,aq—zl , (A58)
A1 |\ Fer for Qi fo4
1-cos €M 1—cos €
1:eff feff
-1
&= 5 ( Isir? ¢+oq1qzsm 1¢qu2¢ +0(0qy). (A59)
Q1¢ 4 feff feff
1—cos—| fex
feff
|
Away from any special points i, we require which requires
2
d1
Sy (A60) €<0.02. (A65)
eff
q2
n~ ng— €, (A61)  Sincen must cancel againgtto run from blue to red, it must
fet be true thaty<<4e~0.08. Hence, without fine-tuning initial
and conditions, one expects a maximum running of order (
—1)%2 el 0~| 7019, /f2,<0.02. A more careful analysis
q 4.9 a1 by Ref.[9] indicates that even with fine-tuning of the initial
§~—(Tl 2) e+ (n+e) ! 2) conditions, the running is of the orden 1)? (note that if
fer fe eff (A62) the initial conditions are fine-tuned such thgto/fo; is

all to be small. Furthermorey must not change sign more
than once within about 16-folds. This requires

?—2(A¢)~10\/26(77+5)/0'~1O\/—q1q2<7'r. (AB3)
eff

Finally, to have 6Ce-folds, we must have

(e 70 (AB4)
qiv2e  2V2e

close tomr, € is suppressed and therefore tensor perturbations
are suppressed

For completeness, we write the formula for-1 corre-
sponding to this model in the limit prescribed for E458)
as

2

2
n— 1~ﬁ(1 2¢c @ql¢)+oq—;cosqz¢cs€-ql¢.
feﬁ 2feff feﬁ feff 2fef‘f
(A66)
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