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Relativity of GPS measurement
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The relativity of Global Positioning SystefGPS pseudorange measurements is explored within the geo-
metrical optics approximation in the curved space-time near Earth. A space-time grid for navigation is created
by the discontinuities introduced in the electromagnetic field amplitude byibede broadcast by the GPS
satellites. We compute the world function of space-time near Earth, and we use it to define a scalar phase
function that describes the space-time grid. We use this scalar phase function to define the measured pseudo-
range, which turns out to be a two-point space-time scalar under generalized coordinate transformations.
Though the measured pseudorange is an invariant, it depends on the world lines of the receiver and satellite.
While two colocated receivers measure two different pseudoranges to the same satellite, they obtain the correct
position and time, independent of their velocity. We relate the measured pseudorange to the geometry of
space-time and find corrections to the conventional model of the pseudorange that are on the order of the
gravitational radius of the Earth.
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I. INTRODUCTION related aspect: the transformation of GPS pseudorange mea-
surements. A remarkable aspect of the GPS is that a re-
Clock synchronization algorithms play a key role in ap- ceiver need not be stationary with respect to the Earth’s sur-
plications such as communication, message encryption, arfdce to obtain accurate time and position. A ship, a jet
navigation. Recently, there have been a number of proposealrcraft, or a low-Earth-orbit satellite can each compute ac-
clock synchronization algorithms based on a quantum inforeurate time and position, even though they have different
mation approaclil—8]. These discussions have been basedrelocities. This feature of the GPS is a consequence of two
mostly on nonrelativistic quantum mechanics. In many ap-aspects: the signal structure of the satellite broadcasts and the
plications, however, clock synchronization must be perspecial type of measurement that a GPS receiver makes. The
formed between two nodes that are in relative motion, suclGPS satellite signals set up an invariant grid of
as a jet aircraft and the ground, or between two nodes th&-dimensional space-time hypersurfag¢kght cones. Each
are at different gravitational potentials, such as a satellite anHypersurface is uniquely marked by the satellite that gener-
the ground, or even two satellites at different altitudes. Inated the hypersurface and by the space-time coordinates of
such cases, a correct treatment of quantum clock synchronihe event of generation of the light cofi3,14]. By measur-
zation must include relativistic effects from the start. Theing the pseudorange to four satellites, the GPS receiver es-
well-known tension between quantum mechanics and relativsentially determines its position by identifying the four hy-
ity theory makes this a difficult task. It is clear that the con-persurfaces that it intersects. The pseudorange measurement
cepts of measurement, and transformation of measurable independent of receiver motion, up to an additive constant.
quantities under Lorentz transformations, play a key role irFor this reason, the measured pseudorange may be called a
the problem of clock synchronization for both quantum andLorentz pseudo-invariant. Below, we will see that the pseu-
classical schemes. However, the transformation of measudorange is actually a two-point scalar under generalized co-
able quantities has not been discussed even for the case afdinate transformations. The transformation properties of
classical clock synchronization. In this article, we analyze inthe pseudorange is a key element of the GPS, yet this subject
some detail the relativity of clock synchronization in the has only briefly been mentioned in the literat{ié].
Global Positioning SystertiGPS, which is based on a clas- In order to present a coherent description of the transfor-
sical synchronization scheme. In particular, we describe thenation properties of the pseudorange, we must deal with the
transformation properties of the measured quantity called thaature of the broadcast GPS signals, the relativistic effects
pseudorange in the GHS-11]. We hope that clarifying the that impact these signals, as well as the measurement process
transformation properties of measurable quantities in classitself. Therefore, the outline of this article is as follows. In
cal clock synchronization will provide some useful insight Sec. Il we present a two-receiver thought experiment to
into the problem of quantum clock synchronization. clarify the concept of invariance of pseudorange measure-
The Global Positioning SystetGPS is a U.S. military  ments. Section lll contains a description of the space-time
constellation of satellites used for time keeping, and for navimetric in the vicinity of the Earth. Section IV describes the
gation of land, air and s€8-12). Recently, two papers have relativistic effects on the GPS satellite clocks and on the
analyzed the system of space-time coordinates that is used @bserved signals, using the metric in Sec. Ill. Section V dis-
the GPS[13,14. In this paper, we address a different but cusses the nature of the GPS broadcast signals, which are
used to set up the space-time grid. Section VI discusses the
pseudorange measurement process, using a mechanical ana-
*Email address: bahder@arl.army.mil logue for a GPS receiver. The transformation properties of
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position and time from different input information? The key
concepts are the space-time grid that is created by GPS sat-
A ellites and the transformation properties of the measurable
quantity in the GPS, which is called the pseudorange. These
two themes are developed in the following sections.

X0=ct

M lll. CHOICE OF METRIC

In order to discuss relativistic effects, a reference frame or
system of coordinates must be chosen. In the weak field
limit, the metric of space-time in the vicinity of the Earth is
of the form[17]

(dx®)2+

o 2 2
—dszzgijdXIdX]:—(l+—2V 1——2V
C C

/ \ X[(dxh2+(dx®)?+(dx®)?], (D)
Ol 02 where V is the Newtonian gravitational potential and
(x%x*,x?,x%) are the coordinates. The frame of reference in

g. (1) can be thought of as an Earth-centered ine(&atl)
rame. We neglect small off-diagonal terrgg,, «=1,2,3,
due to the rotation of the Earth.

In general relativity, the coordinates are mathematical en-
ities that are never directly observed. However, it is useful

0 choose the coordinates in some physically meaningful

1 x2,x3 are geocentric coordinates,

FIG. 1. The world lines of two receiver§); andO,, are shown.
The receivers are tracking the same four GPS satellites. At event
the receivers coincide in space-time but have different velocities.

the pseudorange are obtained in Sec. VI. Section VII con-
tains a brief discussion of navigation and time transfer usiné
GPS signals. A correction is derived to the conventional fla i
space-time model of pseudorange. Section IX contains #ay. The coordinatex’,x

summary and comments. wherex3 coincides with the Earth’s axis of rotation and in-
creasing positive values point to North. The Earth is mod-
Il. TWO RECEIVER EXPERIMENT elled as an oblate spheroid with Newtonian potential given
by [18]

In order to make clear the concept of transformation of
pseudorange measurements we offer a simple thought ex- M R\?2
periment. Consider two identical GPS receivers that are in v(r,0)=——— 1_32<T> Pal cos(6) ], 2
relative motion. For example, one receiver is stationary with
respect to the Earth's surface and the other is on a jet aircraffnere 2= (x1)2+ (x2)2+ (x3)2 and 6 is the polar angle
travelling at 1000 km/h. Each GPS receiver carries an idenmeasured from the® axis. In Eq.(2), G is Newton’s gravi-
tical copy of the software that is used to compute receivetstional constantM is the mass of the EarthP,(x) = (3x2
position and time. Assume that each receiver is tracking the. 1)/2 is the second Legendre polynomiRljs the Earth’s

same four GPS satellites. See Fig. 1. Assume the two receiysqyatorial radius, and, is the Earth’s quadrupole moment,
ers’world lines cross at an eveltin space-time. Does each |\ hose value is approximatell,=1.08< 10~3, see Table .

receiver compute the same spatial position and time for thgnhe metric in Eq(1) is the solution of the linearized Einstein
coincident eventM? From a physics standpoint, the GPS

satellites orbit the Earth at approximately 8.37 km/s, anJ'?ld equatpn:{l?]. In Eq.(l), the cpordlnate time has no
there are large Doppler frequency shifts due to satellite analmple relation to the time kept by ideal clocks on the surface
receiver motior{16]. In the GPS, the actual computation of of the Earth. . . . . . .
receiver position and time depends on the space-time coo The coordinate time can be given a simple interpretation

dinates of the signal emission evéat the satellite x., and [)y transformmg' the metric in I.chl) tio ro.tatmg Earth-
. . i S centered Earth-fixe(ECEP coordinates/', using the trans-
reception eventat the receiver x,. In an Earth-centered

) ! ) . . formation
inertial (ECI) frame, these coordinates axe andx; how-

ever, in the receiver's comoving frame the emission and re- =
ception events have different coordinates, géyandx,'.

The two sets of coordinatesxy, x;) and .', x;'), for i Wl cos( 2—0) 1 (2—0) 2
=0,1,2,3, are related by a Lorentz transformation, which de- y )y
pends on receiver velocity with respect to the ECI frame.
The actual electromagnetic field is different in each receiv- x2= sin( @0
er's comoving frame, so there is different input information

into each identical measuring devigeceiver computer pro-

gram. How can the two receivers compute the same spatial x3=ys. 3
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TABLE I. The numerical constants and values used in the calculations. Values taken fronh9Rafsd

[20].

Symbol Definition Value Units
GM gravitational constant times Earth’s mass 3.98600441* (JGM-2) m3/s®
c vacuum speed of light 2.997924880° (exact definition m/s
Q angular velocity of Earth rotation 7.29211514670 ° (WGS-84  radian/s
R mean Earth radius at the Equator 6.3781868° (JGM-2 m
Js Earth’s quadrupole moment 1.08262690 ° (JGM-2) 1
a GPS orbit semimajor axis 26561.X30° (Ref.[19)) m
vs/c=\GM/a/ ¢ GPS satellite velocity/ 1.29217% 10 ® 1
GM/RE gravitational potential scale 6.953440 1° 1

Note that the coordinate time in the rotating frarny8, is

equal to the coordinate time in the ECI fram@ In these
ECEF rotating coordinates, the metric is given by

2V 0?2 2V 02
—d$=—| 1+ 5~ S [(yH2+ ()2 + 5 5 [(yh?
c C c- C

+<y2>2]}<cﬁ°>2+ ( 1- %) [zgwldy?—yzdyl)
c

xd?’+<dy1)2+<dy2>2+<dy3>2}. (4)

From Eq.(4), we see that there exist geopotential surfaces,

d(yhy?,y®)=c, wherec is a constant,
1.,,2,,3 1 2 1\2 2\ 2
By y=y? ) =V= S QT (y) "+ (y)7] &)

where stationary clocks in the ECEF franfihat satisfy
dy*“=0) have the same rate of proper tirde=ds/c with
respect to coordinate timg® [19]. In other words, ideal
clocks located at the same value of geopotentidiave the
same rate with respect to coordinate tigfe We have ne-
glected the small cross-termVR?R?/c*~10 2%,

Using the observation that clocks at a constant value of
geopotential run at the same rate, it is advantageous to define

[19] the new coordinate time

bo

C2

o

C2

ct=x0=yo=| 1+ =2 |y°=| 1+ —|X° (6)

where ¢, is the value of the geopotentid on the Earth’s
equator, ath= /2 andr=R:

1

GM 1
1+ —Jz) - EQZRZ. (7)

Po= "R |M2

—ds?=—

1+ %<¢—¢o>]<dy°)2+(1— Zvid’")
C C

) 2v
X2 (ytdy*—y*dyhdy’+| 1~ —2) [(dy")?
c

+(dy?)?+ (dy*)?]. ®

Equation(8) gives the space-time metric in ECEF rotating
coordinates/'. Note that an ideal clock that is stationary in
ECEF coordinateswith dy*=0), has proper time

1/2
1
dr=ds/c= - dy®. 9)

2
S| T+ (4= o)

When this clock is located on the geoid, thér ¢,=0, and
dr=dy%c, so this ideal clock keeps coordinate timé,
=yY. Hence a good hardware clock that is on the geoid, and
stationary with respect to the rotating Earth, can be used as a
reference clock to keep coordinate time. Note that by(EQ.
the coordinate time in rotating ECEF coordinates is the same
as coordinate time in ECI coordinates, therefore, the same
clock keeps coordinate time in the ECI framxd, and coor-
dinate time in the ECEF framg?.

Using the coordinate time transformation in E§), the
metric in Eq.(1) becomes

—ds?=g;;dx'dx!

(dx%)%+

2 2
1+ g(v_(bo) 1_?V

X[ (dxH)?+ (dx?)2+ (dx3)?]. (10
Equation(10) gives the metric in ECI coordinates. The co-
ordinate time that enters into the metrid®, is the time kept

by ideal clocks on the geoid. This result was the goal of the
time transformation given in Ed6). Note, however, that in
the ECI frame metric in E(.10), the proper time intervals

on a stationary clock in ECI coordinatésith dx*=0), is

not equal to the coordinate time intenda® because in gen-

For the values of the constants in Table |, the dimensionlessralV# ¢, . The ECI coordinate metric, given in EQ.0), is

magnitude of this term ig,/c?= —6.96928<10 1°. Using
the transformation in Eq6), the metric in Eq(4) becomes

useful for computing the proper tingtr=ds/c elapsed on-
board a satellite clock, in terms of elapsed coordinate time.
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IV. RELATIVISTIC EFFECTS IN GPS polar anglef of the satellite. Similarly, we approximate the
satellite velocityvg by takingJ,=0 and assume a circular
(zero eccentricity orbit so thatvngM/acz. Expanding

The clocks in GPS satellites are at a higher gravitationakq (13) to first order in small quantitied/s/c? and ¢, /c?,
potential than the clocks on Earth. As observed on the Eartye have

this difference in the gravitational potential causes the oscil-

A. Satellite oscillator frequency offset

lators of GPS atomic clocks to appear to run fast, by frac- drg 3GM ¢,
tional frequencyf17] C—=l-—5-——=1+¢ (14
dax 2c‘a ¢

A —

fo_dimé (11)  where

w C2

GM 1 .,

where the approximate gravitational potentig= —GM/r, hoo= — TR EQ R (19

andr is the distance from the center of the Earth. Hebe,

and ¢, are the potentials at the satellite and on the earths the value ofg, whenJ,=0. Equation(14) gives an ap-
surface, respectively. For GP8,w/w~5.28<10 '° This  proximate expression for the rate of proper time on a GPS
effect causes the satellites clocks to run fast byu4Sper  satellite in circular orbit, with respect to coordinate tife
day. This is often called a gravitational redshift, but actually,in the metric in Eq.(10). We have dropped termegg 2/c?

itis a qugshift(toward higher frequencigs _ ~10 2 in Eq. (14), sincev?~10° andV/c?~10 20,

In addition to the gravitational frequency shift, the GPS  1hg ratio of the frequencies of oscillators is inversely pro-
satellites are moving. Consequently, as observed in the Ecaortional to the clock rateswegorq/ws=d7/dx?, where
frame, satellite oscillators exhibit time dilation due to their ®eo0rq iS the number of cycles elapsed as counted per unit of
veIO(_:it_y u_/c~_8.37 km/s. The time dilation effect in special .o rdinate timedx, andw, is the number of cycles elapsed
relativity is given by as counted per unit of proper tinter, on-board the satellite.
(12) Therefore, the oscillators of clocks on-board the GPS satel-

lites in circular orbit(taking J,=0)have a frequency shift

whereAt is the time interval in the ECI frame ant’ is the ~ [19]
proper time of a clock moving at speedin the ECI frame.

At=yAt’

For GPS satellitesy~1—v?/(2¢?)~8.33x 10 1%, With re- Ao wcoog— s 3GM @55 (16
spect to coordinate time in the ECI frame, the time dilation g wg 2c2a  ¢2 0
effect makes the satellite clocks appear to run slow by ap-
proximately 37us per day. Using the value of JGM-2 constarta0]
The typical GPS atomic clock stability is 1 part in 16,
so the effect of time dilation and gravitational redshift are So=+4.460963< 10 *°. 17

each about 1Dtimes larger, and therefore, both effects must .
must be taken into account. The net effect of time dilation!! the clocks on-board GPS satellites were allowed to run
and gravitational redshift is that the atomic clocks would runfreely,_ then Eg.(l4) SOhOWS that dgrmg one day of elapged
fast by 38us per day €45 us—7 ws). This is a huge ef- coordinate time Ax®, a satellite clock would gain

0_ - .
fect, which can be measured by the fact thatu38corre- C_(dTS/dX 1)X2.4 h. N(_)rr_unally, the GPS system is de-
sponds to a range error of 38,000 feet per day. signed to transmit the digital P-code at 10.23 MHz. How-

The actual value of the combined effect of the gravita—ever' Eq.(16) shows that if the oscillator in the satellite were

tional potential and time dilation on the frequency of the S€t 10 @s/2r=10.23 MHz, then_this code would appear to
satellite oscillator is computed using the metric in Exp).  have a higher frequencypeoora=(1+6)ws, as measured
During a coordinate timelx°, the satellite moves a spatial with respect to a clock that keeps coordinate time in the ECI

distancedx®, a=1,2,3. The proper time elapsed on the Sat_frame. If a clock is stationary in the ECEF frame, and is
ellite clock,dr.=ds/c, is related to elapsed coordinate time, '0cated on the Earth's geoid, it keeps coordinate titheand
dx°, by therefore the satellite clocks would appear to run fast to a

GPS user on the geoid. Consequently, in the GPS, the tech-
12 nical specifications for the satellite clocks include a fre-
v§ dx® quency “factory offset” that is applied prior to the launch of
the satellites. The actuaangulay frequency of the P-code
(13 that is broadcast by the satellite clock{ 2]

2 2V,
1+ ?(Vs_ ¢o)_ 1- 02

ds=cdrs=

whereVy is the Earth’s gravitational potential, given in Eq. ws=2m(1— ;) f, (18)

(2), evaluated at the position of the satellite am@

= 5a,,3(dx“/dx°)(dxﬁ/dx°) is the square of the satellite ve- where §,=+4.46x10 ° and f,=10.23 MHz are fixed
locity divided byc?. In Eq. (13), we take the Earth’s quad- GPS constants. With this frequency correction applied, the
rupole potential to be zerd,=0, which allows a circular satellite clocks approximately keep coordinate tixién the
orbit for the satellite and makesbr,/dx° independent of the ECI frame.
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However, satellite orbits cannot be made perfectly circuwherer, andrg are positions, an#, andvg are velocities
lar, so the GPS clocks are in a slightly eccentric orbit. This(divided by c), of observer and satellitésource, respec-
eccentricity of the orbit contributes an additional well-knowntively. In Eq. (20), r=|r,—r, v§=Vo-Vo, vgzvs.VS, and

period_ically spe.ed up and slow down with respect to coordi—(z), evaluated at the emission eveand reception ever®,
nate timex". This effect is often called the “e Sin E effect”

and depends on the position of the satellite in its orbit. Thi
clock correction is made in the GPS receiver in software, an
is given by[22]

gespectively. The unit vecton connects the emission and
aeception eventss and O:

lo—rs

n= ——. (21
2 . |I’0— rs|
Atr:—2 GMa esinE (19
¢ The dimensionless quantitiesa;=GM/c?R and p;
wherea is the semimajor axis of the satellitejs the orbital = *R*/2c®. The last term in the right-hand side of EG0)
eccentricity, ancE is the eccentric anomaly along the orbit. is given by the sum of two terms, which are related by inter-
For a typical upper limit oe=0.01,At,~23 ns. changes of subscripts “s” and “o0.” The scalar function

h(ry,rs,Ve,Vs) IS given by
B. Observed frequency shift

n- (Vo_Vs)

Equation(18) gives the frequency offset that is applied to h(Fo.Fa.Vg V) = 1 o Tols
a GPS satellite clock/oscillator so that it approximately keeps 0°7 81702 7s 1—(n-r)?| L " rr,
coordinate timex°, with respect to a reference oscillator that 0
is stationary in the ECEF frame and located on the geoid. Mo
Most users of the GPS do not satisfy these two criteria. For T (Vo= Vs) +
example, a user that is stationary in the ECEF frame on the © ©
geoid is moving in the ECI frame, and a user in an aircraft is (To- fs)(fo'Vo)}

3

above the geoid. Therefore, at any given time, a user typi-

cally sees a frequency shift that is different from the “factory Mo
offset,” given in Eq.(18). The actual measured frequency 5
shift of the satellite signal depends on user and satellite pd=0r @ GPS user on the surface of the Eart,<V,)/c
sitions in the gravitational field of the Earth, and also on user=5-3X 10 *°, and the GPS satellite velocitgivided byc)

and satellite velocitiegnot just user-satellite velocity differ- 1S vs=1.3X10 °. We also have thatr;~6.9X 10" *° and
ences. The reason that the frequency shift depends sepaB1~1.2x 10 * Therefore, in the derivation of E0), we
rately on user and satellite velocities is, of course, that spacéiave taken vs=0(1), Vs/c?=0(2), V,/c?=0(2), a;

time is not homogeneouspace-time is not flaecause of =0(2), and B;=0(2), where O(1)~10"°, and | have

the Earth’s gravitational field. dropped terms(4)~10"°.

Consider a satellite moving at velocity at gravitational The measured frequency is due to three types of terms.
potential V5. At eventS the satellite transmits an electro- First, there is a special relativistic Doppler effect that de-
magnetic signal of proper frequenay,, as measured with Pends on the relative velocity of the satellite and observer,
respect to a calibrated oscillator on-board the satellite. Argontained in the terms proportional tos(-v,)-n, and the
observer at ever® is at gravitational potentia¥, and has a term 3(vg—v2), which comes from expanding the special
velocity v,. The observer measures a signal having fretelativistic y factors for the satellite and observer. Next, there
quency w,, which is different fromw, because he is in is a frequency shift due to the difference in gravitational
motion and at a different gravitational potential than the satpotential of the observer and satellite, which is given by the
ellite. The emission evers and observer reception evedt  stand alone term\(s—V,)/c?. Finally, there are cross terms
are connected by a null geodesic. The quantifyws—1 is  that depend on products of satellite and observer velocities
a 2-point scalar because it depends on two space-time poin@nd the Earth’s masl.

SandO. A 2-point scalar transforms as a true scalar under As described in Eq(18), the GPS satellites have a built-in
separate transformations of coordinates at p&mand at  “factory offset,” 5,=4.46<10"*°. From Eq.(20) we see
point O [23]. Using the metric in Eq(10), a detailed calcu- that the observed frequency shift of the satellite signal due to
lation gives(see Appendix B gravitational potential differencesy{— V,)/c?, is on the or-

der of 10°1° and can vary depending on the altitude of the

(22

W, Vo=V, 1, R observer. In addition to this frequency shift, there is a Dop-
w—s—1=(vs—vo)-n 1+ 2 + E(Uo_vs)—"(vs'n) pler frequency shift that is much larger. For example, for a
jet aircraft travelling along the equator at approximately
A Vo—V. 1 1000 km/hour with respect to the Earth’s surface, the veloc-
+(Vg-N)2—a;— By |+ > 5 °+ —(vg—vg) ity (fraction ofc) with respect to the ECI coordinates can be

c 2 on the ordew ,~2x 10~ °, which is a factor of 5 10 larger

than the built-in factory offset. Similarly, for an observer
M[h(ro P Vo Vo) +h(Fe o Ve Vo)] (20) on-board a low-Earth orbit satellite at altitude 1000 km,

+
c?r whose orbit is in the plane of the equator, we hawe-v,|
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continuities in its amplitude at the

0 5

15 20 times, 75,75, .. . 7, Where the
pseudorandom P-code function
1 s(7*) changes sign. These discon-
O 0 N 0 0 0 o 0 0o 1 tinuities propagate on 3D hyper-
s@) o L5 T3 Gl T To  To[lglyly To| |Tp surfaces in space-time and define
b J |J the space-time grid.
s ‘ L =
0 5 10 15 20

TU  (hardware time)

~10 5. This frequency shift is on the order of 4@imes  carrier frequencies, ;= 154X w¢/2m~1575.42 MHz orL,
larger than the built-in factory offset. Of course the factory =120X w/27~1227.6 MHz. See Fig. 2. The; and L,
offset is applied to cancel out a secular effect—an effect thagarrier frequencies are integer multiples of the code bit trans-
leads to a constantly increasing discrepancy in time betweemission rate w¢/2m. We distinguish between proper time
satellite and coordinate time clocks, while the Dopgglao-  kept by an ideal clock, and hardware tim&, which is kept
tional) effect has a more complicated time dependence. Thby a clock that is a real physical device. The functigt)
point here is that the frequency of GPS signals, as seen by dakes the discrete values1l and +1, and represents the
observer, has huge frequency shifts due to observer motionligital P-code values 0 and 1 in the pseudorandom code,
Below, we describe how these frequency shifts are essemvhich is unique to each satellif@1]. There are exactl\N
tially removed—so that the actual measurements made by @109 values in the digital P-code sequence. The code
GPS receiver are independent of the velocity of the observesequence starts at midnight on Sunday and has a period of

(GPS receiver exactly one weeks(t+T)=s(t), whereT is one week.
Therefore, we can define a discrete phdsgfor the periodic
V. GPS SIGNALS: THE SPACE-TIME GRID function s(t) by
The GPS satellites broadcast electromagnetic signals that n—1
g g <1>(“):2w( ) (24)

set up a geometric space-time gf@¥]. Users of the GPS
that receive four satellite signals can uniquely identify their
position in the space-time grid. This grid is created by dis-wheren=1,2,3... N, is an integer that sequentially labels
continuities in the amplitude of the broadcast electromagthe bits in the code(t).
netic field. In Eq. (23), the functionD(7*) is a digital navigation

All the GPS satellites broadcast on two carrier frequenciesnessage that is broadcast at approximately 50 Hz. The mes-
in the L-band centered about;~1575.42 MHz andL, sage provides the satellite ephemeris and satellite clock cor-
~1227.6 MHz. The GPS satellites have helical antennas thaections in the form of two coefficienty andB. The clock
are constantly pointed toward the Earth’s center. Near theorrections essentially provide the conversion from hardware
antenna axigbore site the broadcast electromagnetic radia-time 7* to coordinate time in the ECI framg?, in the form
tion field is right circularly polarizedi15]. Superimposed on x°=A+B7*. The functionss(7*) andD(7*) are timed so
each satellite carrier signal is a unique code, or sequence tffiat changes between 0 and 1d(r*) occur at the same
digital bits that identifies the satellite that is broadcasting. Atpoint in time as inD(7*), i.e., the bit transitiongedgesin
a given time and spatial position in the comoving frame ofD(7*) align with those ins(7*). The functionD(7*) pro-
the satellite, one vector component of the electric field can bgides the broadcast ephemeris of each satellite.

written approximately as In the satellite comoving frame, the pseudorandom code,
s(7*), is broadcast at the factory adjusted angular frequency
E=D(7*)s(7)cos(q wsT™ + ¢) (23)  wq given in Eq.(18), as timed by the atomic clock on-board

each satellite. The frequency of the oscillatolock) on-
where ws is the P-code transmission frequency given in Eg.board the satellite has been lowered frognMHz to w /27
(18), 7 is the hardware time kept on-board the satellite by[see Eq.(18)] so that, as seen from the ECI frame of refer-
its local clock, andy is a phase associated with phase noiseence, the discontinuities in the amplitude of the electromag-
in the signal. The integey takes valuesj=154 orq=120, netic field occur at time intervals of approximatelf gLivith
to produce the broadcast signal that is transmitted on the twrespect to coordinate tima the metric given in Eq(10)
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[25]. Since the cods(7*) is timed according to the satellite
clock, the discontinuities in the code can occur at hardware
times 7 , n=1,2,3,..,N, where n sequentially labels the
(potentia) code edge discontinuities since midnight Sunday,
and N is the number of code bits in thg(7*) code. All
satellites have the same sequence of hardware tithesr
possible code-edge-emission events, given by

¢(5)

@
CD(3)
@

M 2g ot

x_ T n_
T“_wS/N ws(n 1) (25

where wg is a constant frequency given in E(.8) and n
=1,2,3,..,N is the bit number in the P-code sequence
s(7*). In the ECI frame of reference, the coordinates of the
world line of the antenna phase center for satedljte(7*),

can be parametrized by the satellite clock’s hardware time, S

M . o : -

7*. The world line of a Sate_lllte Is approximately a geodesic; FIG. 3. Discontinuities in the amplitude of the electromagnetic
however, forces on a satellite, such as solar pressure, and tﬁgl d at times.7* 7 +% . propagate on 3D hypersurfaces in
antenna phase center position differing from the satellite CeN: ace-time tl’;a'[l (’:Iezfi,n.e.t.h'e Ns,pace-time grid

ter of mass, lead to an effective world line that differs from a '

geodesic. The world line of the antenna phase center is pre-

cisely determined by ground tracking stations. Future points Q(x, xby=— E(Axo)z 14 2GM n O°R?
on the world line are computed and expressed in terms of 172 2 2 c2
classical satellite ephemeris parameters and Ahand B

clock corrections. This information is uploaded to the satel- 2GM 1 )
lite’s navigation message, which is transmitted to GPS users - m/\(fﬁz) +5(4n)

through the digital sequend2(7*).

It is well known that discontinuities in the emitted elec-
tromagnetic field tensor define invariant 3D hypersurfaces X
called characteristids23,26,27. In terms of the world func-

tion of the space-time, for each satellite, these hypersurfaces ) ) o .
are given by[28] where in Eq.(28) we use the following definitionsx}

=(x3,r1), X5=(x3,r5), Ax°=x3—x3 and|Ar|=|r;—ry,

(28)

1+ 2GM A( )
e r,r
clar] P

Q((7%),x)=0, n=123... N (26) an ﬁ)
2
A(rq,rp)=log g (29

wherex!(7*) is the world line of the satellite parametrized tan 72)
by satellite hardware time*, and the 3D hypersurfaces are
defined by their coordinates, j=0,1,2,3, that satisfy Eq. and 6, and 6, are defined by
(26) and are on the forward light cone, so thébxg(rﬁ).
Each hypersurface can be uniquely specified 4y, the Fa-(ro—ryq)
hardware time of satellite “s” and the bit numbarassoci- C080a=m, a=1.2. (30

ated with the(discontinuity new bit in the codes(7*). See

Fig. 3. For flat space-time with a Minkowski metric, E36)  |n Eq. (28), we have taken the small paramefgr=0.

reduces to Each GPS satellite broadcasts a set of 3D hypersurfaces
that form part of the coordinate grid, given in Eg@6). There

are approximately 24 satellites in the GPS constellation, and
all the hypersurfaces from these satellites comprise the GPS
space-time grid that is used to label events in this space-time.
The hypersurfaces are spaced approximatefy~197.75 ns

in coordinate time and 29.31 m in space; see the metric in
where 7;; is the Minkowski metric with nonzero diagonal EQ. (10). Since the coordinate hypersurfaces are so far apart

1 S o
5 X XTI = xe(77)]=0 (27)

components £ 1,+1,+1,+1), and there is no sum am in space and time, an event in this space-time can be speci-
A detailed calculation of the world function entering in fied more accurately by interpolating the timefs at which
Eq. (26) for the metric in Eq/(10) gives discontinuities in electromagnetic field are actually emitted.
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For each satellites, an interpolated hardware timej], and respect toR This can be seen from the identit§)
corresponding interpolated phase of pseudorandom dogde, =g”(R)QiRQJ—R=O, since the geodesic connecting points

can be associated with a real numbger T=(ty,ry) andR=(t,r) is null.
A world line is an invariant geometric quantif23]. For
* :3:2_”(7’_1) (31) the limiting case of a satellite in Minkowski space-time, the
T ws  ws time components of the satellite world line in Eq(35)
N defines a scalar fields=t4(t,r), that is given by the implicit
equation

where wg is given by Eq.(18), 7':$7";]<7':+1 and n<y

<n+1, see Eq(25). The real numbe, is the interpolated
value of the code bit integer number Associated with the
interpolated hardware time:f7 , there is a continuous family

of coordinate 3D hypersurfaces analogous to those in EqVherery(ts) is the ephemeris of the satellite. It is easy to
(26): check that this particular form fdx(t,r) in the phase func-

_ _ tion d(t,r) in Eq. (35) satisfies the eikonal E¢36).
Q(xy( T’,‘l),xl)z 0. (32 For the actual case where we take into account the Earth’s
gravitational field, the light cone equation is given by
The continuous parametef] labels the 3D hypersurface that ((T,R)=0, whereQ is the world function given in Eq.
has code phas® and is defined by coordinates that sat-  (28). Writing the world function in Eq(28) in the form
isfy Eq. (32). On each 3D hypersurface, the phdsédas the
value

ts(t-r):t_%|r_rs(ts(tur))| (37)

1 0 0y2 1 2
Q=—§(1+a)(x —Xg) +§(1+B)(r—rs) (39
_ > %

P=xT (33 where @ and g8 are small quantities, the scalar phase field
o o d(r,t) in Eq. (35 can be written in terms of the function
Wht_are_ws is given by Eq.(18).. Th_e hardware time~, .of an x2(x%,r) that is implicitly given by
emission event at the satellite is related to coordinate time
tszxg/c in the ECI frame of reference by the satellite clock

0,90\ o0
correctionA 77, Xs(X7,r)=x

1
1+§<ﬁ—a>)|r—rs(x2<x°,r>)| (39

ts=1, +AT). (34)  where we have kept only linear termsdnand 8. Note that

) ) o a and B are two-point functions that depend on space-time
In terms of coordinate time of emission, the phase broadca?)tointsT: (Xo ro andR=(x°r)
s S , .

by satellites is then given by An event in this space-time can be uniquely labeled by

® four real hardware times,{ , 75,73 ,7,), or alternatively
D (t,r)= C_I\Sl[xg(t,r)—cA ] (35 by d!mensionless_ real numbersyy(, 72, 173, 74), V\{here egch
75 gives the continuous code parameter at emission time for

wherewsAr’;/N represents a phase offset due to the fact tha atellites. This system of coordinates has been studied by

satellite clocks keep hardware time, which is an approxima: ynge who called them _optlcal coordina@s]. More re- .
: . ; 0 cently, these same coordinates have been called GPS coordi-
tion of coordinate time =x./c. The broadcast phase func-

tion satisfies the eikonal equati¢a6] ir:qa:i)smzngettg?[lrl :t),hf;])retmal properties of have been explored
P At any'time, a GP_S user has more than four satellites in
ijZ7s77s g (36) View, so in the real implementation of the GPS system of
ax' ox! coordinates, they are multiple valued. Since the satellite sig-

-~ nals are line of sight, a GPS user sees satellites rise and set
where g are the contravariant components of the metricon the horizon, and a different set of four satellites defines
given in Eq.(10) (no sum ons). The phase functiombs  the 3D hypersurfaces. There are currently approximately 24
depends on the invariant world line of the satellitg(7*).  satellites in the GPS constellation, and 37 code sequence

From Eq.(36) it is clear that under Lorentz transformations, possibilities [21], so at most, the numberss

or generalized coordinate transformations, the pldage,r) =1,273..., 37.
transforms as a scal§29]. The form of Eq.(36) shows that In our discussion, we have neglected atmospheric effects.
the wave vector associated with the phade;, «; In practice, for users of GPS in the Earth’s atmosphere, there

=ddg/ax', is a null vector. The wave vectar; can be re-  exist significant propagation delays as well as frequency dis-
lated to the covariant derivative of the world function of persive effects. The Earth’s troposphdetmosphere from
space-time,Q2(T,R), between emission everf=(tr,ry) the ground to approximately 10 Kntauses the same time
and reception eveiR=(t,r). The direction of the wave vec- delay for bothL; andL, frequencies. On the other hand, the
tor k; is the same as the direction of the covariant derivativeEarth’s ionospher€60 km to 700 km altitudeis dispersive

of the world function,QiR, where the derivative is taken with at these frequencies, due to the presence of free electrons,
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satellite bicycle chain that is to be placed onto the sprocicetde
wheel 2. In order to align the codes, the receiver must match
the rate(frequency at which bits are arriving as well as
match the duration of each bit. In general, the receiver has a
non-zero velocity in the ECI frame and it is at a different
gravitational potential than the transmitting satellite. At any
instant in the receiver’s comoving frame, the frequency of
code bits received from the satellitefis= wgr/27r, wherefg

is the number of received bits per second of the cs(d&).

To align the codes, this frequenak must be made equal to
o, Which is the frequency seen in the comoving frame of
the receiver, given in E¢20).

The temporal duration of the bits on code wheel 2 and the
temporal duration of incoming bits from the satellite are
made equal by adjusting the radiysof code wheel 2. Code
wheel 1 is adjusted to the same radius as code wheel 2. If the
code wheel has a circumference equal ter2, the length

GPS Receiver

wheell  wheel 2

code
phase AD
offset

current Y
code phase

1 per bit along the the circumference isr, /N, where there
current code aligned l code from areN bits in the code. In order to match incoming bits, the
code phase . with satellte code code wheel must have a linear velocitym&,fg/N

Y s =r,Qr. The angular velocity of the code wheel is then

Qr=wgr/N. This angular velocity of the code wheel, and
FIG. 4. A mechanical analogue of a GPS receiver tracks the&onsequently the frequency at which the replicated code is
code broadcast from a GPS satellite. The receiver has two codgeneratedwg, will be adjusted continually and depends on
wheels. The phase angle of code wheel 1 represents the current tifige motion of the receiver and satellite, so that the replicated

in the receiver. The phase angle of code wheel 2 is kept alignedgde is constantly aligned with the code arriving from the
with the incoming code sequence from the satellite. satellite:

and hence causes two different delays for theand L, WR= W, . (40)
frequencies. A first principles treatment is possible, following
Synge[23]. However, in practice, simpler methods are use
for correcting for both of these effects in GPS receijes.
Atmospheric effects will not be considered further here.
However, we note that signal propagation through (tine-
quer_lcy_d|s_per5|v)eatmosphere I_eads to a removal of the: dIS'monly referred to as “code tracking” or “code lock.”
continuity in the electromagnetic tendéy, . Hence, the dis- ; L

. - At any instant in time, code wheel 1 has a current value of
persive effects of the atmosphere limit the accuracy of GPSh S . .

. asedr, which is indicated by the pointer, see Fig. 4. The

for a ground user because the code edge is not sharp aft®

A
signal propagation. The magnitude of this effect has not beel

alue of the replicated phaskg on code wheel 1 is a rep-
investigated. Also, the finite size of the transmitting antenngSSentation of the receiver's current hardware tinfe, The
also leads to a code edge that is not sHa#.

phased and receiver clock hardware timg are related by

dTherefore, a GPS receiver searches in tifabgns code
phase on wheel 2 with incoming codand in frequency
(adjustment of ,, to make temporal length of bits on wheel 2
equal to satellite bijs This alignment of the code is com-

w
VI. PSEUDORANGE MEASUREMENT CIDRZWST’F‘e (41
A GPS receiver makes a special type of measurement,

called a pseudorange measurement, in which the Doppl&iherew, is a system constant given by H38). The system
and gravitational frequency shifts are essentially remove@onstantw, is a conversion factor from hardware time ,
(up to an additive constantrom the measurement. A GPS g phased. A key point is that during “code tracking” the
receiver internally replicate@eneratesthe satellite P-code phasedg on code wheel 2 is adjusted to keep pace with the
s(t) for each satellite. The receiver determines which satelincoming code from the satellite, but this is done by advanc-
lite signal it is receiving by matching the internally repllcateding| the time 7%, and not by changing the frequenay;
P-code with the code received from the satellite. In what,hich is a fixeRd constant in the system. N
follows, we describe the pseudorange measurement made DY g yeplicated phase in the receiver can be related to the
a GPS receiver by using a mechanical analogue. Our M&eceiver's world line by writing the hardware timsef in

chantl)cal 3nlalog(ljje20f a GFF.)S ;ecg"’e.r has tW?. COdi mheel§erms of the coordinate time along the receiver’s world line
numbere and 2, see Fig. 4. During operation of the re- ' =~ framex3,

ceiver, both code wheels advance at the same angular veloc-
ity, Qr. The receiver will align the code incoming from the 0 . .
satellite with the code on wheel 2. The code arriving is like a Xg=C(7p +A7R) (42

063005-9



THOMAS B. BAHDER PHYSICAL REVIEW D68, 063005 (2003

whereA 7% is the time correction to the receiver’s hardware quantities known as two-point tensors, which depend on two
time, commonly called a clock bias. The receiver timg,  space-time points, and have tensorial transformation proper-
=nTIN, is periodic, 7y +T= 1%, where T=1 week[the ties with respect to gener_alized coordinate transformations
period of the P-cods(7%)], and 7 is a real number & 7 (that can diffey at e_ach poinf23]. Therefore, the pse_udor—
<N, which corresponds to the interpolated value of the bif?"9€ps IS & two-point scalar under separate generalized co-
numbem in the P-codes(7%), see Fig. 4. This periodicity in °rdinate transformations at=(tr,ry) and atR=(g,rg)

7% does not introduce any ambiguity because it is assumefnd can be labeled aﬂ(itT 'J-rT ’tR’rR).[B]' The world func-
that a GPS user is located within one light week distanm—{l(Ion of space-time{)(xy,x3) given in Eq.(28), is a well-

from the Earth. Using Eq42) the receiver phasebg, can nown two-point scalar, and not surprisingly, the pseudor-
be related to the geometry by ' ange and the world function have the same transformation

properties.
ws Two-point scalar fields enter into measurement situations
¢R=m(xg—cm§). (43)  whenever there is a field generated at space-time point
such as an electromagnetic field, and a measuremeairber
On code wheel 2, the receiver has the replicated ¢fue jectionis done at the measurement event at space-time point

a given satellite This replicated code is rotated back and R In this sense, there is some similarity between a relativis-
forth on code wheel 2 until it is aligned with the code phasefiC tréatment of measurement processes and a quantum me-
®(tg,rg) arriving from the satellite, whereg is the posi- chanical treatment., WhICh is mentioned in th_e In.troductl_on.
tion of the receiver. As described above, at all times thd" the case of relativity, a measurement of a field is a projec-
phase on code wheel 2 is aligned with the incoming coddion of the field onto an observer’s tetrf2B,31]. In quantum

phase, in both timéangle of the whegland frequency or bit mechanics, traditionally projection operators are invoked in

duration (radiusr,, is adjustedl the definition of measuremefi32-34.
The pseudorange measurement made by a GPS receiver at
space-time pointtg,rg) is the difference of the phases on VII. TIME TRANSFER AND NAVIGATION
code wheel 1 and P30] IN SPACE-TIME
AD(tg,rr)=Pr—Py(tr.rr) (44)

The measured pseudorangg,n Eq. (45), can be related

where®y, is the curent value of the replicated code phase ir;[0 the geometric range between the emission event

the receiveron code wheel land®(tg,rg) is the value of (_Arg;ngrT)(Dangntgi\r/gffgifn tﬁ\éegga(égé;?) ?;Bu;”;? flf)?.
the broadcast phask(t,r) for satellites [given in Eq.(35)] teIIites[Riven inE (35)]gat the reception §verﬁt I,eadin
evaluated at the receiver at space-time measurement poifl"f1 9 a- P 9
(tg,rr). The phase differenceA®(tg,rgr), is a bonafide
measuremenrft29] because it is a comparisda difference
between the value of the scalar field at the receiver,
d (tg,rr), and the replicated code phaskr. The mea- )
sured difference A®(tg,rg), is commonly expressed in Where we have sek7r=A7) . In Eq. (46), [rr—r+] is the
units of length and is called a pseudorange measuremefgometric range between evefftandR, A7y is the clock
from receiver to satellite: correction to the receiver clock at evef, and cA7y
=x(s’(T) —crs (T) is the satellite clock correction at eveht

The satellite clock correctiom 75 , is broadcast by the sat-
ellite in the navigation message contained in the function
D(7*), see EQ.(23). Conventionally, the pseudorange is
wherepg is the measured pseud(_)range in units of length.  modelled[9-11] in flat space-time aps=|rg—rq|+cA

. The measured pseudorangg, is a scalar under general- _cA 7% | The termA(ry,rg) is a small correction due to the
|zed_ coordinate transformatlo(ls.g._, under I__orentz tran_sfor— presence of the Earth's gravitational field that modifies
mationg because the phase functidn(t,r) is a scalar field = gp5ce-time geometry near Earth. This correction depends on
and® is an invariant that depends on the world line of theine mass of the EartiM, the angular velocity of Earth rota-

receiver. The pseudorange depends on both the world line Qifon, Q, and the Earth’s equatorial radit®, and is given by
the satellite and the world line of the receiver, which are

invariant quantities. The world line of satellite xg(7*), 2GM

enters into the definition of the scalar fielel(t,r), see Eq.  A(r;,rp)= ——| A(r7,rp) —
(35). The world line of the receiver enters into the value of 2

the phase of the replicated cod@g, see Eq.(43). The (47)
world line of the receiver also enters into the evaluation of

the scalar fieldb4(t,r) at the position of the receiver at event where the purely geometric functiof(ry,rgr) is given in
R=(tg,rg). Therefore, the pseudorange measurementis  Eq.(29). The quantity 5 M/c?~0.89 cm is the gravitational
a two-point scalar that depends on the emission eVemid  radius of the Earth, an@?R?|rg—r+|/c?~4.8x 10 ° m, us-
the reception everR. The pseudorange is a particular case ofing |rg—r{|~a—R, wherea is the semimajor axis of the

ps=|rrR—r7|+CcArfF —cArE+A(rr,rg) (46)

N
ps:Cw_S[q)R_q)s(tRarR)] (45)

|rR—I’-|—| QzR2| |
- rR—r
R CZ R T
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GPS satellites. The pseudorange in E§) is based on the because they depend on receiver world lines. For navigation
metric in the ECI frame of reference, which is given in Eq. purposes, even though the set of pseudoranges are different
(10). for each of the two receivers, the clock bias for each receiver
If a user of the GPS knows their spatial coordinates in thes determined in the course of solving the four equations in
ECl frame,rg, then a single pseudorange measurerpetd  Egs. (46) for s=1,2,3,4. Therefore, while each receiver ob-
one satellite is sufficient to determine the users ttjéom  tains adifferent set of four invariant pseudoranges to the
Eq. (46). In Eq. (46) rr=r4(tr), wherery(ty) is the broad-  same four satellites, each receiver obtains the correct space-

cast satellite ephemeris evaluated at transmit ttjehat  time coordinates of the reception eveit=(tg,rg).
satisfies

Q(ty,ro(ty),tg,rr)=0 48
(tr.rs(to),tr.IR) (48) . SUMMARY
where Q(t;,ry,tg,rg) is the world function given in Eq.

(28). Therefore, Eq946) and(48) can be solved numerically We used a two-receiver thought experiment |n.Sec. Il to
for the user’s reception event tintg, which is a coordinate motivate the need to understand the transformation proper-
time in the ECI metric in Eq(10). ties of the measured pseudorange; the quantity that is mea-

The more common case is that a user of the GPS wants @#'réd in the GPS. _ o _
obtain time but he knows his spatial coordinates in the ECEF Starting from the weak field approximation for the metric
frame of referencey=(y*,y2y%). The user’s ECI frame co- Of space-time in the vicinity of the Earth, we used the stan-

ordinatesy g= (x*,x?,x%), are given by dard transformation to the rotating frame, and defined a new
coordinate time so that coordinate time on the geoid surface
rr=D(tr—to)"y (490  is equal to proper time. Then we transform from the ECEF

) ] ) ) ~ frame to the ECI frame, to obtain the metric that describes

whereD (t—tg) is a tlm'e—dependent. rotation matrix, which is the EC| frame of reference near the Earth, given in @Q).
equal to the unit matrix at epoch tinte=to, see Eq(3). In | this metric, due to a combination of gravitational and time
this case, to obtain the user’s tirje at the reception event, dilation effects, the GPS satellite clocks appear to run fast
rr in Egs. (46) and (48) must be eliminated by use of Eq. with respect to coordinate time. We described the “factory
(49). Equations(46) and (48) can be solved fotg. offset” that is routinely applied to slow down the satellite

Navigation in space-time means the simultaneous detegjocks to (approximately keep coordinate time in the ECI
mination of the user position and time, i.e., determination offrame. In Sec. IV B, for the metric in the ECI frame given in
the space-time coordinates of the reception evéht Eq.(10), we derived the apparent frequency of the satellite
= (tr,rr). Navigation can be carried out by simultaneouslysijgnal seen by an observer at an arbitrary position moving
measuring four pseudoranges, to four different satellites, with an arbitrary velocity, due to Doppler and gravitational
s=1,2,3,4. ltis clear that four simultaneous equations of theyotential differences, see E(RO0).
form in Eqg. (46) can be solved for the four coordinates  We described the nature of the digital sigff@tcodé that
(tr,rr) that specify the user reception event in the ECljs broadcast by GPS satellites, and the space-time grid cre-
frame. Typically, a GPS user on Earth wants to know theirated by GPS satellites due to the discontinuities in the broad-
coordinates in the ECEF frame of reference. The user musiast electromagnetic field. We computed the world function
determine the coordinate time of emission for one satellite)f space-time, given in Eq28), for the ECI metric in Eq.
from Eq. (48) and use it in the transformation E9) to  (10). Using this world function, we defined a scalar phase

determine user ECEF coordinates (y*,y?,y®) [35]. field d4(t,r), given in Eq.(35), that satisfies the eikonal
equation. This phase field is seen in the same way by all
VIIl. RESOLUTION OF THE TWO observers, independent of their state of motion. Using this
RECEIVER EXPERIMENT phase field, and a mechanical analogue for a GPS receiver,

. . . we defined the measured pseudorange in(&5), and found

If two receivers are at the same evemitin space-ime, o+ ynder generalized coordinate transformations it trans-
and they are tracking the same four satellites, do the rege|\g(\)ﬂrms as a two-point scalar, just like the world function.
er's measure the same pseudorange? Also, do they obtain )Ghin the geometrical optics approximation, there are no
correct space-time coordinates for the eveér The resolu- \g|qcity effects on pseudorange measurements. Finally, we
tion of the two receiver thought experiment, which was devg|ateq the measured pseudorange to the geometry of space-
scrlbed in Sec. Il, is now clear. The.value of the phase "Ctime in Eq. (46). We obtained a small correction, given by
ceived from each satellitebg(tg,rg), is the same for each A(r1,rg) in Eq. (47), to the conventional model of the pseu-

receiver, independent of their velocities, becalis@t,r) isa  gorange. This correction is due to the curvature of space-time
scalar field. However, the value of the hardware time for,, e vicinity of the Earth.

each receiver, and therefore the current replicated code
phase®g, is different for each receiver. This difference is
due to the different clock biad 7% of the two receivers. We

can then say that each measured pseudorange is an invariant
under coordinate transformations; however, the pseudor- This work was supported by the Advanced Research and
anges(to the same satellifeare different for each receiver Development Activity(ARDA).
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APPENDIX A: CONVENTIONS AND NOTATION

We use the convention that roman indices, such as found
on space-time coordinate$ take the values=0,1,2,3, and
greek indices take values=1,2,3. Summation is implied D }Axo
over the range of an index when the same index appears in a B
lower and upper position. X' andx'+dx' are two events
along the world line of an ideal clock, then the proper time c
interval between these eventglis=ds/c, wheredsis given Ax! { A
in terms of the space-time metric ds’°= — gij dx dx. We *
chooseg;; to have the signature-2, so wheng;; is diago-
nalized at any given space-time point, the elements can take
the form of the Minkowski metric given byoo=—1, 7,4 ) xi(s,)
= 8,5 (S ’

Satellite

Observer

APPENDIX B: DOPPLER EFFECT IN EARTH'S

GRAVITATIONAL FIELD FIG. 5. The world line of satellite and receiver are shown to-

gether with the 3D hypersurfaces of constant phase between points
A satellite at spatial position, and travelling at velocity ABandCD.
Vs emits a signal in its comoving frame with frequeney.

An observer at spatial position, and travelling at velocity The frequency ratiav,/ ws is related to the proper times
vV, measures the frequency of this signal to bg in his
comoving frame. These frequencies are related by(Eg). Wo _ d_Ss (B2)
This relation can be derived by evaluatifZ] ws ds,
wo QisV'S+ Qiov'o where ds; is the proper time betweeAC andds, is the
—=1- —ave (B1)  proper time betweeBD. Using the metric in Eq(10), the
S is ratio of frequencies can be written as

where(); and(); are the covariant derivatives of the world « 1/2
's o wo  ds | oo S)+Yup(Svivs

function with respect to satellite and receiver coordinatgs, — == 5 5
andxl, respectively, and/'s andV'e are the components of ws S | gog(0)+gup(O)vgvs| AX
the 4-velocities of the satellite and the receiver at space-time o )

points S= st:(tTarT) and OZXLZ(IR,FR), respectively. where the emission and reception events are connected by a
The form of Eq.(B1), together with the transformation prop- Null geodesic, so thd?(S,0)=0. In Eq.(B3), g.x(S) is the
erties of the world function, shows that the quantily/wsis ~ Metric on the satellite world line at evest g,4(0) is the

a two-point scalar under generalized coordinate transformahetric on the observer world line at evedf andvg andvg

tions. We have computed the world function in Eg1), are the velocity components of satelll_te and regewe_r,afor
0=0(x,,xl), and it is given in Eq.(28) for the metric =12,3. For example, the satellite velocity isg
given in Eq.(10). To obtain an explicit expression far,/w; ~ =AXe/AXJ, where Ax is the coordinate time between
we use an alternative derivatig@3]. Consider the satellite eventsAC on the satellite world line. In the limiax?—0
and observer world linessg(ss) and x(s,), which are pa- (and therefore\x2—0), using the world function in Eq28)
rametrized by proper times,/c ands,/c, respectively, see to connect pointAC andBD, a lengthy calculation of Eq.
Fig. 5. The linesAB andCD are null geodesics that connect (B3) using the metric in Eq(10) leads to Eq(20). The term
satellite and receiver world lines, at successive cycles of thax2/AxS in Eq. (B3) leads to linear velocity terms in Eq.

0
AXxg

(B3)

emitted signal. (20).
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