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Late-time tails of wave propagation in higher dimensional spacetimes
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We study the late-time tails appearing in the propagation of massless fields~scalar, electromagnetic, and
gravitational! in the vicinities of aD-dimensional Schwarzschild black hole. We find that at late times the fields
always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime.
Accordingly, for oddD.3 we find that the field behaves ast2(2l 1D22) at late times, wherel is the angular
index determining the angular dependence of the field. This behavior is entirely due toD being odd; it does not
depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space
Green’s function. On the other hand, for evenD.4 the field decays ast2(2l 13D28), and this time there is no
contribution from the flat background. This power law is entirely due to the presence of the black hole. The
D54 case is special and exhibits, as is well known,t2(2l 13) behavior. In the extra dimensional scenario for
our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description
of the late-time behavior of any field if the large extra dimensions are large enough.
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I. INTRODUCTION

It is an everyday life experience that light rays and wav
in general travel along a null cone. For example, if one lig
a candle or a lighter for 5 s and then turns it off, any observe
~at rest relative to the object! will see the light for exactly
5 s and then see it suddenly fade out completely. Mathem
cally this is due to the well known fact that the flat spa
four-dimensional Green’s function has a delta function ch
acter and therefore has support only on the light cone. Th
are however situations where this only on the light co
propagation is lost. For instance, in a curved spacetim
propagating wave leaves a ‘‘tail’’ behind, as shown by D
Witt and Brehme’s seminal work@1#. This means that a puls
of gravitational waves~or any massless field for that matte!
travels not only along the light cone but also spreads
behind it and slowly dies off in tails. Put another way, ev
after the candle is turned off in a curved spacetime, one
still see its shining light, slowly fading away, but never com
pletely. This is due to backscattering off the potential@2# at
very large spatial distances.

The existence of late-time tails in black hole spacetime
by now well established, both analytically and numerica
in linearized perturbations and even in a nonlinear evoluti
for massless or massive fields@2–9#. This is a problem of
more than academic interest: one knows that a black h
radiates away everything that it can by the so called no
theorem~see@10# for a nice review!, but how does this hair
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loss proceed dynamically? A more or less complete pictur
now available. The study of a fairly general class of init
data evolution shows that the signal can roughly be divid
in the following three parts:

~i! The first part is the prompt response, at very ea
times, and the form depends strongly on the initial con
tions. This is the most intuitive phase, being the obvio
counterpart of the light cone propagation.

~ii ! At intermediate times the signal is dominated by
exponentially decaying ringing phase, and its form depe
entirely on the black hole characteristics, through its ass
ated quasinormal modes@11,12#.

~iii ! A late-time tail, usually a power-law falloff of the
field. This power law seems to be highly independent of
initial data and seems to persist even if there is no black h
horizon. In fact it depends only on the asymptotically f
region. Mathematically each of these stages has been as
ated as arising from different contributions to Green’s fun
tion. The late-time tail is due to a branch cut@5#. The study
of linearized ~we note that nonlinear numerical evolutio
also displays these tails, but here we shall work at the line
ized level! perturbations in the black hole exterior can us
ally be reduced to the simple equation

@] t
22]x

21V~x!#C50, ~1!

where the potentialV(x) depends on what kind of field on
is considering and also, of course, on the spacetime. A
tailed study of the branch cut contribution by Ching, Leun
Suen, and Young@6,7# has provided analytical results fo
some specific but quite broad class of potentials. These
lytical results concerning the late-time tails were confirm
numerically.
©2003 The American Physical Society03-1
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It is not generally appreciated that there is another cas
which wave propagation develops tails: wave propagation
odd dimensionalflat spacetimes. In fact, Green’s function
a D-dimensional spacetime@13–15# has a completely differ-
ent structure depending on whetherD is even or odd. For
evenD it still has support only on the light cone, but for od
D the support of Green’s function extends to the interior
the light cone and leads to the appearance of tails. It is h
to find good literature on this subject, but a complete a
pedagogical discussion of tails in flatD-dimensional back-
grounds can be found in@15#.

A study of wave physics in higher dimensions is no
more than ever, needed. It seems impossible to formulat
four dimensions a consistent theory which unifies grav
with the other forces in nature. Thus, most efforts in t
direction have considered a higher dimensional arena for
Universe, one example being string theories, which have
cently made some remarkable achievements. Moreover
cent investigations@16# propose the existence of extra d
mensions in our Universe in order to solve the hierarc
problem, i.e., the huge difference between the electrow
and the Planck scale,mEW/MPl;10217. The fields of stan-
dard model would inhabit a four-dimensional submanifo
the brane, whereas the gravitational degrees of freed
would propagate throughout all dimensions.

The first step towards the understanding of gravitatio
wave physics in higher dimensions was given by Cardo
Dias, and Lemos@14# by studying wave generation an
propagation in genericD-dimensional flat spacetimes. He
we shall take a step further by studying wave tails in hig
dimensional black hole spacetimes. We will restrict t
analysis to higher dimensional Schwarzschild black ho
As expected, if one now considers tails in higher dime
sional black hole spacetimes, two aspects should emerg
odd dimensional spacetimes one expects the black hole
tribution to the tail to be smaller than that of the backgrou
itself. Therefore for odd dimensions the tail should basica
be due to the flat space Green’s function. However, for e
D-dimensional black hole spacetimes there is no backgro
contribution, and one expects to see only the black hole c
tribution to the tail. A recent study by Barvinsky and S
lodukhin @17# has showed that such tails may not be imp
sible to detect. Unfortunately, the weakness of gravitatio
waves impinging on the Earth makes this an unlikely eve
We note however that they worked with small length, co
pact extra dimensions, whereas we shall consider large e
dimensions. Our results will be strictly correct if the ext
dimensions are infinite, but also allow us to determine
correct answer if the large extra dimensions are large eno
such that the time scale for wave reflection at the bounda
is larger than the time scales at which the tail begins
dominate.

The evolution problem in aD-dimensional Schwarzschild
background can be cast in the form~1!, and we will show
also that the potential can be worked out in such a way a
belong to the class of potentials studied in@6,7#. Therefore,
their analytical results carry over to theD-dimensional
Schwarzschild black holes as well. We will verify this by
direct numerical evolution. The main results are the late-ti
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behavior is dominated by a tail and this is a power-law fa
off. For odd dimensions the power law is determined not
the presence of the black hole, but by the fact that the sp
time is odd dimensional. In this case the field decays asC
;t2(2l 1D22), wherel is the angular index determining th
angular dependence of the field. This is one of the m
interesting results obtained here. One can show directly fr
the flat space Green’s function that such a power law is
deed expected in flat odd dimensional spacetimes, and
amusing to note that the same conclusion can be reac
directly from the analysis of@6,7#. For even dimensiona
spacetimes we find also a power-law decay at late times,
with a much more rapid decay,C;t2(2l 13D28). For even
D, this power-law tail is entirely due to the black hole,
opposed to the situation in oddD. These results are strictly
valid for D.4. Four-dimensional Schwarzschild geomet
is special, having the well known power-law tailC
;t2(2l 13).

II. A BRIEF SUMMARY OF PREVIOUS ANALYTICAL
RESULTS FOR A SPECIFIC CLASS OF POTENTIALS

In a complete analysis, Ching, Leung, Suen, and You
@6,7# have studied the late-time tails appearing when o
deals with evolution equations of the form~1!, and the po-
tential V is of the form

V~x!;
n~n11!

x2
1

c1logx1c2

xa
, x→`. ~2!

By a careful study of the branch cut contribution to the a
sociated Green’s function they concluded that in general
late-time behavior is dictated by a power law or by a pow
law times a logarithm, and the exponents of the power l
depend on the leading term at very large spatial distan
The case of interest for us here, as we shall verify in
following section, is whenc150. Their conclusions, which
we will therefore restrict to thec150 case, are~see Table 1
in @6# or @7#! as follows.

~i! If n is an integer, the term@n(n11)#/x2 does not
contribute to the late-time tail. We note that this term rep
sents just the pure centrifugal barrier, characteristic of
space, so one can expect that indeed it does not contribu
least in four-dimensional spacetime. We also note that si
even dimensional spacetimes have on-light cone propa
tion, one may expect to reduce the evolution equation t
form containing the term@n(n11)#/x2, with n an integer.
We shall find this is indeed the case. Therefore, for integen,
it is the c2 /xa term that contributes to the late-time tail. I
this case, the authors of@6,7# find that the tail is given by a
power law,

C;t2m, m.2n1a, a odd integer,2n13.
~3!

For this case (a an odd integer smaller than 2n13) the
exponentm was not determined analytically. However, the
argue both analytically and numerically, such thatm52n
12a22. For all other reala, the tail is
3-2
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C;t2(2n1a), all other reala. ~4!

~ii ! If n is not an integer, then the main contribution to t
late-time tail comes from then(n11)/x2 term. In this case
the tail is

C;t2(2n12), nonintegern. ~5!

We will now see that for aD-dimensional Schwarzschild
geometry the potential entering the evolution equations
asymptotically of the form~2! and therefore the results~3!–
~5! can be used.

III. THE EVOLUTION EQUATIONS AND LATE-TIME
TAILS IN THE D-DIMENSIONAL
SCHWARZSCHILD GEOMETRY

Here, we shall consider the equations describing the e
lution of scalar, electromagnetic, and gravitational we
fields outside theD-dimensional Schwarzschild geometr
We shall then, based on the results presented in the prev
section, derive the late-time tails form of the waves. We w
find they are always a power-law falloff.

A. The evolution equations and the reduction of the potential
to the standard form

The metric of theD-dimensional Schwarzschild blac
hole in (t,r ,u1 ,u2 , . . . ,uD22) coordinates is@18#

ds252 f dt21 f 21dr21r 2dVD22
2 , ~6!

with

f 512
M

r D23
. ~7!

The mass of the black hole is given by (D
22)VD22M /16pG, whereVD2252p (D21)/2/G@(D21)/2#
is the area of a unit (D22) sphere anddVD22

2 is the line
element on the unit sphereSD22. We will only consider the
linearized approximation, which means that we are consi
ing wave fields outside this geometry that are so weak
they do not alter this background. Technically this means
all covariant derivatives are taken with respect to the ba
ground metric~6!. The evolution equation for a massle
scalar field follows directly from the~relativistic! Klein-
Gordon equation. After a separation of the angular variab
with Gegenbauer functions~see@19# for details! we get that
the scalar field follows Eq.~1! with a potential

Vs~r * !5 f ~r !F a

r 2
1

~D22!~D24! f ~r !

4r 2
1

~D22! f 8~r !

2r G ,

~8!

wherer is a function of the tortoise coordinater * according
to ]r /]r * 5 f (r ). The constanta5 l ( l 1D23) is the eigen-
value of the Laplacian on the hypersphereSD22 and f 8(r )
5d f(r )/dr. l can take any non-negative integer value.
course the evolution equation is Eq.~1! where the variablex
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is in this case the tortoise coordinater * . This is the standard
form in which the potential is presented. However, one c
collect the different powers ofr and get

Vs~r * !5 f ~r !Fn~n11!

r 2
1

1

r D21

~D22!2M

4 G , ~9!

where

n5 l 221
D

2
. ~10!

Asymptotically for larger * one can show that

Vs~r * !ur
*

→`5
n~n11!

r
*
2

1
1

r
*
D21

~D22!Ml

D24
~32 l 2D !.

~11!

This is strictly valid forD.4. In theD54 case there is a
logarithm term@2#. Notice that the coefficientn appearing in
the centrifugal barrier termn(n11)/r

*
2 is, as promised, an

integer for evenD and a half-integer for oddD. The gravi-
tational evolution equations have recently been derived
Kodama and Ishibashi@20#. There are three kinds of gravi
tational perturbations, according to Kodama and Ishibas
terminology: the scalar gravitational, the vector gravitation
and the tensor gravitational perturbations. The first two
ready have their counterparts inD54, which were first de-
rived by Regge and Wheeler@21# and by Zerilli @22#. The
tensor type is a new kind appearing in higher dimensio
However, it obeys exactly the same equation as mass
scalar fields, so the previous result~9!–~11! holds. It can be
shown in fact that the scalar and vector type also obey
same evolution equation with a potential that also has
form ~11! with a slightly different coefficient for the 1/r

*
D21

term. For example, for the vector type the potential is

Vgv~r * !5 f ~r !Fn~n11!

r 2
2

1

r D21

3~D22!2M

4 G , ~12!

wheren is defined in Eq.~10!. Therefore asymptotically for
large r * ,

Vgv~r * !ur
*

→`5
n~n11!

r
*
2

2
1

r
*
D21

~D22!M

D24

3@81D21D~ l 26!1 l ~ l 23!#, ~13!

which is of the same form as the scalar field potential. T
scalar gravitational potential has a more complex form,
one can show that asymptotically it has again the form~11!
or ~13! with a different coefficient in the 1/r

*
D21 term. Since

the explicit form of this coefficient is not important here, w
shall not give it explicitly. Electromagnetic perturbations
higher dimensions were considered in@23#. Again, asymp-
totically for large r * they can be reduced to the form
~11!~where againn5 l 221D/2 and the 1/r

*
D21 coefficient is

different!, so we shall not dwell on them explicitly.
3-3
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B. Late-time tails

Now that we have shown that the potentials appearing
evolution of massless fields in theD-dimensional Schwarzs
child geometry belong to the class of potentials studied
@6,7# we can easily find the form of the late-time tail. For od
dimensional spacetimes,n is not an integer, therefore th
centrifugal barrier gives the most important contribution
the late-time tail. According to Eq.~5! the late-time tail is
described by the power-law falloff

C;t2(2l 1D22), odd D. ~14!

According to the discussion in the Introduction, this tail
independent of the presence of the black hole, and sh
therefore already appear in the flat space Green’s funct
Indeed it does@14,15#. The flat, odd dimensional Green
function has a tail term@14,15# proportional toQ(t2r )/(t2

2r 2)D/221, where Q is the Heaviside step function. It i
therefore immediate to conclude that, for spherical pertur
tions, for example, the tail at very large times should
t2(D22), which is in agreement with Eq.~14! for l 50
~which are the spherical perturbations!. It is amusing to note
that the analysis of@6,7# gives the correct behavior at onc
simply by looking at the centrifugal barrier. We hav
checked numerically the result~14! for D55, and the results
are shown in Figs. 1 and 2.

The numerical procedure followed the one outlined in@3#,
with constant data onv5v0, wherev is the advanced time
coordinate,v5t1r * . One final remark is in order here
When numerically evolving the fields using the scheme
@3#, we have found that forD.5 the tail looked always like
t2(2n14). This is a fake behavior, and as pointed out in@7#
~see in particular their Appendix A! it is entirely due to the
ghost potential appearing for potentials vanishing faster t

FIG. 1. Generic time dependence of a scalar fieldC in a five-
dimensional Schwarzschild geometry, at a fixed spatial position.
took as initial conditions a Gaussian wave packet withs53 and
vc510. We have performed other numerical extractions for diff
ent initial values. The results for the late-time behavior are indep
dent of the initial data, as far as we can tell. Forl 50 the late-time
behavior is a power law withC;t23.1 for l 51, C;t25.2 at late
times and forl 52, C;t27.3. The predicted powers are23, 25,
and27, respectively.
06150
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e
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1/r
*
4 for a second order scheme. Technically the presenc

ghost potentials can be detected by changing the grid
@7#. If the results with different grid sizes are different, the
the ghost potential is present. Our numerical results forD
55, presented in Figs. 1–3, are free from any ghosts.

The numerical results are in excellent agreement with
analytical predictions~14!, and seems moreover to be qui
independent of the initial data. This also means that for o
dimensional spacetimes the late-time behavior is dictated
by the black hole but by the fact that spacetime has an
number of dimensions. To further check that it is in fact t

e

-
n-

FIG. 2. Generic time dependence of a gravitational Gauss
wave packetC in a five-dimensional Schwarzschild geometry, a
fixed spatial position. The results for the late-time behavior
independent of the initial data. Forl 52 the late-time behavior is a
power law with C;t27.1, for l 53 the falloff is given by C
;t29.2 at late times, and forl 54 it is C;t211.4. The predicted
powers are27, 29, and211, respectively.

FIG. 3. Evolution of a field subjected to a five-dimension
model potential. The potential is given by Eq.~9! but here we take
n as an integer,n51. We obtain at late timesC;t26.1, whereas
the analytical prediction ist26. This shows nicely that for integern
the centrifugal barrier contribution vanishes, and it is the next te
in the asymptotic expansion of the potential that gives the m
important contribution. We have checked that this power law
indeed the correct one, and not a numerical artifact of the gh
potential.
3-4
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centrifugal barrier term that is controlling the tail, we ha
performed numerical evolutions with a five-dimension
model potential. To be concrete, we have evolved a fi
subjected to the potential~9! ~with D55) but we have con-
sidered an integer value forn, namely,n51. The result is
shown in Fig. 3. Of course the true potential has a se
integer value forn, but this way one can verify the depen
dence of the tail on the centrifugal term. Indeed ifn51, then
by Eq. ~4!, with n51 anda54, the late-time tail should be
C;t26. The agreement with the numerical evolution
great. It is therefore the centrifugal barrier that controls
tail in odd dimensional spacetimes.

For even dimensional spacetimes,n5 l 221(D/2) is an
integer. Moreover,a5D21,2n1352l 1D21. There-
fore we are in situation~3!. So the late-time tail of wave
propagation in an evenD-dimensional Schwarzschild spac
time is a power law

C;t2(2l 13D28), evenD. ~15!

IV. CONCLUSIONS

We have determined the late-time behavior of mass
fields ~scalar, electromagnetic, and gravitational! outside a
D-dimensional Schwarzschild black hole. For oddD, the
field at late times has a power-law falloff,C;t2(2l 1D22),
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