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Renormalization of relativistic baryon chiral perturbation theory and power counting
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We discuss a renormalization scheme for relativistic baryon chiral perturbation theory which provides a
simple and consistent power counting for renormalized diagrams. The method involves finite subtractions of
dimensionally regularized diagrams beyond the standardMS scheme of chiral perturbation theory to remove
contributions violating the power counting. This is achieved by a suitable renormalization of the parameters of
the most general effective Lagrangian. In addition to its simplicity our method has the benefit that it can be
easily applied to multiloop diagrams. As an application we discuss the mass of the nucleon and compare the
result with the expression of the infrared regularization of Becher and Leutwyler.

DOI: 10.1103/PhysRevD.68.056005 PACS number~s!: 11.10.Gh,12.39.Fe
9
s

g-
ce
a
nt
in

ge
to
,
re
d
x

s

ou
an
ak
nt
un
liz
o
th

fe
th
m
r
a

m
un
ia-

m

bi
ng

be-
rms
up.

s
lud-
f.
nal

op

as,
nd
ab-

or-
-
leon

he

tor.
eon
g
ne-
la-
this

trix
s
at,
av-

e
on-

red

d
of

ic
I. INTRODUCTION

Starting from the pioneering work of Weinberg in 197
@1#, effective field theory has evolved into one of the mo
important theoretical tools for investigating stron
interaction processes in the low-energy regime. The con
of spontaneous symmetry breakdown, leading to the
pearence of massless Goldstone bosons with vanishing i
actions in the zero-energy limit, was already well-known
the beginning of the 1960s@2–5#. Explicit symmetry break-
ing was taken into account in the framework of current al
bra in combination with the partially conserved axial-vec
current ~PCAC! hypothesis@6# ~for an overview see, e.g.
@7–9#!. Already in the 1960s, Weinberg realized that the p
dictions derived from current algebra could be reproduce
the framework of the so-called phenomenological appro
mation~tree-level diagrams! of an effective Lagrangian@10#.
The key progress due to Weinberg’s approach in 1979 wa
systematically analyzecorrections to the leading soft-pion
results invoking a perturbative scheme not in terms of a c
pling constant but rather in terms of external momenta
the pion mass@1#. Because of spontaneous symmetry bre
ing such an expansion is expected to work for mome
which are small compared to some intrinsic scale of the
derlying theory. Since the starting point is a nonrenorma
able theory, infinities encountered in the calculation of lo
diagrams need to be removed by a renormalization of
infinite number of free parameters of the most general ef
tive Lagrangian. However, as long as one includes all of
infinite number of interactions allowed by symmetries, fro
the point of view of removing divergences there is no diffe
ence between the so-called nonrenormalizable theories
renormalizable theories@11#. As will be discussed later in
detail, the freedom of choosing a renormalization sche
@12# can be advantageously used to formulate a power co
ing for the perturbative calculation of renormalized d
grams.

The ideas of Weinberg were further developed and co
prehensively applied by Gasser and Leutwyler@13,14# in
terms of the generating functional of color-neutral quark
linears which, at low energies, is dominated by the excha
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and interaction of Goldstone bosons. A correspondence
tween the loop expansion and the chiral expansion in te
of momenta and quark masses at a fixed ratio was set
Chiral perturbation theory~ChPT! in the mesonic sector ha
generated a host of successful applications up to and inc
ing the two-loop level~for a recent review see, e.g., Re
@15#!. The extension to processes involving one exter
nucleon was developed by Gasser, Sainio, and Sˇvarc @16#.
One of the findings in their approach was that higher-lo
diagrams can contribute to terms as low asO(q2), whereq
generically denotes a small expansion parameter such
e.g., the pion mass. This ‘‘mismatch’’ between the chiral a
the loop expansion has widely been interpreted as the
sence of a systematic power counting in the relativistic f
mulation. Gasser, Sainio, and Sˇvarc pointed out that the ap
pearance of another scale, namely, the mass of the nuc
~which does not vanish in the chiral limit! is one of the
origins for the complications in the baryonic sector. T
heavy-baryon formulation of ChPT@17,18# provides a power
counting scheme which is very similar to the mesonic sec
The basic idea consists in expressing the relativistic nucl
field in terms of a velocity-dependent field, thus dividin
nucleon momenta into a large piece close to on-shell ki
matics and a soft residual contribution. Most of the calcu
tions in the one-baryon sector have been performed in
framework ~for an overview see, e.g., Ref.@19#! which es-
sentially corresponds to a simultaneous expansion of ma
elements in 1/mN and 1/(4pFp). Although this scheme lead
to a straightforward power counting, its disadvantage is th
in some cases, it does not provide the correct analytic beh
ior even in the threshold regime@20#. Several methods hav
been suggested to reconcile power counting with the c
straints of analyticity in the relativistic approach@21–27#.
The most widely used technique is the so-called infra
regularization of Becher and Leutwyler@23# which has been
applied in various calculations of baryon properties@28–32#,
pion-nucleon scattering@33,34#, mesonic U~3! chiral pertur-
bation theory @35–37#, a discussion of the generalize
Gerasimov-Drell-Hearn sum rule and the spin structure
the nucleon@38,39#, and the ground-state energy of pion
hydrogen@40#.
©2003 The American Physical Society05-1
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The purpose of this work is to devise a new renormali
tion scheme leading to a simple and consistent power co
ing for the renormalized diagrams of a relativistic approa
The basic idea consists in performing additional subtracti
of dimensionally regularized diagrams beyond the modifi
minimal subtraction scheme employed in Ref.@16#. Our ap-
proach is motivated by an observation made in the contex
nonrelativistic nucleon-nucleon scattering, where the ap
cation of the minimal subtraction scheme proved to be pr
lematic. It was shown that the use of an appropriately cho
renormalization condition allows one to solve the problem
an ‘‘unnaturally’’ large scattering length and to obtain a co
sistent power counting in the two-nucleon sector@41–43#.
Essentially the same idea of using a suitable renormaliza
condition has been discussed in Refs.@24,25# for a simplified
model of the one-nucleon sector of relativistic baryon ch
perturbation theory. One of the advantages of this appro
besides its simplicity, is that it may also be easily used in
renormalization of higher-order loop diagrams.

Our work is organized as follows. In Sec. II we provid
those elements of the most general effective Lagrang
which are relevant for the calculation of the nucleon se
energy. In Sec. III we illustrate our method by means o
simple dimensionally regularized one-loop integral and co
pare the result with the infrared regularization of Becher a
Leutwyler. In Sec. IV we apply our renormalization schem
to the calculation of the nucleon mass. General conclus
are presented in Sec. V.

II. THE EFFECTIVE LAGRANGIAN

In this section we will briefly discuss those elements
the most general effective Lagrangian in the single-nucl
sector which are relevant for the subsequent calculation
the nucleon self-energy. The effective Lagrangian consist
the sum of the purely mesonic and thepN Lagrangians,
respectively,

Leff5Lp1LpN ,

both of which are organized in a~chiral! derivative and
quark-mass expansion@1,13,14,16,44–48#,

Lp5L21L41L61•••,

LpN5L pN
(1)1L pN

(2)1L pN
(3)1L pN

(4)1•••,

where the subscripts~superscripts! in Lp (LpN) refer to the
order in the expansion. Counting the quark-mass term
O(q2) @13,49#, the mesonic Lagrangian contains only ev
powers, whereas the baryonic Lagrangian involves both e
and odd powers due to the additional spin degree of freed

From the mesonic sector we only need the lowest-or
Lagrangian@O(q2)# @13#,

L25
F2

4
Tr~]mU]mU†!1

F2M2

4
Tr~U†1U !, ~1!

whereU is a unimodular unitary (232) matrix containing
the Goldstone boson fields. In Eq.~1!, F denotes the pion-
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decay constant in the chiral limit:Fp5F@11O(m̂)#592.4
MeV. Here, we work in the isospin-symmetric limitmu

5md5m̂, and the lowest-order expression for the squa
pion mass isM252Bm̂, where B is related to the quark
condensatêq̄q&0 in the chiral limit @13#.

In order to discuss thepN Lagrangian, let

C5S p

nD
denote the nucleon field with two four-component Dir
fields p and n describing the proton and neutron, respe
tively. The most generalpN LagrangianLpN is bilinear in
C̄(x) andC(x) and involves the quantitiesu, um , Gm , and
x6 ~and their derivatives!, which, in the absence of externa
fields, read

u25U, um5 iu†]mUu†,

Gm5
1

2
@u†,]mu#,

x65M2~U†6U !.

In terms of these building blocks the lowest-order Lagran
ian reads@16#

L pN
(1)5C̄S igmDm2m1

1

2
g̊Agmg5umDC, ~2!

whereDmC5(]m1Gm)C denotes the covariant derivativ
~in the absence of external vector and axial-vector fields! and
m and g̊A refer to the chiral limit of the physical nucleo
mass and the axial-vector coupling constant, respectively.
have not displayed the corresponding counterterms inL pN

(1)

which are understood to be fixed in such a manner that
pole position of the nucleon propagator as well as the ax
vector coupling constant~in the chiral limit! are not affected
by loop contributions. The explicit expressions of the
counterterms in lowest order were identified in Ref.@16#.

For our purposes, we only need to consider four of
seven structures of the Lagrangian atO(q2) @16,46#,

L pN
(2)5c1Tr~x1!C̄C

2
c2

4m2
Tr~umun!~C̄DmDnC1H.c.!

1
c3

2
Tr~umum!C̄C2

c4

4
C̄gmgn@um ,un#C1•••,

~3!

where H.c. refers to the Hermitian conjugate. While the L
grangianL pN

(3) does not contribute to the nucleon mass,
O(q4) we need to consider the term

2
a

2
M4C̄C, ~4!
5-2



.
he

s
m
er
it
o

le
tiv
rm

ac

ith

n

Th

h
-
c

g

o

te

f

el-
co-

the

f
dia-
-

ard

.
er

t

io
cin
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resulting in the contributionaM4/2 to the nucleon mass
This term results from identifying the relevant part of t
most general chiral Lagrangian atO(q4). To be specific, the
coefficienta of Eq. ~4! is related to the parametersei of the
LagrangianL pN

(4) of Ref. @46# by

a524~8e381e1151e116!. ~5!

III. EXTENDED ON-MASS-SHELL RENORMALIZATION
VERSUS THE INFRARED REGULARIZATION

OF BECHER AND LEUTWYLER

The basic idea of our renormalization scheme consist
providing a rule determining which terms of a given diagra
should be subtracted in order to satisfy a ‘‘naive’’ pow
counting by which one associates a well-defined power w
the diagram in question. The terms to be subtracted are p
nomials in small variables and parameters~external momenta
and squared pion mass! and can thus be realized by a suitab
adjustment of the counterterms of the most general effec
Lagrangian. In other words, our proposition is to perfo
additional subtractions~finite in number! of dimensionally
regularized diagrams beyond the modified minimal subtr
tion scheme employed in Ref.@16#.

In order to illustrate our method and to compare it w
the approach of Becher and Leutwyler@23#, we will first
consider as an example the dimensionally regularized o
loop integral

H~p2,m2,M2;n!

[2 i E dnk

~2p!n

3
1

@~p2k!22m21 i01#@k22M21 i01#
, ~6!

wheren denotes the number of space-time dimensions.
massesm andM refer to the~lowest-order! nucleon and pion
masses, respectively. Such a type of integral is needed
e.g., the calculation of the one-pion-loop contribution to t
nucleon self-energy@16#. Dimensional regularization pro
vides a convenient tool to handle the ultraviolet divergen
resulting from the region where all components ofkm get
large. However, as it stands, the loop integral of Eq.~6! does
not yet satisfy a simple chiral power counting. Using Eq.~6!
we will propose a renormalization procedure generatin
power counting for tree-level and loop diagrams of therela-
tivistic effective field theory~REFT! which is analogous to
that given in Ref.@50# ~for nonrelativistic nucleons!. As will
be explained below, by subtracting a suitable number
counterterms in the integrand,1 we apply a renormalization
scheme resulting in an effective cutoffQ for loop integrals
which is of the order of some small expansion parame

1Here we make use of the fact that we may take more subtract
than would actually be necessary for the sole purpose of enfor
~ultraviolet! convergence.
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such asQ2'M2 andQm'up22m2u for the specific case o
Eq. ~6!. Using the forest formula of Zimmermann@12,51#
allows one to systematically deal with any diagram. The r
evant subtractions can be implemented by adjusting the
efficients of the most general effective Lagrangian, i.e.,
corresponding counterterms are local~polynomial! in mo-
mentum @12#, which implies that only a finite number o
counterterms are needed for the subtraction of a specific
gram. In general, this will then allow us to apply the follow
ing power counting: a loop integration inn dimensions
counts asQn, pion and fermion propagators count asQ22

and Q21, respectively, vertices derived fromL2k and L pN
(k)

count asQ2k andQk, respectively. In total this yields for the
powerD of a diagram in the one-nucleon sector the stand
formula @50,52#

D5nNL22I p2I N1 (
k51

`

2kN2k
p 1 (

k51

`

kNk
N , ~7!

whereNL is the number of independent loop momenta,I p

the number of internal pion lines,I N the number of internal
nucleon lines,N2k

p the number of vertices originating from
L2k , andNk

N the number of vertices originating fromL pN
(k) .

In the language of chiral perturbation theory,Q counts as a
small momentum, i.e., asO(q), with the net result that Eq
~6!, after renormalization, is expected to be of ord
O(qn23).

Let us turn to the discussion of Eq.~6!. We make use of
the Feynman parametrization

1

ab
5 E

0

1 dz

@az1b~12z!#2 ~8!

with a5(p2k)22m21 i01 and b5k22M21 i01, inter-
change the order of integrations, and perform the shifk
→k1zp to obtain

H~p2,m2,M2;n!

52 i E
0

1

dzE dnk

~2p!n

3
1

@k21p2z~12z!2m2z2M2~12z!1 i01#2
.

~9!

Making use of

E dnk

~2p!n

~k2!p

~k22A!q

5
i ~2 !p2q

~4p!
n
2

GS p1
n

2DGS q2p2
n

2D
GS n

2DG~q!

Ap1(n/2)2q,

with p50 andq52, we find

ns
g

5-3
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H~p2,m2,M2;n!5
1

~4p!n/2
GS 22

n

2D
3E

0

1

dz@A~z!# (n/2)22, ~10!

where

A~z!52p2~12z!z1m2~12z!1M2z2 i01.

A. Chiral limit

For the sake of simplicity, let us for the moment restr
ourselves to the~chiral! limit M250 and introduce

C~z,D!5z22Dz~12z!2 i01, D5
p22m2

m2
,

so that we obtain

H~p2,m2,0;n!5k~m;n! E
0

1

dz@C~z,D!# (n/2)22, ~11!

where

k~m;n!5

GS 22
n

2D
~4p!n/2

mn24. ~12!

For the purpose of evaluating the integral of Eq.~11! we
write2

E
0

1

dz@C~z,D!# (n/2)22

5~2D!(n/2)22 E
0

1

dzz(n/2)22S 12
11D

D
zD (n/2)22

and apply Eqs. 15.3.1 and 15.3.4 of Ref.@53# to obtain

H~p2,m2,0;n!5k~m;n!

GS n

2
21D

GS n

2D FS 1,22
n

2
;
n

2
;

p2

m2D ,

~13!

where F(a,b;c;z) is the hypergeometric function@53#. In
order to discuss the power counting properties ofH ~in the
chiral limit!, we make use of Eq. 15.3.6 of Ref.@53# to re-
write Eq. ~13! as

2The boundary condition is properly taken into account by repl
ing m2→m22 i01 in the final expression.
05600
t

H~p2,m2,0;n!5
mn24

~4p!n/2
F GS 22

n

2D
n23

3FS 1,22
n

2
;42n;2D D

1~2D!n23 GS n

2
21D

3G~32n!FS n

2
21,n22;n22;2D D G .

~14!

Making use of

F~a,b;c;z!511
ab

c
z1

a~a11!b~b11!

c~c11!

z2

2
1•••

~15!

for uzu,1 and the fact thatD counts as a small quantity o
order O(q), we immediately see that the first term of E
~14! contains a contribution which does not satisfy the abo
power counting, i.e., which is not proportional toO(q) as
n→4. Using the expansion of Eq.~15! together with
G(11x)5xG(x) we obtain, asn→4,

H5
mn24

~4p!n/2
F GS 22

n

2D
n23

1S 12
p2

m2D lnS 12
p2

m2D

1S 12
p2

m2D 2

lnS 12
p2

m2D1•••
G , ~16!

where••• refers to terms which are at least of orderO(q3)
or O(n24).3 If we subtract

mn24

~4p!n/2

GS 22
n

2D
n23

~17!

from Eq. ~16! we obtain as the renormalized integral

HR~p2,m2,0;n!5
mn24

~4p!n/2 F S 12
p2

m2D lnS 12
p2

m2D
1S 12

p2

m2D 2

lnS 12
p2

m2D1•••G .
~18!

The subtracted term of Eq.~17! is local in the external mo-

-
3Note that we count a term of the type2D ln(2D) asO(q).
5-4
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mentum p, i.e., it is a polynomial in p2 and can thus be
obtained by afinite number of counterterms in the most ge
eral effective Lagrangian. In other words, using an ordin
subtractive renormalization with an appropriately chos
renormalization condition we obtained the renormalized
pression of Eq.~18! which satisfies the power counting di
cussed above.

Using the example of Eq.~6! ~in the chiral limit! we now
-
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apply a conventional renormalization prescription which
lows us to identify those terms which we subtract from
given integral withoutexplicitly calculating the integral be
forehand. In essence we work with a modified integra
which is obtained from the original integrand by subtracti
a suitable number of counterterms.4 The meaning of suitable
in the present context will be explained in a moment. To t
end we consider the series
(
l 50

`
~p22m2! l

l ! F S 1

2p2
pm

]

]pm
D l

1

~k21 i01!@k222k•p1~p22m2!1 i01#
G

p25m2

5
1

~k21 i01!~k222k•p1 i01!
U

p25m2

1~p22m2!F 1

2m2

1

~k222k•p1 i01!2
2

1

2m2

1

~k21 i01!~k222k•p1 i01!

2
1

~k21 i01!~k222k•p1 i01!2G
p25m2

1•••, ~19!
d
-
eo-

nd

y

where@•••#p25m2 means that we consider thecoefficientsof
(p22m2) l only for four-momentapm satisfying the on-mass
shell condition.5 Although the coefficients still depend on th
direction ofpm, after integration of this series with respect
the loop momentumk and evaluation of the resulting coeffi
cients forp25m2, the integrated series is a function ofp2

only. In fact, as was shown in Ref.@54#, the integrated serie
exactly reproduces the first term of Eq.~14!. At this point we
stress that

2 i E dnk

~2p!n

1

~k21 i01!~k222k•p1 i01!
U

p25m2

and

F2 i E dnk

~2p!n

1

~k21 i01!~k222k•p1p22m21 i01!
G

p25m2

are not the same forn<3. Let us provide a formal definition
of our renormalization scheme: we subtract from the in
grand ofH(p2,m2,0;n) those terms of the series of Eq.~19!
which violate the power counting. These terms are alw
analytic in the small parameter and do not contain infra
singularities. In the above example we only need to subt
the first term. All the higher-order terms contain infrar
singularities. For example, the last term of the second c
ficient would generate a behaviork3/k4 of the integrand for
n54. The integral of the first term of Eq.~19! is given by

4In the often used zero-momentum subtraction scheme a Ta
series expansion of the integrand with respect to the external
mentumpm aroundpm50 is used.

5Equation~19! is not a Taylor series of the integrand.
-

s
d
ct

f-

Eq. ~17!, and we end up with Eq.~18! for the renormalized
integral. Since we make use of the subtraction pointp2

5m2, we denote our renormalization condition ‘‘extende
on-mass-shell’’~EOMS! scheme in analogy with the on
mass-shell renormalization scheme in renormalizable th
ries.

Let us now compare with the approach of Becher a
Leutwyler of Ref.@23#, where the integralH is divided into
the so-called infrared~singular! part I and the remainderR,
defined as

I[k~m;n! E
0

`

dz@C~z,D!# (n/2)22,

~20!

R[2k~m;n! E
1

`

dz@C~z,D!# (n/2)22.

~21!

The analytical expressions for both integrals are given b6

I 5
mn24

~4p!n/2
~2D!n23GS n

2
21D

3G~32n!
1

~11D!(n/2)21
, ~22!

or
o-

6The correct imaginary parts are obtained by replacingm2→m2

2 i01.
5-5
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R52k~m;n!~11D!(n/2)22
G~32n!

G~42n!

3FS 22
n

2
,32n;42n;

D

11D D . ~23!

Let us discuss a few properties ofI and R, respectively.
CountingD as a small quantity ofO(q), the infrared partI
respects a simple power counting by being proportiona
qn23. As n→4, I cannot be expanded in a power series
D, because

~2D!n23G~32n!52DF 1

n24
2G8~1!21G

2D ln~2D!1O~n24!.

Finally, for noninteger values ofn, I contains nonintege
powers ofD. On the other hand, due to the analytic prop
ties of the hypergeometric function, the remainderR can be
expanded in an ordinary Taylor series inD even for nonin-
teger values ofn. However, asD→0, R does not fit into the
above power counting, i.e., it is not proportional to a sm
quantity of orderq raised to the powern23. In the approach
of Becher and Leutwyler oneexplicitly keeps the contribu-
tion I of H ~with subtracted singularities whenn approaches
4! as the result of the integral and dropsR arguing that it is
effectively taken into account through an infinite number
counterterms in the most general effective Lagrangian.
pointed out in Ref.@23#, the infrared partI also contains an
infinite number of divergent terms if expanded in powers
D. An infinite number of divergent terms inR and I exactly
cancel each other and one is left with one ultraviolet div
gent term inH which is D independent, namely Eq.~17!.

B. Finite pion mass

We now generalize our renormalization scheme to
case of a nonvanishing pion mass@see Eq.~6!#. For easier
comparison with Ref.@23# we introduce the variables

V5
p22m22M2

2mM
, a5

M

m
, ~24!

whereV counts asO(q0) for p2Þm2 @O(q) for p25m2]
anda counts asO(q). We obtain for Eq.~10!, asn→4,

H522l̄1
1

16p2 2
1

8p2

aA12V2

112aV1a2
arccos~2V!

2
1

8p2

a~a1V!

112aV1a2ln~a!, ~25!

where

l̄5
mn24

~4p!2 H 1

n24
2

1

2
@ ln~4p!1G8~1!11#J . ~26!
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Clearly, the first two terms of Eq.~25! violate our power
counting, since we want the renormalized integral to be
O(q) asn→4.

In order to apply our renormalization scheme to Eq.~6!,
we observe that the dimensionally regularized integral c
tains a part which, for nonintegern, is proportional to non-
integer powers ofM but doesnot violate the power counting
On the other hand, the remaining piece of the integral m
always, i.e., for arbitraryn, be expanded in non-negativ
powers ofM, and it is this contribution which is responsib
for the violation of power counting. We expand this seco
part in terms ofM and p22m2 and subtract those term
which violate the power counting. In practice, we realize t
scheme by writing down a series similar to Eq.~19!, where,
in addition, we expand pion propagators in powers ofM2. In
the present case we only need to subtract the first term
satisfy the power counting:

Hsubtr52 i E dnk

~2p!n

1

k21 i01

1

k222p•k1 i01 U
p25m2

522l̄1
1

16p2 1O~n24!. ~27!

Subtracting Eq.~27! from Eq. ~25! our final expression for
the renormalized integral reads

HR52
1

8p2

aA12V2

112aV1a2
arccos~2V!

2
1

8p2

a~a1V!

112aV1a2 ln~a!. ~28!

Again, the subtraction termHsubtr of Eq. ~27! is local in the
external momenta and can thus be realized as a counter
in the most general effective Lagrangian. Let us stress
more time that we count a terma ln(a) asO(q). Moreover,
when expanded in small quantities,HR consists of an infinite
string of terms ofO(ql) with l>1. In other words, when we
say that an expression is ofO(q), we refer to theminimal
power q1 of that expression. This situation has to be co
trasted with the mesonic sector, where an expression of,
O(q4) exclusively consists of terms ofO(q4). We conclude
that using ordinary renormalization with appropriately ch
sen renormalization conditions allows us to obtain the ren
malized expression of Eq.~28! which satisfies power count
ing.

It is instructive to compare Eq.~28! with the result of the
infrared regularization of Becher and Leutwyler, where t
integralH is divided into an infrared partI and a remainderR
@23#:

I 5l̄n2
1

8p2

aA12V2

112aV1a2
arccosS 2

a1V

A112aV1a2D
2

1

16p2

a~a1V!

112aV1a2@2ln~a!21#, ~29!
5-6
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R52~21n!l̄1
1

8p2

aA12V2

112aV1a2

3arcsinS aA12V2

A112aV1a2D 1
1

16p2

11aV

112aV1a2 ,

~30!

where

n52
p22m21M2

p2 .

Using elementary relations among the inverse trigonome
functions, the sum ofI andR is indeed identical to Eq.~25!.
In this decompositionI satisfies the power counting where
R, violating the power counting, is absorbed into aninfinite
number of counterterms. The first~infinite! term of I is also
taken care of by renormalization.

IV. NUCLEON SELF-ENERGY

As a specific example, we will now turn to the calculatio
of the nucleon self-energy atO(q4). The complete propaga
tor of the nucleon is defined as the Fourier transform

S0~p!5 E d4xeip•xS0~x! ~31!

of the two-point function

S0~x!52 i ^0uT@C0~x!C̄0~0!#u0&, ~32!
n
of

a
th

05600
ic

whereC0 denotes the bare nucleon field. We parametrize

S0~p!5
1

p”2m02S0~p” !
[

1

p”2m2S~p” !
, ~33!

wherem0 refers to the bare mass of Eq.~A1!, whereasm is
the nucleon pole mass in the chiral limit. Here,S0 (p” ) and
S (p” ) are matrix functions@55# which, usingp” p”5p2, can
be parametrized as

S0 ~x!52x f0~x2!1m0g0~x2!

with an analogous expression forS.
We will express the nucleon self-energyS (p” ) in terms of

m, the lowest-order pion massM, and bare coupling con
stants. In terms of Feynman diagrams,2 i S (p” ) represents
the one-particle-irreducible perturbative contribution to t
two-point function. Moreover, it also contains contributio
of counterterms generated bym0, which make sure that the
pole mass in the chiral limit,m, stays put. However, for the
sake of simplicity we will not explicitly show these counte
terms.

As usual the physical nucleon mass is defined through
pole of the full propagator atp”5mN ,

mN2m02 S0 ~mN!5mN2m2 S ~mN!50, ~34!

while the wave function renormalization constantZ0 is de-
fined as the residue atp”5mN ,
S0~p!5
1

p”2m02 S0 ~mN1p”2mN!
5

1

p”2m02 S0 ~mN!2~p”2mN! S08 ~mN!1O@~p”2mN!2#

5
1

~p”2mN!@12 S08 ~mN!1O~p”2mN!#
→ Z0

p”2mN1 i01
for p”→mN ,
ing
yielding

Z05
1

12 S08 ~mN!
5

1

12 S8 ~mN!
. ~35!

At O(q4), the self-energy receives contact contributio
from L pN

(2) andL pN
(4) as well as the one-loop contributions

Fig. 1,

1 1 1 12 2

ba c

FIG. 1. One-loop contributions to the nucleon self-energy
O(q4). The numbers in the interaction blobs denote the order of
Lagrangian from which they are obtained.
s

S 5 Scontact1 S loop. ~36!

The contact contributions read

Scontact524M2c1
022M4~8e38

0 1e115
0 1e116

0 !, ~37!

where the superscripts 0 refer to bare parameters. Apply
Feynman rules we obtain three one-loop contributions~see
Fig. 1!

S loop5 Sa 1 Sb 1 Sc , ~38!

where

t
e

5-7
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Sa 5
3g̊A0

2

4F0
2

i E dnk

~2p!n
k”g5

3
1

p”2k”2m1 i01
k”g5

1

k22M21 i01

5
3g̊A0

2

4F0
2

i E dnk

~2p!n

k” ~p”2k”2m!k”

~k2p!22m21 i01

3
1

k22M21 i01
~39!

Sb 524M2c1
0

3g̊A0

2

4F0
2

i E dnk

~2p!n
k”g5

3S 1

p”2k”2m1 i01D 2

k”g5

1

k22M21 i01

524M2c1
0 ] Sa

]m
, ~40!

Sc 53
M2

F0
2 S 2c1

02c3
02

p2

m2

c2
0

n D
3 i E dnk

~2p!n

1

k22M21 i01
. ~41!

Using$gm,gn%52gmn, Eq.~39! can be expressed in terms
the basis integrals of Appendix B as

Sa 52
3g̊A0

2

4F0
2 H ~p”1m!I N1M2~p”1m!I Np~2p,0!

2
~p22m2!p”

2p2
@~p22m21M2!I Np~2p,0!

1I N2I p#J . ~42!

The renormalization of the loop diagrams is performed
two steps. First we render the diagrams finite by applying
subtraction scheme used by Gasser and Leutwyler@13,16#
which we denote by the modified minimal subtracti
05600
e

scheme of ChPT (MS˜).7 We choose the renormalization pa
rameter~unit of mass or ’t Hooft parameter! m5m. In a
second step we then perform additionalfinite subtractions for
integrals which contain nucleon propagators with the p
pose of imposing our power counting scheme. In fact,
order to apply the MS˜ subtraction in practical calculations
we do not actually need to explicitly write down the corr
sponding counterterms. We simply subtract all loop diagra
and replace the bare couplings with the couplings co
sponding to the MS˜ scheme. In the above expressions w
replace subscripts and superscripts ‘‘0’’ denoting bare c
pling constants with ‘‘r’’ and supply the integrals with ind
cators ‘‘r’’ referring to the fact that they have been su
tracted. For example, the result forS r ,a then reads

S r ,a 52
3g̊Ar

2

4Fr
2 H M2~p”1m!I Np

r ~2p,0!2
~p22m2!p”

2p2

3@~p22m21M2!I Np
r ~2p,0!2I p

r #J , ~43!

where the expressions forI p
r and I Np

r are given in Eqs.~B4!
and ~B8! of Appendix B.

The MS̃-subtracted self-energy corresponds to the Gr
function

S1~p!5 E d4xeip•xS1~x!, ~44!

where

S1~x!52 i ^0uT@C1~x!C̄1~0!#u0&

is the two-point function of the MS˜-renormalized field

C1~x![CMS̃~x!5
C0~x!

AZ01

. ~45!

We refer toAZ01 as the field redefinition constant@see Eq.
~A2!# connecting the bare fieldC0 and the MS̃-renormalized
field C1. Analogous to Eq.~34!, the physical nucleon mas
is determined through the pole of the MS˜-renormalized
propagator. We obtain for the mass in the MS˜ scheme

7In distinction to theMS scheme commonly used in standa

model calculations, the MS˜ scheme contains an additional finit

subtraction term. To be specific, in MS˜ one uses multiples of
1/(n24)2@ ln (4p)1G8(1)11#/2 instead of 1/(n24)2@ ln (4p)
1G8(1)#/2 in MS.
5-8
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mN5m24c1
r M21

3g̊Ar

2 M2

32p2Fr
2

m~118c1
r m!2

3g̊Ar

2 M3

32pFr
2

1
3M4

32p2Fr
2

lnS M

mD S 8c1
r 2c2

r 24c3
r 2

g̊Ar

2

m
D 1

3g̊Ar

2 M4

32p2Fr
2m

@114c1
r m#

1M4S 3

128p2Fr
2

c2
r 216e38

r 22e115
r 22e116

r D 1O~M5!, ~46!
-
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-
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where ‘‘r’’ refers to MS̃-renormalized quantities. When solv
ing Eq. ~34! in terms of Eqs.~37! and ~38!, we consistently
omitted terms which count asO(\2) in the loop expansion
i.e., terms proportional to (g̊A0 /F0)4, as well as terms pro
portional to (c1

r )2 which do not contribute in our final ex
tended on-mass-shell expression for the nucleon mass.

Correspondingly, the wave function renormalization co
stant of the MS̃-renormalized propagator,

S1~p!5
1

p”2m2 S r ~p” !

→ Z1

p”2mN1 i01
for p”→mN ,

is an expression ofO(q3),8 given by

Z15
1

12 S r8 ~mN!

512
9g̊Ar

2 M2

32p2Fr
2

lnS M

mD2
3g̊Ar

2 M2

16p2Fr
2

1
9g̊Ar

2 M3

64pFr
2m

. ~47!

Clearly, we donot require that the propagators of renorma
ized fields have unit residue at the physical pole m
@12,55#. The relation betweenZ1 on the one hand andZ0 and
the field redefinition constantAZ01 on the other hand is given
by

Z15
Z0

Z01
.

Note, in particular, thatZ1 is finite, whereas bothZ0 andZ01
contain infinities resulting from ultraviolet divergences.

In order to perform the second step, namely anotherfinite

renormalization, a given MS˜-renormalized diagram is written
as the sum of a subtracted diagram which, through the ap
cation of the subtraction scheme described in the prev
sections, satisfies the power counting and a remainder w
violates the power counting and thus still needs to be s
tracted. We expand the finite renormalized couplings of
MS̃ scheme in a series in terms of couplings of our gene

8The reduction by one chiral order in comparison with the se
energy can be understood in terms of the derivative in the defini
of the wave function renormalization constant.
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ized on-mass-shell scheme. In doing so, we generate fi
counterterms, responsible for additional finite subtractio
These counterterms are fixed so that the net result of c
bining the counterterm diagrams with those parts of
MS̃-renormalized diagrams which violate the power cou
ing are of the same order as the subtracted diagram.~Note
that depending on the applied renormalization condition
net result may vanish.! Hence the sum of an
MS̃-renormalized diagram and the corresponding coun
term diagram satisfies the power counting.

For the case at hand, we determine the terms to be
tracted fromSa by first expanding the integrands and coe
ficients in Eq.~42! in powers ofM2, p”2m andp22m2. In
this expansion we keep all the terms having a chiral or
which is smaller than what is suggested by the power cou
ing for the given diagram. We then obtain

S r ,a1b
subtr 5

3g̊Ar

2

32p2Fr
2 FmM22

~p22m2!2

4m G
1

3c1
r g̊Ar

2 M2

8p2Fr
2 Fm~p”1m!2

3

2
~p22m2!G . ~48!

Equation~48! specifies the part of the self-energy diagra
which has to be subtracted. We fix the corresponding co
terterms so that they exactly cancel the expression given
Eq. ~48!. Since the most general Lagrangian contains all
structures consistent with the symmetries of the theory
also provides the required counterterms. Finally, the ren
malized self-energy expression is obtained by subtracting
~48! from the MS̃-subtracted version of Eqs.~39! and ~40!

and replacing the MS˜-renormalized couplings with the one
of our generalized on-mass-shell scheme. We note that
MS̃-subtracted version forSc needs no further subtractio
because it is already of orderO(q4).

The correction to the nucleon mass resulting from
counterterms is calculated by substitutingp”5mN into the
negative of Eq.~48!. @Recall that Eq.~48! has to be sub-
tracted.# We thus obtain the following expression for the co
tribution to the mass:

Dm52
3g̊Ar

2 M2

32p2F2
~m18c1m2!. ~49!

-
n
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Finally, we express the physical mass of the nucleon up
and including orderq4 as @56,57#9

mN5m1k1M21k2M31k3M4lnS M

mD1k4M41O~M5!,

~50!

where m is the nucleon mass in the chiral limit andM2

52Bm̂ is the leading-order result forMp
2 . In terms of the

EOMS-renormalized parameters, the coefficientski are then
given by

k1524c1 ,

k252
3g̊A

2

32pF2
,

k35
3

32p2F2 S 8c12c224c32
g̊A

2

m
D ,

k45
3g̊A

2

32p2F2m
~114c1m!1

3

128p2F2
c2216e38

22e11522e116. ~51!

Comparing with Ref.@23#, we see that the lowest-order co
rection (k1 term! and those terms which are nonanalytic
the quark massm̂ (k2 andk3 terms! coincide. On the other
hand, the analytick4 term (;M4) is different. This is not
surprising, because we use a different renormaliza
scheme and hence the difference between the two resu
compensated by different values of the renormalized par
eters.

The contribution of the counterterms in Eq.~49! to the
physical mass is generated by the following expansion of
couplingc1

r in terms of our renormalized parameters:

c1
r 5c11

3mg̊A
2

128p2F2
@118mc1#1•••, ~52!

while the net result of the contributions of the counterter
which are generated by expanding the other parameters
ishes at the given order. Finally, the wave function renorm
ization ~residue at the pole! does not obtain a contributio
from counterterms at this order so thatZ for our renormal-
ization scheme reads

Z512
9g̊A

2M2

32p2F2
ln S M

mD2
3g̊A

2M2

16p2F2
1

9g̊A
2M3

64pF2m
. ~53!

9In our conventionk3 is larger by a factor of two than in Refs
@56,57#, because we use ln(M/m) instead of ln(M2/m2).
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V. CONCLUSIONS

We have discussed a new renormalization scheme w
allows for a simple and consistent power counting in t
single-nucleon sector of relativistic chiral perturbatio
theory. In order to renormalize a given diagram, using E
~7! one first assigns a chiral orderD to that diagram. Apply-
ing standard techniques the diagram is reduced to the su
dimensionally regularized scalar integrals multiplied by c
responding Dirac structures. By expanding the integrand
well as the coefficients in small quantities one identifi
those terms which need to be subtracted in order to prod
the renormalized diagram with the chiral orderD determined
beforehand. It is this aspect which we refer to as ‘‘approp
ately chosen renormalization conditions,’’ because these s
tractions can be realized in terms of local counterterms in
most general effective Lagrangian. For pedagogical reas
we have performed the subtractions in two steps: the
step, namely, applying a modified minimal subtracti
scheme~of ChPT! to get rid of the ultraviolet divergences
corresponds to the procedure used by Gasser, Sainio,
Švarc @16#. In a second step we have then performed ad
tional finite subtractions for those integrals which conta
nucleon propagators such that the subtracted diagram s
fies our power counting scheme. We have explicitly appl
our scheme to a calculation of the nucleon mass. Compa
with the results of the infrared regularization method@23# we
have seen that the expressions for the nucleon mass in
two schemes only differ by terms which are analytic in t
quark masses. These findings are consistent, because
terms are renormalization-scheme dependent.

Finally, our renormalization scheme is neither restricted
the single-nucleon sector nor to the interaction of Goldsto
bosons with fermions. For example, it may also be used
the NN sector or for describing the interaction of vector a
axial-vector mesons@58#. In conclusion, we have presented
simple renormalization scheme which produces a consis
power counting for relativistic baryon chiral perturbatio
theory.

ACKNOWLEDGMENTS

The work of T.F. and S.S. was supported by the Deuts
Forschungsgemeinschaft~SFB 443!. J.G. acknowledges the
support of the Alexander von Humboldt Foundation. G
was supported by NSF grant OPP-0236449/G067771.

APPENDIX A: THE GENERATION OF COUNTERTERMS

The renormalization of the effective field theory~of pions
and nucleons! is performed by expressing all the bare para
eters and bare fields of the effective Lagrangian in terms
renormalized quantities@12#. In this process, one generate
counterterms which are responsible for the absorption of
the divergences occurring in the calculation of loop d
grams. In order to illustrate the procedure let us discussL pN

(1)

and consider the free part in combination with thepN inter-
action term with the smallest number of pion fields,
5-10
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L pN
(1)5C̄0S igm]m2m02

1

2

gA0

F0
gmg5ta]mp0

aDC01•••,

~A1!

given in terms of bare fields and parameters denoted by
scripts 0. Introducing renormalized fields~we work in the
isospin-symmetric limit! through

C5
C0

AZC

, pa5
p0

a

AZp

, ~A2!

we express the field redefinition constantsAZC andAZp and
the bare quantities in terms of renormalized parameters:

ZC511dZC~m,g̊A,gi ,n!,

Zp511dZp~m,g̊A,gi ,n!,

m05m~n!1dm~m,g̊A,gi ,n!,

g̊A05g̊A~n!1dgA~m,g̊A,gi ,n!, ~A3!

wheregi , i 51,•••`, collectively denote all the renorma
ized parameters which correspond to bare parametersgi0 of
the full effective Lagrangian. The parametern indicates the
dependence on the choice of the renormalizat
prescription.10 Substituting Eqs.~A2! and~A3! into Eq.~A1!,
we obtain

L pN
(1)5Lbasic1Lct1••• ~A4!

with the so-called basic and counterterm Lagrangia
respectively,11
o

-

05600
b-

n

s,

Lbasic5C̄S igm]m2m2
1

2

gA

F
gmg5ta]mpaDC, ~A5!

Lct5dZCC̄ igm]mC2d$m%C̄C

2
1

2
dH g̊A

F J C̄gmg5ta]mpaC, ~A6!

where we introduced the abbreviations

d$m%[dZCm1ZCdm,

dH g̊A

F J [dZC

g̊A

F
AZp1ZCS g̊A0

F0
2

g̊A

F
DAZp1

g̊A

F
~AZp21!.

In Eq. ~A5!, m, g̊A, and F denote the chiral limit of the
physical nucleon mass, the axial-vector coupling const
and the pion-decay constant, respectively. Expanding
counterterm Lagrangian of Eq.~A6! in powers of the renor-
malized coupling constants generates an infinite series,
individual terms of which are responsible for the subtract
of loop diagrams.

APPENDIX B: LOOP INTEGRALS

In this appendix we collect the loop integrals needed
the calculation of the nucleon mass. Most of them can
found in Ref.@23# or have been calculated using the meth
of dimensional counting@54#. We use the following conven
tion for scalar loop integrals:
I N•••p•••
~p1 ,•••,q1 ,••• !5 i E dnk

~2p!n

1

@~k1p1!22m21 i01#•••@~k1q1!22M21 i01#•••
. ~B1!
p-

ro-
Tensor integrals are then derived in the standard fashion~see,
for example, Appendix C of Ref.@15#!. We do not display
terms ofO(n24) and higher. In what follows,l̄ is defined
as

l̄5
mn24

16p2 H 1

n24
2

1

2
@ ln ~4p!1G8~1!11#J . ~B2!

From the set of purely pionic integrals we need

10Note that our choicem(n)5m, wherem is the nucleon pole
mass in the chiral limit, is only one among an infinite number
possibilities.

11Reference@12# uses a slightly different convention which is ob
tained through the replacement (dZCm1ZCdm)→dm.
I p~q!5I p~0!5I p5 i E dnk

~2p!n

1

k22M21 i01

52M2l̄1
M2

8p2
lnS M

mD . ~B3!

The MS̃-renormalized integral is obtained by simply dro
ping the term proportional tol̄:

I p
r 5

M2

8p2
lnS M

mD . ~B4!

Next we consider the integral containing only a nucleon p
papagator:

f
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I N~p!5I N~0!5I N5 i E dnk

~2p!n

1

k22m21 i01
52m2l̄.

~B5!

The MS̃-renormalized integral then reads
,

05600
I N
r 50. ~B6!

Finally, we list the relevant integrals containing both a pi
and a nucleon propagator:
I Np~p,0!5 i E dnk

~2p!n

1

@~k1p!22m21 i01#@k22M21 i01#

52l̄1
1

16p2 F211
p22m21M2

p2
lnS M

mD1
2mM

p2
F~V!G , ~B7!

where

F~V!5H AV221 ln ~2V2AV221!, V<21,

A12V2 arccos~2V!, 21<V<1,

AV221 ln ~V1AV221!2 ipAV221, 1<V,

with

V5
p22m22M2

2mM
.

Correspondingly,

I Np
r ~p,0!5I Np~p,0!22l̄. ~B8!

Furthermore we need

I Np
m ~2p,0!5 i E dnk

~2p!n

km

@~k2p!22m21 i01#@k22M21 i01#

5
pm

2p2
@~p22m21M2!I Np~2p,0!1I N2I p#. ~B9!
a-
d,

,

-
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