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We study the late-time tails appearing in the propagation of massless (elasr, electromagnetic, and
gravitationa) in the vicinities of ab-dimensional Schwarzschild black hole. We find that at late times the fields
always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime.
Accordingly, for oddD>3 we find that the field behaves 852’ *P~2) at late times, wheréis the angular
index determining the angular dependence of the field. This behavior is entirely Bueeting odd; it does not
depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space
Green’s function. On the other hand, for ev@-4 the field decays as ?' 732 ~8), and this time there is no
contribution from the flat background. This power law is entirely due to the presence of the black hole. The
D=4 case is special and exhibits, as is well knowr? *®) behavior. In the extra dimensional scenario for
our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description
of the late-time behavior of any field if the large extra dimensions are large enough.
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[. INTRODUCTION loss proceed dynamically? A more or less complete picture is
now available. The study of a fairly general class of initial
It is an everyday life experience that light rays and waveglata evolution shows that the signal can roughly be divided
in general travel along a null cone. For example, if one lightgn the following three parts:
a candle or a lighter fo5 s and then turns it off, any observer (i) The first part is the prompt response, at very early
(at rest relative to the objecwill see the light for exactly —times, and the form depends strongly on the initial condi-
5 s and then see it suddenly fade out completely. Mathematfions. This is the most intuitive phase, being the obvious
cally this is due to the well known fact that the flat spacecounterpart of the light cone propagation. _
four-dimensional Green’s function has a delta function char- (i) At intermediate times the signal is dominated by an
acter and therefore has support only on the light cone. Ther@xPonentially decaying ringing phase, and its form depends
are however situations where this only on the light coneentirely on the black hole characteristics, through its associ-
propagation is lost. For instance, in a curved spacetime ated quasinormal mod¢s1,12.
propagating wave leaves a “tail” behind, as shown by De- (iii) A late-time tail, usually a power-law falloff of the
Witt and Brehme's seminal worl]. This means that a pulse fi€ld- This power law seems to be highly independent of the
of gravitational wavegor any massless field for that magter initial data and seems to persist even if there is no black hole
travels not only along the light cone but also spreads oufiorizon. In fact it depends only on the asymptotically far
behind it and slowly dies off in tails. Put another way, evenr€gion. Mathematically each of these stages has been associ-
after the candle is turned off in a curved spacetime, one wilpted as arising from different contributions to Green’s func-
still see its shining light, slowly fading away, but never com- tion. The late-time tail is due to a branch ¢6f. The study
pletely. This is due to backscattering off the potenfjlat  Of linearized (we note that nonlinear numerical evolution
very large spatial distances. also displays these tails, but here we shall work at the linear-
The existence of late-time tails in black hole spacetimes i$2€d leve) perturbations in the black hole exterior can usu-
by now well established, both analytically and numerically,a/ly be reduced to the simple equation
in linearized perturbations and even in a nonlinear evolution,
for massless or ma_ss_ive fielfig—9]. This is a problem of [92— 2+ V(X)W =0, 1)
more than academic interest: one knows that a black hole
radiates away everything that it can by the so called no hair
theorem(see[10] for a nice review, but how does this hair where the potentiaV/(x) depends on what kind of field one
is considering and also, of course, on the spacetime. A de-
tailed study of the branch cut contribution by Ching, Leung,

*Electronic address: vcardoso@fisica.ist.utl.pt Suen, and Yound6,7] has provided analytical results for
TElectronic address: yoshida@fisica.ist.utl.pt some specific but quite broad class of potentials. These ana-
*Electronic address: oscar@fisica.ist.utl.pt lytical results concerning the late-time tails were confirmed
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It is not generally appreciated that there is another case ihehavior is dominated by a tail and this is a power-law fall-
which wave propagation develops tails: wave propagation imff. For odd dimensions the power law is determined not by
odd dimensionaflat spacetimes. In fact, Green’s function in the presence of the black hole, but by the fact that the space-
a D-dimensional spacetimd3—15 has a completely differ- time is odd dimensional. In this case the field decay&as
ent structure depending on whethBris even or odd. For ~t~('*P~2) wherel is the angular index determining the
evenD it still has support only on the light cone, but for odd angular dependence of the field. This is one of the most
D the support of Green’s function extends to the interior ofinteresting results obtained here. One can show directly from
the light cone and leads to the appearance of tails. It is harte flat space Green’s function that such a power law is in-
to find good literature on this subject, but a complete andleed .expected in flat odd dimensional spacetimes, and it is
pedagogical discussion of tails in flB-dimensional back- @musing to note that the same conclusion can be reached
grounds can be found ifL5]. dlrectly from thg analysis of6,7]. For even dlmenglonal

A study of wave physics in higher dimensions is now, SPacetimes we find alsp a power-law cfecay at late times, but
more than ever, needed. It seems impossible to formulate iWith @ much more rapid decag ~t~(*'*3°~%. For even
four dimensions a consistent theory which unifies gravityD: this power-law tail is entirely due to the black hole, as
with the other forces in nature. Thus, most efforts in thisOPPOsed to the situation in odd. These results are strictly
direction have considered a higher dimensional arena for ouflid for D>4. Four-dimensional Schwarzschild geometry
Universe, one example being string theories, which have rS special, having the well known power-law tal¥’
cently made some remarkable achievements. Moreover, réft_(2|+3)-
cent investigationg16] propose the existence of extra di-
mensions in our Universe in order to solve the hierarchy II. A BRIEF SUMMARY OF PREVIOUS ANALYTICAL
problem, i.e., the huge difference between the electroweak RESULTS FOR A SPECIFIC CLASS OF POTENTIALS
and the Planck scaleng/Mp~10" 1. The fields of stan-
dard model would inhabit a four-dimensional submanifold,
the brane, whereas the gravitational degrees of freedo
would propagate throughout all dimensions.

The first step towards the understanding of gravitational
wave physics in higher dimensions was given by Cardoso,

Dias, and Lemog14] by studying wave generation and V(x)~ v(r+1) n cilogx+c; 0 @
propagation in generi®-dimensional flat spacetimes. Here X2 X ' '

we shall take a step further by studying wave tails in higher

dimensional black hole spacetimes. We will restrict theBy a careful study of the branch cut contribution to the as-
analysis to higher dimensional Schwarzschild black holessociated Green’s function they concluded that in general the
As expected, if one now considers tails in higher dimen-ate-time behavior is dictated by a power law or by a power
sional black hole spacetimes, two aspects should emerge: jaw times a logarithm, and the exponents of the power law
odd dimensional spacetimes one expects the black hole codepend on the leading term at very large spatial distances.
tribution to the tail to be smaller than that of the backgroundThe case of interest for us here, as we shall verify in the
itself. Therefore for odd dimensions the tail should basicallyfollowing section, is wherc;=0. Their conclusions, which

be due to the flat space Green’s function. However, for eveve will therefore restrict to the;=0 case, arésee Table 1
D-dimensional black hole spacetimes there is no backgroungh [6] or [7]) as follows.

contribution, and one expects to see only the black hole con- (i) If » is an integer, the termiv(v+1)]/x*> does not

tribution to the tail. A recent study by Barvinsky and So- contribute to the late-time tail. We note that this term repre-
lodukhin[17] has showed that such tails may not be impos-sents just the pure centrifugal barrier, characteristic of flat
sible to detect. Unfortunately, the weakness of gravitationakpace, so one can expect that indeed it does not contribute, at
waves impinging on the Earth makes this an unlikely eventleast in four-dimensional spacetime. We also note that since
We note however that they worked with small length, com-even dimensional spacetimes have on-light cone propaga-
pact extra dimensions, whereas we shall consider large exttn, one may expect to reduce the evolution equation to a
dimensions. Our results will be strictly correct if the extraform containing the terniz(v+1)]/x?, with » an integer.
dimensions are infinite, but also allow us to determine theye shall find this is indeed the case. Therefore, for integer
correct answer if the large extra dimensions are large enoughis the c,/x® term that contributes to the late-time tail. In

such that the time scale for wave reflection at the boundarieghis case, the authors §8,7] find that the tail is given by a
is larger than the time scales at which the tail begins tgower law,

dominate.

The evolution problem in ®-dimensional Schwarzschild V~t # u>2v+a, «a oddinteger<2v+3.
background can be cast in the ford), and we will show 3)
also that the potential can be worked out in such a way as to
belong to the class of potentials studied &7]. Therefore, For this case ¢ an odd integer smaller thanvz3) the
their analytical results carry over to thB-dimensional exponentu was not determined analytically. However, they
Schwarzschild black holes as well. We will verify this by a argue both analytically and numerically, such theat2v
direct numerical evolution. The main results are the late-timet 2a—2. For all other reak, the tail is

In a complete analysis, Ching, Leung, Suen, and Young
,7] have studied the late-time tails appearing when one
eals with evolution equations of the forth), and the po-

fential V is of the form
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PY~t=@vta) gl other reala. (4) is in this case the tortoise coordinatg. This is the standard
form in which the potential is presented. However, one can
(i) If v is not an integer, then the main contribution to thecollect the different powers af and get
late-time tail comes from the(v+1)/x? term. In this case

the tail is NP ){v(y+1)+ 1 (D-2)2M o
stF ) = Tr 2 D-1 '
PY~t~(""2)  nonintegerv. (5) r r 4
We will now see that for eD-dimensional Schwarzschild Where
geometry the potential entering the evolution equations is D
asymptotically of the forn{2) and therefore the resul{8)— v=1—2+—. (10)
(5) can be used. 2
IIl. THE EVOLUTION EQUATIONS AND LATE-TIME Asymptotically for larger,, one can show that
TAILS IN THE D-DIMENSIONAL
SCHWARZSCHILD GEOMETRY Vit = vivtl) 1 (D=2)MI (3-1-D).
SV KT = r2 (P-1 D—4
Here, we shall consider the equations describing the evo- * * (11)

lution of scalar, electromagnetic, and gravitational weak

fields outside theD-dimensional Schwarzschild geometry. This is strictly valid forD>4. In theD=4 case there is a

We shall then, based on the results presented in the previolsgarithm term{2]. Notice that the coefficient appearing in

section, derive the late-time tails form of the waves. We willthe centrifugal barrier terme(v+1)/r2 is, as promised, an

find they are always a power-law falloff. integer for everD and a half-integer for od®. The gravi-
tational evolution equations have recently been derived by

A. The evolution equations and the reduction of the potential  Kodama and IshibashR0]. There are three kinds of gravi-

to the standard form tational perturbations, according to Kodama and Ishibashi’s
The metric of theD-dimensional Schwarzschild black t€rminology: the scallargravitational,the vectorgr_avitational,
hole in (,r,0y,0,, . .. .0p_,) coordinates i$18] and the tensor_grawtatlonal perturbatlo_ns. The f|r_st two al-
ready have their counterparts =4, which were first de-
ds?=—fdt?+f*dr2+r2dQ3_,, (6) rived by Regge and Wheel¢21] and by Zerilli[22]. The
tensor type is a new kind appearing in higher dimensions.
with However, it obeys exactly the same equation as massless

scalar fields, so the previous res(@—(11) holds. It can be
shown in fact that the scalar and vector type also obey the
D-3° () same evolution equation with a potential that also has the
form (11) with a slightly different coefficient for the df —*
The mass of the black hole is given byD( term. For example, for the vector type the potential is
—2)Qp_,M/167G, whereQp_,=27P YT [(D-1)/2] ,
is the area of a unit—2) sphere andlQ3_, is the line Vo (r,)=F(r) v(v+1) _ 1 3(b-2)'M (12)
element on the unit sphe®® 2. We will only consider the gvh T x r2 rD-1 4 ’
linearized approximation, which means that we are consider-
ing wave fields outside this geometry that are so weak thaivherev is defined in Eq(10). Therefore asymptotically for
they do not alter this background. Technically this means thalarger, ,
all covariant derivatives are taken with respect to the back-

f=1-
r

ground metric(6). The evolution equation for a massless v(v+1) 1 (bD-2)M

scalar field follows directly from therelativistio Klein- ng(f*)|r*ﬂw: 2 b1 D-4

Gordon equation. After a separation of the angular variables M M

with Gegenbauer functionsee[19] for detaily we get that X[8+D2+D(1-6)+1(1-3)], (13

the scalar field follows Eq(l) with a potential
which is of the same form as the scalar field potential. The
(D—-2)(D—4)f(r) (D—=2)f'(r) scalar gravitational potential has a more complex form, but
Vilre)=1(r) r_z+ ar2 + or ' one can show that asymptotically it has again the fotf)
(8 O (13) with a different coefficient in the if ~* term. Since
the explicit form of this coefficient is not important here, we
wherer is a function of the tortoise coordinatg according shall not give it explicitly. Electromagnetic perturbations in
to ar/ar, =f(r). The constana=1(l+D—3) is the eigen- higher dimensions were considered[R28]. Again, asymp-
value of the Laplacian on the hypersph&@e 2 andf’(r) totically for large r, they can be reduced to the form
=df(r)/dr. | can take any non-negative integer value. Of(11)(where again=1—2+D/2 and the 17° ~* coefficient is
course the evolution equation is Ed) where the variable  different), so we shall not dwell on them explicitly.
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FIG. 1. Generic time dependence of a scalar fi&ldn a five- FIG. 2. Generic time dependence of a gravitational Gaussian
dimensional Schwarzschild geometry, at a fixed spatial position. Wevave packet in a five-dimensional Schwarzschild geometry, at a
took as initial conditions a Gaussian wave packet with3 and  fixed spatial position. The results for the late-time behavior are
v.=10. We have performed other numerical extractions for differ-independent of the initial data. Fb=2 the late-time behavior is a
ent initial values. The results for the late-time behavior are indepenpower law with W ~t~7" for 1=3 the falloff is given by ¥
dent of the initial data, as far as we can tell. For0 the late-time  ~t~°2 at late times, and fot=4 it is ¥ ~t 4 The predicted
behavior is a power law withr ~t 3 for |=1, ¥~t 52 at late  powers are-7, —9, and—11, respectively.
times and fol =2, W ~t~ "2 The predicted powers are3, —5,
and —7, respectively. 1/r% for a second order scheme. Technically the presence of

ghost potentials can be detected by changing the grid size
B. Late-time tails [7]. If the results with different grid sizes are different, then

Now that we have shown that the potentials appearing ih€ ghost potential is present. Our numerical resultstor
evolution of massless fields in ti2dimensional Schwarzs- =9, presented in Figs. 1-3, are free from any ghosts.

[6,7] we can easily find the form of the late-time tail. For odd analytical predictiong14), and seems moreover to be quite
dimensional spacetimes; is not an integer, therefore the independent of the initial data. This also means that for odd

centrifugal barrier gives the most important contribution todimensional spacetimes the late-time behavior is dictated not
the late-time tail. According to Eq5) the late-time tail is by the black hole but by the fact that spacetime has an odd

described by the power-law falloff number of dimensions. To further check that it is in fact the
V~t~(@*P=2) " odd D. (19 0 ]
According to the discussion in the Introduction, this tail is 5[ .
independent of the presence of the black hole, and should C ]
therefore already appear in the flat space Green’s function. C ]
Indeed it doeq14,15. The flat, odd dimensional Green’s _ ~10 .
function has a tail terni14,15 proportional to® (t—r)/(t? % C ]
—r2)P2=1 where © is the Heaviside step function. It is ~ 150 i
therefore immediate to conclude that, for spherical perturba- C ]
tions, for example, the tail at very large times should be C ]
t~(®=2) which is in agreement with Eq(14) for =0 —R0 7
(which are the spherical perturbatigonk is amusing to note C ]
that the analysis off6,7] gives the correct behavior at once, _op L1
simply by looking at the centrifugal barrier. We have 2

checked numerically the result4) for D=5, and the results

are shown in Figs. 1 and 2. FIG. 3. Evolution of a field subjected to a five-dimensional

. The numerical procedure followed_ the one outllne@C-i_]j model potential. The potential is given by E§) but here we take
with constant data on =v,, wherev is the advanced time |, ¢ an integery=1. We obtain at late time® ~t %% whereas
coordinate,p=t-+r, . One final remark is in order here. the analytical prediction i ®. This shows nicely that for integer
When numerically evolving the fields using the scheme inpe centrifugal barrier contribution vanishes, and it is the next term
[3], we have found that fob>5 the tail looked always like in the asymptotic expansion of the potential that gives the most
t~(**4)_ This is a fake behavior, and as pointed ouf7  important contribution. We have checked that this power law is
(see in particular their Appendix)At is entirely due to the indeed the correct one, and not a numerical artifact of the ghost
ghost potential appearing for potentials vanishing faster thapotential.
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centrifugal barrier term that is controlling the tail, we have and this tail is independent of the presence of the black hole.
performed numerical evolutions with a five-dimensionallt depends solely on the flat spacetime background through
model potential. To be concrete, we have evolved a fieldhe properties of the flat space odd dimensional Green’'s
subjected to the potenti@®) (with D=5) but we have con- function. For everD, the late-time behavior is again a power
sidered an integer value far, namely,y=1. The result is law, but this time it is due to the presence of the black hole,
shown in Fig. 3. Of course the true potential has a semiand is given by ~t~(2'*30-8) 4t |ate times foD >4. We
integer value forv, but this way one can verify the depen- have focused on large extra dimensions only. Recent inves-
dence of the tail on the centrifugal term. Indeed# 1, then  tigations[17], focusing on brane world models, and therefore
by Eq.(4), with v=1 anda=4, the late-time tail should be compact extra dimensions suggest that the tail is more slowly
¥~t6 The agreement with the numerical evolution is damped if the extra dimensions are compact. In factCfor
great. It is therefore the centrifugal barrier that controls the=5 they obtain a power lawr ~t 52 whereas we havé
tail in odd dimensional spacetimes. ~173 for spherically symmetric perturbations. This may be
For even dimensional spacetimess1—2+(D/2) is an  due to the reflection of the field at the boundaries of the extra
integer. Moreover,a=D—1<2v+3=2l+D—1. There- dimension.
fore we are in situation(3). So the late-time tail of wave
propagation in an eveb-dimensional Schwarzschild space-
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