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We argue that the demand of background independence in a quantum theory of gravity calls for an extension
of standard geometric quantum mechanics. We discuss a possible kinematical and dynamical generalization of
the latter by way of a quantum covariance of the state space. Specifically, we apply our scheme to the problem
of a background independent formulation of matrix theory.
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The quest for a consistent, unified quantum theory of matthat the space of quantum events is nonlinearly inter-related
ter and gravity remains very much an open issue, despiteith the generator of quantum dynamics—the Hamiltonian.
great progress in string theofit] and other approaches to ~ We briefly review the key features of geometric standard
qguantum gravityf2]. At the outset either quantum mechanics QM [5] (for reviews of this approach consyi—10]). Pure
(QM) or general relativitfGR) or both should give way to a states are points of an infinite dimensional Kahler manifold
new substructure. From the predominant viewpoint in stringP(H), the complex projective space of the Hilbert spate
theory it is GR that needs replacing, while QM is completeEquivalently, P(*) is a real manifold with an integrable al-
by itself. This stand is well motivated when GR is taken asmost complex structurd. As such it has a Kahler metric
valid only at low energy scaldd]. In fact, the most general given by (i|¢), the Hermitian inner product of two states
diffeomorphism invariant effective action dgerivablefrom (4| and |¢) in #, the Riemannian metricg(y, )
the consistency requiremerite., conformal invariangeofa  =g(Jy,J¢) =2k Re(( | )), which is uniquely the Cayley-
perturbative string theory. Alas, a nonperturbative, backfypini-Study metrid7,9]. The associated symplectic 2-form
ground independent understanding of this remarkable fact ig,(,r/,, ¢)=2kIm((¢|¢)) with k=#f=2/c with h being
still lacking. Most of the other attempts at quantizing gravity pjanck’s constant and the constant holomorphic sectional
[2], while stressing the relational, background independengyryature(CHSQ of P(*). While the role of the symplectic
nature of GR(and thus arguing against the effective field sirycture is well known, the Riemannian structure, notably
theoretic point of view and for a nonstandard approach tgypsent in classical phase space, is the key player and as the
quantization of gravity still keep to the canonical structure metric structure orP embodies the information about purely
of QM.* . ) _ _ _quantum properties, such as time evolution, uncertainty rela-

What is the physical rationale for changing the canonicaljons, entanglement, and the measurement process. The cor-
quantum mechanical structure? And if such a rationale isespondence with the operatorial formalism is as follows: An

. : L . t _ _

found., is it theoretically or empirically compelling® In the %PservableA=<A>, defined as the expectation value of a

negative, is not the canonical structure somehow unique, an o PO , )
sHermitian linear operatoA, is a real valued differentiable

if so, what does this imply for the foundational issues o k . ) :
function on P, belonging to a special class &fahlerian

guantum theory, of a theory of quantum gravity, in particu- . ' ; X N
lar? functions This contrasts sharply with classical Hamiltonian

This paper puts forth a radical but, in our view, a justified dynamics wherany function of the canonical variables is an

approach to extending QM. Motivated by the physical re_g)b.servablé."The derivative of such am vanishes at an
quirement of background independence and the need tgi9enstate” with the value of at such a point giving the
make room for gravity at the quantum level, we are led to a €igenvalue.” _ . o
rather drastic extension of standard QM: to wit, we modify _ '€ evolution of states, i.e., the Sctinger equation is
both its dynamics and kinematics, and thereby the very sym@iven by the symplectic flow generated by a Hamiltonkan
plectic and Riemannian structures that underlie its geometri@f @ny given system. Let a pure state e 2 e, , where
foundations The upshot of our proposal is that the space ofthe ¢, are the coefficients of in an orthonormal elgenba3|s
quantum states (events) becomes dynamical and that the d%ﬁa} of H. Let g*=2/Rey, and p,= V2% 1m y, with the
namical geometric information is described in terms of a(d®+ipa) being the homogeneous coordinates far The

nonlinear diffeomorphism invariant theory, in such a way Symplectic structure of? is given by the closed, nondegen-
erate 2-form w®@=dp,Adg?, do'®=0. The Poisson

bracket is defined as usuakf,g}=(df/dpa.)(dg/dq?)
*Email address: dminic@vt.edu _(f7f/(9qa)((99/(9pa)5wab((?fmxa)((?g/axb), wherew?®” is
"Email address: kahong@vt.edu the inverse ofw® and theX®=(p,,q?) form a set of ca-
IFor a recent critical discussion on the status of canonical QM ifonical coordinates. The Scliiager equation, withh
guantum gravity, see, for examla].
20ur present discussion is far more general than our recent geo-
metric formulation of Nambu quantum mecharid$ motivated by 3Such a possibility in the context of a generalized QM was ana-
the covariance problem in matrix theory. lyzed by Weinberd6].
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=(A), is then simply Hamilton’s equationsdp,/dt /\dcf, whereX has as its boundary. As a symplectic area
={h,p.}, dg¥/dt={h,q%}. Here h=13[(p?)?2 enclosed by, this phase depends solely on the geometry of
+(9a)2]wa, @, being the energy eigenvalues. An obsery-the inner product and is both independent of the Hamiltonian

able O will then evolve asdO/dt={h,0}. The expectation and the gquation of motion if and only if the latter is first

values of commutators of operators acting/érare precisely order in time. . . :

the Poisson brackets of the corresponding Kahlerian func- N€XtWe draw attention to a simple ca:lcglaﬂondﬂfz for

tions The inner product determines the flat metric on th¢he Gaussian coherent stafgx) ~exgf —(x—1)7/48%], which,

Hilbert space dS2=3[(dq,)2+ (dps)2]= S.,dXCdX?, using the convol_uti(_)n property_ of Gf_;\ussian integrals, yields

whereX2=(g?,p?). the enatural metric in the configuration space, namdl
The Born rule ¢* y=1=(1/24)3[(p??+(9,)?]=1 =dI?/512. So, wherever the configuration space coincides

implies thaty ande'®y are to be identified. For finite, we ~ With space the natural metric oi€P(n) in the #—0 limit
then have as the space of rays%ft=C"*1 the complex 9ives a spatial metrig9]. It is this important insight which is

projective spac€ P(n), the base space of the complex Hopf the springboard for our proposed background independent
line bundle of the sphere&®™*! over CP(n) = U(n generalization of standard QMror a generalized coherent

state, the FS metric reduces to the metric on the correspond-

+1)/U(n)xU(1) with itsU(2) fiber, the group of complex

. : . -ing group manifold 10].
phases in QM. Thus QM can be viewed as a classical Hamil-* & ) .
tonian system, albeit a very special one with, as its phase Given the Riemannian structure of QM and the observed

space, the nonlinear, rich and *huge” projective Hilbert connection between the FS and the spatial metrics, it be-

spaceCP(n) with n=o generically[8] and U(I’]) as the hooves us to inquire if a more general Riemannian structure

unitary group of quantum canonical transformations. TheOf space can be induced from a more flexible state space than

unique Riemannian metric o@P(n), induced from the in- CP(n).dSFo?cifikcelllly, _Ire: in the abov%_metric comp_utatfion tbhe
ner product ofH, is the Fubini-study(FS) metric, ds?, mappe —k(l). The corresponding expression for the

0 (01D 200100 @I UIG0) s e SPANE) MEUE resule fom f overep of o Gavssins
plicitly discussed iff7,9,11]. The Heisenberg uncertainty re- ¢ k() q N here the * . trie”
lations arise from such a metric GfP(n) whose local prop- rom fdXgy, ., oY1 ¥1+ai, Where the “quantum metric
erties also yield a generalized energy-time uncertainty€adsdy, y, . = ¥k ¥k+ak/ ¥ $h+ai- Clearly the transforma-
relation [9]. The probabilistic(statistica) interpretation of tion that takesy— i is not in general unitary. If we

QM is thus hidden in the metric properties B{#). The insist on the desired relation between the quantum metric and
unitary time evolution is related to the metrical struct[f®@¢ an arbitrary metric on the classical configuration space, then
with Schralinger’s equation in the guise of a geodesic equathe kinematics of QM must be altered. Moreover if the in-
tion on CP(n)=U(n+1)/U(n)xU(1): du¥/ds+T'2.uPu¢  duced classical configuration space is to be the actual space
=(1/2AE) Tr(H Fg‘)ub for the FS metricggts, with the canoni-  of spacetime, only a special quantum system will do. We are
cal curvature 2_form|:ab valued in the ho|on0my gauge thus induced to make the state manifold Suitably flexible by
grougt U(n)xU(1). Here AE?=(H?—(H)? as in [9]. doing general relativity on it. The resultant metric on the
Also, ud=dz/ds, wherez? denote the complex coordinates Hilbert space is generally curved with its distance function
on CP(n) andI'2, is the connection obtained from the FS modified, an extended Born rule and hence a new meaning to
metric. The affine parameteis determined by the P(n) probability. By insisting on dl_ffeomorph|§m invariance in thg
metric. As underscored by Aharonov and Anan@@l time state space and on pres’ervmg the deswab_le complex projec-
measurement in the evolution of a given system reduces tiv€ pProperties of Cartan's rank 1 symmetric spaces such as
that of distance o€ P(n). In particular/zds=2AEdt. Such CP(n), we arrive at the ensuing coset state space

an expression naturally invokeselational interpretation of ~ Piff(®,C)/Diff(¢—1C)xDiff(1C) as the minimal
time in QM. Even more striking is the fact that the geometricPhase space candidate for a background independent QM. In

interpretation of probability as the geodesic distance orfUmmary, the axioms of standard geometric QM are enlarged

CP(n) is directly related to the definition of the evolution S follows. _

parametet! In the above geodesic Schiinger equationH (1) The state space CP(») is extended to
appears as the “charge” of an effective particle moving with Piff(,C)/Diff(—1)xDiff(1,C) deriving from the
a “velocity” u? in the background of the “Yang-Mills” field ~ 9eneralized inner product

Fap- Finally, given a curvd™ in the projective Hilbert space

P, the geometridBerry) phase[13] is given by[9] [sdp, dS= ha(dgy) 2+ (dpy)2]=hapdX2dX°, (1)

. . . ._whereh,, is Hermitian. The“Born rule” now r
“The best way to understand this geodesic equation is to realize erengy Is Hermitia e"Born rule” now reads

that the Hamiltonian flow on the Hilbert space is a Killing fIgw. 1

So the Schrdinger equation orCP(n) is the geodesic equation Z E hab[(papb)+(qaqb)]=l. 2
projected from theJ(n+1) bundle down to the base spac®(n) 23D

with the fibreU(n) X U(1). This is just the Kaluza-Klein reduction

that leads to the geodesic equation of this type, better known as thEhese equations provide the metric relation on and the geo-
Wong equatior{9,12)]. metrical shape) of the new state space, and implicitly de-
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fines7i. The probabilistic interpretation lies in the definiton  The geodesic equatiofd) follows from the conservation
of geodesic length on the new space of quantum statesf the energy-momentum tensoW,T3°=0 with T,
(event$. The relationzds=2AEdt gives meaning to the =TI Fag.qF°P— 2gapFcqF e+ (1/2AE)Hu,u,] by way of
“evolution parameter”t! Notably different metrics imply the usual GR argumerte.g.[14], Chap. 20. With quantum
different evolution parameters withrelational and akin to  gravity in mind, we setAE to the Planck energ¥,, the
the “multifinger time” of GR [14]. Given theX space, we proper deformation parameter. WhEp— = we recover the
can introduce a naturaDiff(1,C) map, X—f(X). The usual flat metric on the Hilbert space or the FS metric on the
Diff(1,C) identification of the points on the submanifold projective Hilbert space. Since both the metrical and sym-
determined by the Born rule defines the generalized projeglectic data are also containedhh we have here the advert-
tive Hilbert manifold. ized nonlinear “bootstrap” between the space of quantum

(2) The observables are functions of the natural distancevents and the dynamics. The diffeomorphism invariance of
on the quantum phase spabg XX, O=0(h,,X?XP). the new phase space suggests the following dynamical
They reduce to the usual ones when the Riemannian struscheme for the BIQM:
ture is canonical. More explicitly

Rap— %gabR_ AGab= Tap, (6)

O=;) 04hapX?X°, (3 with T,, given as abovdas determined byF,, and the
’ Hamiltonian(charge H]. Furthermore

where the eigenvalue, is given as(see[6]) 1
ab_ b

4o V.F _2AEHU . (7)

W=Oawabxb. (4) o _ _ o

The last two equations imply via the Bianchi identity a con-

served energy-momentum tensgyT2°=0. The latter, taken

together with the conserved “currentf®=(1/2AE)Hu®,

i.e., V,j#=0, implies the generalized geodesic Sclinger

equation. So Eqg6) and(7), being a closed system of equa-

a tions for the metric and symplectic form on the space of
d_u+ra ubuc:LTr(HFa)ub (5) events, define our BIQM. We emphasize once again that in
dr ~Pe 2AE S the limit E,— o we recover the usual structure of linear QM.

Notice that in this limit the metric and the symplectic struc-
where nowr is given through the metritd7=2AEdt, asin  ture do not depend on the Hamiltonian, which is the case in
the original work of Aharonov and Anandd8]. I'}. is the  ordinary quantum mechanics. By imposing the conditions of
affine connection associated with this general mejgicand  homogeneity and isotropy on the metftbat is the require-
F.p IS a general curvature 2-form iDiff(~—1,C) ment of the maximum number of Killing vectorthe usual
XDiff(1,C). rigid structure of quantum mechanics is recovdréd More-

Next we reformulate geometric QM in the above back-over this limit does not affect the geodesic equation
ground independentBl) setting. Due to theDiff(«»,C) dud/d7+T2.uPut=(1/2AE) Tr(HF2)uP due to the relation
symmetry, “coordinates’z? (i.e., quantum stat¢snake no Adr=2AEdt. As such our formulation offers a tantalizing
sense physically, only quantum events do, which is the quamonlinear linkage between the metric and symplectic data
tum counterpart of the corresponding statement on the meaembodied inH and the quantum metric and symplectic data.
ing of spacetime events in GR. Probability is generalized and’he space of quantum events dgnamicalparalleling the
given by the notion of diffeomorphism invariant distance in dynamical role of spacetime in GR, as opposed to the rigid,
the space of quantum configurations. The dynamical equaabsolute state space of standard QM. This is then, in our
tion is a geodesic equation on this space. Time, the evolutioniew, the price of quantum background independence. To
parameter in the generalized Sofliger equation, is not draw more concrete consequences of this kinematics made
global and is given in terms of the invariant distance. Ourdynamical, we next specify a quantum system withHits
basic starting point of a background independent QMThe configuration space of the quantum metric defines a “su-
(BIQM) is to notice that the evolution equatidiine general- perspace’(as in canonical GR15]) and the dynamics on it
ized Schrdinger equationas a geodesic equation, can be presumably select a particular background.
derived from an Einstein-like equation with the energy- We now demand that the configuration space metric be
momentum tensor determined by the holonomic non-Abelianthe actual physicadpatial metric. The suitable quantum sys-
field strengthF,, of the Diff(>—1,C)XDiff(1,C) type tem must then have a very special configuration space and
and the interpretation of the Hamiltonian as a charge. Suckhould describe a quantum theory of gravity. Specifically, we
an extrapolation is logical sind@P(n) is an Einstein space; seek a canonical QM of a nonperturbative form of quantum
its metric obeying Einstein’s equation with a positive cosmo-gravity in a fixed background, with a well defined perturba-
logical constant given byi: R,,—39.,R—\g.,=0. The tive limit and a configuration space being the actual space.
Ricci curvature of CP(n) is R,,=(n+1)/Ag,,=3c(n  The only example we know of fulfilling these criteria is ma-
+1)g,,, Wherec is the CHSC ofCP(n) given byc=2/%. trix theory[16]. (The latter is also “holographic[17], in the

Here the symplectic formw?® as well asO depend on the
invariant combinatiorh,,X3X".
(3) The temporal evolution equation rea@se footnote 6
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sense of mean-field theotyAs with other roads to quantum ingly fixed (the dimension of the index space is fixe@n
gravity, matrix theory which leaves QM intact, suffers from the other hand, one of the fundamental features of matrix
the problem of background dependent&—21.° theory is that of being automatically second quantized; it
In implementing our scheme, we assume that the metriencodes the Fock spa¢a,} in terms of block diagonath,
on the transverse space is encoded in the metric on the quak-n, matriceq 16]. Taking cue from this defining feature, we
tum state space. Then we take the matrix theory Hamiltoniapromote the points on the quantum phase space into Hermit-
in an arbitrary background and insert it into the definingian matrices. This is the final ingredient in our proposal. In
equations of the above BIQM. The evolution of our systempractice, theu®'s appear as Hermitian matrices in the defin-
then readslu®/dr+ F‘g‘cubu°=(1/2Ep)HMFgub, whereH,, ing equationg6) and (7). So the rank of matrix-valued non-
is the matrix Hamiltoniar{i,j denote the transverse space commuting transverse coordinatés(N) is made dynamical
indices (=1, .. .,9),Ris the extent of the longitudinal 11th by turning the coordinatez’ of our background independent
direction] quantum phase space into noncommutative objects. The
asymptotic causal structutand thus aovariant background
Hu=RTH{3P'PIG;;(Y)+ [ Y, YT Y5 YIIG;(Y)Gi(Y)} independent structuyeonly emerges in the matrix theory
limit [16], N—o, R—« while keepingN/R fixed. The
+fermions (8)  above defining dynamical equatiof® and(7) can also be
. . . - cast in the context of Connes’ noncommutative geometry
HereP' is the conjugate momentum ¥ (NXN Hermitian 25 \we will discuss this topic in a separate longer publica-
matrice$ given a symplectic forna. (We adopt the symmet-  tion which will elaborate the contents of this paj26].
ric ordering of matrice;, sde0].) Given this expression for In closing, the gist of our proposal lies in the nonlinear
Hw the general equations [Gand (7) then define a back- interconnection between the metriG) and symplectic
ground independent matrix theory (BIMTote thatin Eqs.  gata ();;) contained in the Hamiltoniahl and the quantum
(6) and(7), a,b denote the indices on the quantum space Ofetric (g,.) and symplectic data,,, or equivalently,
states, whose span !s determin_ed b_y the dimension of thpab)_ This nonlinear connection may well explain hde)
Hilbert space of matrix theory, given in terms Mf _ different degrees of freedom are associated with different
~ So the time of BIMT is manifestly not global, but is de- packgrounds andb) how the observed four-dimensional
fined by the_mvanant' distance on the space of_ quantur@,pacetime background dynamically emerges in matrix
events. The light-fronglight-cong SO(9) symmetry is only  theory, the pregeometry being the dynamical stochastic ge-
‘local” (in the sense of the generalized quantum phas@metry of the space of events. Furthermore we can not but
spacg. SUSY (supersymmetryis generally broken since ge- ponder the fascinating possibility that the very form of the
nerically, we have no background which admits globally de-matrix theory HamiltonianH,, is already encoded in the
fined supercharges. Only “locallytagain in the sense of the nontrivial topological structure of the space of quantum

generalized quantum spacee may talk about the corre- eyents. This may be so if the latter manifold is nonsimply
spondence between the moduli space of the matrix theorygnnected and is noncommutative.

SUSYQM and the transverse spddé].

As to the longitudinal coordinatéand longitudinal mo- We are indebted to V. Balasubramanian, I. Bars, J. de
mentum, given in terms oN/R [16]), they can be made Boer, L. N. Chang, L. Freidel, J. Gates, E. Gimon, M.
dynamical in our proposal. The rark of the matrices im- Gunaydin, V. Jejjala, D. Kabat, N. Kaloper, R. Leigh, D.
plicitly defines the size of the Hilbert space, which is seem-Marolf, F. Markopoulou, C. Nappi, J. Polchinski, L. Smolin,

A. Schwarz, T. Takeuchi, W. Taylor, and R. Zia for corre-
spondence, comments, and discussions.
SThe relationship between holography, unitarity, and diffeomor-
phism invariance was explored j@8].
5We should mention here that different arguments for revising "This in complete analogy with the concept of “charge without
guantum mechanics in the framework of quantum gravity have beenharge” of the Einstein-Maxwell system of equations in vacuum, as
advanced, for example, {r22—-24. discussed by Misner and Whee[&7].
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