PHYSICAL REVIEW D 68, 056005 (2003

Renormalization of relativistic baryon chiral perturbation theory and power counting
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We discuss a renormalization scheme for relativistic baryon chiral perturbation theory which provides a
simple and consistent power counting for renormalized diagrams. The method involves finite subtractions of
dimensionally regularized diagrams beyond the standi#éBdscheme of chiral perturbation theory to remove
contributions violating the power counting. This is achieved by a suitable renormalization of the parameters of
the most general effective Lagrangian. In addition to its simplicity our method has the benefit that it can be
easily applied to multiloop diagrams. As an application we discuss the mass of the nucleon and compare the
result with the expression of the infrared regularization of Becher and Leutwyler.

DOI: 10.1103/PhysRevD.68.056005 PACS nuni$erl1.10.Gh,12.39.Fe

[. INTRODUCTION and interaction of Goldstone bosons. A correspondence be-
tween the loop expansion and the chiral expansion in terms

Starting from the pioneering work of Weinberg in 1979 of momenta and quark masses at a fixed ratio was set up.
[1], effective field theory has evolved into one of the mostChiral perturbation theoryChPT) in the mesonic sector has
important theoretical tools for investigating strong- generated a host of successful applications up to and includ-
interaction processes in the low-energy regime. The concejitg the two-loop level(for a recent review see, e.g., Ref.
of spontaneous symmetry breakdown, leading to the ap-l5]). The extension to processes involving one external
pearence of massless Goldstone bosons with vanishing intemucleon was developed by Gasser, Sainio, andr&[16].
actions in the zero-energy limit, was already well-known inOne of the findings in their approach was that higher-loop
the beginning of the 196(2-5|. Explicit symmetry break- diagrams can contribute to terms as low@@&?), whereq
ing was taken into account in the framework of current alge-generically denotes a small expansion parameter such as,
bra in combination with the partially conserved axial-vectore.g., the pion mass. This “mismatch” between the chiral and
current (PCAQ) hypothesis[6] (for an overview see, e.g., the loop expansion has widely been interpreted as the ab-
[7-9]). Already in the 1960s, Weinberg realized that the pre-sence of a systematic power counting in the relativistic for-
dictions derived from current algebra could be reproduced irmulation. Gasser, Sainio, and/&c pointed out that the ap-
the framework of the so-called phenomenological approxipearance of another scale, namely, the mass of the nucleon
mation (tree-level diagramsof an effective Lagrangiafl0].  (which does not vanish in the chiral limiis one of the
The key progress due to Weinberg’s approach in 1979 was torigins for the complications in the baryonic sector. The
systematically analyzeorrectionsto the leading soft-pion heavy-baryon formulation of ChFTL7,18 provides a power
results invoking a perturbative scheme not in terms of a coueounting scheme which is very similar to the mesonic sector.
pling constant but rather in terms of external momenta and’he basic idea consists in expressing the relativistic nucleon
the pion mas$1]. Because of spontaneous symmetry breakfield in terms of a velocity-dependent field, thus dividing
ing such an expansion is expected to work for momentaanucleon momenta into a large piece close to on-shell kine-
which are small compared to some intrinsic scale of the unmatics and a soft residual contribution. Most of the calcula-
derlying theory. Since the starting point is a nonrenormaliz-tions in the one-baryon sector have been performed in this
able theory, infinities encountered in the calculation of loopframework (for an overview see, e.g., R€fl9]) which es-
diagrams need to be removed by a renormalization of theentially corresponds to a simultaneous expansion of matrix
infinite number of free parameters of the most general effecelements in Ihy and 1/(4rF ). Although this scheme leads
tive Lagrangian. However, as long as one includes all of théo a straightforward power counting, its disadvantage is that,
infinite number of interactions allowed by symmetries, fromin some cases, it does not provide the correct analytic behav-
the point of view of removing divergences there is no differ-ior even in the threshold regini@0]. Several methods have
ence between the so-called nonrenormalizable theories armen suggested to reconcile power counting with the con-
renormalizable theoriegl1]. As will be discussed later in straints of analyticity in the relativistic approa¢d1—-27.
detail, the freedom of choosing a renormalization schem@&he most widely used technique is the so-called infrared
[12] can be advantageously used to formulate a power countegularization of Becher and Leutwylg23] which has been
ing for the perturbative calculation of renormalized dia-applied in various calculations of baryon proper{i28—32,
grams. pion-nucleon scatterinf33,34], mesonic W3) chiral pertur-

The ideas of Weinberg were further developed and combation theory [35-37, a discussion of the generalized
prehensively applied by Gasser and Leutwy#B,14 in Gerasimov-Drell-Hearn sum rule and the spin structure of
terms of the generating functional of color-neutral quark bi-the nucleon38,39, and the ground-state energy of pionic
linears which, at low energies, is dominated by the exchangbydrogen[40].
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The purpose of this work is to devise a new renormaliza-decay constant in the chiral limi&,=F[1+O(m)]=92.4

.tion scheme Ieading. to asjmple and consist_e_nt power counfyay, Here, we work in the isospin-symmetric limit,
ing for the renormalized diagrams of a relativistic approach. - .
The basic idea consists in performing additional subtractions_ Mg=m, apd the Iovyest-order e*pressmn for the squared
of dimensionally regularized diagrams beyond the modifiedPion mass isM?=2Bm, whereB is related to the quark
minimal subtraction scheme employed in Rgf6]. Our ap-  condensatéqq), in the chiral limit[13].

proach is motivated by an observation made in the context of In order to discuss therN Lagrangian, let
nonrelativistic nucleon-nucleon scattering, where the appli-

cation of the minimal subtraction scheme proved to be prob- p
lematic. It was shown that the use of an appropriately chosen v= n
renormalization condition allows one to solve the problem of

an “unnaturally” large scattering length and to obtain a con-denote the nucleon field with two four-component Dirac
sistent power counting in the two-nucleon sedii—43. fields p and n describing the proton and neutron, respec-
Essentially the same idea of using a suitable renormalizatiotively. The most generairN LagrangianZ . is bilinear in

condition has been discussed in R¢®s1,25 for a simplified \?(x) and ¥ (x) and involves the quantities, u,,, I',, and

model of_the one-nucleon sector of relativistic ba!ryon chiralXi (and their derivatives which, in the absence of external
perturbation theory. One of the advantages of this approaclic|ds read

besides its simplicity, is that it may also be easily used in the

renormalization of higher-order loop diagrams. u*=U, U;FiUTé’MU u',
Our work is organized as follows. In Sec. Il we provide 1

those elements of the most general effective Lagrangian Fﬂ=—[uT,&Mu],

which are relevant for the calculation of the nucleon self- 2

energy. In Sec. Illl we illustrate our method by means of a Y-=M2UT=U).

simple dimensionally regularized one-loop integral and com-

pare the result with the infrared regularization of Becher anqy, terms of these building blocks the lowest-order Lagrang-

Leutwyler. In Sec. IV we apply our renormalization schemejan readq16]

to the calculation of the nucleon mass. General conclusions

are presented in Sec. V. _ 1.
LR=Y|iy,DF—m+ Sgay, ysu |V, (2)

Il. THE EFFECTIVE LAGRANGIAN

whereD , V= (d,+I',)V denotes the covariant derivative

In this section we will briefly discuss those elements Ofrgin the absence of external vector and axial-vector fiedis!
the most general effective Lagrangian in the single-nucleo o i o .
sector which are relevant for the subsequent calculation dft @1d da refer to the chiral limit of the physical nucleon

the nucleon self-energy. The effective Lagrangian consists d'@ss and the axial-vector coupling constant, respecti\gely. We
the sum of the purely mesonic and theN Lagrangians, have not displayed the corresponding counterterms;]@
respectively, which are understood to be fixed in such a manner that the

pole position of the nucleon propagator as well as the axial-
Let=L,+ L N, vector coupling constariin the chiral limiy are not affected
by loop contributions. The explicit expressions of these
both of which are organized in &hiral) derivative and counterterms in lowest order were identified in Héf].
quark-mass expansidi,13,14,16,44—48 For our purposes, we only need to consider four of the
seven structures of the Lagrangian((tq?) [16,46,
£7:£2+ £4+ [’G+ ceey
(2) — 7L
Lonm B LG LG LG FrTeTe

C J—
where the subscriptsuperscriptsin £, (£,y) refer to the - —22TF(UMUV)(‘I’D“D”‘I’+ H.c)
order in the expansion. Counting the quark-mass term as 4m
O(g?) [13,49, the mesonic Lagrangian contains only even Cs oy
powers, whereas the baryonic Lagrangian involves both even + ?Tr(u“uM)WW— Z‘lf Yoy Tuu W
and odd powers due to the additional spin degree of freedom.
From the mesonic sector we only need the lowest-order 3

Lagrangian O(q?)] [13],
grangiar{ O(a)] [13] where H.c. refers to the Hermitian conjugate. While the La-

F? it L grangian£ ) does not contribute to the nucleon mass, at
Ly=— (0,00 + ——Tr(U +U), D O(g% we need to consider the term
whereU is a unimodular unitary (X 2) matrix containing _ EM“\I_MP 4
the Goldstone boson fields. In E(L), F denotes the pion- 2 ’
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resulting in the contributiorkM#/2 to the nucleon mass. such agQ?~M?2 andQm~|p?—m?| for the specific case of
This term results from identifying the relevant part of the Eq. (6). Using the forest formula of Zimmermar{i2,5]]
most general chiral Lagrangian @q*). To be specific, the allows one to systematically deal with any diagram. The rel-
coefficienta of Eq (4) is related to the parametegsof the  evant subtractions can be implemented by adjusting the co-

Lagranglanﬁ( of Ref. [46] by efficients of the most general effective Lagrangian, i.e., the
corresponding counterterms are lo¢pblynomia) in mo-
a=—4(8esgt+ €15+ €119 - (5  mentum[12], which implies that only a finite number of
counterterms are needed for the subtraction of a specific dia-
IIl. EXTENDED ON-MASS-SHELL RENORMALIZATION gram. In general, this will then allow us to apply the follow-
VERSUS THE INFRARED REGULARIZATION ing power counting: a loop integration in dimensions
OF BECHER AND LEUTWYLER counts asQ", pion and fermion propagators count @s 2

and Q" 1, respectively, vertices derived frouy,, and £,

The basic idea of our renormalization scheme consists ofount asQ?* andQ¥, respectively. In total this yields for the
providing a rule determining which terms of a given diagrampowerD of a diagram in the one-nucleon sector the standard
should be subtracted in order to satisfy a “naive” power formula[50,52
counting by which one associates a well-defined power with
the diagram in question. The terms to be subtracted are poly-
nomials in small variables and paramet@sternal momenta D=nN_ -2l —Iy+ > 2kNZ+ > kN,  (7)
and squared pion masand can thus be realized by a suitable k=1 k=1
adjustment of the counterterms of the most general effectivi
Lagrangian. In other words, our proposition is to perform
additional subtractionsfinite in numbey of dimensionally
regularized diagrams beyond the modified minimal subtrac-
tion scheme employed in R€f16].

In order to illustrate our method and to compare it wit
the approach of Becher and Leutwylgt3], we will first
consider as an example the dimensionally regularized on

[

fhere N, is the number of independent loop momerita,
the number of internal pion line$, the number of internal
nucleon linesN7, the number of vertices originating from
L5, andN} the number of vertices originating from (X, .

hIn the language of chiral perturbation theo,counts as a
small momentum, i.e., a®(q), with the net result that Eq.
d6), after renormalization, is expected to be of order

X O( n— 3)
loop integral
P 9 Let us turn to the discussion of E€6). We make use of
H(p?,m2,M2;n) the Feynman parametrization
) d"k
=-1 f(qu)“ ab f [az+b(1 [az+b(1-2)]? ®
1 with a=(p—k)>—m?+i0" and b=k?>-~M?+i0", inter-
X T P (6) change the order of integrations, and perform the dhift
[(p—K)*=m=+i0" J[k*=M*+i0"] —k+zp to obtain

wheren denotes the number of space-time dimensions. The  H(p2 m2 MZ%n)

massesn andM refer to the(lowest-ordey nucleon and pion

masses, respectively. Such a type of integral is needed in, J' f
=—i

e.g., the calculation of the one-pion-loop contribution to the =
nucleon self-energy16]. Dimensional regularization pro-

(2m)"

vides a convenient tool to handle the ultraviolet divergence 1

resulting from the region where all componentsk#f get X .
large. However, as it stands, the loop integral of &y does [k*+p?z(1-2)—m’z—M*(1-2)+i0"]?
not yet satisfy a simple chiral power counting. Using E). 9)

we will propose a renormalization procedure generating a

power counting for tree-level and loop diagrams of teka-  Making use of

tivistic effective field theory(REFT) which is analogous to

that given in Ref[50] (for nonrelativistic nucleonsAs will dk  (k?)P
be explained below, by subtracting a suitable number of n m
counterterms in the integraffidye apply a renormalization (2m)" ( A)

scheme resulting in an effective cutdjf for loop integrals n n
which is of the order of some small expansion parameters o pqllPt5Tla=—p—3
i(—) 2 2
— § - Ap+(n/2)7q'
| (4m)2 r| 5T (a)
'Here we make use of the fact that we may take more subtractions 2

than would actually be necessary for the sole purpose of enforcing
(ultraviolet convergence. with p=0 andqg=2, we find
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n

:

H(p? m? M2 n)= 5

(47T)n/2F(2_

1
< [Caga@io 2 o
0

where
A(z)=—-p3(1-2)z+m*(1-2)+M?z—i0".

A. Chiral limit

For the sake of simplicity, let us for the moment restrict
ourselves to théchiral) limit M?=0 and introduce

p?—m
m2

2
A:

C(z,A)=7>—Az(1-2)—i0",
so that we obtain
1
P2 0m = s(min) [ a4 C(z.A)02, 1D
0

where

rlz-3)
k(m;n)= Wm““‘. (12

For the purpose of evaluating the integral of Efl) we
write?

1
f dZ C(z,4)]"2 "2

0

1+A (-2

=(—a)ma=2 fldzz(”’z)z(l— z
0

and apply Egs. 15.3.1 and 15.3.4 of Ré&3] to obtain

H(p?,m?,0;n) = k(m;n)

13

where F(a,b;c;z) is the hypergeometric functiofb3]. In
order to discuss the power counting propertiedHofin the
chiral limit), we make use of Eq. 15.3.6 of R¢b3] to re-
write Eq.(13) as

PHYSICAL REVIEW D 68, 056005 (2003

) n
2
n—3

ol

(47T)n/2

H(p%,m?,0;n)=

|

n
1,2— 5;4—n;—A

XF

n
+(=A)"3 F(E—l)

n
xF(S—n)F(E—l,n—Z;n—Z;—A)
(14
Making use of

ab
F(a,b;c;z)=1+—z+

a(a+1)b(b+1) 22
Z —_— —
c

c(c+1) 2
(15

for |zZ]<1 and the fact thah counts as a small quantity of
order O(q), we immediately see that the first term of Eq.
(14) contains a contribution which does not satisfy the above
power counting, i.e., which is not proportional @(q) as
n—4. Using the expansion of Eq(l5 together with
I'(1+x)=xI"(x) we obtain, ann—4,

n
mn—4 F<2_§ p2 I p2
_(477)”/2 n—3 " 1_52 : 1_EZ
2\2 2
+ —%) In(l—% . (16

where- - - refers to terms which are at least of ord@¢q®)
or O(n—4).2 If we subtract

(17)

from Eq. (16) we obtain as the renormalized integral

H 2 20. — " 1_p_2 | 1_p_2

R(p lm 1 1n)_ (477)”/2 m2 n m2
p2 2 p2

+(1_W) |n(1—m +.e

(18

The subtracted term of EQ17) is local in the external mo-

2The boundary condition is properly taken into account by replac-

ing m*>—~m?—i0" in the final expression.

SNote that we count a term of the typeAIn(—A) asO(q).
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mentump, i.e., it is apolynomialin p? and can thus be apply a conventional renormalization prescription which al-
obtained by dinite number of counterterms in the most gen- lows us to identify those terms which we subtract from a
eral effective Lagrangian. In other words, using an ordinarygiven integral withoutexplicitly calculating the integral be-
subtractive renormalization with an appropriately choserforehand. In essence we work with a modified integrand
renormalization condition we obtained the renormalized exwhich is obtained from the original integrand by subtracting
pression of Eq(18) which satisfies the power counting dis- a suitable number of counterterth§he meaning of suitable
cussed above. in the present context will be explained in a moment. To that
Using the example of Ed6) (in the chiral limiy) we now  end we consider the series

5, (P-m) (ip 2 !
= 2p? ' IPL) (K2+i07)[K?—2k-p+(p>—m?)+i0"] 22
1 1 1 1 1
T kZa 0t 12 Ta+ (p?—m?) 2 (1.2 02 9m2 (k240 k2 0+
(K+i0")(K*=2k-p+i0") | ,_ 2m? (k?—2k-p+i07)2  2m? (K?+i0*)(k®—2k-p+i0™)
! + (19
(K+i0")(K*=2k-p+i0")?] ,_ o

where[ - - - ]p2_ 2 means that we consider tieeefficientsof ~ Eq. (17), and we end up with Eq18) for the renormalized
(p2—m?)' only for four-momentg* satisfying the on-mass- integral. Since we make use of the subtraction pgift
shell conditior? Although the coefficients still depend on the =m?, we denote our renormalization condition “extended
direction ofp*, after integration of this series with respect to on-mass-shell”(EOMS) scheme in analogy with the on-
the loop momentunk and evaluation of the resulting coeffi- mass-shell renormalization scheme in renormalizable theo-
cients forp?=m?, the integrated series is a function ot ries.
only. In fact, as was shown in R¢b4], the integrated series Let us now compare with the approach of Becher and
exactly reproduces the first term of E44). At this point we  Leutwyler of Ref.[23], where the integraH is divided into
stress that the so-called infraredsingulay part| and the remaindeRr,
defined as

_,f d"k 1
! (27)" (k2+i0")(k?—2k-p+i0*)

2—m2 o

o = cmin) [ " aAC(z) 1072,
and 0 (20

_ d"k 1
- J(zw)“ (K2+i0%)(k>—2k-p+p2—m?+i0™) o
pr=m? RE—K(m;n)f d4 C(z,4)]"22,
1

are not the same far<3. Let us provide a formal definition (21)

of our renormalization scheme: we subtract from the inte-

grand ofH(p2,m?,0;n) those terms of the series of EJ.9)

which violate the power counting. These terms are alwayShe analytical expressions for both integrals are giveh by
analytic in the small parameter and do not contain infrared

singularities. In the above example we only need to subtract

the first term. All the higher-order terms contain infrared mn"—4
singularities. For example, the last term of the second coef- I= >
ficient would generate a behavik?/k* of the integrand for (4)
n=4. The integral of the first term of Eq19) is given by

B n
(—A) 31“(5—1)

XI'(3—n) ————— 22
PNt (22
“4In the often used zero-momentum subtraction scheme a Taylor
series expansion of the integrand with respect to the external mo-
mentump* aroundp#=0 is used. The correct imaginary parts are obtained by replagirig-m?

SEquation(19) is not a Taylor series of the integrand. —i0"*.
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" 2F(3—n) Clearly, the first two terms of Eq.25) violate our power
R=—k(m;n)(1+4)"2)~ T(4—n) counting, since we want the renormalized integral to be of
O(q) asn—4.

n In order to apply our renormalization scheme to Eg),
XF|2=53=n4—ni——+/. (23) e observe that the dimensionally regularized integral con-
tains a part which, for noninteger, is proportional to non-
integer powers oM but doesot violate the power counting.
On the other hand, the remaining piece of the integral may
Oalways i.e., for arbitraryn, be expanded in non-negative
powers ofM, and it is this contribution which is responsible
for the violation of power counting. We expand this second

Let us discuss a few properties dfand R, respectively.
CountingA as a small quantity o(q), the infrared part
respects a simple power counting by being proportional t
q" 3. As n—4, | cannot be expanded in a power series in

A, because part in terms ofM and p?—m? and subtract those terms
which violate the power counting. In practice, we realize this
1 " . ..
(—A)"3(3—n)= —A[ —I"(l)—l} _schen‘!g by writing down.a series S|m|Iar.to Ef9), where,
n—4 in addition, we expand pion propagators in power$/3t In
_AIN(=A)+O(n—4). the present case we only need to subtract the first term to

satisfy the power counting:

Finally, for noninteger values of, | contains noninteger

powers ofA. On the other hand, due to the analytic proper- Houpu= — | f
ties of the hypergeometric function, the remain&ecan be

expanded in an ordinary Taylor seriesAneven for nonin-
teger values ofh. However, as\ —0, R does not fit into the
above power counting, i.e., it is not proportional to a small
guantity of orderq raised to the powen— 3. In the approach
of Becher and Leutwyler onexplicitly keeps the contribu- Subtracting Eq(27) from Eq. (25) our final expression for
tion I of H (with subtracted singularities whenapproaches the renormalized integral reads

4) as the result of the integral and droRsarguing that it is

dk 1 1
(2m)" K2+i0" K2—2p-k+i0* e

— 1
_2)\+W+O(n_4). (27)

effectively taken into account through an infinite number of 1 aJ1-02
counterterms in the most general effective Lagrangian. As Hp=— g2 —————arcco$—Q)
pointed out in Ref[23], the infrared part also contains an 87 1+2a0+a

infinite number of divergent terms if expanded in powers of
N . 1 a(a+Q)

A. An infinite number of divergent terms iR and| exactly - ————In(a).

cancel each other and one is left with one ultraviolet diver- 87" 1+2aQ+a

gent term inH which is A independent, namely E¢17).

(28)

Again, the subtraction terrHl g, Of Eq. (27) is local in the
external momenta and can thus be realized as a counterterm
in the most general effective Lagrangian. Let us stress one
We now generalize our renormalization scheme to thenore time that we count a termin(a) asO(q). Moreover,
case of a nonvanishing pion masee Eq.(6)]. For easier when expanded in small quantiti¢$g consists of an infinite

B. Finite pion mass

comparison with Refl23] we introduce the variables string of terms of(q') with [=1. In other words, when we
say that an expression is 61(q), we refer to theminimal
p?—m?—M?2 M 1 : is situati
0= o= — (24) power g of that expression. This situation has to be con-
2mM m’ trasted with the mesonic sector, where an expression of, say,

O(g* exclusively consists of terms @(q*). We conclude
where Q) counts asO(q) for p?+m? [O(q) for p?>=m?]  that using ordinary renormalization with appropriately cho-

and « counts ag)(q). We obtain for Eq(10), asn—4, sen renormalization conditions allows us to obtain the renor-
malized expression of E¢28) which satisfies power count-
— 1 1 a1-0? ng. , .
H=—-2\+ 1672 8.2 —zarccos— Q) It is instructive to compare Eq28) with the result of the
T 1+2aQ+a infrared regularization of Becher and Leutwyler, where the
integralH is divided into an infrared pattand a remainder
1 ala+Q) | oE (23]
Wl-l—ZaQ-i—azn(a)' (25 '

1 a1-0? Q( atQ
arccos —

where I=\y— gy ————— e
87 14220+ a? V1+2aQ+a?

2In(a)—1], (29

— mt 1 1 1 alat+Q)
= — —Z[In(4m)+T'(1)+1]}. (26 _ .
(4m)?|n—4 pLin4m+ 17 (1) +1] 29 1672 1+ 220+ a2t
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av1—02 where¥ denotes the bare nucleon field. We parametrize

— 1
R=—24+v)\+ — ———
( ) 8m* 1+2aQ+a?

1 1
=y 1 1+a0 S (P = o S pmm=sp) 0
xS 2] T 16m2 1+ 20+ a2
(30 wherem, refers to the bare mass of E@A1), whereasm is

the nucleon pole mass in the chiral limit. Her®g (p) and
where S (p) are matrix functiong55] which, usingpp=p?, can
be parametrized as
p2—m2+ M2

- > 30 (%)= = xFo(x2) + Mego(X3)

Using elementary relations among the inverse trigonometric ith | ion 8
functions, the sum of andR is indeed identical to Eq25). wi Wan z;hna ogous ixpresT|on Elf . ¢
In this decomposition satisfies the power counting whereas e will express the nucleon self-enery(p) in terms o

R, violating the power counting, is absorbed intoiafinite m, the Iowest-ord?r pion masi(;s{l, and pazre coupling con-
number of counterterms. The fir6hfinite) term of | is also stants. In ter_ms 0 Feynman lagramsi (h) _rep_resents
taken care of by renormalization. the one-particle-irreducible perturbative contribution to the

two-point function. Moreover, it also contains contributions
of counterterms generated Iny,, which make sure that the
pole mass in the chiral limitn, stays put. However, for the
As a specific example, we will now turn to the calculation sake of simplicity we will not explicitly show these counter-
of the nucleon self-energy &(q*). The complete propaga- terms.
tor of the nucleon is defined as the Fourier transform As usual the physical nucleon mass is defined through the
pole of the full propagator gh=my,

IV. NUCLEON SELF-ENERGY

So(p)= f d*x€P *Sy(x) (31)

My—Mp— 2o (My)=my—m— 2 (my)=0, (34

of the two-point function
while the wave function renormalization constaty is de-

So(X)=—i{0|T[¥o(X)¥(0)]]0), (32) fined as the residue git=my,

1 1
P e S0 (Mt B ) p—mo— S (M)~ (p— ) 3.4 (my)+O[(p—my)?]

1 Z
= - — 0 — for p—omy,
(b—my)[1- 25 (my)+O(p—my)] p—my+i0
|
yielding 2 = S contactt 2Ioop- (36)
1 1 I
Zo= - = - . (359  The contact contributions read
1-35(my) 1-3"(my)
At O(q*), the self-energy receives contact contributions S contact= — 4M?cY—2M*(8eJgt+ €%+ €219,  (37)
from £3 and £ 4 as well as the one-loop contributions of
Fig. 1, where the superscripts 0 refer to bare parameters. Applying
Lo Lo N Feynman rules we obtain three one-loop contributitGsese
7 N 7 N § .
@ @ O—0—d 2 Fig. 1)
a b c

Soop= 2a t Zp + 2¢, (39

FIG. 1. One-loop contributions to the nucleon self-energy at
O(g%. The numbers in the interaction blobs denote the order of the
Lagrangian from which they are obtained. where
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35§0 f d"k
= |
4F2 2mn °

a

1 1
X Kk
p—k—m+i0" CkZ—M21i0"

3gio_f dk  K(p—Kk-m)k
= |
4Fy ) (2m)" (k—p)2—m?+i0*
X ! (39
k?>—~M2+i0"
303 d"k
3y =—4M%)— if —Kys
4F§ (2)
y 1 2 1
p—Kk—m+i0t) > K2—M2+i0"
a3
=—4m%c} —, (40)
M?2 p2 ¢
_na_ 0o_.0_F ~<
Ec—3FS<ch Ca el
x'f d’k ! (41
| .
(2m)" k2—=M?+i0*

Using{y*,y"}=2g"", Eq.(39) can be expressed in terms of

the basis integrals of Appendix B as

22

39A0
EEl:_ 2 (p+m)|N+M2(p+m)|Nﬂ'(_p!0)
4F2
2_ 2
—“’Z—Tw[mz—m?w%mw(—p,m
p
+IN—I77]]- (42)
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scheme of ChPT (MBS’ We choose the renormalization pa-
rameter(unit of mass or 't Hooft parameterw=m. In a
second step we then perform additiofialte subtractions for
integrals which contain nucleon propagators with the pur-
pose of imposing our power counting scheme. In fact, in

order to apply the MSubtraction in practical calculations,
we do not actually need to explicitly write down the corre-
sponding counterterms. We simply subtract all loop diagrams
and replace the bare couplings with the couplings corre-

sponding to the MSscheme. In the above expressions we
replace subscripts and superscripts “0” denoting bare cou-
pling constants with “r” and supply the integrals with indi-
cators “r” referring to the fact that they have been sub-
tracted. For example, the result fdf , then reads

385, r (p?—mP)p
2r,a:—4—|:r2 Mz(lé"‘m)'Nﬂ(—P,O)—z—pz
X[(p?=m?+MA)I}(—p,0) =171, (43

where the expressions fof andly, are given in Eqs(B4)
and (B8) of Appendix B.

The MSsubtracted self-energy corresponds to the Green
function

Si(p)= J d*xeP*S,(x), (44)

where

S,(x)=—i(0|T[¥(x)¥,(0)]|0)

is the two-point function of the M®enormalized field

W00 =0 = -0, (45)
VZor

We refer toyZy; as the field redefinition constafgee Eq.

(A2)] connecting the bare fieldr, and the MSrenormalized
field ¥,. Analogous to Eq(34), the physical nucleon mass

is determined through the pole of the M&ormalized
propagator. We obtain for the mass in the E&heme

"In distinction to theMS scheme commonly used in standard

The renormalization of the loop diagrams is performed inmodel calculations, the MScheme contains an additional finite
two steps. First we render the diagrams finite by applying th&ubtraction term. To be specific, in M8ne uses multiples of

subtraction scheme used by Gasser and Leutwyll@rl6|

1(n—4)—[In (4m)+T"(1)+1)2 instead of 1K—4)—[In (4m)

which we denote by the modified minimal subtraction +I"(1))/2 in MS.

056005-8
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393 M2 3GAM®  3m4 (M ga| 30aMm*
my=m—4c/M%+ ———m(1+8cim)— ——+ In(—) 8¢t —ch—4ci,— — | + d 1+4c'm
N YU 3202F2 VU g2nF? 32722 Im)LTTH 2T m | g0 ,2m[ ]
+M*4 —128W2F20'2—16e§8—2e’115—2e'116 +0O(MY), (46)
r

where “r" refers to MSrenormalized quantities. When solv- ized on-mass-shell scheme. In doing so, we generate finite

ing Eq. (34) in terms of Eqs(37) and (38), we consistently ~counterterms, responsible for additional finite subtractions.
omitted terms which count &(#2) in the loop expansion, These counterterms are fixed so that the net result of com-

i.e., terms proportional tO&AO/FO)L;, as well as terms pro- bining the counterterm diagrams with those parts of the

portional to €})? which do not contribute in our final ex- MS-renormalized diagrams which violate the power count-

tended on-mass-shell expression for the nucleon mass. N are of the same order as the subtracted diagthiote
Correspondingly, the wave function renormalization con-that depending on the a.pphed renormalization condition the
stant of the M&renormalized propagator, net result may vanish. Hence the sum of an
MS-renormalized diagram and the corresponding counter-

1 term diagram satisfies the power counting.
Si(p)= —m-3.(p) For the case at hand, we determine the terms to be sub-
' tracted from,, by first expanding the integrands and coef-
z, ficients in Eq.(42) in powers ofM?, p—m andp?—m?. In
——— for pomy, this expansion we keep all the terms having a chiral order
p—my+i0 which is smaller than what is suggested by the power count-

ing for the given diagram. We then obtain
is an expression of(q°),® given by g g g

1 o5

_ 2 2\2
ATT5S (my) 3 subtr O mmz— P
"athT 3om2F2 4m
o ° ° r
9girM2I M) BQier 99,2ArM3 47 ré2 a2
—1_ nl—| — + . 3c,g4 M 3
327%F2 \m|  16n°F2  64mFZm +—r2[m(lb+m)——(p2—m2)}- (48)
8m2F? 2

Clearly, we donot require that the propagators of renormal-

ized fields have unit residue at the physical pole mass

[12,55. The relation betweed,; on the one hand and, and  Equation(48) specifies the part of the self-energy diagram
the field redefinition constan{Z,; on the other hand is given which has to be subtracted. We fix the corresponding coun-

by terterms so that they exactly cancel the expression given by
Eq. (48). Since the most general Lagrangian contains all the

Zo structures consistent with the symmetries of the theory, it

Zl:Z_m' also provides the required counterterms. Finally, the renor-

malized self-energy expression is obtained by subtracting Eq.
Note, in particular, thaZ, is finite, whereas botd, andZ,;  (48) from the MSsubtracted version of Eq$39) and (40)

contain infinities resulting from ultraviolet divergences. and replacing the MSenormalized couplings with the ones

In order to perform the second step, namely anofinie  f our generalized on-mass-shell scheme. We note that the
renormalization, a given M&normalized diagram is written “MS_sybtracted version fok ; needs no further subtraction
as the sum of a subtracted diagram which, through the applhecause it is already of ordé(qg?).
cation of the subtraction scheme described in the previous The correction to the nucleon mass resulting from the

sections, satisfies the power counting and a remainder whickyynterterms is calculated by substitutipg: my into the
violates the power counting and thus still needs to be subpegative of Eq.(48). [Recall that Eq.(48) has to be sub-
tracted. We expand the finite renormalized couplings of th‘%racted] We thus obtain the following expression for the con-
MS scheme in a series in terms of couplings of our generaltribution to the mass:

8The reduction by one chiral order in comparison with the self- 36% M?2
energy can be understood in terms of the derivative in the definition Am=— —r(m+ 8c1m2). (49
of the wave function renormalization constant. 327°F?

056005-9



FUCHSet al.

Finally, we express the physical mass of the nucleon up to

and including ordeqg* as[56,57°

m

mN=m+k1M2+k2M3+k3M4|n +k4M4+O(M5),

(50

where m is the nucleon mass in the chiral limit ard?

=2Bmis the leading-order result favl2 . In terms of the
EOMS-renormalized parameters, the coefficidgtare then
given by

kl=—4C1,

327F2’

3 EJAZ
kg_ﬁ 8C1—Cz—4C3—F s
K 303 (1+4c,m)+ 3 16e
=—— CiMm)+ ———Cyp—
* 3272F2m Y 108m2F2 P %8

—2ey15~ 2€y36. (51)

Comparing with Ref[23], we see that the lowest-order co

rection (k; term) and those terms which are nonanalytic in

the quark massn (k, andks termg coincide. On the other
hand, the analytidk, term (~M?) is different. This is not

PHYSICAL REVIEW D 68, 056005 (2003

V. CONCLUSIONS

We have discussed a new renormalization scheme which
allows for a simple and consistent power counting in the
single-nucleon sector of relativistic chiral perturbation
theory. In order to renormalize a given diagram, using Eg.
(7) one first assigns a chiral ordBrto that diagram. Apply-
ing standard techniques the diagram is reduced to the sum of
dimensionally regularized scalar integrals multiplied by cor-
responding Dirac structures. By expanding the integrands as
well as the coefficients in small quantities one identifies
those terms which need to be subtracted in order to produce
the renormalized diagram with the chiral ord2determined
beforehand. It is this aspect which we refer to as “appropri-
ately chosen renormalization conditions,” because these sub-
tractions can be realized in terms of local counterterms in the
most general effective Lagrangian. For pedagogical reasons
we have performed the subtractions in two steps: the first
step, namely, applying a modified minimal subtraction
scheme(of ChPT) to get rid of the ultraviolet divergences,
corresponds to the procedure used by Gasser, Sainio, and
Svarc[16]. In a second step we have then performed addi-
tional finite subtractions for those integrals which contain
nucleon propagators such that the subtracted diagram satis-
fies our power counting scheme. We have explicitly applied
our scheme to a calculation of the nucleon mass. Comparing
with the results of the infrared regularization methad] we
have seen that the expressions for the nucleon mass in the
two schemes only differ by terms which are analytic in the

- quark masses. These findings are consistent, because such

terms are renormalization-scheme dependent.

Finally, our renormalization scheme is neither restricted to
the single-nucleon sector nor to the interaction of Goldstone
bosons with fermions. For example, it may also be used in

surprising, because we use a different renormalizationne NN sector or for describing the interaction of vector and
scheme and hence the difference between the two results 5, yector mesons8]. In conclusion, we have presented a
compensated by different values of the renormalized paramsimple renormalization scheme which produces a consistent

eters.
The contribution of the counterterms in E@9) to the

power counting for relativistic baryon chiral perturbation
theory.

physical mass is generated by the following expansion of the

couplingc in terms of our renormalized parameters:

o

3mga
—2F2[1+8mC1]+ ceey,

+ 52
1287 &3

c1=C
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which are generated by expanding the other parameters van-
ishes at the given order. Finally, the wave function renormal-

ization (residue at the po)edoes not obtain a contribution APPENDIX A: THE GENERATION OF COUNTERTERMS

from counterterms at this order so thaffor our renormal-
ization scheme reads

3g2M2
1672F?

9giMm?3

z=1 .
64mF2m

9g2M2 ( M) =3

—_ n —_—
327?F? | M

%In our conventiorks is larger by a factor of two than in Refs.
[56,57], because we use I(m) instead of Inf1%/m?).

The renormalization of the effective field thedigf pions
and nucleonkis performed by expressing all the bare param-
eters and bare fields of the effective Lagrangian in terms of
renormalized quantitiegl2]. In this process, one generates
counterterms which are responsible for the absorption of all
the divergences occurring in the calculation of loop dia-
grams. In order to illustrate the procedure let us disalisg
and consider the free part in combination with thi inter-
action term with the smallest number of pion fields,
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LB =i aﬂ—m—}% A9k | W+
aN= Fo| ! Vu o ZFOV,LYST To| X¥oT

(A1)

given in terms of bare fields and parameters denoted by sub-

scripts 0. Introducing renormalized fieldae work in the
isospin-symmetric limit through

wo Yo . T (A2)
_ Yo a0
VZy VZ.,

we express the field redefinition constag®,, and+Z., and
the bare quantities in terms of renormalized parameters:

Z‘I’=l+ 5Z\I’(mvaAvgi 17/)1
Z,=1+6Z,(m,ga0;.v),
Mo=M(v) + 6M(M,ga,g; ,»),

ao=0a(¥)+ 59A(M,Ga, i ), (A3)
whereg;, i=1,-- -, collectively denote all the renormal-
ized parameters which correspond to bare paramgigrsf
the full effective Lagrangian. The parameteiindicates the
dependence on the choice of the
prescription-® Substituting Eqs(A2) and(A3) into Eq.(A1),
we obtain

‘C(ll\)l:‘cbasic+ ‘Cct"_ e

ks

(A4)
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10

5 Yuystidtm? | W,  (AS5)

Lo=6ZyViy, oV — S{m}¥¥

1 foalo Lo,
— 50 = (Vy,ysTidHmV, (AB)

2| F
where we introduced the abbreviations

5{m}5 5Zq,m+ Z\y(sm,

5| L =52, 27,12 %—%) VZo+ BZ-1).
F F Fo F F

In Eqg. (A5), m, aA, and F denote the chiral limit of the
physical nucleon mass, the axial-vector coupling constant,
and the pion-decay constant, respectively. Expanding the
counterterm Lagrangian of EA6) in powers of the renor-
malized coupling constants generates an infinite series, the
individual terms of which are responsible for the subtraction
of loop diagrams.

renormalization

APPENDIX B: LOOP INTEGRALS

In this appendix we collect the loop integrals needed in
the calculation of the nucleon mass. Most of them can be
found in Ref.[23] or have been calculated using the method

with the so-called basic and counterterm Lagrangiansef dimensional counting54]. We use the following conven-

respectively*

tion for scalar loop integrals:

IN»--17-~-(p11'"1q11"'):i J'

Tensor integrals are then derived in the standard fadisies,
for example, Appendix C of Ref.15]). We do not display

terms ofO(n—4) and higher. In what followsy is defined
as

mt 4 1| 4 ra+1
o2 |n—4a Slin(4m)+T"(1)+1];.

A= (B2)
From the set of purely pionic integrals we need

ONote that our choicem(v)=m, wherem is the nucleon pole

mass in the chiral limit, is only one among an infinite number of

possibilities.

HReferencd12] uses a slightly different convention which is ob-

tained through the replacemeniZy,m+ Zy, sm)— dm.

d"k 1
. Bl
(2m)" [(k+py)2—m2+i07]- - -[(k+q1)2— M2+i0"]- - - (81
[
| _(q)=1_(0)=] =if d' !
A= i (2m)" k®—M?+i0"
_ N le (M)
=2M )\4‘@” E . (B3)

The MSrenormalized integ@l is obtained by simply drop-
ping the term proportional ta:

=[]

= B4)
a

Next we consider the integral containing only a nucleon pro-
papagator:
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d"k 1

=2m?\.
(2m)" k2—m?+i0*

(B5)

IN(p):IN(O):IN:iJ

The MSrenormalized integral then reads

n

PHYSICAL REVIEW D 68, 056005 (2003

In=0. (B6)

Finally, we list the relevant integrals containing both a pion
and a nucleon propagator:

1

InA(P,0) =i J’

(2m)" [(k+p)2—m?+i0" | [k?*—M2+i0"]

=2\ +
16772{

where

JO7=1In(-0-J07—1),
V1—Q?arccoq —Q),

F(Q)=

p’—m?+M? (M| 2mM
1+ In| —| +

F(Q)|, (B7)

2

p p?

O=-1,
-1=s0<=1,

VO2-11In(Q+V0%-1)—inyQ%-1, 1<0Q,

with

O=

p2_m2_ M2

2mM

Correspondingly,

I;\lfr(pio) = I N7T(p10) - 2:

Furthermore we need

n

(B8)

Kk~

"I\ﬁﬁ(—P,O)=iJ’

I
=;—p2[<p2—m2+M2>|NW(—p,0>+IN—Iw].

(2m)" [(k—p)?—m?+i0" | [k?*—M2+i0"]

(B9)

[1] S. Weinberg, Physica 86, 327 (1979.
[2] Y. Nambu, Phys. Rev. Letd, 380(1960.
[3] Y. Nambu and G. Jona-Lasinio, Phys. R&22 345 (196J);
124, 246 (1961).
[4] J. Goldstone, Nuovo Cimenttd, 154 (1961).
[5] J. Goldstone, A. Salam, and S. Weinberg, Phys. R2¥, 965
(1962.
[6] M. Gell-Mann, PhysicgLong Island City, N.Y) 1, 63 (1964).
[7] S. L. Adler and R. F. DasheiGurrent Algebras and Applica-
tions to Particle Physic¢éBenjamin, New York, 1968
[8] S. Treiman, R. Jackiw, and D. J. Gros®ctures on Current
Algebra and Its Applications(Princeton University Press,
Princeton, 1972
[9] V. de Alfaro, S. Fubini, G. Furlan, and C. Rosse@ijrrents in
Hadron PhysicgNorth-Holland, Amsterdam, 1973
[10] S. Weinberg, Phys. Rev. Lett8, 188(1967.

[11] S. Weinberg,The Quantum Theory Of Fields. Vol. 1: Founda-
tions (Cambridge University Press, Cambridge, England,
1995.

[12] J. C. Collins,Renormalization(Cambridge University Press,
Cambridge, England, 1984

[13] J. Gasser and H. Leutwyler, Ann. Phy@\.Y.) 158 142
(1984.

[14] J. Gasser and H. Leutwyler, Nucl. Phy250, 465 (1985.

[15] S. Scherer, ilAdvances in Nuclear Physics, Vol.,2tited by
J. W. Negele and E. W. VodgKluwer Academic/Plenum Pub-
lishers, New York, 2008 .

[16] J. Gasser, M. E. Sainio, and Av&c, Nucl. PhysB307, 779
(1988.

[17] E. Jenkins and A. V. Manohar, Phys. Lett.2B5 558 (1991);
259, 353(1991).

[18] V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meiner, Nucl.
Phys.B388 315(1992.

056005-12



RENORMALIZATION OF RELATIVISTIC BARYON . .. PHYSICAL REVIEW D68, 056005 (2003

[19] V. Bernard, N. Kaiser, and U.-G MeiRner, Int. J. Mod. Phys. E (World Scientific, Singapore, 1998

4, 193(1995. [42] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B
[20] V. Bernard, N. Kaiser, and U. G. MeiBner, Nucl. Php&11, 424, 390(1998.

429(1996. [43] J. Gegelia, inProceedings of the Workshop on Methods of
[21] H. Tang, hep-ph/9607436. Nonperturbative Quantum Field Thegrxdelaide, Australia,
[22] P. J. Ellis and H. B. Tang, Phys. Rev.5Z, 3356(1998. 1998, edited by A. W. Schreiber, A. G. Williams, and A. W.
[23] T. Becher and H. Leutwyler, Eur. Phys. J.9C643(1999. Thomas(World Scientific, Singapore, 1998

[24] J. Gegelia and G. Japaridze, Phys. Re\6@ 114038(1999. [44] H. W. Fearing and S. Scherer, Phys. Re\6%) 315(1996.
[25] J. Gegelia, G. Japaridze, and X. Q. Wang, hep-ph/9910260. [45] J. Bijnens, G. Colangelo, and G. Ecker, J. High Energy Phys.

[26] M. Lutz, Nucl. Phys. A677, 241 (2000. 02, 020(1999.
[27] M. F. Lutz and E. E. Kolomeitsev, Nucl. PhyA700, 193 [46] N. Fettes, U.-G. MeiRner, M. Mdig, and S. Steininger, Ann.
(2002. Phys.(N.Y.) 283 273(2000; 288 249 (2001).
[28] P. J. Ellis and K. Torikoshi, Phys. Rev. &1, 015205(2000. [47] T. Ebertshaser, H. W. Fearing, and S. Scherer, Phys. Rev. D
[29] B. Kubis and U.-G. Meif3ner, Nucl. Phy8679, 698 (2001). 65, 054033(2002.
[30] S. L. Zhu, S. Puglia, and M. J. Ramsey-Musolf, Phys. Rev. D[48] J. Bijnens, L. Girlanda, and P. Talavera, Eur. Phys. 2339
63, 034002(2001). (2002.

[31] B. Kubis and U.-G. MeiR3ner, Eur. Phys. J.18, 747 (200J). [49] G. Colangelo, J. Gasser, and H. Leutwyler, Phys. Rev. 86tt.
[32] S. L. Zhu, G. Sacco, and M. J. Ramsey-Musolf, Phys. Rev. D 5008(2001).

66, 034021(2002. [50] S. Weinberg, Nucl. Phy$3363 3 (199)).
[33] T. Becher and H. Leutwyler, J. High Energy Phys, 017 [51] W. Zimmermann, inLectures on Elementary Particles and

(200D. Quantum Field Theory, Brandeis University Summer Institute
[34] K. Torikoshi and P. J. Ellis, Phys. Rev. &7, 015208(2003. in Theoretical Physics, Volume, kdited by S. Deser, M.
[35] B. Borasoy and S. Wetzel, Phys. Rev.6B3, 074019(2001). Grisaru, and H. PendletdMIT Press, Cambridge, MA, 1970
[36] N. Beisert and B. Borasoy, Eur. Phys. J1& 329 (200)). [52] G. Ecker, Prog. Part. Nucl. Phy35, 1 (1995.
[37] N. Beisert and B. Borasoy, Nucl. Phy&705, 433 (2002. [53] Handbook of Mathematical Functionsedited by M.
[38] V. Bernard, T. R. Hemmert, and U.-G. MeiBner, Phys. Lett. B Abramowitz and I. A. SteguDover, New York, 1972

545, 105 (2002. [54] J. Gegelia, G. S. Japaridze, and K. S. Turashvili, Theor. Math.
[39] V. Bernard, T. R. Hemmert, and U.-G. MeiBner, Phys. Rev. D Phys.101, 1313(1994.

67, 076008(2003. [55] C. Itzykson and J. B. ZubeQuantum Field TheoryMcGraw-
[40] J. Gasser, M. A. Ivanov, E. Lipartia, M. Mag and A. Hill, New York, 1980.

Rusetsky, Eur. Phys. J. 26, 13 (2002. [56] H. Leutwyler, 7N Newslett.15, 1 (1999.

[41] G. P. Lepage, irProceedings of the 9th J. A. Swieca Summer[57] M. E. Sainio,=N Newslett.16, 138 (2002.
School: Particles and FieldsSao Paulo, Brazil, 1997, edited [58] T. Fuchs, M. Schindler, J. Gegelia, and S. Scherer,
by J. C. A. Barata, A. P. C. Malbouisson, and S. F. Novaes hep-ph/0308177.

056005-13



