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Bulk scalar stabilization of the radion without metric back reaction in the Randall-Sundrum model
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Generalizations of the Randall-Sundrum model containing a bulk scalar fieldF interacting with the curva-
ture R through the general couplingR f(F) are considered. We derive the general form of the effective 4D
potential for the spin-zero fields and show that in the mass matrix the radion mixes with the Kaluza-Klein~KK !
modes of the bulk scalar fluctuations. We demonstrate that it is possible to choose a nontrivial background form
F0(y) ~where y is the extra dimension coordinate! for the bulk scalar field such that the exact Randall-
Sundrum metric is preserved~i.e. such that there is no back reaction!. We compute the mass matrix for the
radion and the KK modes of the excitations of the bulk scalar relative to the background configurationF0(y).
We find that for any~consistent! F0(y) the expected mass for the radionlike eigenstate is suppressed relative
to the Planck scale by the standard warp factor needed to explain the hierarchy puzzle, implying that;1 TeV
is a natural order of magnitude for this mass. The general considerations are illustrated in the case of a model
containing anRF2 interaction term.
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I. INTRODUCTION

Although the standard model~SM! of electroweak inter-
actions describes successfully almost all existing experim
tal data, the model suffers from many theoretical drawbac
One of these is the hierarchy problem: namely, the SM c
not consistently accommodate the weak energy s
O(1 TeV) and a much higher scale such as the Planck m
scaleO(1018 GeV). Therefore, it is widely accepted that th
SM is only an effective low-energy theory embedded
some more fundamental high-scale theory that presum
could contain gravitational interactions. Recently many m
els that incorporate gravity have been proposed in the c
text of higher dimensional space-time. These models h
received tremendous attention since they might provid
solution to the hierarchy problem. One of the most attract
attempts has been formulated by Randall and Sundrum@1#
who postulated a 5D universe with two 4D surfaces~‘‘3-
branes’’! with the following action:

S52E d4xE
21/2

1/2

dyHAuguS R

2k2 1L D
1 (

k51,2
AugkuLkd~y2yk!J , ~1!

whereR is the Ricci scalar,k258pGN
(5) with GN

(5) the New-
ton constant in 5D andL, L1[Lhid andL2[Lv is are the
cosmological constants in the bulk, on the hidden and vis
branes, respectively. In the above,gi j ( i , j 50,1,2,3,4) is the
bulk metric and (g1)mn[(ghid)mn(x)[gmn(x,y5y1[0)
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and (g2)mn[(gv is)mn(x)[gmn(x,y5y2[1/2) (m,n
50,1,2,3) are the induced metrics on the branes.

It turns out that if the bulk and brane cosmological co
stants are related by

L52
6m0

2

k2
, Lhid52Lv is5

6m0

k2
~2!

and if periodic boundary conditions (y→y11) with identi-
fication of (x,y) and (x,2y) are imposed, then the following
metric is a solution of the 5D Einstein equations:

ds25e22s(y)hmndxmdxn2b0
2dy2, ~3!

where s(y)5m0b0$y@2u(y)21#22(y21/2)u(y21/2)%;
b0 is a constant parameter that is not determined by the e
tions of motion.

Within the Randall-Sundrum~RS! model all the SM par-
ticles as well as the nongravitational forces are assumed t
present on one of the 3-branes, the ‘‘visible brane.’’ Grav
lives on the visible brane, on the second brane~the ‘‘hidden
brane’’! and in the bulk. All mass scales in the 5D theory a
of the order of the Planck mass. By placing the SM fields
the visible brane, the initial 5D electroweak mass sc
O(M Pl) is rescaled by an exponential suppression factor~the
‘‘warp factor’’ ! g[e2m0b0/2, down to the weak scale
O(1 TeV) without any severe fine tuning. To achieve t
necessary suppression, one needsm0b0/2;37. This is a
great improvement compared to the original problem of
commodating both the weak and the Planck scale withi
single theory.

II. THE RADION EFFECTIVE POTENTIAL

A drawback of the RS model is the presence of a mass
degree of freedom called the radion. There have been sev
©2003 The American Physical Society02-1
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attempts~see Refs.@2–4#! in the literature to generate th
radion mass by introducing a bulk scalar fieldF that would
induce an appropriate radion potential. Here we will der
the general form of the potential within a class of mod
containing the bulk scalar interacting with gravity in the fo
lowing manner:

S5E d4xE
21/2

1/2

dyHAuguF2
R

2k2 2L2aR f~F!

1
1

2
gi j F ,iF , j2V~F!G2 (

k51,2
Augku@Lk1Vk~F!#

3d~y2yk!J , ~4!

where we have introduced the bulk potentialV(F) and the
brane potentialsV1(F)[Vhid(F) andV2(F)[Vv is(F). In
addition to the standard scalar kinetic-energy term, we h
allowed for a general coupling of the bulk scalar to grav
through theaR f(F) interaction term. Since we would like
to preserve the explanation of the hierarchy proposed
Randall and Sundrum, we will also require that the RS m
ric ~3! remain an exact solution1 of the Einstein equations
even in the presence of the bulk scalarF. Therefore, it is
useful to separate out in the action~4! both the bulk (L) and
brane (Lhid , Lv is) cosmological constants that satisfy th
RS conditions, Eq.~2!.

In order to identify the radion, it is sufficient to consid
scalar excitations of the metric around the background
solutions. Hereafter, we will adopt the following paramet
zation ~see Refs.@5,6#! of the metric fluctuations:

ds25e22s(y)22b(x)e2s(y)
@hmn1hmn~x,y!#dxmdxn

2b0
2@112b~x!e2s(y)#2dy2, ~5!

wherehmn(x,y) andb(x) are related to the graviton2 and the
radion, respectively. Then from2AuguR/(2k2) in the action
~4! one obtains@after expanding in powers ofb(x)] the ki-
netic term for the radion,3

S5
6

k2m0
~em0b021!E d4x

1

2
~]mb!~]mb!1•••. ~6!
05500
e
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It is easy to verify that if interactions of the scalar fieldF are
switched off, then there is no potential forb(x) and conse-
quently the radion would be massless.

The bulk scalar has been introduced here in order to g
erate a nontrivial potential for the radion. However, in ge
eral the presence of the scalar leads to a nontrivial interac
potential between the radion and the scalar in addition to
appearance of a radion potential. Therefore, the strategy
we will follow here will be to determine the backgroun
scalar configurationF(y) such that the RS background me
ric is preserved and then to expand the action~4! around it.
First, one has to solve the Einstein equations together w
the equation of motion forF. Let us start with the Einstein
equations, keeping in mind that we would like to preser
the RS metric as a vacuum solution. We write

Gi j 5k2@Ti j
(RS)1~dT! i j ~F!#, ~7!

whereGi j is the Einstein tensor,Ti j
(RS) denotes the RS con

tribution to the energy-momentum tensor and (dT) i j contains
all new contributions emerging from interactions of the sc
lar F. It is useful to first calculate all the extra~compared to
the pure RS model! contributions to the energy-momentu
tensor. It is easy to show that

~dT! i j 5Ti j
(F)12a$Di j @ f ~F!#2Gi j f ~F!%

1
1

b0
(

k51,2
Vk~F!~gk!mnd i

md j
nd~y2yk!, ~8!

where

Ti j
(F)[¹iF¹jF2gi j F1

2
gkl¹kF¹lF2V~F!G ~9!

Di j @X#[¹i¹jX2gi j g
kl¹k¹lX. ~10!

For the RS background metric we obtain

Gi j 5S 23b0
22e22s~2s822s9!hmn 0

0 6s82D ~11!

and
manner.

dom.
Di j @ f ~F!#5S b0
22e22s@23s8 f ~F!81 f ~F!9#hmn 0

0 4s8 f ~F!8
D , ~12!

1One can, of course, consider slight modifications of the RS metric that would also solve the hierarchy problem in a similar
However, in this paper we would like to discuss a scenario with exactly the same metric as in the original RS model.

2In the following we will not discuss interactions with gravitons as they will not influence the potential for scalar degrees of free
3Hereafter, the flat metrichmn will be assumed whenever repeated indices are summed.
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BULK SCALAR STABILIZATION OF THE RADION . . . PHYSICAL REVIEW D 68, 055002 ~2003!
where here, and in what follows, the prime denotes differ
tiation with respect to the 5th coordinate,y.

Since we demand that the RS metric be preserved e
when the scalar is present~no back reaction from the scalar!,
we have to require that the extra contributions to the ene
momentum tensor~calculated using the RS metric! vanish,

~dT! i j ~F!50. ~13!

Since we want to find a background solution forF that sat-
isfies 4D Lorentz invariance, we will assume that the so
tion is only a function of the extra dimension coordinate,y.
The (m,n) and (5,5) components of Eq.~13! read, respec-
tively,

~F8!2112a~2s822s9! f 212as8 f 814a f 9

12b0
2FV~F!1

1

b0
(

k51,2
Vk~F!d~y2yk!G50

~14!

~F8!2224as82f 116as8 f 822b0
2V~F!50. ~15!

Note that sinceF(y) should be a continuous function, th
above equations implyF8(y)50 and V(F)5Vv is(F)
5Vhid(F)50 for a50. Therefore, introduction of the extr
coupling aR f(F) is essential in order to obtain a no-ba
reaction solution, (dT) i j (F)50.

In addition,F must satisfy the following equation of mo
tion:

2F914s8F814a~5s8222s9!
d f

dF

1b0
2F dV

dF
1

1

b0
(

k51,2

dVk

dF
d~y2yk!G50, ~16!

where the RS metric was used.4 Once the vacuum solution
(F0) is determined, we expand the action, Eq.~4!, adopting
the parametrization of the scalar fluctuations of the me
given in Eq.~5! and the following definition for theF quan-
tum fluctuation:

F~x,y!→F0~y!1f~x,y!. ~17!

Then, in order to determine the effective 4D potential for t
scalar degrees of freedom, we collect all nonderivative c
tributions to thed4x integrand in the action of Eq.~4! con-
taining b(x) andf(x,y).

4Both the Einstein equations~13! and the equation of motion~16!
constrain the scalarF. However, it can be verified that the equ
tions are not independent; a certain linear combination of der
tives with respect toy of the (m,n) and (5,5) components of Eq
~13! is proportional to Eq.~16!. Since we have not specified th
potentialV(F), we can find a consistent solution both forF and
the potential. Details of the derivations forf (F)53/32F2 will be
presented in Sec. III.
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In other words, we expand the theory defined by the
tion ~4! around the vacuum solutions for the metric~the RS
solution! and the bulk scalar fieldF @the solution of Eqs.
~13! and~16!# in terms of the scalar fluctuation of the metri
b(x), and fluctuation of the scalar field,f(x,y).

First, let us calculate the Ricci scalar for the metric~5!
and collect all the terms containing derivatives with resp
to the extra componenty,

R5
20

b0
2

s822
8

b0
2

s9

112be2s
1••• ~18!

where ellipses contain only (x,y)-derivatives of the graviton
andx-derivatives of the radion. Since we are going to calc
late the potential, derivatives ofb(x) will be dropped here-
after. As has already been mentioned, we will not consi
fluctuations of thehmn part of the metric. Therefore, we wil
also neglect all terms containinghmn(x,y).5

Using the contributions to the Ricci scalar displayed
Eq. ~18!, one gets the following form of the effective 4D
potential from the action~4!:

Veff~b,f!5E
21/2

1/2

dye24s24be2sH 1

2 F 1

b0~112be2s!

3~F081f8!212b0~112be2s!V~F01f!G
1

2

k2b0

@5~112be2s!s8222s9#

3@112k2a f ~F01f!#1Lb0~112be2s!

1 (
k51,2

@Lk1Vk~F01f!#d~y2yk!J ~19!

where F05F0(y) denotes the vacuum solution~that pre-
serves the RS metric! for the scalarF. Note thatF0 is
determined as a solution of the equations of motion for
RS background metric. As a result, it does not contain a
dependence on the radion fieldb(x). It is easy to verify that
contributions from the pure RS model toVeff(b,f) vanish
when the relations~2! are satisfied: a nontrivial potential re
quires an extension of the minimal RS model.

Next, it is easy to show from Eq.~8! that if F is indepen-
dent ofx then the following identity holds:
-

5Adopting the traceless gauge,hm
m50, one can eliminate possibl

mixing betweenb or f and hmn . Consequently, graviton interac
tions cannot influence scalar masses. Thus,hmn will be suppressed
in the following.
2-3
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~dT!m
m~F!5

2

b0
F 1

b0
~F8!212b0V~F!G

1
24a

b0
2 ~2s822s9! f ~F!1

8a

b0
2 @23s8 f ~F!8

1 f ~F!9#1
4

b0
(

k51,2
Vk~F!d~y2yk!. ~20!

Multiplying the above equation by exp$24s%(b0/4), integrat-
ing the (23s8 f 1 f 9) term by parts and using the RS rel
tions, Eq.~2!, one obtains the following simple relation be
tween (dT)m

m(F0) and the minimum of the effective
potential of Eq.~19! at its @b(x)50, f(x,y)50] minimum:

Veff~0,0!5
b0

4 E
21/2

1/2

dye24s~dT!m
m~F0!. ~21!

Note that in Eq.~21! we employ the trace from Eq.~20!
calculated for the background solutionF0. Since the no-
back-reaction requirement, Eq.~13!, implies (dT)m

m(F0)
50, the relation~21! shows that the effective potential mu
vanish at the minimum

Veff~0,0!50. ~22!

It is straightforward to verify that linear terms inb(x) and
f(x,y) disappear by virtue of Eq.~13! and Eq.~16!, respec-
tively.

In order to determine scalar masses one has to expan
action ~4! up to terms quadratic inb and f. First, let us
define the KK modes of the scalar fluctuations,

f~x,y!5 (
n50

`

wn~x!
xn~y!

b0
1/2

, ~23!

with orthonormal functionsxn(y),

E
21/2

1/2

dye22s(y)xn~y!xm~y!5dnm . ~24!

The resulting mass terms are the following:

1

2 ~ r wm! S Mrr
2 Mrn

2

Mrm
2 Mmn

2 D S r

wn
D , ~25!

wherer is the canonically normalized radion@see Eq.~6!#,

r ~x!5S 6

k2m0
D 1/2

em0b0/2b~x!. ~26!

Inputing the equation of motion~16!, the elements of the
mass matrix read

Mrr
2 5

2

3
k2

m0

b0
e2m0b0E

21/2

1/2

~F08!2dy ~27!
05500
the

Mrn
2 5S 2

3
k2

m0

b0
e2m0b0D 1/2 1

b0
E

21/2

1/2

e22s(y)xn~y!

3FF0912s8F08120as82
d f

dF
~F0!1b0

2 dV

dF
~F0!G

~28!

Mnm
2 5

1

b0
2E

21/2

1/2

e24s(y)H xn8~y!xm8 ~y!1xn~y!xm~y!

3F4a~5s8222s9!
d2f

dF2
1b0

2S d2V

dF2
1

1

b0

3 (
k51,2

d2Vk

dF2
d~y2yk!D G J . ~29!

Note thatMrr
2 .0 is automatic.

Before we can estimate the size of the elements of
mass matrix, we must discuss first the constraint that is
posed on the model by the requirement of maintaining
standard strength of classical 4D gravity. Adopting the me
defined by Eq.~5!, one can calculate the coefficient of the 4
Ricci scalar obtained forgmn5hmn1hmn . In order to repro-
duce the standard result, the coefficient should beM Pl

2 /2.
The resulting constraint is

M Pl
2 5

12g2

k2m0
12ab0E

21/2

1/2

dye22s f @F0~y!#, ~30!

where M Pl;231018 GeV is the reduced Planck mass a
g5exp(2m0b0/2). In order to solve the hierarchy problem
one needsm0b0/2;37. Therefore, terms of orderg2 can be
safely neglected in Eq.~30!. It is clear that the most natura
scenario6 emerges when all the mass parameters of the
theory are of the order ofM Pl . In this case, the elements o
the scalar mass matrix defined by Eq.~25! are of the follow-
ing order of magnitude:

;M Pl
2 S ag2 b1/2g

b1/2g 1 D , ~31!

wherea andb are calculable coefficients of the order of 1.
is clear that form0b0/2;37 the lowest scalar mass is o
order

;
gM Pl~a2b!1/2

A2
;

246 GeV

A2
. ~32!

6Of course, an appropriate cancellation between contributi
coming from parameters that differ even by many orders of mag
tude is in principle also possible. However, since we would like
preserve the solution of the hierarchy problem proposed by Ran
and Sundrum, we should assume that all the mass parameters
fundamental 5D theory are of the same order. Then, the only n
essary fine tuning is to keepm0b0/2;37.
2-4
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There are two essential conclusions. First, we see that
lowest scalar mass receives the standard suppression
the warp factorg5exp(2m0b0/2) that is necessary for th
solution of the hierarchy problem. As a result, the mass
pected in the presence of a bulk scalarR f(F) interaction is
of the order of the electroweak scale. Second, it is clear
in order to find precise values for scalar masses for any
ticular choice of the interaction functionf (F), one has to
take into account the mixing between the radion and
Kaluza-Klein modes of the bulk scalar fluctuation. To ful
explore the phenomenology of the theory, it would be n
essary to calculate all the entries of the mass matrix; h
ever, this is beyond the scope of this paper. The most cru
aspect of such a calculation would be the demonstration
all eigenvalues of the mass-squared matrix of Eq.~25! are
positive ~for the stability of our solution!.7

Finally, we close this section by reiterating the fact tha
there is noR f(F) interaction, i.e. ifa50, then necessarily
F08(y)50 and V(F0)5Vv is(F0)5Vhid(F0)50, which in
turn would lead to a vanishing mass matrix.

III. THE RF2 INTERACTION

In this section, we will illustrate the general discussi
from Sec. II, choosing a specific form of the interaction b
tween the bulk scalar and gravity,

f ~F!5
3

32
F2. ~33!

The function f (F) has been normalized such thata521
corresponds to a 5D conformally invariant interaction. T
coupling was discussed in various contexts by many auth
in the past, see e.g. Ref.@7#.

In this case, the conditions for (dT) i j (F)50, Eq.~13!, as
written out in Eqs.~14! and ~15!, read

23s8~F2!81~F2!91
8

3a
~F8!213~2s822s9!F2

1
16b0

2

3a FV~F!1
1

b0
(

k51,2
Vk~F!d~y2yk!G50;

~34!

s8~F2!81
2

3a
~F8!22

4b0
2

3a
V~F!2

3s82

2
F250. ~35!

Eliminating V(F) from Eqs.~34!, ~35!, one obtains the fol-
lowing equation forF:

7We believe this can be accomplished by choosingd2Vk /dF2 on
the y50 and/ory51/2 branes~appearing in theMnm

2 entries! ap-
propriately.~As will be apparent from subsequent discussion, th
are no constraints on these terms.! In particular, these terms can b
taken large enough that the mass-squared matrix reduces to a
proximately block diagonal form in which theMrn

2 elements are
sufficiently small that stability reduces to the requirement that
Mnm

2 submatrix has positive eigenvalues.
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s8~F2!81~F2!91
16

3a
~F8!223s9F21

16b0

3a

3 (
k51,2

Vk~F!d~y2yk!50. ~36!

Away from the branes, we find the solution

F0~y!5d@12ce2s(y)#1/b, ~37!

where c, d are integration constants andb[218/(3a) is
required for consistency. If 1/b is not an integer, we mus
also demand that 12ce2s(y).0 in order thatF0(y) be
well-defined. Recalling thats952m0b0@d(y)2d(y21/2)#,
and noting that (F2)9 will contain a term proportional tos9,
the conditions that the coefficients of thed functions in Eq.
~36! vanish reduce to

m0d2g~c!1b~b22!Vhid~0!50 ~38!

m0d2g~cg!2b~b22!Vv isS 1

2D50, ~39!

where g[exp(2m0b0/2), g(x)[(12x)(2/b)21@x(213b)

23b#, Vhid(0)[Vhid@F0(0)# and Vv is(
1
2 )[Vv is@F0( 1

2 )#,
and we have introduced the notationVv is5V2 and Vhid
5V1.

Insertion of the solutionF0(y) into, for example, Eq.~35!
fixes the form of the bulk potential,

V~F!5
3

b22
m0

2F2H 4

3b F S F

d D 2b

21G
1

b22

6b2 F S F

d D 2b

21G2

21J . ~40!

In addition, F must satisfy its equation of motion as ob
tained from Eq.~16! for the form Eq.~33!,

4s8F82F91
3a

4
~5s8222s9!F1b0

2F dV

dF
1

1

b0

3 (
k51,2

dVk~F!

dF
d~y2yk!G50. ~41!

It is easily verified that the bulk form forF0(y), Eq. ~36!,
also satisfies the equation of motion in the bulk, Eq.~41!.
However, cancellation of thed(y) andd(y21/2) brane delta
function pieces yields matching conditions that are differ
from Eqs.~38!, ~39!. For consistency of Eq.~41! we require

2m0dh~c!1b~b22!Vhid8 ~0!50 ~42!

2m0dh~cg!2b~b22!Vv is8 S 1

2D50, ~43!

where h(x)[(12x)(1/b)21@x(213b)24b#, Vhid8 (0)

[dVhid /dFuF5F0(0) andVv is8 ( 1
2 )[dVv is /dFuF5F0(1/2) .

e

ap-

e
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Equations~38! and~42! can be solved for the parameterc
in terms ofVhid(0) andVhid8 (0). Two solutions are possible
for c, specified by

ci5 f i~b,2Rhid! i 51,2, ~44!

where

Rhid[
Vhid82 ~0!

4m0Vhid~0!
. ~45!

The functions f i denote the two possible solutions of th
quadratic equations forc,

f i~b,R![
2B6AB224AC

2A
, ~46!

where i 51,2 corresponds to the1 and 2 signs in front of
the square root, respectively. The quantitiesA,B,C in the
above are given by

A52~213b!F11
213b

Rb~b22!G
B5~213b!F11

8

R~b22!G13b

C52bF31
16

R~b22!G .
Positivity of B224AC leads to the requirement 12(2
13b)/R.0.

Once c is determined, we can computecg in terms of

Vv is8 ( 1
2 ) andVv is(

1
2 ) using Eqs.~39! and ~43!. One finds

cig i5 f j~b,Rv is! for i 51,2, ~47!

where

Rv is[

Vv is82 S 1

2D
4m0Vv isS 1

2D ~48!

and the appropriate branchj 51 or j 52 is determined by the
need to obtain a very small value for the warp factorg i , i.e.
f j (b,Rv is);0. The latter is most straightforwardly achieve
by requiringCv is.0 and choosing thej 51,1 ( j 52,2) so-
lution for f j (b,Rv is) @see Eq.~46!# for Bv is.0 (Bv is,0),
respectively. From Eq.~47!, the requirement thatCv is.0 is
equivalent to

b.2
2

3 S 8

Rv is
23D or Rv is.

8

3S 12
1

2
b D . ~49!
05500
For Rv is as above,8 the positivity of ABv is
2 24Av isCv is is

automatic so long asBv is is not extremely tiny. ForRv is as
given in Eq.~49!, one findsBv is.3b/221, so that we must
use thej 51,1 solution forb.2/3 and thej 52,2 solution
for b,2/3. Forb52/3, the choice becomes ambiguous.

For convenience, in what follows we denote b
Av is ,Bv is ,Cv is the values ofA,B,C for R5Rv is and by
Ahid ,Bhid ,Chid the values ofA,B,C for R52Rhid .

From Eqs.~44! and ~47!, the warp factorg i ~and hence
the distance between the branes! for a given solutionci is
given by

g i[e2m0b0i /25
f j~b,Rv is!

f i~b,2Rhid!
for i 51,2, ~50!

with j 51 for b.2/3 and j 52 for b,2/3, as discussed
earlier. In practice, we will require thatg i5g[e237 for ei-
ther choice ofi. Further, one can use~for example! Eq. ~42!
to determinedi ,

di52
b~b22!Vhid8 ~0!

2m0h@ f i~b,2Rhid!#
. ~51!

Oncedi , ci andg i have been fixed as specified above, E
~38! and ~39! imply a consistency constraint on the mod
parameters,

Vhid~0!

Vv isS 1

2D 52
g@ f i~b,2Rhid!#

g@ f j~b,Rv is!#
.

g@ f i~b,2Rhid!#

3b
,

~52!

where g i;0 has been used to obtain the last approxim
form. Usingg i;0, Eqs.~39! and ~43! also simplify to

Vv isS 1

2D;23
m0di

2

b22
, Vv is8 S 1

2D;28
m0di

b22
, ~53!

with di as given in Eq.~51! for solution branchi. Note that,
for a given value ofb and choice of solution branchi, fixing

Vv is(
1
2 ) corresponds to fixing the normalizationdi of F0 in

terms ofm0 and that fixing alsoVv is8 ( 1
2 ) then fixes bothm0

anddi .
Finally, it is important to note that the definition ofRhid ,

Eq. ~45!, yields the following constraint on the relative sign
of Rhid andVhid(0):

Vhid82 ~0!54m0RhidVhid~0!.0. ~54!

Using Eqs.~53! and~52!, the condition Eq.~54! can be con-
verted to a requirement expressed entirely in terms ofRhid
andb for a given solution branchi,

8For Rv is58/@3(12
1
2 b#[r (b) exactly, g50. As Rv is changes

~for a fixed Rhid) from a value slightly larger than this to a valu
slightly smaller,g will change sign. Whether a positive or negativ
shift relative tor (b) is required to giveg i.0 is determined by the
sign of ci , which can vary.
2-6
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Rhidg@ f i~b,2Rhid!#

b~b22!
,0. ~55!

The conformal limit ofa521 (b522/3) requires specia
treatment,9 since for this choiceAhid50. In this case,g(x)
52(12x)24 andh(x)5 8

3 (12x)25/2. Equations~38! and~42!
then yield

m0d2~12c!2452
8

9
Vhid~0!,

m0d~12c!25/252
1

3
Vhid8 ~0!, ~56!

respectively, from which we conclude thatVhid(0),0 and
Vhid8 (0),0 are required, which also implies that@see Eqs.
~45! and~54!# Rhid,0. By combining Eq.~56! and Eq.~45!
we find

c511
2

Rhid
. ~57!

Note thatRhid,22 is required for 0,c,1, but thatc is
negative for22,Rhid,0. There is nothing obvious to for
bid this latter choice since (12ce2s(y)) will automatically
be positive for ally if c,0. In an analogous spirit, utilizing
Eqs.~39! and ~43!, one can show that

cg512
2

Rv is
. ~58!

Combining Eqs.~57! and ~58!, one obtains the following
result for the warp factor:

g5
Rhid

Rv is

Rv is22

Rhid12
. ~59!

In order to have a phenomenologically acceptable sm
value for the warp factorg, either Rv is;2 or Rhid;0 is
required. The remaining constraint@the analog of Eq.~52!# in
this case reads

Vhid~0!

Vv isS 1

2D 52S Rhid

Rv is
D 4

. ~60!

9In addition to the general solutions discussed in the main text
this case, there exists a special background solution,F0(y)
}e3/2s(y), for which there are no matching conditions since t
solution satisfies all the necessary equations everywhere, inclu
the boundaries. For this particular special conformally symme
case, substituting the form ofF0, as given above, into Eq.~35!
leads to a vanishing bulk potential,V(F0)50. Similarly, Eq.~36!
gives V1,2(F)50. Because all the potentials are zero, one fin
Mrr

2 50. We are only interested in cases for which a nonzero m
is generated for the radion.
05500
ll

Combining this equation with the earlier-noted constra

that Vhid(0),0 results in the requirement thatVv is(
1
2 ).0,

implying thatRv is.0. Combined with Eq.~59! and the re-
quirement thatg.0, the only allowed choices are

~0,Rv is,2 and 22,Rhid,0!

or ~Rv is.2 and Rhid,22!. ~61!

@Note that Eq.~49! does not apply for the conformal choic
of a.# For Rv is;2, as generally needed for smallg, one
finds

Vv isS 1

2D5
9

8
m0d2, Vhid~0!52

9

144
m0d2Rhid

4 . ~62!

In Fig. 1, we displayF0(y)/d as a function ofy for three
cases. In all cases, we have chosen input parameters so10

m0b0/2.37 as required for the warp factorg5e2m0b0/2

;1 TeV/M Pl . In the first case, we have takenb;12/3,
equivalent toRv is54 from Eq.~49!, andRhid511. For this
choice,c;0.7835. In the second~third! cases, we make the
conformal choice ofb522/3, takeRv is;2 ~for small g)
and employRhid524 (Rhid521) for which c51/2 (c5
21). In the b52/3 case~which is representative of case
with b.0), we see thatF0(y) is repulsed from the hidden
brane located aty50. The second~third! case is representa
tive of a b522/3 case for whichF0(y) is strongly peaked
on ~strongly repulsed from! the hidden brane.

A useful cross-check is to adopt the explicit form of th
solution ~37! to verify that indeedV(0,0) vanishes as pre
dicted by Eq.~22!. In order to calculate the radion potenti
at the minimum we use Eq.~35! to eliminateV(F) in the
general formula~19!. The result is the simplified expressio

Ve f f~0,0!5
10m0

2b0

b22 E
21/2

1/2

dye24s
„F0~y!…2

1
1

b0
E

21/2

1/2

dye24s
„F08~y!…2

1
8m0

b22 H @F0~0!#22FF0S 1

2D G2

e22m0b0J
1Vhid~0!1Vv isS 1

2De22m0b0. ~63!

Then, inserting the solution Eq.~37! into Eq. ~63!, one ob-
tains

r

ng
c

s
ss 10We reemphasize thatm0b0/2 is calculable in terms of the inpu
parameters using Eq.~50! or Eq. ~59!.
2-7
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b~b22!Ve f f~0,0!

5@m0d2~12c!(2/b)21@c~213b!23b#

1b~b22!Vhid~0!#2g4@m0d2~12cg!(2/b)21

3@cg~213b!23b#2b~b22!Vv is~1/2!#

5@m0d2g~c!1b~b22!Vhid~0!#

2g4@m0d2g~cg!2b~b22!Vv is~1/2!#. ~64!

The two bracketed expressions on the right hand side of
above equation vanish by virtue of the fact that they cor
spond precisely to the expressions appearing in the matc
conditions that emerge from the requirement of (dT)mn50,
Eqs.~38!, ~39!.

-0.4 -0.2 0.2 0.4
y

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0.2 0.4
y

0.8

1.2

1.4

1.6

1.8

2

2.2

-0.4 -0.2 0.2 0.4
y

0.2

0.4

0.6

0.8

1

FIG. 1. The normalized scalar background functionF0(y)/d
5@12ce2s(y)#1/b for m0b0/2;37 in three cases:~top! Rhid51 and
b;12/3 ~equivalent toRv is54); ~middle! b522/3 andRhid5
24 ~implying c510.5); ~bottom! b522/3 andRhid521 ~im-
plying c521). In the latter two~conformal! cases,m0b0/2537
requiresRv is;2.
05500
e
-
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Finally, if we insert the solution Eq.~37! into the formula
for the Mrr

2 mass-squared matrix entry, Eq.~27!, one obtains
@after employing Eqs.~38! and~39!# the following result for
Mrr

2 :

Mrr
2 5

2

3
k2m0g2F2Vhid~0!

c~22b!1b

c~213b!23b

2Vv isS 1

2D cg~22b!1b

cg~213b!23b G , ~65!

wherec and cg are given by Eqs.~44! and ~47! or, in the
conformal case, Eqs.~57! and~58!. Note the presence of th
warp factorg that reduces the radion mass from the typic
5D scale@a natural choice for which would beO(M Pl) if

Vhid(0) andVv is(
1
2 ) areO(M Pl

4 )] down to the electroweak
scale. Of course, Eq.~27! guarantees thatMrr

2 >0 for any
given form of f (F) and any background solutionF0(y) that
is real and fully consistent. The conditions for reality an
consistency are~a! the constraint Eq.~52! or, in the confor-
mal case, Eq.~60! is satisfied;~b! the positivity condition Eq.
~54! is satisfied; and~c! 12c.0 when 1/b is not an integer.
However, substantial variation ofMrr

2 is possible. In particu-
lar, Mrr

2 50 at special points when considered as a funct
of Rhid at fixedb. A final form for Mrr

2 can be derived in the
g!1 limit by using Eqs.~52! and ~53! in Eq. ~65!:

Mrr
2 5

2

9
k2m0g2Vv isS 1

2D F12
g~c!

b

c~22b!1b

c~213b!23b G
5

2

3
~km0dg!2

1

b22 F ~12c!(2/b)21S 12c1c
2

b D21G .
~66!

This shows the fundamental importance of the scale

Vv is(
1
2 ) in determiningMrr

2 . Of course, one should continu

to keep in mind the relation Eq.~53! betweenVv is(
1
2 ) and

m0d2 as well as the relation Eq.~52! betweenVv is(
1
2 ) and

Vhid(0).
To illustrate howMrr

2 depends upon the parameters a
how other constraints enter, consider first the conformal c
with b522/3. ForRv is;2 ~so thatg!1) and using Eqs.

~57! and ~60!, one can rewrite Eq.~66! in terms ofVv is(
1
2 )

~which, as noted earlier, fixes the value ofd in terms ofm0).
The result is

Mrr
2 5

2

9
k2m0g2Vv isS 1

2DK~Rhid!5
1

4
~gkm0d!2K~Rhid!,

~67!

where

K~Rhid![
3

16
Rhid

4 1
1

2
Rhid

3 11.0. ~68!

In Fig. 2, we plotK(Rhid) as a function ofRhid . We observe
that Mrr

2 .0 everywhere except atRhid522 @a point where
c50 is required by Eq.~57! and F0(y) becomes trivial#.
2-8
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Our two earlierb522/3 plots of the wave function thu
correspond to choices for whichMrr

2 .0.
For fixed bÞ22/3, andg!1, Mrr

2 is approximately a
function of Rhid only, whereRhid is to be restricted to thos
values such that a given solutionc1 or c2 satisfies the othe
consistency constraints. We explore the behavior ofMrr

2 as

follows. First, recall thatVv is(
1
2 ), Vhid(0), Rv is , Rhid andb

are the input model parameters. At fixedb, in order to obtain
g!1, as desired on phenomenological grounds, we ad
Rv is according to Eq.~49!. Then, for a chosenRhid we cal-
culateci using Eq.~44!. In fact, there are the two solutio
branches, c1,2(Rhid)5 f 1,2(b,2Rhid). Positivity of Bhid

2

24AhidChid , as determined by the sign of 12(213b)/
(2Rhid), requires Rhid,min@2(213b),0# or Rhid

.max@0,2(213b)# ~the limit cross over taking place at th
conformal point ofb522/3). Oncec1 (c2) is chosen, if
1/b is not an integer we check to see if 12c1.0 (12c2

.0), as required for a well-definedF0(y)5d(1
2ce22s(y))1/b. Finally, for any values ofb and Rhid , and
given a choice of branchi, we check the positivity require
ment of Eq.~54!. To computeMrr

2 , we adopt Eq.~66!, which
takes into account the consistency constraint~52! such that

Vhid(0) is expressed in terms ofVv is(
1
2 ). Equation ~66!

makes it clear that, for a given value ofb, Mrr
2 is propor-

tional to Vv is(
1
2 ) @which fixesm0di

2 through Eq.~53!# and
depends nontrivially onRhid , the other parameters bein
held fixed. Remarkably, one finds (Mrr

2 ) i.0 ~as expected! so
long as~a! Rhid is such that 11(213b)/Rhid.0 ~so that
c1,2 are real!; ~b! 12ci.0 when 1/b is not an integer; and
~c! the positivity condition, Eq.~54!, which we abbreviate as
RhidVhid.0, is satisfied. There are many different cas
Here we simply describe a couple of illustrative possibilitie

Consider first two choices ofb such that 213b.0.
~i! For b52/3, any value ofRhid.0 gives 12c1,2.0

and (RhidVhid)1,2.0 and substantial values for the corr
sponding (Mrr

2 )1 and (Mrr
2 )2. For Rhid,2(213b)524,

any value ofRhid gives 12c1.0 and substantial (Mrr
2 )1. In

all these cases,Mrr
2 is a relatively smooth function ofRhid .

However, in theRhid<24 region, 12c2 and (RhidVhid)2

are both only positive for24.5&Rhid<24 and (Mrr
2 )2 var-

ies rapidly, as illustrated in Fig. 3. This case illustrates

-4 -3 -2 -1
Rhid

2

4

6

8

10
K

FIG. 2. The functionK(Rhid) is plotted as a function ofRhid in
the ~allowed! Rhid,0 region.
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extreme sensitivity thatMrr
2 can have toRhid and shows that

very large and very small values ofMrr
2 are quite possible.

~ii ! For b51/2, since 1/b is an integer, the sign of 12c is
unconstrained. One finds (RhidVhid)1,2.0 for all Rhid.0
and (Mrr

2 )1,2.0 and behaves smoothly. For allRhid,
27/2, (RhidVhid)1,0 and this solution branch fails the pos
tivity constraint. In the small region24.65&Rhid,27/2,
(RhidVhid)2.0 and (Mrr

2 )2.0, blowing up at Rhid;
24.65.

We also briefly describe the following interesting 213b
,0 case: Forb521, again the 12c.0 constraint is not
necessary. For allRhid>2(213b)51, both (RhidVhid)1
,0 and (RhidVhid)2,0 so that thec1 andc2 solutions both
fail the positivity constraint. In contrast, for allRhid,0 one
finds (RhidVhid)1.0 and, of course, (Mrr

2 )1.0. However,
(RhidVhid)2.0 only for 20.32&Rhid,0 and
Rhid&21.78—in these two ranges (Mrr

2 )2.0 aside from a
zero at the top end,Rhid521.78, of the 2nd range.

Overall it is clear that there is a large range of possi
models that satisfy all the constraints necessary for the e
Randall-Sundrum metric with positive radion mass-squar
~Some particular choices are somewhat more fine-tuned
others.! We have not understood how to choose between
various models; possibly, the conformal models withb5
22/3 should be regarded as the more attractive.

IV. CONCLUSIONS

We have considered a class of generalizations of
Randall-Sundrum model containing a bulk scalar fieldF.
We demonstrated that no-back reaction from the scalar
the Randall-Sundrum metric solutionrequires the existence
of an extra interaction between gravity and the scalar. H
we considered the couplingR f(F). A general form of the
potential for the fluctuation of the compactification volum
~the radion! and the Kaluza-Klein modes of the excitation
the bulk scalar was derived and the mass matrix was de
mined. In order to obtain the values of scalar masses, one
to take into account the mixing between the radion and
Kaluza-Klein modes of the fluctuation of the bulk scala
Here, we demonstrated that a positive value for theMrr

2

mass-squared matrix entry associated with the radion fier

-4.8 -4.6 -4.4 -4.2 -4
Rhid

-400

-200

200

400

K’

FIG. 3. Forb52/3, we plot@K8#2[@Mrr
2 /$ 2

3 (km0dg)2%#2, see
Eq. ~66!, as a function ofRhid in theRhid<2(213b)524 region.
Both 12c2 and (RhidVhid)2 display the same sign changes a
singular behavior as@Mrr

2 #2. Only the@K8#2.0 region corresponds
to a solution consistent with all constraints.
2-9



e

ar
hu
th
ce
-
tr

ul
uc
a

ci
a
io
ta
g

d the

of

pe-
of
lso
for
to
ed
der
e
for

a
al

B. GRZADKOWSKI AND J. F. GUNION PHYSICAL REVIEW D68, 055002 ~2003!
can be generated using a choice of the background bulk fi
F0(y), that preserves the RS metric~no back reaction!. We
found thatMrr receives the same suppression from the w
factor that is necessary to explain the hierarchy puzzle. T
;1 TeV is a natural order of magnitude for the mass of
radionlike eigenstate. Finally, we illustrated the general s
nario for the case off (F)}F2, for which the scalar back
ground solution that preserves the Randall-Sundrum me
was explicitly found.

Since the mass-squared matrix for the radion and KK b
scalar excitations is nondiagonal, it is clear that the introd
tion of Higgs-radion mixing on the visible brane through
term in the Lagrangian of the formjAugv isuR(gv is)Ĥ

†Ĥ, as
considered for example in@8#, would result in a complicated
situation where the Higgs field, the radion and the KK ex
tations of the bulk scalar would all mix. A phenomenologic
study of the magnitudes of the various mixings, as a funct
of the available parameters, would be required to unders
the extent to which the phenomenology of the physical Hig
ir-

D
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boson eigenstate can be modified. Such a study is beyon
scope of this paper.
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