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Magnetic moment of ther meson in QCD light cone sum rules
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The magnetic momentm of the r meson is studied in QCD light cone sum rules, and it is found thatm
5(2.360.5), in units ofe/2mr . A comparison of our result on the magnetic moment of ther meson with the
predictions of the other approaches is presented.
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I. INTRODUCTION

QCD sum rules, which are based on the first principles
QCD @1#, is a powerful tool in the investigation of the hadro
physics. In this method physically measurable quantities
hadrons are connected with QCD parameters, where had
are represented by their interpolating quark current take
large virtualities, and following that, the correlator of the
quark currents is introduced. The main idea of the metho
to calculate the correlator with the help of operator prod
expansion~OPE! in the framework of QCD~accounting for
both perturbative and nonperturbative contributions! and
then connect them with the phenomenological part. T
physical quantities of interest are determined by match
these two representations of the correlator.

The QCD sum rule method is successfully applied
many problems of hadron physics~about the method see, fo
example, review papers@2–5#, and references therein!. One
of the important static characteristic of hadrons is their m
netic moment. Magnetic moments of nucleons are calcula
in the framework of the QCD sum rule method in@6,7#,
using the external field technique, and using the same
proach magnetic moment of ther meson is calculated in@8#.

Furthermore, it should be mentioned here that in@9# form
factors of ther meson are calculated at intermediate mom
tum transfer by using the three-point QCD sum ru
method, and then extrapolating these form factors toQ250
~this point lies outside the applicability region of th
method!.

In this work, we present an independent calculation of
magnetic moment of ther meson in the framework of an
alternative approach to the traditional QCD sum rules, i
QCD light cone sum rules~QLCSR! method.

Few words about this method are in order. The QLC
method is based on OPE near light cone, which is an exp
sion over the twist of the operators rather than dimension
in the traditional QCD sum rules. The nonperturbative d
namics encoded in the light cone wave functions determ
the matrix elements of the nonlocal operators between
vacuum and the hadronic states~more about this method an
its applications can be found in@5,10#!

The QLCSR is successfully applied to a variety of pro
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lems in hadron physics. For example, magnetic moment
the octet and decuplet baryons are calculated in@11# and
@12#, respectively, and magnetic moment of the nucleon
first obtained in QLCSR in@13#.

The paper is organized as follows. In Sec. II, QLCSR
the r meson magnetic moment is obtained. In Sec. III, o
numerical results and a comparison with the results of
other approaches is presented.

II. QLCSR FOR THE r MESON MAGNETIC MOMENT

In this section we calculate ther meson magnetic mo
ment in QLCSR. We consider the following correlator of tw
vector currents in the external electromagnetic field

Pmn~p,q!5 i E d4xeipx^0uT$ j n~x! j m
† ~0!%u0&g , ~1!

where the subscriptg denotes the external electromagne
field, j n(x)5ūgnd(x) is the vector current with ther meson
quantum number.

First, let us calculate the phenomenological part of
correlator. By inserting a complete set of states between
currents in Eq.~1! with quantum numbers of ther meson,
we obtain the following representation of the correlator:

Pmn5
^0u j nur~p!&^r~p!ur~p8!&g^r~p8!u j m

† u0&

~p22mr
2!~p822mr

2!

1•••,

~2!

where p85p1q, q is the photon momentum and••• de-
scribe higher states and continuum contributions. The ma
element̂ 0u j nur(p)& is determined as

^0u j nur~p!&5
mr

2

gr
«n~p!. ~3!

Assuming parity and time-reversal invariance, the elect
magnetic vertex of ther meson can be written in terms o
three form factors@14#:
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^r~p,« r !ur~r8,« r 8!&g52e«r~« r !a~« r 8!bH G1~Q2!gab~p

1p8!r1G2~Q2!~qagrb2qbgra!

2
1

2mr
2

G3~Q2!qaqb~p1p8!rJ ,

~4!

where«r is the photon and (« r)a, (« r 8)b are ther meson
vector polarizations. The Lorentz invariant form facto
Gi(Q

2) are related to the charge, magnetic, and quadrop
form factors through the relations

FC5G11
2

3
hFD ,
to

an
re
d

e
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FM5G2 ,

FD5G12G21~11h!G3 , ~5!

whereh5Q2/4mr
2 is a kinematical factor. At zero momen

tum transfer, these form factors are proportional to the us
static quantities of charge, magnetic, momentm, and quadro-
pole momentD:

eFC~0!5e,

eFM~0!52mrm,

eFD~0!5mr
2D. ~6!

Using Eqs.~2!–~4! and performing summation over polariza
tions of ther meson, for the phenomenological part of th
correlator we get
Pmn5e
mr

4

gr
2

«r
1

~mr
22p2!@mr

22~p1q!2#
H G1~Q2!~p1p8!rFgmn2

pmpn

mr
2

2
pm8 pn8

mr
2

1
pm8 pn

2mr
4 ~Q212mr

2!G1G2~q2!Fqmgnr

2qngmr2
pn

mr
2 S qmpr2

1

2
Q2gmrD1

pm8

mr
2 S qnpr81

1

2
Q2gnrD2

pm8 pnpr

mr
4

Q2G2
1

2mr
2

G3~Q2!~p1p8!rFqmqn

2
pnqm

mr
2

1

2
Q21

pm8 qn

mr
2

1

2
Q22

pnpm8

mr
4

1

4
~Q2!2G J , ~7!

whereQ252q2. Throughout our analysis, only the values of the form factors atQ250 are needed. Additionally, usingp8
5p1q andq«50, Eq. ~7! can be simplified and final answer for the phenomenological part can be written as

Pmn5e
mr

4

gr
2

«r

@mr
22~p1q!2#~mr

22p2!
H 2prFC~0!Fgmn2

pmpn

mr
2

2
pmqn

mr
2 G1FM~0!Fqmgnr2qngmr1

1

mr
2

pr~pmqn2pnqm!G
2@FC~0!1FD~0!#

pr

mr
2

qnqmJ . ~8!
e
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ns
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In order to extract out the magnetic moment of ther meson
from Eq. ~8!, we will choose the structure (p«)(pmqn

2pnqm). Hence, the phenomenological part of the correla
for the above-mentioned structure can be written as

P5
mr

2

gr
2

1

~mr
22p2!@mr

22~p1q!2#
m, ~9!

where magnetic momentm is given in units ofe/2mr .
Our next task is calculation of the correlator in Eq.~1!

from the QCD side. The correlator receives perturbative
nonperturbative contributions. The perturbative part cor
sponds to on-shell photon emission from virtual quarks an
is described by the triangle diagram@see Fig. 1#. In order to
calculate the nonperturbative contributions@see Fig. 2#, we
need the matrix elements of the nonlocal operators betw
r

d
-
it

en

the vacuum and the photon states, i.e.,^g(q)uq̄(x)G i(0)u0&,
whereG is an arbitrary Dirac matrix. In our calculations w
take into account twist-2, twist-3 and twist-4 photon wa
functions~more about the photon wave functions, see@15#!.
In what follows we present definitions whose wave functio
give contribution only to the structure (p«)(pmqn2pnqm):

γ (q)

γ (q)

FIG. 1. Diagrams describing perturbative contribution to t
correlator in Eq.~1!.
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^g~q!uq̄~x!gmq~0!u0&5eeqf 3gS «m2qm

«x

qxD E0

1

dueiuqxc (v)~u!, ~10!

^g~q!uq̄~x!gmg5q~0!u0&52
1

4
eeqf 3gemabr«aqbxrE

0

1

dueiuqxc (a)~u!, ~11!

^g~q!uq̄~x!smnq~0!u0&52 ieeq^q̄q&~«mqn2«nqm!E
0

1

dueiuqxH xfg~u!1
x2

16
A~u!J

2 ieeq^q̄q&FxnS «m2qm

«x

qxD2xmS «n2qn

«x

qxD G E0

1

dueiuqxhg~u!, ~12!
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where fg(u) is twist-2, c (v)(u) and c (a)(u) are twist-3,
A(u) andhg(u) are twist-4 photon wave functions, respe
tively, andx is the magnetic susceptibility. It should be not
here that there are several other functionsTi(a i) and S̃(a i)
~for their definitions, see@15#! that also give contribution to
the above-mentioned structure. But their contributions
proportional to the quark mass~in our caseu and d quark
masses! and therefore irrelevant in the massless quark ca

After some effort, we get the following expression for th
correlator from the QCD side in thex representation

Pmn5eE
0

1

duE dxei (p1uq)x«x~xmqn2xnqm!H ~ed2eu!

3F 3

4p4x6
2 f 3g

c (a)~u!

8p2x4
1

i

2
f 3g

c (v)~u!

p2~qx!x4

2
m0

2

384~qx!
^q̄q&2hg~u!G2

~ed1eu!

8~qx!
hg~u!J . ~13!

Using Eq.~13! and after performing Fourier transformatio
the result for the structure (p«)(qnpm2qmqn) can be ob-
tained. The sum rules for ther meson can be obtained afte
applying double Borel transformation on the variablesp2

and (p1q)2, which suppresses the continuum and high
states contributions~about this procedure, see@11,12,16,17#,
and references therein!, and then matching both represent
tions of the correlators.

(q)γ (q)γ

(b)(a)

FIG. 2. Diagrams describing nonperturbative contribution to
correlator in Eq.~1!. Here, Fig. 2~a! corresponds to the leadin
order contribution and Fig. 2~b! corresponds to the gluon correctio
to the correlator in Eq.~1!. In these figures, the wavy line represen
gluon and solid lines represent quark fields, respectively.
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Finally, for the above-mentioned structure we get the f
lowing sum rule for ther meson magnetic moment:

m5
gr

2

mr
2

emr
2/M2

~eu2ed!H 3

8p2
M2f 0~s0 /M2!1

f 3g

2
c (a)~u0!

22 f 3gC (v)~u0!J , ~14!

where

C (v)~u!5E
0

u

c (v)~v !dv,

and, the function

f 0~s0 /M2!512e2s0 /M2
,

is used to subtract continuum contributions, and natura
the Borel parametersM1

2 andM2
2 are set to be equal to eac

other, i.e.,M1
25M2

2[2M2 since we are dealing with just
single meson, and hence

u05
M1

2

M1
21M2

2
5

1

2
.

Note that, the last two terms in Eq.~13! disappear after
double Borel transformation is performed.

The main reason why we choose the structure (p«)
3(qnpm2qmqn) is that the term proportional to the magnet
susceptibilityx does not give any contribution, and hen
the main uncertainty coming from the definition ofx is ab-
sent in the sum rule.

III. NUMERICAL ANALYSIS

In this section we present our numerical analysis on thr
meson magnetic moment. It follows from Eq.~14! that in
order to perform further numerical analysis one needs
know the photon wave functionsc (a)(u) and c (v)(u). The
explicit expressions of the functions are

e

2-3
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FIG. 3. The dependence of th
magnetic moment of ther meson
on the Borel parameterM2, at
three different values of the con
tinuum threshold;s051.5 GeV2,
s051.8 GeV2, s052.0 GeV2.
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c (v)~u!510u~123u12u2!2
15

8
u~wg

A23wg
V!~1210u

130u2235u3114u4!,

c (a)~u!5
5

2 F11
9

16
wg

V2
3

24
wg

AG@12~2u21!2#@5~2u

21!221#.

The values of the input parameterswg
V , wg

A , and f 3g are
given in @15# to have the valueswg

V5(3.861.8), wg
A5

2(2.161.0), andf 3g52(3.962.0)31023 GeV22. The re-
maining input parameters aremr50.77 GeV andgr

2/4p
51.27.

In Fig. 3 we present the dependence of the magnetic
ment on M2 at three different values of the continuu
threshold: s051.5 GeV2, s051.8 GeV2, and s0
52.0 GeV2. Note thatM2 in the sum rule is an auxiliary
parameter and the physical quantities are expected to b
dependent of it. Therefore, one must look for a region ofM2

for which the magnetic momentm be practically independen
of it. The lower limit ofM2 is determined by the requiremen
that terms ;M 22n(n.1) remain subdominant. In othe
words, large power corrections must be absent in the s
rule. The upper bound ofM2 is determined by demandin
that the contributions of the higher resonances and c
tinuum are less than, for example, 30% of the total res
Our numerical calculation shows that these requirements
satisfied in the region 1.0 GeV2<M2<1.4 GeV2 and mag-
netic moment in this region is practically independent ofM2.
We also see from this figure that ass0 varies from s0
51.5 GeV2 to s052.0 GeV2, the magnetic moment of ther
meson changes by an amount of approximately 10%. Th
fore we can conclude that the result seems to be almos
sensitive to the change ins0 andM2 in the above-mentioned
region. The final result for the magnetic moment of ther
meson turns out to be

m52.360.5,
05600
o-

in-

m

n-
t.
re

e-
n-

in units of (e/2mr), where the error can be attributed to th
variations ins0 , M2, and uncertainties in the values off 3g ,
wg

V , andwg
A .

At the end, we would like to present a comparison of o
result on ther meson magnetic moment with the ones exi
ing in literature. In the Dyson-Schwinger based models,
r meson magnetic moment is estimated to have the va
m52.69@18#, 2.5<m<3 @19# in units of (e/2mr). Covariant
and light front approaches with constituent quark mod
both, predictm52.2360.13 @20# and in light front formal-
ism it is estimated to bem51.83@21#. The magnetic momen
of r meson was calculated long time ago in@22#, by consid-
ering the low energy limit of the radiative amplitudes in co
junction with the amplitude calculated by the hard-pion tec
nique and found that

16p2a2gr
2

mr
2E dsse1e2→n

,m,2.

The r meson magnetic moment was also calculated in
lattice QCD which predictedm52.25(34) @23#. As has al-
ready been noted, the magnetic moment of ther meson in
the framework of the traditional QCD sum rule in the pre
ence of external field is calculated in@8# and it is obtained
that m51.560.3. Our result is closer to the predictions
the works@20,23#.

Finally, we would like to discuss briefly the question ho
to measure the magnetic moment ofr meson in experiments
At present, even upper bounds for the magnetic and qua
pole moments ofr meson are absent. The very short lifetim
does not allow the use of vector-meson-electron scatterin
spin procession technique@24# to measure the above
mentioned quantities.

An alternative method for determination of the multipo
moments of particles based on soft photon emission off
hadrons was proposed in@25#, since the photon carries infor
mation on higher multipoles of the emitting particles. T
main idea of this work is that the amplitude for radiativ
process can be expressed as a power expansion in the p
energyw as follows:
2-4
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M5
A

w
1Bw01Cw1•••.

The electric charge contributes to the amplitude at orderw21

and the contribution coming from magnetic moment is p
portional tow0. Therefore, by measuring the cross section
decay width of the radiative process and neglecting te
linear in w, one can determine the magnetic moments
charged particles.

In @25,26#, the possibility of measuring the magnetic m
ment of the chargedr meson in radiative production an
s.

05600
-
r
s
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decays of such mesons is mentioned and it is claimed
combined angular and energy distributions of radiated p
tons is an efficient tool in measuring the magnetic momen
the chargedr meson.
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