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Bulk scalar stabilization of the radion without metric back reaction in the Randall-Sundrum model
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Generalizations of the Randall-Sundrum model containing a bulk scalardfiéhderacting with the curva-
ture R through the general coupling f(®) are considered. We derive the general form of the effective 4D
potential for the spin-zero fields and show that in the mass matrix the radion mixes with the Kaluzé<Klgin
modes of the bulk scalar fluctuations. We demonstrate that it is possible to choose a nontrivial background form
dy(y) (wherey is the extra dimension coordinatéor the bulk scalar field such that the exact Randall-
Sundrum metric is preservede. such that there is no back reacliowe compute the mass matrix for the
radion and the KK modes of the excitations of the bulk scalar relative to the background configdrgtign
We find that for any(consistent®,(y) the expected mass for the radionlike eigenstate is suppressed relative
to the Planck scale by the standard warp factor needed to explain the hierarchy puzzle, implying thel
is a natural order of magnitude for this mass. The general considerations are illustrated in the case of a model
containing arR®? interaction term.
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. INTRODUCTION and  ©2),,=(9uis) (X) =9, (X.y=Y2=1/2)  (u,v
=0,1,2,3) are the induced metrics on the branes.
Although the standard modéBM) of electroweak inter- It turns out that if the bulk and brane cosmological con-

actions describes successfully almost all existing experimerstants are related by
tal data, the model suffers from many theoretical drawbacks.
One of these is the hierarchy problem: namely, the SM can- 6m3 6mMy

not consistently accommodate the weak energy scale A=— o Anig= _Avis:_2 2
O(1 TeV) and a much higher scale such as the Planck mass K “

scalgO(lO18 GeV). Therefore, it is widely accepted that the 5 jf periodic boundary conditions/+y+1) with identi-
SM is only an effective low-energy theory embedded ingeation of (x,y) and (, — ) are imposed, then the following
some more fundamental high-scale theory that presumabl%etric is a solution of the 5D Einstein equations:

could contain gravitational interactions. Recently many mod-
els that incorporate gravity have been proposed in the con- ds?=e 27y dx*dx”—bZdy?, 3

text of higher dimensional space-time. These models have ”

received tremendous attention since they might provide §here o (y)=mgbg{y[26(y)—1]—2(y— 1/2)6(y— 1/2)};
solution to the hierarchy problem. One of the most attractive,  js a constant parameter that is not determined by the equa-
attempts has been formulated by Randall and Sundiim  tions of motion.

who postulated a 5D universe with two 4D surfad¢és- Within the Randall-SundrurtRS) model all the SM par-
branes’) with the following action: ticles as well as the nongravitational forces are assumed to be
present on one of the 3-branes, the “visible brane.” Gravity
lives on the visible brane, on the second bréhe “hidden
brane”) and in the bulk. All mass scales in the 5D theory are
of the order of the Planck mass. By placing the SM fields on
] the visible brane, the initial 5D electroweak mass scale

12 R
S=—fd4xf dy{ Vigll =+ A
—12 2k

+ > Vg Awdly—yi)

oy (1) O(Mp)) is rescaled by an exponential suppression fatter

“warp factor”) y=e ™P0? down to the weak scale

) o 5 5) . (5) O(1 TeV) without any severe fine tuning. To achieve the
whereR s the Ricci scalark®=8nGy” with Gy the New-  necessary suppression, one needih,/2~37. This is a

ton constant in 5D and, Ay=Ap;q and A=A ;s are the  great improvement compared to the original problem of ac-

COanOIOgical constants in the bUlk, on the hidden and ViSibl%ommodating both the weak and the Planck scale within a
branes, respectively. In the abowg, (i,j=0,1,2,3,4) is the single theory.

bulk metric and  §1) ,,=(9nia) u»(X) =9, (X,y=y1=0)
Il. THE RADION EFFECTIVE POTENTIAL

*Electronic address: bohdan.grzadkowski@fuw.edu.pl A drawback of the RS model is the presence of a massless
TElectronic address: gunion@physics.ucdavis.edu degree of freedom called the radion. There have been several
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attempts(see Refs[2-4]) in the literature to generate the It is easy to verify that if interactions of the scalar fiddare
radion mass by introducing a bulk scalar fighdthat would  switched off, then there is no potential fbfx) and conse-
induce an appropriate radion potential. Here we will derivequently the radion would be massless.

the general form of the potential within a class of models The bulk scalar has been introduced here in order to gen-
containing the bulk scalar interacting with gravity in the fol- erate a nontrivial potential for the radion. However, in gen-

lowing manner: eral the presence of the scalar leads to a nontrivial interaction
" R potential between the radion and the scalar in addition to the
_ a A appearance of a radion potential. Therefore, the strategy that

S fd Xf_l,zdy‘ \/H[ 2k A= aRH(®) we will follow here will be to determine the background

1 scalar configuratio (y) such that the RS background met-
T i _ ot ric is preserved and then to expand the actinaround it.
39 PP V(qb)} k:212 |9d[AKH V()] First, one has to solve the Einstein equations together with
the equation of motion fo. Let us start with the Einstein

X S(Y—Yi) @) equations, keeping in mind that we would like to preserve
Y=y the RS metric as a vacuum solution. We write
where we have introduced the bulk potent&i®) and the Gij= k[ TFI+(8T);(P)], 7

brane potential®/1(P)=Vig(P) andVo(P)=V,;is(P). In

addition to the standard scalar kinetic-energy term, we havethereG;; is the Einstein tensoﬁ,’i(jRS denotes the RS con-
allowed for a general coupling of the bulk scalar to gravitytribution to the energy-momentum tensor a&d J;; contains
through theaR f(®) interaction term. Since we would like all new contributions emerging from interactions of the sca-
to preserve the explanation of the hierarchy proposed biar ®. It is useful to first calculate all the exttaompared to
Randall and Sundrum, we will also require that the RS metthe pure RS modglcontributions to the energy-momentum
ric (3) remain an exact solutidrof the Einstein equations tensor. It is easy to show that

even in the presence of the bulk scadar Therefore, it is

useful to separate out in the acti¢f) both the bulk (\) and (8T)i; =T+ 2a{D;[f(D)]-G;;f (D)}

brane (g, A,is) cosmological constants that satisfy the 1

RS conditions, Eq(2). + = V(P SH8VS(y— 8
In order to identify the radion, it is sufficient to consider bo szl,Z (PG ol O7 Y =Y

scalar excitations of the metric around the background RS
solutions. Hereafter, we will adopt the following parametri- where
zation (see Refs[5,6]) of the metric fluctuations:

1
o Q) — — _ _
ds?=e 200020090, 4 (x,y)]dxtdx” TM=vovd gij[zgk'wbv@ V(<I>)} 9
—b3[ 1+ 2b(x)e>*M]2dy?, 5
ol ) Idy ® D[ X]=VV;X—g;; 9" WV X. (10
whereh ,,(X,y) andb(x) are related to the gravitdrand the

radion, respectively. Then from \|g|R/(2«?) in the action
(4) one obtaindafter expanding in powers df(x)] the ki-

For the RS background metric we obtain

_ —2,—20 12
netic term for the radion, G. = 3bg e (20" = 0") 7, 0 11
e 0 60’2
1
= Mobo — 4y w e
S szo(e 0bo 1)[ d Xz(&#b)(& b)+---. (6) and
bg%e [ =30 f(®)' + ()" ]7,, 0
D.[f(D)]= 12
i f(P)] ( 0 401 (D)’ (12)

'One can, of course, consider slight modifications of the RS metric that would also solve the hierarchy problem in a similar manner.
However, in this paper we would like to discuss a scenario with exactly the same metric as in the original RS model.

2In the following we will not discuss interactions with gravitons as they will not influence the potential for scalar degrees of freedom.

SHereafter, the flat metrigy*” will be assumed whenever repeated indices are summed.
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where here, and in what follows, the prime denotes differen- In other words, we expand the theory defined by the ac-
tiation with respect to the 5th coordinate, tion (4) around the vacuum solutions for the metfike RS
Since we demand that the RS metric be preserved evesplution and the bulk scalar field [the solution of Egs.
when the scalar is presefrto back reaction from the scalar  (13) and(16)] in terms of the scalar fluctuation of the metric,
we have to require that the extra contributions to the energy(x), and fluctuation of the scalar fieldy(x,y).
momentum tensofcalculated using the RS metriganish, First, let us calculate the Ricci scalar for the metig
and collect all the terms containing derivatives with respect

(6T)ij()=0. 13 {0 the extra componernt

Since we want to find a background solution fbrthat sat-
isfies 4D Lorentz invariance, we will assume that the solu-

tion is only a function of the extra dimension coordinate, R= @0,2_ 8 o’ i... (18)
The (u,v) and (5,5) components of E¢L3) read, respec- b3 b2 1+ 2be?”
tively,

1\2 12__ 1\ f__ rEr "
(P")°+122(207"~ ") T~ 1220" 1" + daf where ellipses contain only(y)-derivatives of the graviton

) 1 andx-derivatives of the radion. Since we are going to calcu-
+2bg V(®)+ - > Vi(@)8(y—ye)|=0 late the potential, derivatives &f{x) will be dropped here-
0 k=1,2 . R )
after. As has already been mentioned, we will not consider
(14)  fluctuations of they,, part of the metric. Therefore, we will
, , , also neglect all terms containirig, ,(x,y).
(P')°—=24a0'“f+16a0c'f' = 2bgV(P)=0. (19 Using the contributions to the Ricci scalar displayed in
) . ) Eqg. (18), one gets the following form of the effective 4D
Note that sinceP(y) should be a continuous function, the potential from the actiord):
above equations imply®’(y)=0 and V(P)=V,;s(P)
=V,,ig(P)=0 for «a=0. Therefore, introduction of the extra
coupling aRf(®) is essential in order to obtain a no-back

/

reaction solution, §T);;(®)=0. Ver(b, )= flz dyef4(rf4be2" E ;

In addition,® must satisfy the following equation of mo- - 2| bo(1+2be??)
tion:

, d X (Dot @)%+ 2b(1+ 2be*T)V (Do + ¢)
—d"+40'd'+4a(50'°—20 )E
dav 1 dV, + [5(1+2be??)o'%2—20"]
] _ X — = 2
05 4 b X, g OV VK| =0 (16 K%y

X[1+2k2af(Dy+ ¢) ]+ Abg(1+2be??)
where the RS metric was usédnce the vacuum solution
(dy) is determined, we expand the action, E4), adopting
the parametrization of the scalar fluctuations of the metric +k212 [Ax+Vi(Po+ )oYy —Yyi) (19
given in Eq.(5) and the following definition for thé quan- -
tum fluctuation:

d(x,y)—D +B(X,Y). 1 where ®,=®,(y) denotes the vacuum solutiqthat pre-
Y o)+ olxy) 7 serves the RS metpicfor the scalar®. Note that®, is

Then, in order to determine the effective 4D potential for thedetermined as a solution of the equations of motion for the

scalar degrees of freedom, we collect all nonderivative conRS background metric. As a result, it does not contain any

tributions to thed*x integrand in the action of Eq4) con- ~ dependence on the radion fiddx). It is easy to verify that

taining b(x) and ¢(x,y). contributions from the pure RS model ¥.4(b,$) vanish
when the relation$2) are satisfied: a nontrivial potential re-
quires an extension of the minimal RS model.

“Both the Einstein equatior(¢3) and the equation of motiof16) Next, it is easy to show from EG8) that if @ is indepen-

constrain the scalab. However, it can be verified that the equa- dent ofx then the following identity holds:

tions are not independent; a certain linear combination of deriva-

tives with respect ty of the (u,v) and (5,5) components of Eq.

(13) is proportional to Eq(16). Since we have not specified the  °Adopting the traceless gauge, =0, one can eliminate possible

potential V(®), we can find a consistent solution both férand mixing betweenb or ¢ andh,,. Consequently, graviton interac-

the potential. Details of the derivations fbtd)=3/3202 will be tions cannot influence scalar masses. Tiys, will be suppressed

presented in Sec. Ill. in the following.
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211 2
(6T u(®) =~ b—o(q’ )°+2bV(P)

24a
+—(20"%~ ")f(q>)+—[ 30/ f(D)’
b0 b0

4
@)1+ - 2 Vi(®)ly-yo. (20
0 k=12

Multiplying the above equation by ekp4o}(by/4), integrat-

ing the (—3¢'f+f") term by parts and using the RS rela-
tions, EqQ.(2), one obtains the following simple relation be-
tween (©T)%4(®o) and the minimum of the effective

potential of Eq.(19) at its[b(x) =0, ¢(x,y)=0] minimum:

by (12
Ver(0,0)= ZJ dy
—-1/2

Note that in Eq.(21) we employ the trace from Eq20)
calculated for the background solutich,. Since the no-
back-reaction requirement, Eq13), implies (5T)%(Po)

e (8T (D). (21)

PHYSICAL REVIEW D68, 055002 (2003

2 .m 129 rane
2 _[2 270 —mpb = —2a(y)
Mo (3" by ) boJl/ze XnlY)
' +20 D)+ 20002 (q>0)+b0dq)(q>o)}
(28)
) 1w, , ,
Mnm:_zf e 7 Xn(Y) Xm(Y) +xn(Y) Xm(Y)
bgJ —112
2f d’v. 1

d
X|4a(50'2—20") —— + b2
dd?

d2v,
2 dP? oy =Yk

Note thatM?2 >0 is automatic.

Before we can estimate the size of the elements of the
mass matrix, we must discuss first the constraint that is im-
posed on the model by the requirement of maintaining the

+ —
dd2 bg

x 2

(29

=0, the relation21) shows that the effective potential must standard strength of classical 4D gravity. Adopting the metric

vanish at the minimum

Veii(0,00=0. (22

It is straightforward to verify that linear terms im(x) and
¢(x,y) disappear by virtue of Eq13) and Eq.(16), respec-
tively.

defined by Eq(5), one can calculate the coefficient of the 4D
Ricci scalar obtained fag,,,= 7,,+h,,, . In order to repro-
duce the standard result, the coefficient shouldMg/2.
The resulting constraint is

72 1/2
+ Zabof d y
1/2

M =—7—— 2 e 27f[do(y)],  (30)

In order to determine scalar masses one has to expand the

action (4) up to terms quadratic il and ¢. First, let us
define the KK modes of the scalar fluctuations,

. Xn(Y)
BOY)= 2 @n(x) ;1/2 , (23
with orthonormal functiong,(y),
1/2 5

f AV e xmly) = (24
The resulting mass terms are the following:

1 M?r VEATE )

2 ( m) M Zmn ®n

wherer is the canonically normalized radigsee Eq.(6)],

(-2
r(x)= e

Inputing the equation of motioil6), the elements of the
mass matrix read

12
emobo/Zb(X) )

(26)

2 m 1/2
M2 =2 k2 —e Mobo J (D)%dy (27)
3 bO —-1/2

whereMp,~2x10' GeV is the reduced Planck mass and
y=exp(—myby/2). In order to solve the hierarchy problem,
one needsnyby/2~37. Therefore, terms of order* can be
safely neglected in Eq30). It is clear that the most natural
scenari6 emerges when all the mass parameters of the 5D
theory are of the order d¥lp,. In this case, the elements of
the scalar mass matrix defined by EB5) are of the follow-

ing order of magnitude:

a,yZ bl/Z,y
~M PI( bl/2 1 ) g

wherea andb are calculable coefficients of the order of 1. It
is clear that formgby/2~37 the lowest scalar mass is of
order

(31)

yMp (a—b)?

V2

246 GeV

V2

(32

0f course, an appropriate cancellation between contributions
coming from parameters that differ even by many orders of magni-
tude is in principle also possible. However, since we would like to
preserve the solution of the hierarchy problem proposed by Randall
and Sundrum, we should assume that all the mass parameters in the
fundamental 5D theory are of the same order. Then, the only nec-
essary fine tuning is to keapyby/2~37.
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There are two essential conclusions. First, we see that the 16 6o,

lowest scalar mass receives the standard suppression from o' (®?)’+(®?)"+ @(@')2—30"‘1)2+ Ba

the warp factory=exp(—myby/2) that is necessary for the

solution of the hierarchy problem. As a result, the mass ex-

pected in the presence of a bulk sca®fi(®) interaction is szzlzvk(q))é(y_)/k):o- (36)

of the order of the electroweak scale. Second, it is clear that ’

in order to find precise values for scalar masses for any paaway from the branes, we find the solution

ticular choice of the interaction function @), one has to

take into account the mixing between the radion and the do(y)=d[1—ce “MVE (37

Kaluza-Klein modes of the bulk scalar fluctuation. To fully

explore the phenomenology of the theory, it would be necWwherec, d are integration constants ang=2+8/(3a) is

essary to calculate all the entries of the mass matrix; howtequired for consistency. If B/ is not an integer, we must

ever, this is beyond the scope of this paper. The most cruci@lso demand that 2ce “)>0 in order that®o(y) be

aspect of such a calculation would be the demonstration thayell-defined. Recalling that” = 2mgbg[ 5(y) — o(y — 1/2)],

all eigenvalues of the mass-squared matrix of &) are  and noting that@?2)” will contain a term proportional to”,

positive (for the stability of our solution’ the conditions that the coefficients of tidefunctions in Eq.
Finally, we close this section by reiterating the fact that if (36) vanish reduce to

there is noRf(®) interaction, i.e. ifa=0, then necessarily

2 —
®5(y) =0 andV(Po) =V, is(Po) =Vpia(Po) =0, which in mod?g(c) + B(B—2)Vria(0) =0 (39
turn would lead to a vanishing mass matrix. 1
mod?g(cy) —B(B—Z)Vuis<§) =0, (39)
ll. THE R®? INTERACTION

In this section, we will illustrate the general discussionwhere y=exp(—myby/2), g(x)=(1—x)@P~1[x(2+3p)
from Sec. Il, choosing a specific form of the interaction be-—3387, V,4(0)=V,is ®o(0)] and V,is(3)=V, [ Po(3)],

tween the bulk scalar and gravity, and we have introduced the notatidf)s=V, and Vg
:Vl'
f(d)= iq)Z_ (33 _ Insertion of the solutio(y) into, for example, Eq(35)
32 fixes the form of the bulk potential,

The functionf(®) has been normalized such that —1 3 40/ d\-B
corresponds to a 5D conformally invariant interaction. This V(D)= _mgqﬂ — <_) _1}
coupling was discussed in various contexts by many authors B—2 3pl\d
in the past, see e.g. Réf7]. i 5

In this case, the conditions fobT);;(®)=0, Eq.(13), as n B-2 (2) 1l -1 (40)
written out in Eqs(14) and(15), read 6p2 |\ d '

In addition, ® must satisfy its equation of motion as ob-

8
_ ’ 2\ AN 1\2 12___n 2
3 (%) +(PT)"+ 3a(q> )" +3(20 ") ® tained from Eq.(16) for the form Eq.(33),

+1ib‘2’ V(c1>)+i > V(®)S(y—y,)|=0; 4o’ ®' — D" 3a 50'2—2¢")® +b? av
3 bo k512 ¢ Y=Y =5 7 +T( 7 o)+ 0@+b_0
(34 dVi(®P)
x > 8(y—yi) | =0. (42)
2 )2 kS12 dP
2 4b0 30' !
o' (D) + — (D)%~ =—V(P)— ®2?=0. (35
3a 3a 2 It is easily verified that the bulk form fo®y(y), Eq. (36),

Lo . also satisfies the equation of motion in the bulk, E4f).
:Ellrr_nnatlng V_((I))ffrrg)m Egs.(34), (35), one obtains the fol- However, cancellation of thé(y) and §(y— 1/2) brane delta
owing equation ford: function pieces yields matching conditions that are different
from Eqgs.(38), (39). For consistency of Eq41) we require

“We believe this can be accomplished by chooslAg, /d®? on 2modh(c)+ B(B—2)V}4(0)=0 (42)
they=0 and/ory=1/2 branegappearing in theMﬁm entries ap- '
propriately.(As will be apparent from subsequent discussion, there 1
are no constraints on these terjris. particular, these terms can be 2mydh(cy)— B(B— 2)V;is<§) =0, (43

taken large enough that the mass-squared matrix reduces to an ap-

proximately block diagonal form in which thl rzn elements are _ W) -1 ,
sufficiently small that stability reduces to the requirement that theVhere  h(x)=(1-x) [x(2+3B)—4B],  Vpig(0)

M2, submatrix has positive eigenvalues. Ethid/d<D|¢:q>0(0) andVl’,iS(%)EdVUiS/d<D|¢:q,O(1,2).
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Equationg38) and(42) can be solved for the parameter
in terms ofVy,;4(0) andV/,;4(0). Two solutions are possible
for ¢, specified by

ci=fi(B,—Rnig) =12, (44)
where
_ Vi(0)
Rhid=m- (45)

The functionsf; denote the two possible solutions of the
guadratic equations faz,

—-B+B?—4AC

2A '

fi(B.R)= (46)

wherei=1,2 corresponds to the¢ and — signs in front of
the square root, respectively. The quantite®,C in the
above are given by

2138
A=—(2+38)|1+ W}
B:(2+3ﬂ) l+m +3B
B 16 }
C=-p 3+—R(,8_2) .

Positivity of B2—4AC leads to the requirement —1(2
+38)/R>0.
Oncec is determined, we can computey in terms of

V!s(3) andV,;s(3) using Eqs(39) and(43). One finds

Civi=fj(B,Rys) for i=1.2, (47)
where
1
Vz,;izs( E)
RuisE 1 (48)
4mOVUiS( E)

and the appropriate branghk-1 orj=2 is determined by the
need to obtain a very small value for the warp facjor i.e.
fi(B,R,is) ~0. The latter is most straightforwardly achieved
by requiringC,;s=0 and choosing thg=1,+ (j=2,—) so-
lution for f;(B,R,is) [see Eq.(46)] for B,;s>0 (B,is<0),
respectively. From Eq47), the requirement that ;=0 is
equivalent to

(49

PHYSICAL REVIEW D68, 055002 (2003

For R,s as abové, the positivity of ‘/Bu2i5_4Auiszis is
automatic so long aB,;s is not extremely tiny. FOR,;s as
given in Eq.(49), one findsB,;s=38/2— 1, so that we must
use thej =1,+ solution for 3>2/3 and theg =2,— solution
for B<2/3. ForB=2/3, the choice becomes ambiguous.

For convenience, in what follows we denote by
A,is Byis,C,is the values ofA,B,C for R=R,;s and by
Ahidthid 1Chid the values Oﬂ,B,C for R=— Rhid .

From Eqgs.(44) and (47), the warp factory; (and hence
the distance between the brapésr a given solutionc; is
given by

—mghgi/2— fj(ﬁi Rvis)
fi(8,—Rnia)

with j=1 for f>2/3 andj=2 for B<2/3, as discussed
earlier. In practice, we will require that=y=e 3’ for ei-
ther choice ofi. Further, one can uséor example Eqg. (42)
to determined, ,

yi=e for i=1,2, (50

B B(B—2)Vp;4(0)
2moh[fi(B8, = Rnia) ]
Onced;, ¢; and y; have been fixed as specified above, Egs.

(38) and (39) imply a consistency constraint on the model
parameters,

Vhia(0) _ gl fi(B,—Rnia)] _ gl fi(B,—Rnia)]
(1) alf;j(B,Ryis)] 3B ’
VviS E

where y;~0 has been used to obtain the last approximate
form. Usingy;~0, EQgs.(39) and(43) also simplify to
mod?

) 4
) ~_3’3_2* vis

2
with d; as given in Eq(51) for solution branch. Note that,
for a given value of3 and choice of solution brandhfixing

V,is(3) corresponds to fixing the normalizatiaiy of ®, in

terms ofm, and that fixing also/! 4(3) then fixes botm,
andd; .

Finally, it is important to note that the definition 8,4,
Eq. (45), yields the following constraint on the relative signs
of Rnig andVp,;¢(0):

di= (51

(52

1) modi
— ~_8_’
2 B2

Vuis( (53

V[ %(0) = 4mgRyigVhia(0)>0. (54)

Using Egs.(53) and(52), the condition Eq(54) can be con-
verted to a requirement expressed entirely in term&pf
and B for a given solution branch

8For R,;s=813(1— %ﬁ]zr(ﬁ) exactly, y=0. As R,;s changes
(for a fixed Ry;g) from a value slightly larger than this to a value
slightly smaller,y will change sign. Whether a positive or negative
shift relative tor (B) is required to givey;>0 is determined by the
sign of ¢;, which can vary.
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Rhiadl fi(8,— Rnia)] Combining this equation with the earlier-noted constraint

B(B—2) 0. (59) that V,j4(0)<O results in the requirement that,;o(3)>0,
implying thatR,;s>0. Combined with Eq(59) and the re-
The conformal limit ofa=—1 (8= —2/3) requires special quirement thaty>0, the only allowed choices are
treatment, since for this choicé\,;;=0. In this caseg(x)
=2(1-x)~*andh(x) = $(1—x) %2 Equationg38) and(42)
then yield (0<R,is<2 and —2<Ryg<0)

or (R,is>2 and Rpig<—2). (61)

2 -4 8
mod (1_0) :_§Vhid(0)v

[Note that Eq.(49) does not apply for the conformal choice

_ 1 of a.] For R,is~2, as generally needed for smal| one
mod(1—c) %= 3 Vhia(0), (56)  finds ’
respectively, from which we conclude thef;4(0)<0 and 1 9 9
V1ig(0)<O are required, which also implies thitee Egs. vis(§> = §mod2, Vpig(0)=— mmodzRﬁid- (62)
(45) and(54)] Ry;4<0. By combining Eq(56) and Eq.(45)
we find

In Fig. 1, we display®y(y)/d as a function ofy for three
c=1+ R (57 cases. In all cases, we have chosen input parameters &b that
hid mobo/2=37 as required for the warp factoy=e MoPo?
~1 TeV/IMp,. In the first case, we have takesr +2/3,
equivalent toR;s=4 from Eq.(49), andR;jq= + 1. For this
choice,c~0.7835. In the secon(third) cases, we make the
conformal choice of=—2/3, takeR,is~2 (for small y)
and employRyiq= —4 (Rnig=—1) for whichc=1/2 (c=
—1). In the B=2/3 case(which is representative of cases

Note thatR,q<—2 is required for 6<c<<1, but thatc is
negative for—2<R;4<<0. There is nothing obvious to for-
bid this latter choice since (tce™ ™) will automatically
be positive for ally if c<0. In an analogous spirit, utilizing
Egs.(39) and(43), one can show that

> with 8>0), we see thaty(y) is repulsed from the hidden

cy=1— ) (58) brane located af=0. The secondthird) case is representa-

Ryis tive of a 8= —2/3 case for whichby(y) is strongly peaked

o ) ) on (strongly repulsed fromthe hidden brane.

Combining Egs.(57) and (58), one obtains the following A useful cross-check is to adopt the explicit form of the

result for the warp factor: solution (37) to verify that indeedv(0,0) vanishes as pre-
dicted by Eq.(22). In order to calculate the radion potential

_ Rnig Ryis—2 (59) at the minimum we use Eq35) to eliminateV(®) in the

v R,is Rpigt2° general formula19). The result is the simplified expression

In order to have a phenomenologically acceptable small

value for the warp factory, eitherR,is~2 or Ryiq~0 is 10mgby (12 ,
required. The remaining constratihe analog of Eq(52)] in Veri(0,00= 5-2 ). /zdye (Po(y))
this case reads
1 (12 . ) X
Vhid(O) . Rhid 4 + b_of_ l/Zdye ((I)O(y))
=— . (60)
Vv ( 1) Rvis 8m 1 "
vis E 0 2_ _ —2m0b0
+—ﬂ_2[[<bo<0)] [%(2) e
In addition to the general solutions discussed in the main text for +Vhig(0)+V,isl =€ 2mgbg (63

this case, there exists a special background solutibg(y) 2

«e¥2() for which there are no matching conditions since the

solution satisfies all the necessary equations everywhere, includin_? ) ) ) ]

the boundaries. For this particular special conformally symmetric hen, inserting the solution E¢37) into Eq. (63), one ob-
case, substituting the form @b,, as given above, into Eq35  tains

leads to a vanishing bulk potentil(®,)=0. Similarly, Eq.(36)

gives V; (P)=0. Because all the potentials are zero, one finds

Mrzr=0. We are only interested in cases for which a nonzero mass **We reemphasize thamyb,/2 is calculable in terms of the input
is generated for the radion. parameters using E@50) or Eq. (59).
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1 Finally, if we insert the solution Eq37) into the formula
for the M2 mass-squared matrix entry, E&7), one obtains
0.8 [after employing Egs(38) and(39)] the following result for
M2, :
0.6
2 c(2—pB)+
0.4 Mrzrngzmoyz[ _Vhid(o)ﬁ
0.2 1\ c —
vl men ) 65
2] cy(2+3B)-38
04 02 02 o4 Y
wherec andcy are given by Eqs(44) and (47) or, in the
conformal case, Eq$57) and(58). Note the presence of the
2.2 warp factory that reduces the radion mass from the typical
2 5D scale[a natural choice for which would b®(Myp)) if

V4ig(0) andV,;s(3) areO(M‘F‘.,)] down to the electroweak
scale. Of course, Eq27) guarantees thav?=0 for any
given form off(&®) and any background solutieh,(y) that

is real and fully consistent. The conditions for reality and
consistency ar€a) the constraint Eq(52) or, in the confor-
mal case, Eq(60) is satisfied{b) the positivity condition Eq.
04 02 0.2 0.4 (54) is satisfied; andc) 1—c>0 when 183 is not an integer.
0.8 However, substantial variation 847 is possible. In particu-
lar, M2 =0 at special points when considered as a function
1 of Ryq at fixed 8. A final form for M2 can be derived in the
08 v<1 limit by using Egs(52) and(53) in Eq. (65):
2 g(c) c(2—p)+p
0.6 Mrzr:§’<2m072vvis(§> 1- B c(2+3B8)-38
0.4
= E(Kmody)zi[(l—c)(z"‘”l 1-c+ cE —1}.
0.2 3 p-2 B
(66)
0.4 02 0.2 0.4 y This shows the fundamental importance of the scale of

FIG. 1. The normalized scalar background functidg(y)/d Vuis(3) in determiningM 7, . Of course, one should continue
=[1—ce "W]Y for myby/2~ 37 in three casestop) R, q=1and  (© keep in mind the relation Eq53) betweenV,;s(3) and
B~ +2I3 (equivalent toR,;s=4); (middle) B=—2/3 andRnq=  myd? as well as the relation Eq52) betweenV,s(3) and
—4 (implying c=+0.5); (bottom B=—2/3 andR,jq=—1 (im- Vhig(0).
plying C;_l)z- In the latter two(conforma) cases,mobo/2=37 To illustrate howM?2 depends upon the parameters and
requiresR,;s~2.
with B=—2/3. ForR,js~2 (so thaty<1) and using Egs.
(57) and (60), one can rewrite Eq(66) in terms ofV,;s(3)
(which, as noted earlier, fixes the valuedih terms ofmp).

B(B—2)Vet(0,0

=[mgd?(1—c)@P~Yc(2+3B)—38] The result is
_ . — A 21— (2p)-1 2 1 1
A2V O] = g (1 o) M2 =5 eV, 5 K (R = 3 (et K (R,
X[cy(2+3B)=3B]=B(B~=2)V,is(1/2)] 67)
=[mod?g(c)+ B(B~2)Vhig(0)] where
— ¥ [mod®g(cy) — B(B—2)V,is(1/2)].  (64) 3, 1,
The two bracketed expressions on the right hand side of the K(Rhia)= 7gRhia* 5 Rhia+ 10, (68)

above equation vanish by virtue of the fact that they corre-

spond precisely to the expressions appearing in the matchidg§ Fig. 2, we plotkK(Ry;g) as a function oRy;4. We observe
conditions that emerge from the requirement 6TY,,=0, thatM7, >0 everywhere except & 4= —2 [a point where
Egs.(38), (39. c=0 is required by Eq(57) and ®(y) becomes trivial

055002-8
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K K’
10
400
8
200
6 .
48 46 |44 42 4 Nhd
4 -200
2 -400
7 3 =) a Rhid FIG. 3. Forg=2/3, we plot[K'1,=[M2/{3(kmydy)?}],, see

Eq.(66), as a function oRy,;q in the R,;jy< — (2+38) = — 4 region.
Both 1-c, and RyiqVhig)2 display the same sign changes and
singular behavior a@l\/lrzr]z. Only the[K'],>0 region corresponds
to a solution consistent with all constraints.
Our two earlier3=—2/3 plots of the wave function thus
correspond to choices for whid % >0. extreme sensitivity that12 can have tdR,;q and shows that
For fixed B+ —2/3, andy<1, Mrzr is approximately a very large and very small values Mfr are quite possible.
function of R,,;4 only, whereR,,4 is to be restricted to those (i) For B=1/2, since 18 is an integer, the sign of-ic is
values such that a given soluti@q or ¢, satisfies the other unconstrained. One findsR{iqVhig)12>0 for all Ryjg>0
consistency constraints. We explore the behavioMdf as  and M2),,>0 and behaves smoothly. For aRp <
follows. First, recall thaW/, (1), Viia(0), Ryis, Riig @ndA =712, (RhigVhig)1<0 and this solution branch fails the posi-

are the input model parameters. At fixgdin order to obtain tivity constraint. In the zsmall region-4.65<Ryjq< —7/2,
y<1, as desired on phenomenological grounds, we adjus(tRh‘ded)2>0 and M7),>0, blowing up at Rpig~
R,is according to Eq(49). Then, for a choseR,q we cal- |
culatec; using Eq.(44). In fact, there are the two solgtion <0 case: Foig=—1, again the +c>0 constraint is not
Erjg\ihec':s'-ClYZ(alzhgzat_e];rlﬁﬁ(n[i d E;“fc)h.e ;Zi't'gg(;i 33;)'(/1 necessary. For alRyjg=—(2+38)=1, both RnigVhia)1
id“hid» 92 ) <0 and RyigVhia)2<0 so that thec; andc, solutions both
(—Rnig), requires Rpjg<min[—(2+38),0] or Rng fail the positivity constraint. In contrast, for aR;,;q<0 one
>max{0,—(2+3p)] (the limit cross over taking place at the fings (Ry,;qVpiq)1>0 and, of course, N2 ),>0. However,
conformal point of 3= —2/3). Oncec, (C;) is chosen, if (R .).,>0 only for —032<R,4<0 and
1/B is not an integer we check to see iF£,>0 (1-¢c; R, ,<—1.78—in these two range?),>0 aside from a
>0), as required for a well-defined®o(y)=d(1  zero at the top endRniq= —1.78, of the 2nd range.
—ce 2°M)Y8 Finally, for any values of3 andRyq, and Overall it is clear that there is a large range of possible
given a choice of branch we check the positivity require- models that satisfy all the constraints necessary for the exact
ment of Eq.(54). To computeM r2r , we adopt Eq(66), which  Randall-Sundrum metric with positive radion mass-squared.
takes into account the consistency constréi® such that (Some particular choices are somewhat more fine-tuned than
Viia(0) is expressed in terms of,.(3). Equation (66) others) We have not understood how to choose between the

makes it clear that for iven val M2 is Dropor- various models; possibly, the conformal moglels Wik
akes it clear that, for a given value f My, is propo —2/3 should be regarded as the more attractive.

tional to V,is(3) [which fixesmyd? through Eq.(53)] and
depends nontrivially orR,;4, the other parameters being
held fixed. Remarkably, one findM@, );>0 (as expectedso IV. CONCLUSIONS

long as(@) Rpjq is such that ¥ (2+38)/Ryig>0 (so that We have considered a class of generalizations of the
C1 are real; (b) 1—¢;>0 when 1B is not an integer; and Randall-Sundrum model containing a bulk scalar fidid
(c) the positivity condition, Eq(54), which we abbreviate as \we demonstrated that no-back reaction from the scalar on
RhiaVhia>0, is satisfied. There are many different casestne Randall-Sundrum metric solutioaquiresthe existence
Here we simply describe a couple of illustrative possibilities.of an extra interaction between gravity and the scalar. Here,
Consider first two choices g8 such that 2-33>0. we considered the coupling f(®). A general form of the
(i) For B=2/3, any value ofRyj>0 gives 1-¢;,>0  potential for the fluctuation of the compactification volume
and RnigVnig)12>0 and substantial values for the corre- (the radion and the Kaluza-Klein modes of the excitation of
sponding M7); and M?),. For Ryg<—(2+3B8)=—4,  the bulk scalar was derived and the mass matrix was deter-
any value ofRyiq gives 1—-c;>0 and substantialM%);. In  mined. In order to obtain the values of scalar masses, one has
all these casesyl r2r is a relatively smooth function dR;q - to take into account the mixing between the radion and the
However, in theRyijq=<—4 region, 1-c, and RnigVhid)2 Kaluza-Klein modes of the fluctuation of the bulk scalar.
are both only positive for-4.5<R;,;q<—4 and (I\/Irzr)2 var- Here, we demonstrated that a positive value for lshé
ies rapidly, as illustrated in Fig. 3. This case illustrates themass-squared matrix entry associated with the radion ffield

FIG. 2. The functiorK(Ry,iq) is plotted as a function dRp,;4 in
the (allowed Ry;4<0 region.

We also briefly describe the following interesting-33
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can be generated using a choice of the background bulk fieldhoson eigenstate can be modified. Such a study is beyond the
dy(y), that preserves the RS metfico back reaction We  scope of this paper.
found thatM,, receives the same suppression from the warp
factor that is necessary to explain the hierarchy puzzle. Thus,
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