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Relativity of GPS measurement

Thomas B. Bahder*
U. S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783-1197, USA

~Received 16 June 2003; published 29 September 2003!

The relativity of Global Positioning System~GPS! pseudorange measurements is explored within the geo-
metrical optics approximation in the curved space-time near Earth. A space-time grid for navigation is created
by the discontinuities introduced in the electromagnetic field amplitude by theP-code broadcast by the GPS
satellites. We compute the world function of space-time near Earth, and we use it to define a scalar phase
function that describes the space-time grid. We use this scalar phase function to define the measured pseudo-
range, which turns out to be a two-point space-time scalar under generalized coordinate transformations.
Though the measured pseudorange is an invariant, it depends on the world lines of the receiver and satellite.
While two colocated receivers measure two different pseudoranges to the same satellite, they obtain the correct
position and time, independent of their velocity. We relate the measured pseudorange to the geometry of
space-time and find corrections to the conventional model of the pseudorange that are on the order of the
gravitational radius of the Earth.

DOI: 10.1103/PhysRevD.68.063005 PACS number~s!: 95.30.Sf, 91.10.By, 95.55.Br
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I. INTRODUCTION

Clock synchronization algorithms play a key role in a
plications such as communication, message encryption,
navigation. Recently, there have been a number of propo
clock synchronization algorithms based on a quantum in
mation approach@1–8#. These discussions have been bas
mostly on nonrelativistic quantum mechanics. In many
plications, however, clock synchronization must be p
formed between two nodes that are in relative motion, s
as a jet aircraft and the ground, or between two nodes
are at different gravitational potentials, such as a satellite
the ground, or even two satellites at different altitudes.
such cases, a correct treatment of quantum clock synchr
zation must include relativistic effects from the start. T
well-known tension between quantum mechanics and rela
ity theory makes this a difficult task. It is clear that the co
cepts of measurement, and transformation of measur
quantities under Lorentz transformations, play a key role
the problem of clock synchronization for both quantum a
classical schemes. However, the transformation of mea
able quantities has not been discussed even for the ca
classical clock synchronization. In this article, we analyze
some detail the relativity of clock synchronization in th
Global Positioning System~GPS!, which is based on a clas
sical synchronization scheme. In particular, we describe
transformation properties of the measured quantity called
pseudorange in the GPS@9–11#. We hope that clarifying the
transformation properties of measurable quantities in cla
cal clock synchronization will provide some useful insig
into the problem of quantum clock synchronization.

The Global Positioning System~GPS! is a U.S. military
constellation of satellites used for time keeping, and for na
gation of land, air and sea@9–12#. Recently, two papers hav
analyzed the system of space-time coordinates that is us
the GPS@13,14#. In this paper, we address a different b
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related aspect: the transformation of GPS pseudorange m
surements. A remarkable aspect of the GPS is that a
ceiver need not be stationary with respect to the Earth’s
face to obtain accurate time and position. A ship, a
aircraft, or a low-Earth-orbit satellite can each compute
curate time and position, even though they have differ
velocities. This feature of the GPS is a consequence of
aspects: the signal structure of the satellite broadcasts an
special type of measurement that a GPS receiver makes.
GPS satellite signals set up an invariant grid
3-dimensional space-time hypersurfaces~light cones!. Each
hypersurface is uniquely marked by the satellite that gen
ated the hypersurface and by the space-time coordinate
the event of generation of the light cone@13,14#. By measur-
ing the pseudorange to four satellites, the GPS receiver
sentially determines its position by identifying the four h
persurfaces that it intersects. The pseudorange measure
is independent of receiver motion, up to an additive const
For this reason, the measured pseudorange may be cal
Lorentz pseudo-invariant. Below, we will see that the ps
dorange is actually a two-point scalar under generalized
ordinate transformations. The transformation properties
the pseudorange is a key element of the GPS, yet this sub
has only briefly been mentioned in the literature@15#.

In order to present a coherent description of the trans
mation properties of the pseudorange, we must deal with
nature of the broadcast GPS signals, the relativistic effe
that impact these signals, as well as the measurement pro
itself. Therefore, the outline of this article is as follows.
Sec. II we present a two-receiver thought experiment
clarify the concept of invariance of pseudorange measu
ments. Section III contains a description of the space-ti
metric in the vicinity of the Earth. Section IV describes th
relativistic effects on the GPS satellite clocks and on
observed signals, using the metric in Sec. III. Section V d
cusses the nature of the GPS broadcast signals, which
used to set up the space-time grid. Section VI discusses
pseudorange measurement process, using a mechanica
logue for a GPS receiver. The transformation properties
05-1
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the pseudorange are obtained in Sec. VI. Section VII c
tains a brief discussion of navigation and time transfer us
GPS signals. A correction is derived to the conventional
space-time model of pseudorange. Section IX contain
summary and comments.

II. TWO RECEIVER EXPERIMENT

In order to make clear the concept of transformation
pseudorange measurements we offer a simple thought
periment. Consider two identical GPS receivers that are
relative motion. For example, one receiver is stationary w
respect to the Earth’s surface and the other is on a jet airc
travelling at 1000 km/h. Each GPS receiver carries an id
tical copy of the software that is used to compute recei
position and time. Assume that each receiver is tracking
same four GPS satellites. See Fig. 1. Assume the two rec
ers’ world lines cross at an eventM in space-time. Does eac
receiver compute the same spatial position and time for
coincident eventM? From a physics standpoint, the GP
satellites orbit the Earth at approximately 8.37 km/s, a
there are large Doppler frequency shifts due to satellite
receiver motion@16#. In the GPS, the actual computation
receiver position and time depends on the space-time c
dinates of the signal emission event~at the satellite!, xs

i , and
reception event~at the receiver!, xo

i . In an Earth-centered
inertial ~ECI! frame, these coordinates arexs

i andxo
i ; how-

ever, in the receiver’s comoving frame the emission and
ception events have different coordinates, sayxs8

i and xo8
i .

The two sets of coordinates, (xs
i , xo

i ) and (xs8
i , xo8

i), for i
50,1,2,3, are related by a Lorentz transformation, which
pends on receiver velocity with respect to the ECI fram
The actual electromagnetic field is different in each rece
er’s comoving frame, so there is different input informati
into each identical measuring device~receiver computer pro
gram!. How can the two receivers compute the same spa

x 
0 = c t  

x 
1

O1

M

O2

FIG. 1. The world lines of two receivers,O1 andO2, are shown.
The receivers are tracking the same four GPS satellites. At eve
the receivers coincide in space-time but have different velocitie
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position and time from different input information? The ke
concepts are the space-time grid that is created by GPS
ellites and the transformation properties of the measura
quantity in the GPS, which is called the pseudorange. Th
two themes are developed in the following sections.

III. CHOICE OF METRIC

In order to discuss relativistic effects, a reference frame
system of coordinates must be chosen. In the weak fi
limit, the metric of space-time in the vicinity of the Earth
of the form @17#

2ds25gi j dxidxj52S 11
2

c2
VD ~dx̄0!21S 12

2

c2
VD

3@~dx1!21~dx2!21~dx3!2#, ~1!

where V is the Newtonian gravitational potential an
( x̄0,x1,x2,x3) are the coordinates. The frame of reference
Eq. ~1! can be thought of as an Earth-centered inertial~ECI!
frame. We neglect small off-diagonal termsg0a , a51,2,3,
due to the rotation of the Earth.

In general relativity, the coordinates are mathematical
tities that are never directly observed. However, it is use
to choose the coordinates in some physically meaning
way. The coordinatesx̄0,x1,x2,x3 are geocentric coordinates
wherex3 coincides with the Earth’s axis of rotation and in
creasing positive values point to North. The Earth is mo
elled as an oblate spheroid with Newtonian potential giv
by @18#

V~r ,u!52
GM

r F12J2S R

r D 2

P2@ cos~u!#G , ~2!

where r 25(x1)21(x2)21(x3)2 and u is the polar angle
measured from thex3 axis. In Eq.~2!, G is Newton’s gravi-
tational constant,M is the mass of the Earth,P2(x)5(3x2

21)/2 is the second Legendre polynomial,R is the Earth’s
equatorial radius, andJ2 is the Earth’s quadrupole momen
whose value is approximatelyJ251.0831023, see Table I.
The metric in Eq.~1! is the solution of the linearized Einstei
field equations@17#. In Eq. ~1!, the coordinate timex̄0 has no
simple relation to the time kept by ideal clocks on the surfa
of the Earth.

The coordinate time can be given a simple interpretat
by transforming the metric in Eq.~1! to rotating Earth-
centered Earth-fixed~ECEF! coordinatesyi , using the trans-
formation

x̄05 ȳ0

x15 cosS v

c
ȳ0D y12 sinS v

c
ȳ0D y2

x25 sinS v

c
ȳ0D y11 cosS v

c
ȳ0D y2

x35y3. ~3!

M
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TABLE I. The numerical constants and values used in the calculations. Values taken from Refs.@9# and
@20#.

Symbol Definition Value Units

GM gravitational constant times Earth’s mass 3.98600441531014 ~JGM-2! m3/s3

c vacuum speed of light 2.997924583108 ~exact definition! m/s
V angular velocity of Earth rotation 7.292115146731025 ~WGS-84! radian/s
R mean Earth radius at the Equator 6.37813633106 ~JGM-2! m
J2 Earth’s quadrupole moment 1.082626931023 ~JGM-2! 1
a GPS orbit semimajor axis 26561.753103 ~Ref. @19#! m
vs /c5AGM/a / c GPS satellite velocity/c 1.2921731025 1
GM/Rc2 gravitational potential scale 6.95348310210 1
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Note that the coordinate time in the rotating frame,ȳ0, is
equal to the coordinate time in the ECI framex̄0. In these
ECEF rotating coordinates, the metric is given by

2ds252F11
2V

c2
2

V2

c2
@~y1!21~y2!2#1

2V

c2

V2

c2
@~y1!2

1~y2!2#G ~dȳ0!21S 12
2V

c2 D F2
V

c
~y1dy22y2dy1!

3dȳ01~dy1!21~dy2!21~dy3!2G . ~4!

From Eq.~4!, we see that there exist geopotential surfac
f(y1,y2,y3)5c, wherec is a constant,

f~y1,y2,y3!5V2
1

2
V2@~y1!21~y2!2# ~5!

where stationary clocks in the ECEF frame~that satisfy
dya50) have the same rate of proper timedt5ds/c with
respect to coordinate timeȳ0 @19#. In other words, ideal
clocks located at the same value of geopotentialf have the
same rate with respect to coordinate timey0. We have ne-
glected the small cross-term 2VV2R2/c4;10221.

Using the observation that clocks at a constant value
geopotential run at the same rate, it is advantageous to d
@19# the new coordinate timet

ct5x05y05S 11
fo

c2 D ȳ05S 11
fo

c2 D x̄0 ~6!

wherefo is the value of the geopotentialf on the Earth’s
equator, atu5p/2 andr 5R:

fo52
GM

R S 11
1

2
J2D2

1

2
V2R2. ~7!

For the values of the constants in Table I, the dimension
magnitude of this term isfo /c2526.96928310210. Using
the transformation in Eq.~6!, the metric in Eq.~4! becomes
06300
s,

f
ne

ss

2ds252F11
2

c2
~f2fo!G ~dy0!21S 12

2V1fo

c2 D
32

V

c
~y1dy22y2dy1!dy01S 12

2V

c2 D @~dy1!2

1~dy2!21~dy3!2#. ~8!

Equation~8! gives the space-time metric in ECEF rotatin
coordinatesyi . Note that an ideal clock that is stationary
ECEF coordinates~with dya50), has proper time

dt5ds/c5
1

c F11
2

c2
~f2fo!G 1/2

dy0. ~9!

When this clock is located on the geoid, thenf2fo50, and
dt5dy0/c, so this ideal clock keeps coordinate time,x0

5y0. Hence a good hardware clock that is on the geoid,
stationary with respect to the rotating Earth, can be used
reference clock to keep coordinate time. Note that by Eq.~6!
the coordinate time in rotating ECEF coordinates is the sa
as coordinate time in ECI coordinates, therefore, the sa
clock keeps coordinate time in the ECI frame,x0, and coor-
dinate time in the ECEF frame,y0.

Using the coordinate time transformation in Eq.~6!, the
metric in Eq.~1! becomes

2ds25gi j dxidxj

52F11
2

c2
~V2fo!G ~dx0!21S 12

2

c2
VD

3@~dx1!21~dx2!21~dx3!2#. ~10!

Equation~10! gives the metric in ECI coordinates. The c
ordinate time that enters into the metric,x0, is the time kept
by ideal clocks on the geoid. This result was the goal of
time transformation given in Eq.~6!. Note, however, that in
the ECI frame metric in Eq.~10!, the proper time intervalds
on a stationary clock in ECI coordinates~with dxa50), is
not equal to the coordinate time intervaldx0 because in gen-
eralVÞfo . The ECI coordinate metric, given in Eq.~10!, is
useful for computing the proper timedt5ds/c elapsed on-
board a satellite clock, in terms of elapsed coordinate tim
5-3
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IV. RELATIVISTIC EFFECTS IN GPS

A. Satellite oscillator frequency offset

The clocks in GPS satellites are at a higher gravitatio
potential than the clocks on Earth. As observed on the Ea
this difference in the gravitational potential causes the os
lators of GPS atomic clocks to appear to run fast, by fr
tional frequency@17#

Dv

v
5

f12f2

c2
~11!

where the approximate gravitational potentialf52GM/r ,
and r is the distance from the center of the Earth. Here,f1
and f2 are the potentials at the satellite and on the ea
surface, respectively. For GPS,Dv/v'5.28310210. This
effect causes the satellites clocks to run fast by 45ms per
day. This is often called a gravitational redshift, but actua
it is a blueshift~toward higher frequencies!.

In addition to the gravitational frequency shift, the GP
satellites are moving. Consequently, as observed in the
frame, satellite oscillators exhibit time dilation due to the
velocity v/c'8.37 km/s. The time dilation effect in speci
relativity is given by

Dt5gDt8 ~12!

whereDt is the time interval in the ECI frame andDt8 is the
proper time of a clock moving at speedv in the ECI frame.
For GPS satellites,g'12v2/(2c2)'8.33310211. With re-
spect to coordinate time in the ECI frame, the time dilati
effect makes the satellite clocks appear to run slow by
proximately 37ms per day.

The typical GPS atomic clock stability is 1 part in 10213,
so the effect of time dilation and gravitational redshift a
each about 103 times larger, and therefore, both effects mu
must be taken into account. The net effect of time dilat
and gravitational redshift is that the atomic clocks would r
fast by 38ms per day (545 ms27 ms). This is a huge ef-
fect, which can be measured by the fact that 38ms corre-
sponds to a range error of 38,000 feet per day.

The actual value of the combined effect of the gravi
tional potential and time dilation on the frequency of t
satellite oscillator is computed using the metric in Eq.~10!.
During a coordinate timedx0, the satellite moves a spatia
distancedxa, a51,2,3. The proper time elapsed on the s
ellite clock,dts5ds/c, is related to elapsed coordinate tim
dx0, by

ds5cdts5F11
2

c2
~Vs2fo!2S 12

2Vs

c2 D vs
2G 1/2

dx0

~13!

whereVs is the Earth’s gravitational potential, given in E
~2!, evaluated at the position of the satellite andvs

2

5dab(dxa/dx0)(dxb/dx0) is the square of the satellite ve
locity divided byc2. In Eq. ~13!, we take the Earth’s quad
rupole potential to be zero,J250, which allows a circular
orbit for the satellite and makesdts /dx0 independent of the
06300
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polar angleu of the satellite. Similarly, we approximate th
satellite velocityvs by taking J250 and assume a circula
~zero eccentricity! orbit so thatvs

25GM/ac2. Expanding
Eq. ~13! to first order in small quantities,Vs /c2 andfo /c2,
we have

c
dts

dx0
512

3GM

2c2a
2

foo

c2
511d ~14!

where

foo52
GM

R
2

1

2
V2R2 ~15!

is the value offo when J250. Equation~14! gives an ap-
proximate expression for the rate of proper time on a G
satellite in circular orbit, with respect to coordinate timex0

in the metric in Eq.~10!. We have dropped termsVsvs
2/c2

'10220 in Eq. ~14!, sincevs
2'10210 andVs /c2'10210.

The ratio of the frequencies of oscillators is inversely p
portional to the clock rates,vcoord /vs5dts /dx0, where
vcoord is the number of cycles elapsed as counted per un
coordinate timedx0, andvs is the number of cycles elapse
as counted per unit of proper timedts on-board the satellite
Therefore, the oscillators of clocks on-board the GPS sa
lites in circular orbit~taking J250)have a frequency shif
@19#

Dv

vs
5

vcoord2vs

vs
52

3GM

2c2a
2

foo

c2
[d0 . ~16!

Using the value of JGM-2 constants@20#

d0514.460963310210. ~17!

If the clocks on-board GPS satellites were allowed to r
freely, then Eq.~14! shows that during one day of elapse
coordinate time Dx0, a satellite clock would gain
c(dts /dx021)324 h. Nominally, the GPS system is de
signed to transmit the digital P-code at 10.23 MHz. Ho
ever, Eq.~16! shows that if the oscillator in the satellite we
set tovs/2p510.23 MHz, then this code would appear
have a higher frequency,vcoord5(11d)vs , as measured
with respect to a clock that keeps coordinate time in the E
frame. If a clock is stationary in the ECEF frame, and
located on the Earth’s geoid, it keeps coordinate timex0, and
therefore the satellite clocks would appear to run fast t
GPS user on the geoid. Consequently, in the GPS, the t
nical specifications for the satellite clocks include a fr
quency ‘‘factory offset’’ that is applied prior to the launch o
the satellites. The actual~angular! frequency of the P-code
that is broadcast by the satellite clock is@21#

vs52p~12d0! f 0 ~18!

where d0514.46310210 and f 0510.23 MHz are fixed
GPS constants. With this frequency correction applied,
satellite clocks approximately keep coordinate timex0 in the
ECI frame.
5-4
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However, satellite orbits cannot be made perfectly cir
lar, so the GPS clocks are in a slightly eccentric orbit. T
eccentricity of the orbit contributes an additional well-know
effect on the time of the satellite clocks: the satellite cloc
periodically speed up and slow down with respect to coo
nate timex0. This effect is often called the ‘‘e Sin E effect
and depends on the position of the satellite in its orbit. T
clock correction is made in the GPS receiver in software,
is given by@22#

Dt r5
2

c2
AGMa esinE ~19!

wherea is the semimajor axis of the satellite,e is the orbital
eccentricity, andE is the eccentric anomaly along the orb
For a typical upper limit ofe50.01,Dt r'23 ns.

B. Observed frequency shift

Equation~18! gives the frequency offset that is applied
a GPS satellite clock/oscillator so that it approximately ke
coordinate timex0, with respect to a reference oscillator th
is stationary in the ECEF frame and located on the ge
Most users of the GPS do not satisfy these two criteria.
example, a user that is stationary in the ECEF frame on
geoid is moving in the ECI frame, and a user in an aircraf
above the geoid. Therefore, at any given time, a user t
cally sees a frequency shift that is different from the ‘‘facto
offset,’’ given in Eq. ~18!. The actual measured frequenc
shift of the satellite signal depends on user and satellite
sitions in the gravitational field of the Earth, and also on u
and satellite velocities~not just user-satellite velocity differ
ences!. The reason that the frequency shift depends se
rately on user and satellite velocities is, of course, that sp
time is not homogeneous~space-time is not flat! because of
the Earth’s gravitational field.

Consider a satellite moving at velocityvs at gravitational
potentialVs . At event S, the satellite transmits an electro
magnetic signal of proper frequencyvs , as measured with
respect to a calibrated oscillator on-board the satellite.
observer at eventO is at gravitational potentialVo and has a
velocity vo . The observer measures a signal having f
quency vo , which is different fromvs because he is in
motion and at a different gravitational potential than the s
ellite. The emission eventS and observer reception eventO
are connected by a null geodesic. The quantityvo /vs21 is
a 2-point scalar because it depends on two space-time po
S and O. A 2-point scalar transforms as a true scalar un
separate transformations of coordinates at pointS and at
point O @23#. Using the metric in Eq.~10!, a detailed calcu-
lation gives~see Appendix B!

vo

vs
215~vs2vo!•nF11

Vs2Vo

c2
1

1

2
~vo

22vs
2!1~vs•n̂!

1~vs•n̂!22a12b1G1
Vs2Vo

c2
1

1

2
~vo

22vs
2!

1
2GM

c2r
@h~ro ,r s ,vo ,vs!1h~r s ,ro ,vs ,vo!# ~20!
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where ro and r s are positions, andvo and vs are velocities
~divided by c), of observer and satellite~source!, respec-
tively. In Eq. ~20!, r 5uro2r su, vo

25vo•vo , vs
25vs•vs , and

Vs andVo are the Earth’s gravitational potential given in E
~2!, evaluated at the emission eventSand reception eventO,
respectively. The unit vectorn̂ connects the emission an
reception events,S andO:

n̂5
ro2r s

uro2r su
. ~21!

The dimensionless quantitiesa15GM/c2R and b1
5V2R2/2c2. The last term in the right-hand side of Eq.~20!
is given by the sum of two terms, which are related by int
changes of subscripts ‘‘s’’ and ‘‘o.’’ The scalar functio
h(ro ,r s ,vo ,vs) is given by

h~ro ,r s ,vo ,vs!5
1

12~ n̂• r̂o!2 H F r o

r
2

ro•r s

rr o
G n̂•~vo2vs!

2
ro

r o
•~vo2vs!1

r s•vo

r o

2
~ro•r s!~ro•vo!

r o
3 J . ~22!

For a GPS user on the surface of the Earth, (Vs2Vo)/c2

'5.3310210, and the GPS satellite velocity~divided byc)
is vs'1.331025. We also have thata1'6.9310210 and
b1'1.2310212. Therefore, in the derivation of Eq.~20!, we
have taken vs5O(1), Vs /c25O(2), Vo /c25O(2), a1
5O(2), and b15O(2), where O(1);1025, and I have
dropped termsO(4);10220.

The measured frequency is due to three types of ter
First, there is a special relativistic Doppler effect that d
pends on the relative velocity of the satellite and observ
contained in the terms proportional to (vs2vo)•n, and the
term 1

2 (vo
22vs

2), which comes from expanding the speci
relativisticg factors for the satellite and observer. Next, the
is a frequency shift due to the difference in gravitation
potential of the observer and satellite, which is given by
stand alone term (Vs2Vo)/c2. Finally, there are cross term
that depend on products of satellite and observer veloc
and the Earth’s massM.

As described in Eq.~18!, the GPS satellites have a built-i
‘‘factory offset,’’ d054.46310210. From Eq. ~20! we see
that the observed frequency shift of the satellite signal du
gravitational potential differences, (Vs2Vo)/c2, is on the or-
der of 10210 and can vary depending on the altitude of t
observer. In addition to this frequency shift, there is a Do
pler frequency shift that is much larger. For example, fo
jet aircraft travelling along the equator at approximate
1000 km/hour with respect to the Earth’s surface, the vel
ity ~fraction ofc) with respect to the ECI coordinates can
on the ordervo;231026, which is a factor of 53103 larger
than the built-in factory offset. Similarly, for an observ
on-board a low-Earth orbit satellite at altitude 1000 k
whose orbit is in the plane of the equator, we haveuvs2vou
5-5
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FIG. 2. Each component of the
electric field,E(t* ), broadcast by
a GPS satellite has possible di
continuities in its amplitude at the
times, t1* ,t2* , . . . tN* , where the
pseudorandom P-code functio
s(t* ) changes sign. These discon
tinuities propagate on 3D hyper
surfaces in space-time and defin
the space-time grid.
ry
th
e

Th
y
tio
se
by
rv

th

ei
is
ag

ie

th
th

ia-

e
A
o
b

q
b
is

tw

ns-

e
de,

de
d of

ls

es-
cor-

are

de,
ncy
d

r-
ag-
;1025. This frequency shift is on the order of 104 times
larger than the built-in factory offset. Of course the facto
offset is applied to cancel out a secular effect—an effect
leads to a constantly increasing discrepancy in time betw
satellite and coordinate time clocks, while the Doppler~mo-
tional! effect has a more complicated time dependence.
point here is that the frequency of GPS signals, as seen b
observer, has huge frequency shifts due to observer mo
Below, we describe how these frequency shifts are es
tially removed—so that the actual measurements made
GPS receiver are independent of the velocity of the obse
~GPS receiver!.

V. GPS SIGNALS: THE SPACE-TIME GRID

The GPS satellites broadcast electromagnetic signals
set up a geometric space-time grid@24#. Users of the GPS
that receive four satellite signals can uniquely identify th
position in the space-time grid. This grid is created by d
continuities in the amplitude of the broadcast electrom
netic field.

All the GPS satellites broadcast on two carrier frequenc
in the L-band centered aboutL1'1575.42 MHz andL2
'1227.6 MHz. The GPS satellites have helical antennas
are constantly pointed toward the Earth’s center. Near
antenna axis~bore site! the broadcast electromagnetic rad
tion field is right circularly polarized@15#. Superimposed on
each satellite carrier signal is a unique code, or sequenc
digital bits that identifies the satellite that is broadcasting.
a given time and spatial position in the comoving frame
the satellite, one vector component of the electric field can
written approximately as

E5D~t* !s~t* ! cos~q vst* 1f! ~23!

wherevs is the P-code transmission frequency given in E
~18!, t* is the hardware time kept on-board the satellite
its local clock, andf is a phase associated with phase no
in the signal. The integerq takes valuesq5154 orq5120,
to produce the broadcast signal that is transmitted on the
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carrier frequencies,L151543vs/2p'1575.42 MHz orL2
51203vs/2p'1227.6 MHz. See Fig. 2. TheL1 and L2
carrier frequencies are integer multiples of the code bit tra
mission rate,vs/2p. We distinguish between proper timet
kept by an ideal clock, and hardware time,t* , which is kept
by a clock that is a real physical device. The functions(t)
takes the discrete values21 and 11, and represents th
digital P-code values 0 and 1 in the pseudorandom co
which is unique to each satellite@21#. There are exactlyN
('1012) values in the digital P-code sequence. The co
sequence starts at midnight on Sunday and has a perio
exactly one week:s(t1T)5s(t), where T is one week.
Therefore, we can define a discrete phaseFn for the periodic
function s(t) by

F (n)52p
~n21!

N
~24!

wheren51,2,3, . . . ,N, is an integer that sequentially labe
the bits in the codes(t).

In Eq. ~23!, the functionD(t* ) is a digital navigation
message that is broadcast at approximately 50 Hz. The m
sage provides the satellite ephemeris and satellite clock
rections in the form of two coefficients,A andB. The clock
corrections essentially provide the conversion from hardw
time t* to coordinate time in the ECI frame,x0, in the form
x05A1Bt* . The functionss(t* ) andD(t* ) are timed so
that changes between 0 and 1 ins(t* ) occur at the same
point in time as inD(t* ), i.e., the bit transitions~edges!in
D(t* ) align with those ins(t* ). The functionD(t* ) pro-
vides the broadcast ephemeris of each satellite.

In the satellite comoving frame, the pseudorandom co
s(t* ), is broadcast at the factory adjusted angular freque
vs given in Eq.~18!, as timed by the atomic clock on-boar
each satellite. The frequency of the oscillator~clock! on-
board the satellite has been lowered fromf 0 MHz to vs/2p
@see Eq.~18!# so that, as seen from the ECI frame of refe
ence, the discontinuities in the amplitude of the electrom
netic field occur at time intervals of approximately 1/f 0 with
respect to coordinate timein the metric given in Eq.~10!
5-6
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@25#. Since the codes(t* ) is timed according to the satellit
clock, the discontinuities in the code can occur at hardw
times tn* , n51,2,3,...,N, where n sequentially labels the
~potential! code edge discontinuities since midnight Sund
and N is the number of code bits in thes(t* ) code. All
satellites have the same sequence of hardware timestn* for
possible code-edge-emission events, given by

tn* 5
F (n)

vs /N
5

2p

vs
~n21! ~25!

wherevs is a constant frequency given in Eq.~18! and n
51,2,3,...,N is the bit number in the P-code sequen
s(t* ). In the ECI frame of reference, the coordinates of
world line of the antenna phase center for satellites, xs

i (t* ),
can be parametrized by the satellite clock’s hardware ti
t* . The world line of a satellite is approximately a geodes
however, forces on a satellite, such as solar pressure, an
antenna phase center position differing from the satellite c
ter of mass, lead to an effective world line that differs from
geodesic. The world line of the antenna phase center is
cisely determined by ground tracking stations. Future po
on the world line are computed and expressed in terms
classical satellite ephemeris parameters and theA and B
clock corrections. This information is uploaded to the sa
lite’s navigation message, which is transmitted to GPS us
through the digital sequenceD(t* ).

It is well known that discontinuities in the emitted ele
tromagnetic field tensor define invariant 3D hypersurfa
called characteristics@23,26,27#. In terms of the world func-
tion of the space-time, for each satellite, these hypersurfa
are given by@28#

V„xs
i ~tn* !,xj

…50, n51,2,3, . . . ,N ~26!

wherexs
i (t* ) is the world line of the satellites parametrized

by satellite hardware timet* , and the 3D hypersurfaces a
defined by their coordinatesxj , j 50,1,2,3, that satisfy Eq
~26! and are on the forward light cone, so thatx0.xs

0(tn* ).
Each hypersurface can be uniquely specified bytn* , the
hardware time of satellite ‘‘s’’ and the bit numbern associ-
ated with the~discontinuity! new bit in the codes(t* ). See
Fig. 3. For flat space-time with a Minkowski metric, Eq.~26!
reduces to

1

2
h i j @xi2xs

i ~tn* !#@xj2xs
j ~tn* !#50 ~27!

where h i j is the Minkowski metric with nonzero diagona
components (21,11,11,11), and there is no sum onn.

A detailed calculation of the world function entering
Eq. ~26! for the metric in Eq.~10! gives
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V~x1
i ,x2

j !52
1

2
~Dx0!2F11

2GM

c2R
1

V2R2

c2

2
2GM

c2uDr u
L~r1 ,r2!G1

1

2
~Dr !2

3F11
2GM

c2uDr u
L~r1 ,r2!G ~28!

where in Eq. ~28! we use the following definitions:x1
i

5(x1
0 ,r1), x2

i 5(x2
0 ,r2), Dx05x1

02x2
0 and uDr u5ur12r2u,

L~r1 ,r2!5 logS tanS u1

2 D
tanS u2

2 D D ~29!

andu1 andu2 are defined by

cosua5
ra•~r22r1!

urauur22r1u
, a51,2. ~30!

In Eq. ~28!, we have taken the small parameterJ250.
Each GPS satellite broadcasts a set of 3D hypersurfa

that form part of the coordinate grid, given in Eq.~26!. There
are approximately 24 satellites in the GPS constellation,
all the hypersurfaces from these satellites comprise the G
space-time grid that is used to label events in this space-t
The hypersurfaces are spaced approximately 1/f 0'97.75 ns
in coordinate time and 29.31 m in space; see the metric
Eq. ~10!. Since the coordinate hypersurfaces are so far a
in space and time, an event in this space-time can be sp
fied more accurately by interpolating the timestn* at which
discontinuities in electromagnetic field are actually emitte

x 
0 = c t  

x 
1

O1

S

M

O2

Φ(5)
   

Φ(4)
   

Φ(3)
   

Φ(2)
   

Φ(1)
   

1

0

0

1
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∗

τ2
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∗

FIG. 3. Discontinuities in the amplitude of the electromagne
field at times,t1* ,t2* , . . . ,tN* , propagate on 3D hypersurfaces
space-time that define the space-time grid.
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For each satellite,s, an interpolated hardware time,th* , and
corresponding interpolated phase of pseudorandom codeF,
can be associated with a real numberh

th* 5
F

vs

N

5
2p

vs
~h21! ~31!

where vs is given by Eq.~18!, tn* <th* ,tn11* and n<h
,n11, see Eq.~25!. The real numberh is the interpolated
value of the code bit integer numbern. Associated with the
interpolated hardware time,th* , there is a continuous family
of coordinate 3D hypersurfaces analogous to those in
~26!:

V„xs
i ~th* !,xj

…50. ~32!

The continuous parameterth* labels the 3D hypersurface tha
has code phaseF and is defined by coordinatesxj that sat-
isfy Eq. ~32!. On each 3D hypersurface, the phaseF has the
value

F5
vs

N
th* ~33!

wherevs is given by Eq.~18!. The hardware timeth* of an
emission event at the satellite is related to coordinate t
ts5xs

0/c in the ECI frame of reference by the satellite clo
correctionDth*

ts5th* 1Dth* . ~34!

In terms of coordinate time of emission, the phase broad
by satellites is then given by

Fs~ t,r !5
vs

cN
@xs

0~ t,r !2cDth* # ~35!

wherevsDth* /N represents a phase offset due to the fact t
satellite clocks keep hardware time, which is an approxim
tion of coordinate timets5xs

0/c. The broadcast phase func
tion satisfies the eikonal equation@26#

gi j
]Fs

]xi

]Fs

]xj
50 ~36!

where gi j are the contravariant components of the me
given in Eq. ~10! ~no sum ons). The phase functionFs

depends on the invariant world line of the satellite,xs
i (t* ).

From Eq.~36! it is clear that under Lorentz transformation
or generalized coordinate transformations, the phaseFs(t,r …
transforms as a scalar@29#. The form of Eq.~36! shows that
the wave vector associated with the phaseFs , k i
5]Fs /]xi , is a null vector. The wave vectork i can be re-
lated to the covariant derivative of the world function
space-time,V(T,R), between emission eventT5(tT ,rT)
and reception eventR5(t,r ). The direction of the wave vec
tor k i is the same as the direction of the covariant derivat
of the world function,V i R

, where the derivative is taken wit
06300
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respect to R. This can be seen from the identityV
5gi j (R)V i R

V j R
50, since the geodesic connecting poin

T5(tT ,rT) andR5(t,r ) is null.
A world line is an invariant geometric quantity@23#. For

the limiting case of a satellite in Minkowski space-time, t
time componentts of the satellite world line in Eq.~35!
defines a scalar field,ts5ts(t,r …, that is given by the implicit
equation

ts(t,r …5t2
1

c
ur2r s„ts~ t,r ……u ~37!

where r s(ts) is the ephemeris of the satellite. It is easy
check that this particular form forts(t,r ) in the phase func-
tion Fs(t,r ) in Eq. ~35! satisfies the eikonal Eq.~36!.

For the actual case where we take into account the Ea
gravitational field, the light cone equation is given b
V(T,R)50, whereV is the world function given in Eq.
~28!. Writing the world function in Eq.~28! in the form

V52
1

2
~11a!~x02xs

0!21
1

2
~11b!~rÀr s!

2 ~38!

wherea and b are small quantities, the scalar phase fie
Fs(r,t… in Eq. ~35! can be written in terms of the functio
xs

0(x0,r ) that is implicitly given by

xs
0~x0,r !5x02S 11

1

2
~b2a! D urÀr s„xs

0~x0,r !…u ~39!

where we have kept only linear terms ina andb. Note that
a andb are two-point functions that depend on space-ti
pointsT5(xs

0 ,r s) andR5(x0,r ).
An event in this space-time can be uniquely labeled

four real hardware times, (t1* ,t2* ,t3* ,t4* ), or alternatively
by dimensionless real numbers, (h1 ,h2 ,h3 ,h4), where each
hs gives the continuous code parameter at emission time
satellites. This system of coordinates has been studied
Synge who called them optical coordinates@23#. More re-
cently, these same coordinates have been called GPS co
nates and their theoretical properties of have been explo
in some detail@13,14#.

At any time, a GPS user has more than four satellites
view, so in the real implementation of the GPS system
coordinates, they are multiple valued. Since the satellite
nals are line of sight, a GPS user sees satellites rise an
on the horizon, and a different set of four satellites defin
the 3D hypersurfaces. There are currently approximately
satellites in the GPS constellation, and 37 code seque
possibilities @21#, so at most, the numberss
51,2,3, . . . , 37.

In our discussion, we have neglected atmospheric effe
In practice, for users of GPS in the Earth’s atmosphere, th
exist significant propagation delays as well as frequency
persive effects. The Earth’s troposphere~atmosphere from
the ground to approximately 10 km! causes the same tim
delay for bothL1 andL2 frequencies. On the other hand, th
Earth’s ionosphere~60 km to 700 km altitude! is dispersive
at these frequencies, due to the presence of free elect
5-8
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and hence causes two different delays for theL1 and L2
frequencies. A first principles treatment is possible, followi
Synge@23#. However, in practice, simpler methods are us
for correcting for both of these effects in GPS receivers@21#.
Atmospheric effects will not be considered further he
However, we note that signal propagation through the~fre-
quency dispersive! atmosphere leads to a removal of the d
continuity in the electromagnetic tensorFi j . Hence, the dis-
persive effects of the atmosphere limit the accuracy of G
for a ground user because the code edge is not sharp
signal propagation. The magnitude of this effect has not b
investigated. Also, the finite size of the transmitting anten
also leads to a code edge that is not sharp@15#.

VI. PSEUDORANGE MEASUREMENT

A GPS receiver makes a special type of measurem
called a pseudorange measurement, in which the Dop
and gravitational frequency shifts are essentially remo
~up to an additive constant! from the measurement. A GP
receiver internally replicates~generates! the satellite P-code
s(t) for each satellite. The receiver determines which sa
lite signal it is receiving by matching the internally replicat
P-code with the code received from the satellite. In w
follows, we describe the pseudorange measurement mad
a GPS receiver by using a mechanical analogue. Our
chanical analogue of a GPS receiver has two code whe
numbered 1 and 2, see Fig. 4. During operation of the
ceiver, both code wheels advance at the same angular v
ity, VR . The receiver will align the code incoming from th
satellite with the code on wheel 2. The code arriving is like

0
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0
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0
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0

0

0

1
1

1

1

1 1

1

1 1

1

1

1

1

1

0

0

0

0
0

1

1

1
1
1

1

1 1

∆Φ

ΦR ΦS

satellite

code 

phase 

offset

GPS Receiver

  current

code phase

  current 
code phase

*

  code aligned
with satellite code

wheel 1 wheel 2

code from 
  satellite

FIG. 4. A mechanical analogue of a GPS receiver tracks
code broadcast from a GPS satellite. The receiver has two c
wheels. The phase angle of code wheel 1 represents the curren
in the receiver. The phase angle of code wheel 2 is kept alig
with the incoming code sequence from the satellite.
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bicycle chain that is to be placed onto the sprocket~code
wheel 2!. In order to align the codes, the receiver must ma
the rate~frequency! at which bits are arriving as well a
match the duration of each bit. In general, the receiver ha
non-zero velocity in the ECI frame and it is at a differe
gravitational potential than the transmitting satellite. At a
instant in the receiver’s comoving frame, the frequency
code bits received from the satellite isf R5vR/2p, wheref R
is the number of received bits per second of the codes(t* ).
To align the codes, this frequencyvR must be made equal to
vo , which is the frequency seen in the comoving frame
the receiver, given in Eq.~20!.

The temporal duration of the bits on code wheel 2 and
temporal duration of incoming bits from the satellite a
made equal by adjusting the radiusr w of code wheel 2. Code
wheel 1 is adjusted to the same radius as code wheel 2. I
code wheel has a circumference equal to 2pr w , the length
per bit along the the circumference is 2pr w /N, where there
areN bits in the code. In order to match incoming bits, t
code wheel must have a linear velocity 2pr wf R /N
5r wVR . The angular velocity of the code wheel is the
VR5vR /N. This angular velocity of the code wheel, an
consequently the frequency at which the replicated cod
generated,vR , will be adjusted continually and depends o
the motion of the receiver and satellite, so that the replica
code is constantly aligned with the code arriving from t
satellite:

vR5vo . ~40!

Therefore, a GPS receiver searches in time~aligns code
phase on wheel 2 with incoming code! and in frequency
~adjustment ofr w to make temporal length of bits on wheel
equal to satellite bits!. This alignment of the code is com
monly referred to as ‘‘code tracking’’ or ‘‘code lock.’’

At any instant in time, code wheel 1 has a current value
phase,FR , which is indicated by the pointer, see Fig. 4. T
value of the replicated phaseFR on code wheel 1 is a rep
resentation of the receiver’s current hardware time,tR* . The
phaseFR and receiver clock hardware timetR* are related by

FR5
vs

N
tR* ~41!

wherevs is a system constant given by Eq.~18!. The system
constantvs is a conversion factor from hardware time,tR* ,
to phaseFR . A key point is that during ‘‘code tracking’’ the
phaseFR on code wheel 2 is adjusted to keep pace with
incoming code from the satellite, but this is done by adva
ing the timetR* , and not by changing the frequencyvs ,
which is a fixed constant in the system.

The replicated phase in the receiver can be related to
receiver’s world line by writing the hardware timetR* in
terms of the coordinate time along the receiver’s world li
in the ECI frame,xR

0 ,

xR
05c~tR* 1DtR* ! ~42!

e
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ime
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whereDtR* is the time correction to the receiver’s hardwa
time, commonly called a clock bias. The receiver time,tR*
5hT/N, is periodic, tR* 1T5tR* , where T51 week @the
period of the P-codes(tR* )], and h is a real number 0<h
<N, which corresponds to the interpolated value of the
numbern in the P-codes(tR* ), see Fig. 4. This periodicity in
tR* does not introduce any ambiguity because it is assum
that a GPS user is located within one light week dista
from the Earth. Using Eq.~42! the receiver phase,FR , can
be related to the geometry by

FR5
vs

cN
~xR

02cDtR* !. ~43!

On code wheel 2, the receiver has the replicated code~for
a given satellite!. This replicated code is rotated back a
forth on code wheel 2 until it is aligned with the code pha
Fs(tR ,rR) arriving from the satellite, whererR is the posi-
tion of the receiver. As described above, at all times
phase on code wheel 2 is aligned with the incoming co
phase, in both time~angle of the wheel! and frequency or bit
duration~radiusr w is adjusted!.

The pseudorange measurement made by a GPS receiv
space-time point (tR ,rR) is the difference of the phases o
code wheel 1 and 2@30#

DF~ tR ,rR![FR2Fs~ tR ,rR! ~44!

whereFR is the curent value of the replicated code phase
the receiver~on code wheel 1! andFs(tR ,rR) is the value of
the broadcast phaseF(t,r ) for satellites @given in Eq.~35!#
evaluated at the receiver at space-time measurement
(tR ,rR). The phase difference,DF(tR ,rR), is a bonafide
measurement@29# because it is a comparison~a difference!
between the value of the scalar field at the receiv
Fs(tR ,rR), and the replicated code phase,FR . The mea-
sured difference,DF(tR ,rR), is commonly expressed in
units of length and is called a pseudorange measurem
from receiver to satellites:

rs5c
N

vs
@FR2Fs~ tR ,rR!# ~45!

wherers is the measured pseudorange in units of length
The measured pseudorange,rs , is a scalar under genera

ized coordinate transformations~e.g., under Lorentz transfor
mations! because the phase functionFs(t,r ) is a scalar field
andFR is an invariant that depends on the world line of t
receiver. The pseudorange depends on both the world lin
the satellite and the world line of the receiver, which a
invariant quantities. The world line of satellites, xs

i (t* ),
enters into the definition of the scalar fieldFs(t,r ), see Eq.
~35!. The world line of the receiver enters into the value
the phase of the replicated code,FR , see Eq.~43!. The
world line of the receiver also enters into the evaluation
the scalar fieldFs(t,r ) at the position of the receiver at eve
R5(tR ,rR). Therefore, the pseudorange measurement,rs , is
a two-point scalar that depends on the emission eventT and
the reception eventR. The pseudorange is a particular case
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quantities known as two-point tensors, which depend on
space-time points, and have tensorial transformation pro
ties with respect to generalized coordinate transformati
~that can differ! at each point@23#. Therefore, the pseudor
angers is a two-point scalar under separate generalized
ordinate transformations atT5(tT ,rT) and at R5(tR ,rR)
and can be labeled asr(tT ,rT ,tR ,rR) @23#. The world func-
tion of space-time,V(x1

i ,x2
j ) given in Eq. ~28!, is a well-

known two-point scalar, and not surprisingly, the pseud
ange and the world function have the same transforma
properties.

Two-point scalar fields enter into measurement situati
whenever there is a field generated at space-time poinT,
such as an electromagnetic field, and a measurement orpro-
jection is done at the measurement event at space-time p
R. In this sense, there is some similarity between a relati
tic treatment of measurement processes and a quantum
chanical treatment, which is mentioned in the Introductio
In the case of relativity, a measurement of a field is a proj
tion of the field onto an observer’s tetrad@23,31#. In quantum
mechanics, traditionally projection operators are invoked
the definition of measurement@32–34#.

VII. TIME TRANSFER AND NAVIGATION
IN SPACE-TIME

The measured pseudorange,rs in Eq. ~45!, can be related
to the geometric range between the emission evenT
5(tT ,rT) and the reception eventR5(tR ,rR) by using Eq.
~43! for FR and evaluating the broadcast phaseF(t,r ) for
satellites @given in Eq.~35!# at the reception eventR, leading
to

rs5urRÀrTu1cDtT* 2cDtR* 1D~rT ,rR! ~46!

where we have setDtT* 5Dth* . In Eq. ~46!, urRÀrTu is the
geometric range between eventsT andR, DtR* is the clock
correction to the receiver clock at eventR, and cDtT*
5xs

0(T)2cts* (T) is the satellite clock correction at eventT.
The satellite clock correction,DtT* , is broadcast by the sat
ellite in the navigation message contained in the funct
D(t* ), see Eq.~23!. Conventionally, the pseudorange
modelled@9–11# in flat space-time asrs5urRÀrTu1cDtT*
2cDtR* . The termD(rT ,rR) is a small correction due to th
presence of the Earth’s gravitational field that modifi
space-time geometry near Earth. This correction depend
the mass of the Earth,M, the angular velocity of Earth rota
tion, V, and the Earth’s equatorial radius,R, and is given by

D~rT ,rR!5
2GM

c2 S L~rT ,rR!2
urRÀrTu

R D2
V2R2

c2
urRÀrTu

~47!

where the purely geometric functionL(rT ,rR) is given in
Eq. ~29!. The quantity 2GM/c2'0.89 cm is the gravitationa
radius of the Earth, andV2R2urRÀrTu/c2'4.831025 m, us-
ing urRÀrTu'a2R, wherea is the semimajor axis of the
5-10
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GPS satellites. The pseudorange in Eq.~46! is based on the
metric in the ECI frame of reference, which is given in E
~10!.

If a user of the GPS knows their spatial coordinates in
ECI frame,rR , then a single pseudorange measurementrs to
one satellite is sufficient to determine the users timetR from
Eq. ~46!. In Eq. ~46! rT5r s(tT), wherer s(tT) is the broad-
cast satellite ephemeris evaluated at transmit timetT that
satisfies

V„tT ,r s~ tT!,tR ,rR…50 ~48!

where V(tT ,rT ,tR ,rR) is the world function given in Eq.
~28!. Therefore, Eqs.~46! and~48! can be solved numerically
for the user’s reception event timetR , which is a coordinate
time in the ECI metric in Eq.~10!.

The more common case is that a user of the GPS wan
obtain time but he knows his spatial coordinates in the EC
frame of reference,y5(y1,y2,y3). The user’s ECI frame co
ordinates,rR5(x1,x2,x3), are given by

rR5D~ tR2t0!•y ~49!

whereD(t2t0) is a time-dependent rotation matrix, which
equal to the unit matrix at epoch timet5t0, see Eq.~3!. In
this case, to obtain the user’s timetR at the reception event
rR in Eqs. ~46! and ~48! must be eliminated by use of Eq
~49!. Equations~46! and ~48! can be solved fortR .

Navigation in space-time means the simultaneous de
mination of the user position and time, i.e., determination
the space-time coordinates of the reception eventR
5(tR ,rR). Navigation can be carried out by simultaneous
measuring four pseudoranges,rs , to four different satellites,
s51,2,3,4. It is clear that four simultaneous equations of
form in Eq. ~46! can be solved for the four coordinate
(tR ,rR) that specify the user reception event in the E
frame. Typically, a GPS user on Earth wants to know th
coordinates in the ECEF frame of reference. The user m
determine the coordinate time of emission for one sate
from Eq. ~48! and use it in the transformation Eq.~49! to
determine user ECEF coordinatesy5(y1,y2,y3) @35#.

VIII. RESOLUTION OF THE TWO
RECEIVER EXPERIMENT

If two receivers are at the same eventM in space-time,
and they are tracking the same four satellites, do the rec
er’s measure the same pseudorange? Also, do they obtai
correct space-time coordinates for the eventM? The resolu-
tion of the two receiver thought experiment, which was d
scribed in Sec. II, is now clear. The value of the phase
ceived from each satellite,Fs(tR ,rR), is the same for each
receiver, independent of their velocities, becauseFs(t,r ) is a
scalar field. However, the value of the hardware time
each receiver, and therefore the current replicated c
phase,FR , is different for each receiver. This difference
due to the different clock biasDtR* of the two receivers. We
can then say that each measured pseudorange is an inv
under coordinate transformations; however, the pseu
anges~to the same satellite! are different for each receive
06300
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because they depend on receiver world lines. For naviga
purposes, even though the set of pseudoranges are diffe
for each of the two receivers, the clock bias for each rece
is determined in the course of solving the four equations
Eqs. ~46! for s51,2,3,4. Therefore, while each receiver o
tains a different set of four invariant pseudoranges to th
same four satellites, each receiver obtains the correct sp
time coordinates of the reception eventM5(tR ,rR).

IX. SUMMARY

We used a two-receiver thought experiment in Sec. II
motivate the need to understand the transformation pro
ties of the measured pseudorange; the quantity that is m
sured in the GPS.

Starting from the weak field approximation for the metr
of space-time in the vicinity of the Earth, we used the sta
dard transformation to the rotating frame, and defined a n
coordinate time so that coordinate time on the geoid surf
is equal to proper time. Then we transform from the EC
frame to the ECI frame, to obtain the metric that describ
the ECI frame of reference near the Earth, given in Eq.~10!.
In this metric, due to a combination of gravitational and tim
dilation effects, the GPS satellite clocks appear to run f
with respect to coordinate time. We described the ‘‘facto
offset’’ that is routinely applied to slow down the satelli
clocks to ~approximately! keep coordinate time in the EC
frame. In Sec. IV B, for the metric in the ECI frame given
Eq. ~10!, we derived the apparent frequency of the satel
signal seen by an observer at an arbitrary position mov
with an arbitrary velocity, due to Doppler and gravitation
potential differences, see Eq.~20!.

We described the nature of the digital signal~P-code! that
is broadcast by GPS satellites, and the space-time grid
ated by GPS satellites due to the discontinuities in the bro
cast electromagnetic field. We computed the world funct
of space-time, given in Eq.~28!, for the ECI metric in Eq.
~10!. Using this world function, we defined a scalar pha
field Fs(t,r ), given in Eq. ~35!, that satisfies the eikona
equation. This phase field is seen in the same way by
observers, independent of their state of motion. Using
phase field, and a mechanical analogue for a GPS rece
we defined the measured pseudorange in Eq.~45!, and found
that under generalized coordinate transformations it tra
forms as a two-point scalar, just like the world functio
Within the geometrical optics approximation, there are
velocity effects on pseudorange measurements. Finally,
related the measured pseudorange to the geometry of sp
time in Eq. ~46!. We obtained a small correction, given b
D(rT ,rR) in Eq. ~47!, to the conventional model of the pseu
dorange. This correction is due to the curvature of space-t
in the vicinity of the Earth.
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APPENDIX A: CONVENTIONS AND NOTATION

We use the convention that roman indices, such as fo
on space-time coordinatesxi , take the valuesi 50,1,2,3, and
greek indices take valuesa51,2,3. Summation is implied
over the range of an index when the same index appears
lower and upper position. Ifxi and xi1dxi are two events
along the world line of an ideal clock, then the proper tim
interval between these events isdt5ds/c, whereds is given
in terms of the space-time metric asds252gi j dxi dxj . We
choosegi j to have the signature12, so whengi j is diago-
nalized at any given space-time point, the elements can
the form of the Minkowski metric given byh00521, hab
5dab .

APPENDIX B: DOPPLER EFFECT IN EARTH’S
GRAVITATIONAL FIELD

A satellite at spatial positionr s and travelling at velocity
vs emits a signal in its comoving frame with frequencyvs .
An observer at spatial positionro and travelling at velocity
vo measures the frequency of this signal to bevo in his
comoving frame. These frequencies are related by Eq.~20!.
This relation can be derived by evaluating@23#

vo

vs
512

V i s
Vi s1V i o

Vi o

V i s
Vi s

~B1!

whereV i s
andV i o

are the covariant derivatives of the wor

function with respect to satellite and receiver coordinatesxs
i

andxo
j , respectively, andVi s andVi o are the components o

the 4-velocities of the satellite and the receiver at space-t
points S5xs

j 5(tT ,rT) and O5xo
i 5(tR ,rR), respectively.

The form of Eq.~B1!, together with the transformation prop
erties of the world function, shows that the quantityvo /vs is
a two-point scalar under generalized coordinate transfor
tions. We have computed the world function in Eq.~B1!,
V5V(xs

i ,xo
j ), and it is given in Eq.~28! for the metric

given in Eq.~10!. To obtain an explicit expression forvo /vs
we use an alternative derivation@23#. Consider the satellite
and observer world lines,xs

i (ss) and xo
i (so), which are pa-

rametrized by proper timesss /c andso /c, respectively, see
Fig. 5. The linesAB andCD are null geodesics that conne
satellite and receiver world lines, at successive cycles of
emitted signal.
s

et
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The frequency ratiovo /vs is related to the proper times

vo

vs
5

dss

dso
~B2!

where dss is the proper time betweenAC and dso is the
proper time betweenBD. Using the metric in Eq.~10!, the
ratio of frequencies can be written as

vo

vs
5

dss

dso
5F g00~S!1gab~S!vs

avs
b

g00~O!1gab~O!vo
avo

bG 1/2
Dxs

0

Dxo
0

~B3!

where the emission and reception events are connected
null geodesic, so thatV(S,O)50. In Eq.~B3!, gab(S) is the
metric on the satellite world line at eventS, gab(O) is the
metric on the observer world line at eventO, andvs

a andvo
a

are the velocity components of satellite and receiver, foa
51,2,3. For example, the satellite velocity isvs

a

5Dxs
a/Dxs

0 , where Dxs
0 is the coordinate time betwee

eventsAC on the satellite world line. In the limitDxs
0→0

~and thereforeDxo
0→0), using the world function in Eq.~28!

to connect pointsAC andBD, a lengthy calculation of Eq
~B3! using the metric in Eq.~10! leads to Eq.~20!. The term
Dxs

0/Dxo
0 in Eq. ~B3! leads to linear velocity terms in Eq

~20!.

Observer

Satellite

xi
o(so)

xi
s(ss)

B

A

D

C

∆ x0
o

∆ x0
s

FIG. 5. The world line of satellite and receiver are shown
gether with the 3D hypersurfaces of constant phase between p
AB andCD.
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