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Background independent quantum mechanics and gravity

Djordje Minic* and Chia-Hsiung Tze†
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We argue that the demand of background independence in a quantum theory of gravity calls for an extension
of standard geometric quantum mechanics. We discuss a possible kinematical and dynamical generalization of
the latter by way of a quantum covariance of the state space. Specifically, we apply our scheme to the problem
of a background independent formulation of matrix theory.
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The quest for a consistent, unified quantum theory of m
ter and gravity remains very much an open issue, des
great progress in string theory@1# and other approaches t
quantum gravity@2#. At the outset either quantum mechani
~QM! or general relativity~GR! or both should give way to a
new substructure. From the predominant viewpoint in str
theory it is GR that needs replacing, while QM is comple
by itself. This stand is well motivated when GR is taken
valid only at low energy scales@1#. In fact, the most genera
diffeomorphism invariant effective action isderivable from
the consistency requirements~i.e., conformal invariance! of a
perturbative string theory. Alas, a nonperturbative, ba
ground independent understanding of this remarkable fa
still lacking. Most of the other attempts at quantizing grav
@2#, while stressing the relational, background independ
nature of GR~and thus arguing against the effective fie
theoretic point of view and for a nonstandard approach
quantization of gravity! still keep to the canonical structur
of QM.1

What is the physical rationale for changing the canoni
quantum mechanical structure? And if such a rationale
found, is it theoretically or empirically compelling? In th
negative, is not the canonical structure somehow unique,
if so, what does this imply for the foundational issues
quantum theory, of a theory of quantum gravity, in partic
lar?

This paper puts forth a radical but, in our view, a justifi
approach to extending QM. Motivated by the physical
quirement of background independence and the need
make room for gravity at the quantum level, we are led t
rather drastic extension of standard QM: to wit, we mod
both its dynamics and kinematics, and thereby the very s
plectic and Riemannian structures that underlie its geome
foundations.2 The upshot of our proposal is that the space
quantum states (events) becomes dynamical and that the
namical geometric information is described in terms of
nonlinear diffeomorphism invariant theory, in such a w

*Email address: dminic@vt.edu
†Email address: kahong@vt.edu
1For a recent critical discussion on the status of canonical QM

quantum gravity, see, for example@3#.
2Our present discussion is far more general than our recent

metric formulation of Nambu quantum mechanics@4#, motivated by
the covariance problem in matrix theory.
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that the space of quantum events is nonlinearly inter-rela
with the generator of quantum dynamics—the Hamiltonia

We briefly review the key features of geometric standa
QM @5# ~for reviews of this approach consult@6–10#!. Pure
states are points of an infinite dimensional Kahler manif
P(H), the complex projective space of the Hilbert spaceH.
Equivalently,P(H) is a real manifold with an integrable a
most complex structureJ. As such it has a Kahler metric
given by ^cuf&, the Hermitian inner product of two state
^cu and uf& in H, the Riemannian metricg(c,f)
5g(Jc,Jf)52k Re(̂ cuf&), which is uniquely the Cayley-
Fubini-Study metric@7,9#. The associated symplectic 2-form
v(c,f)52k Im(^cuf&) with k5\52/c with h being
Planck’s constant andc the constant holomorphic section
curvature~CHSC! of P(H). While the role of the symplectic
structure is well known, the Riemannian structure, nota
absent in classical phase space, is the key player and a
metric structure onP embodies the information about pure
quantum properties, such as time evolution, uncertainty r
tions, entanglement, and the measurement process. The
respondence with the operatorial formalism is as follows:
observableA5^Â&, defined as the expectation value of
Hermitian linear operatorÂ, is a real valued differentiable
function on P, belonging to a special class ofKahlerian
functions. This contrasts sharply with classical Hamiltonia
dynamics whereany function of the canonical variables is a
observable.3 The derivative of such anA vanishes at an
‘‘eigenstate’’ with the value ofA at such a point giving the
‘‘eigenvalue.’’

The evolution of states, i.e., the Schro¨dinger equation is
given by the symplectic flow generated by a HamiltonianH
of any given system. Let a pure state bec5(aeaca , where
theca are the coefficients ofc in an orthonormal eigenbasi
$ea% of H. Let qa5A2\Reca and pa5A2\Im ca with the
(qa1 ipa) being the homogeneous coordinates forP. The
symplectic structure onP is given by the closed, nondegen
erate 2-form v (2)5dpa`dqa, dv (2)50. The Poisson
bracket is defined as usual:$ f ,g%5(] f /]pa)(]g/]qa)
2(] f /]qa)(]g/]pa)[vab(] f /]Xa)(]g/]Xb), wherevab is
the inverse ofv (2) and theXa5(pa ,qa) form a set of ca-
nonical coordinates. The Schro¨dinger equation, withhn

o-
3Such a possibility in the context of a generalized QM was a

lyzed by Weinberg@6#.
©2003 The American Physical Society01-1
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5^Ĥ&, is then simply Hamilton’s equationsdpa /dt
5$h,pa%, dqa/dt5$h,qa%. Here h5 1

2 (a@(pa)2

1(qa)2#va , va being the energy eigenvalues. An obse
ableO will then evolve asdO/dt5$h,O%. The expectation
values of commutators of operators acting onH are precisely
the Poisson brackets of the corresponding Kahlerian fu
tions The inner product determines the flat metric on
Hilbert space dS25(@(dqa)21(dpa)2#5dabdXadXb,
whereXa5(qa,pa).

The Born rule c* c515(1/2\)(a@(pa)21(qa)2#51
implies thatc andeiac are to be identified. For finiten, we
then have as the space of rays inH5Cn11, the complex
projective spaceCP(n), the base space of the complex Ho
line bundle of the sphereS2n11 over CP(n) 5 U(n
11)/U(n)3U(1) with its U(1) fiber, the group of complex
phases in QM. Thus QM can be viewed as a classical Ha
tonian system, albeit a very special one with, as its ph
space, the nonlinear, rich and ‘‘huge’’ projective Hilbe
spaceCP(n) with n5` generically @8# and U(n) as the
unitary group of quantum canonical transformations. T
unique Riemannian metric onCP(n), induced from the in-
ner product ofH, is the Fubini-study~FS! metric, ds12

2

54(12u^c1uc2&u2)[4(^dcudc&2^dcuc&^cudc&) as ex-
plicitly discussed in@7,9,11#. The Heisenberg uncertainty re
lations arise from such a metric ofCP(n) whose local prop-
erties also yield a generalized energy-time uncerta
relation @9#. The probabilistic~statistical! interpretation of
QM is thus hidden in the metric properties ofP(H). The
unitary time evolution is related to the metrical structure@9#
with Schrödinger’s equation in the guise of a geodesic eq
tion on CP(n)5U(n11)/U(n)3U(1): dua/ds1Gbc

a ubuc

5(1/2DE)Tr(HFb
a)ub for the FS metricgab

FS with the canoni-
cal curvature 2-formFab valued in the holonomy gaug
group4 U(n)3U(1). Here DE25^H2&2^H&2 as in @9#.
Also, ua5dza/ds, whereza denote the complex coordinate
on CP(n) and Gbc

a is the connection obtained from the F
metric. The affine parameters is determined by theCP(n)
metric. As underscored by Aharonov and Anandan@9#, time
measurement in the evolution of a given system reduce
that of distance onCP(n). In particular,\ds52DEdt. Such
an expression naturally invokes arelational interpretation of
time in QM. Even more striking is the fact that the geomet
interpretation of probability as the geodesic distance
CP(n) is directly related to the definition of the evolutio
parametert! In the above geodesic Schro¨dinger equation,H
appears as the ‘‘charge’’ of an effective particle moving w
a ‘‘velocity’’ ua in the background of the ‘‘Yang-Mills’’ field
Fab . Finally, given a curveG in the projective Hilbert space
P, the geometric~Berry! phase@13# is given by@9# *Sdpa

4The best way to understand this geodesic equation is to re
that the Hamiltonian flow on the Hilbert space is a Killing flow@7#.
So the Schro¨dinger equation onCP(n) is the geodesic equatio
projected from theU(n11) bundle down to the base spaceCP(n)
with the fibreU(n)3U(1). This is just the Kaluza-Klein reduction
that leads to the geodesic equation of this type, better known a
Wong equation@9,12#.
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`dqa, whereS has as its boundaryG. As a symplectic area
enclosed byS, this phase depends solely on the geometry
the inner product and is both independent of the Hamilton
and the equation of motion if and only if the latter is fir
order in time.

Next we draw attention to a simple calculation ofds12
2 for

the Gaussian coherent statec l(x);exp@2(xW2lW)2/dl2#, which,
using the convolution property of Gaussian integrals, yie
the natural metric in the configuration space, namely,ds2

5d lW2/d l 2. So, wherever the configuration space coincid
with space, the natural metric onCP(n) in the \→0 limit
gives a spatial metric@9#. It is this important insight which is
the springboard for our proposed background independ
generalization of standard QM.For a generalized coheren
state, the FS metric reduces to the metric on the corresp
ing group manifold@10#.

Given the Riemannian structure of QM and the observ
connection between the FS and the spatial metrics, it
hooves us to inquire if a more general Riemannian struc
of space can be induced from a more flexible state space
CP(n). Specifically, letl in the above metric computation b
mapped toł→k( l ). The corresponding expression for th
spatial metric results from the overlap of two Gaussia
ck( l )(x);exp„2@x2k( l )#2/dk( l )2

…, which in turn follows
from *dxgc l ,c l 1dl

c l* c l 1dl , where the ‘‘quantum metric’’

readsgc l ,c l 1dl
[ck* ck1dk /c l* c l 1dl . Clearly the transforma-

tion that takesc l→ck( l ) is not in general unitary. If we
insist on the desired relation between the quantum metric
an arbitrary metric on the classical configuration space, t
the kinematics of QM must be altered. Moreover if the i
duced classical configuration space is to be the actual s
of spacetime, only a special quantum system will do. We
thus induced to make the state manifold suitably flexible
doing general relativity on it. The resultant metric on t
Hilbert space is generally curved with its distance functi
modified, an extended Born rule and hence a new meanin
probability. By insisting on diffeomorphism invariance in th
state space and on preserving the desirable complex pro
tive properties of Cartan’s rank 1 symmetric spaces such
CP(n), we arrive at the ensuing coset state spa
Di f f (`,C)/Di f f (`21,C)3Di f f (1,C) as the minimal
phase space candidate for a background independent QM
summary, the axioms of standard geometric QM are enlar
as follows.

~1! The state space CP(`) is extended to
Di f f (`,C)/Di f f (`21)3Di f f (1,C) deriving from the
generalized inner product

dS25( hab@~dqa!21~dpa!2#[habdXadXb, ~1!

wherehab is Hermitian. The‘‘Born rule’’ now reads

1

2 (
a,b

hab@~papb!1~qaqb!#51. ~2!

These equations provide the metric relation on and the g
metrical shape~s! of the new state space, and implicitly de

ze

he
1-2



n
at

ld
je

nc

tru

k

a
ea
an
in
u
tio
t
u
M

be
y

lia

uc
;
o

the
m-
-
um

of
ical

n-

-
of
t in
.

c-
in
of

on

g
ata
ta.

id,
our
To
ade

‘su-
t

be
-
and
we
um
a-
ce.

a-

RAPID COMMUNICATIONS

BACKGROUND INDEPENDENT QUANTUM MECHANICS . . . PHYSICAL REVIEW D 68, 061501~R! ~2003!
fines\. The probabilistic interpretation lies in the definitio
of geodesic length on the new space of quantum st
~events!. The relation\ds52DEdt gives meaning to the
‘‘evolution parameter’’ t! Notably different metrics imply
different evolution parameters witht relational and akin to
the ‘‘multifinger time’’ of GR @14#. Given theX space, we
can introduce a naturalDi f f (1,C) map, X→ f (X). The
Di f f (1,C) identification of the points on the submanifo
determined by the Born rule defines the generalized pro
tive Hilbert manifold.

~2! The observables are functions of the natural dista
on the quantum phase spacehabX

aXb, O5O(habX
aXb).

They reduce to the usual ones when the Riemannian s
ture is canonical. More explicitly

O5(
a,b

oahabX
aXb, ~3!

where the eigenvalueoa is given as~see@6#!

dO

dXa 5oavabX
b. ~4!

Here the symplectic formvab as well asO depend on the
invariant combinationhabX

aXb.
~3! The temporal evolution equation reads~see footnote 6!

dua

dt
1Gbc

a ubuc5
1

2DE
Tr~HFb

a!ub, ~5!

where nowt is given through the metric\dt52DEdt, as in
the original work of Aharonov and Anandan@9#. Gbc

a is the
affine connection associated with this general metricgab and
Fab is a general curvature 2-form inDi f f (`21,C)
3Di f f (1,C).

Next we reformulate geometric QM in the above bac
ground independent~BI! setting. Due to theDi f f (`,C)
symmetry, ‘‘coordinates’’za ~i.e., quantum states! make no
sense physically, only quantum events do, which is the qu
tum counterpart of the corresponding statement on the m
ing of spacetime events in GR. Probability is generalized
given by the notion of diffeomorphism invariant distance
the space of quantum configurations. The dynamical eq
tion is a geodesic equation on this space. Time, the evolu
parameter in the generalized Schro¨dinger equation, is no
global and is given in terms of the invariant distance. O
basic starting point of a background independent Q
~BIQM! is to notice that the evolution equation~the general-
ized Schro¨dinger equation! as a geodesic equation, can
derived from an Einstein-like equation with the energ
momentum tensor determined by the holonomic non-Abe
field strengthFab of the Di f f (`21,C)3Di f f (1,C) type
and the interpretation of the Hamiltonian as a charge. S
an extrapolation is logical sinceCP(n) is an Einstein space
its metric obeying Einstein’s equation with a positive cosm
logical constant given by\: Rab2 1

2 gabR2lgab50. The
Ricci curvature of CP(n) is Rab[(n11)/\gab5 1

2 c(n
11)gab , wherec is the CHSC ofCP(n) given byc52/\.
06150
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The geodesic equation~5! follows from the conservation
of the energy-momentum tensor¹aTab50 with Tab
5Tr@FacgcdF

cb2 1
4 gabFcdF

cd1(1/2DE)Huaub# by way of
the usual GR argument~e.g. @14#, Chap. 20!. With quantum
gravity in mind, we setDE to the Planck energyEp , the
proper deformation parameter. WhenEp→` we recover the
usual flat metric on the Hilbert space or the FS metric on
projective Hilbert space. Since both the metrical and sy
plectic data are also contained inH, we have here the advert
ized nonlinear ‘‘bootstrap’’ between the space of quant
events and the dynamics. The diffeomorphism invariance
the new phase space suggests the following dynam
scheme for the BIQM:

Rab2 1
2 gabR2lgab5Tab , ~6!

with Tab given as above@as determined byFab and the
Hamiltonian~charge! H]. Furthermore

¹aFab5
1

2DE
Hub. ~7!

The last two equations imply via the Bianchi identity a co
served energy-momentum tensor,¹aTab50. The latter, taken
together with the conserved ‘‘current’’j b[(1/2DE)Hub,
i.e., ¹aj a50, implies the generalized geodesic Schro¨dinger
equation. So Eqs.~6! and~7!, being a closed system of equa
tions for the metric and symplectic form on the space
events, define our BIQM. We emphasize once again tha
the limit Ep→` we recover the usual structure of linear QM
Notice that in this limit the metric and the symplectic stru
ture do not depend on the Hamiltonian, which is the case
ordinary quantum mechanics. By imposing the conditions
homogeneity and isotropy on the metric~that is the require-
ment of the maximum number of Killing vectors! the usual
rigid structure of quantum mechanics is recovered@7#. More-
over this limit does not affect the geodesic equati
dua/dt1Gbc

a ubuc5(1/2DE)Tr(HFb
a)ub due to the relation

\dt52DEdt. As such our formulation offers a tantalizin
nonlinear linkage between the metric and symplectic d
embodied inH and the quantum metric and symplectic da
The space of quantum events isdynamicalparalleling the
dynamical role of spacetime in GR, as opposed to the rig
absolute state space of standard QM. This is then, in
view, the price of quantum background independence.
draw more concrete consequences of this kinematics m
dynamical, we next specify a quantum system with itsH.
The configuration space of the quantum metric defines a ‘
perspace’’~as in canonical GR@15#! and the dynamics on i
presumably select a particular background.

We now demand that the configuration space metric
the actual physicalspatialmetric. The suitable quantum sys
tem must then have a very special configuration space
should describe a quantum theory of gravity. Specifically,
seek a canonical QM of a nonperturbative form of quant
gravity in a fixed background, with a well defined perturb
tive limit and a configuration space being the actual spa
The only example we know of fulfilling these criteria is m
trix theory @16#. ~The latter is also ‘‘holographic’’@17#, in the
1-3
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sense of mean-field theory.5! As with other roads to quantum
gravity, matrix theory which leaves QM intact, suffers fro
the problem of background dependence@19–21#.6

In implementing our scheme, we assume that the me
on the transverse space is encoded in the metric on the q
tum state space. Then we take the matrix theory Hamilton
in an arbitrary background and insert it into the defini
equations of the above BIQM. The evolution of our syste
then readsdua/dt1Gbc

a ubuc5(1/2Ep)HMFb
aub, whereHM

is the matrix Hamiltonian@ i , j denote the transverse spa
indices (i 51, . . . ,9),R is the extent of the longitudinal 11t
direction#

HM5R Tr$ 1
2 Pi PjGi j ~Y!1 1

4 @Yi ,Yl #@Yk,Yj #Gi j ~Y!Glk~Y!%

1 f ermions. ~8!

HerePi is the conjugate momentum toYi (N3N Hermitian
matrices! given a symplectic formv. ~We adopt the symmet
ric ordering of matrices, see@20#.! Given this expression fo
HM the general equations (6! and (7) then define a back
ground independent matrix theory (BIMT). Note that in Eqs.
~6! and ~7!, a,b denote the indices on the quantum space
states, whose span is determined by the dimension of
Hilbert space of matrix theory, given in terms ofN.

So the time of BIMT is manifestly not global, but is de
fined by the invariant distance on the space of quan
events. The light-front~light-cone! SO(9) symmetry is only
‘‘local’’ ~in the sense of the generalized quantum ph
space!. SUSY~supersymmetry! is generally broken since ge
nerically, we have no background which admits globally d
fined supercharges. Only ‘‘locally’’~again in the sense of th
generalized quantum space! we may talk about the corre
spondence between the moduli space of the matrix the
SUSYQM and the transverse space@16#.

As to the longitudinal coordinate~and longitudinal mo-
mentum, given in terms ofN/R @16#!, they can be made
dynamical in our proposal. The rankN of the matrices im-
plicitly defines the size of the Hilbert space, which is see

5The relationship between holography, unitarity, and diffeom
phism invariance was explored in@18#.

6We should mention here that different arguments for revis
quantum mechanics in the framework of quantum gravity have b
advanced, for example, in@22–24#.
,
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ingly fixed ~the dimension of the index space is fixed.! On
the other hand, one of the fundamental features of ma
theory is that of being automatically second quantized
encodes the Fock space$nk% in terms of block diagonalnk
3nk matrices@16#. Taking cue from this defining feature, w
promote the points on the quantum phase space into Her
ian matrices. This is the final ingredient in our proposal.
practice, theua’s appear as Hermitian matrices in the defi
ing equations~6! and~7!. So the rank of matrix-valued non
commuting transverse coordinatesYi ~N! is made dynamical
by turning the coordinatesza of our background independen
quantum phase space into noncommutative objects.
asymptotic causal structure~and thus acovariant background
independent structure! only emerges in the matrix theor
limit @16#, N→`, R→` while keeping N/R fixed. The
above defining dynamical equations~6! and ~7! can also be
cast in the context of Connes’ noncommutative geome
@25#. We will discuss this topic in a separate longer public
tion which will elaborate the contents of this paper@26#.

In closing, the gist of our proposal lies in the nonline
interconnection between the metric (Gi j ) and symplectic
data (V i j ) contained in the HamiltonianH and the quantum
metric (gab) and symplectic data (vab , or equivalently,
Fab). This nonlinear connection may well explain how~a!
different degrees of freedom are associated with differ
backgrounds and~b! how the observed four-dimensiona
spacetime background dynamically emerges in ma
theory, the pregeometry being the dynamical stochastic
ometry of the space of events. Furthermore we can not
ponder the fascinating possibility that the very form of t
matrix theory HamiltonianHM is already encoded in the
nontrivial topological structure of the space of quantu
events. This may be so if the latter manifold is nonsimp
connected and is noncommutative.7

We are indebted to V. Balasubramanian, I. Bars, J.
Boer, L. N. Chang, L. Freidel, J. Gates, E. Gimon, M
Günaydin, V. Jejjala, D. Kabat, N. Kaloper, R. Leigh, D
Marolf, F. Markopoulou, C. Nappi, J. Polchinski, L. Smolin
A. Schwarz, T. Takeuchi, W. Taylor, and R. Zia for corr
spondence, comments, and discussions.

-

g
n

7This in complete analogy with the concept of ‘‘charge witho
charge’’ of the Einstein-Maxwell system of equations in vacuum,
discussed by Misner and Wheeler@27#.
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