
PHYSICAL REVIEW D 68, 054509 ~2003!
Nucleon axial charge from quenched lattice QCD with domain wall fermions
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We present a quenched lattice calculation of the nucleon isovector vector and axial-vector chargesgV and
gA . The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particu-
larly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same
renormalization, up to lattice spacing errors of orderO(a2). The doubly blocked Wilson 2~DBW2! gauge
action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice
spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high
statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on
lattices with ~1.2 fm!3 and ~2.4 fm!3 volumes (a'0.15 fm). On the large volume we findgA51.212
60.027(stat)60.024(norm). The quoted systematic error is the dominant~known! one, corresponding to
current renormalization. We discuss other possible remaining sources of error. This theoretical first principles
calculation, which does not yet include isospin breaking effects, yields a value ofgA only a little bit below the
experimental one, 1.267060.0030.
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I. INTRODUCTION

The axial chargegA of the nucleon, or more precisely it
ratio to the vector chargegV , appears to be a good test of o
understanding of the structure of the nucleon. First of all, i
very accurately measured from neutronb decay, gA /gV
51.267060.0030@1#.1 And, among the nucleon form factor
or moments of structure functions, it is technically the si
plest from the point of view of a lattice QCD numeric
calculation.

Four form factors appear in neutronb decay: the vector
and induced tensor form factors from the vector current,

^puVm
1~x!un&5ūp@gmgV~q2!2qlslmgT~q2!#une2 iq•x,

~1!

and the axial-vector and induced pseudoscalar form fac
from the axial-vector current,

^puAm
1~x!un&5ūp@gmg5gA~q2!2 iqmg5gP~q2!#une2 iq•x.

~2!

Hereq5pn2pp is the momentum transfer between the p
ton ~p! and neutron~n!. In the limit uqW u→0, the momentum
transfer should be small because the mass difference o
neutron and proton is only about 1.3 MeV. This makes
limit q2→0, where the vector and axial-vector form facto
dominate, a good approximation. Their values in this lim

1Note that the Particle Data Group definesgA to be negative be-
cause no assumption about the structure of the weak interacti
made. In this article, assuming theV2A structure of the weak
interaction, the axial form factor in Eq.~2! is defined to makegA

positive.
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are called the vector and axial charges of the nucleon:gV

5gV(q250) and gA5gA(q250). Experimentally, gV

5cosuC ~with the Cabibbo mixing angleuC), and gA

51.2670(30)3gV .
Since they are defined at zero momentum transfer, a n

expectation is thatgV and gA are easier to calculate on th
lattice than form factors which require nonzero moment
transfer. Despite this, quenched QCD lattice calculatio
with Wilson fermions at finite lattice cutoff (a21;2 GeV)
have underestimatedgA by about 20%@2–4# ~see Table I for
a summary of previous calculations!. This suggests that sys
tematic errors, which may arise from~1! the quenched ap
proximation,~2! operator renormalization,~3! nonzero lattice
spacinga and loss of chiral symmetry for Wilson and Kogu
Susskind fermions, and~4! finite volume, remain in the lat-
tice calculation.

The first three errors have been addressed in previous
culations. The SESAM and LHPC Collaborations found th
unquenching does not solve the problem as the estim
valuegA decreases by 5–10 %@5,6#. On the other hand, re
ducing the lattice spacing error seems to increase the va
but only by a small amount,&5% @7,8#. Perhaps more im-
portant is the calculation of the renormalization factorZA for
the axial current. The one-loop perturbative renormalizat
factor, used in the case of Wilson fermions@2–6#, was prob-
ably overestimated. The QCDSF-UKQCD Collaboration
ported that the non-perturbatively calculated renormalizat
factor (ZA

nonpert;0.8) is roughly 10% smaller than the one
loop one (ZA

pert;0.9) in the case of the nonperturbative
O(a) improved Wilson fermions@8# at a21;2 – 3 GeV.
Thus, the systematic error in the determination of the ren
malization factor appears to be more important than the
two effects mentioned. The first two systematic errors lis

is
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TABLE I. Previous lattice calculations with Wilson orO(a) improved Wilson~clover! fermions. In general,gA is significantly under-
estimated. Note that almost all volumes are small, most estimates use perturbative renormalization, and partially unquenchin
increase the value ofgA .

Type Group Fermion L33Nt b Volume Statistics mpL gA Reference

Quenched KEK Wilson 163320 5.7 ~2.2 fm!3 260 >5.9 0.985~25! @2#

Kentucky Wilson 163324 6.0 ~1.5 fm!3 24 >5.8 1.20~11! @3#

DESY Wilson 163332 6.0 ~1.5 fm!3 1000 >4.8 1.07~9! @4#

LHPC-SESAM Wilson 163332 6.0 ~1.5 fm!3 200 >4.8 1.129~98! @6#

QCDSF Wilson 163332 6.0 ~1.5 fm!3 O(500) 1.14~3!a @7#

243348 6.2 ~1.6 fm!3 O(300)
323348 6.4 ~1.6 fm!3 O(100)

QCDSF-UKQCD Clover 163332 6.0 ~1.5 fm!3 O(500) 1.135~34!a @8#

243348 6.2 ~1.6 fm!3 O(300)
323348 6.4 ~1.6 fm!3 O(100)

Full (Nf52) LHPC-SESAM Wilson 163332 5.5 ~1.7 fm!3 100 >4.2 0.914~106! @6#

SESAM Wilson 163332 5.6 ~1.5 fm!3 200 >4.5 0.907~20! @5#

aContinuum extrapolated value.
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above likely cannot resolve the issue that previous lat
calculations ofgA underestimate the experimental value.

The loss of chiral symmetry on the lattice is potentia
significant. As is well known,gA /gV51 in the absence o
chiral symmetry breaking in QCD. Further, in the realis
case of spontaneously broken chiral symmetry, the rati
still constrained by the axial Ward-Takahashi ident
]mAm

a (x)52mPa(x). The Goldberger-Treiman relation de
rives from the nucleon matrix elements of the currents
both sides of this identity in the soft pion limit@9#. We can
easily understand the deviation of the ratio from unity in t
context of the Gell-Mann–Oakes–Renner relation@10#
which is also related to the axial Ward-Takahashi ident
Thus, the explicit breaking of chiral symmetry at nonze
lattice spacinga for Wilson fermions may induce significan
errors which are removed only in the continuum limit.

In this work we use domain wall fermions~DWFs!, a
fermion discretization scheme with almost perfectly p
served chiral symmetry@11–13#. This scheme introduces
fictitious fifth dimension in addition to the four dimension
of space-time. In the limit where the fifth-dimensional exte
Ls is taken to infinity, DWFs preserve the axial Ward Tak
hashi identity@14# at nonzero lattice spacing. With finiteLs
the suppression of explicit chiral symmetry breaking is
fectively exponential in quenched simulations if the gau
field is sufficiently smooth@15–20#. This is always true if the
lattice spacing is sufficiently small. In low energy cases l
the one investigated here, the small breaking of the sym
try at finiteLs is parametrized by a single universal ‘‘residu
mass’’ parametermres, acting as an additive quark mass a
defined from the axial Ward-Takahashi identity@18,21#. Fur-
thermore, the DWF scheme greatly simplifies the nonper
bative determination of the renormalization of quark biline
currents@22#. For example, the renormalization factors
local vector and axial-vector current operators should
equal,ZA5ZV @22#. This means the ratio of the nucleon axi
and vector charges calculated on the lattice directly yie
the continuum value, i.e., it is not renormalized@23,24#. By
employing the DWF scheme, the ambiguity in the renorm
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ization of quark currents, which may be present and pr
lematic in other fermion discretization schemes, is elim
nated. We emphasize that the DWF calculation of
nucleon axial charge should not suffer from the system
errors due to the operator renormalization and loss of ch
symmetry@23,24#.

However, as is described in more detail in Sec. III, in o
first DWF calculation with the single-plaquette Wilson gau
action atb56.0 and lattice volume 163332316 @which cor-
respond toa21'2 GeV and spatial volume;~1.6 fm!3#, we
found that gA exhibits a fairly strong dependence on th
quark mass@24#. A simple linear extrapolation ofgA to the
chiral limit yielded a value that was almost a factor of
smaller than the experiment@24#. This implied the presence
of a large finite volume effect. To our surprise, we found
systematic study of such an effect in the literature. Note a
that there is no volume dependence in the naive quark m
@25# nor in the MIT bag model@26#. In the former the ratio is
determined by a simple spin-isospin algebra, and in the la
it arises from a simple overlap integral of the upper a
lower components of the bag Dirac wave function.

To address the finite volume issue we need to have at
same time a sufficiently high lattice cutoff to preserve chi
symmetry reasonably well and at least two lattice volum
preferably ones that are large compared to the charge ra
of the proton. The Wilson gauge action will not work for th
purpose since the chiral symmetry of DWFs in the quenc
case degrades rapidly as lattice spacinga increases, while the
computational cost necessitated by a very large lattice
ume would be prohibitive. Fortunately, variou
‘‘renormalization-group-inspired’’ improved gauge action
preserve the chiral symmetry of the DWFs well while n
demanding a large cutoff@19,20#. Thus both requirements
chiral symmetry and large physical volume, can be me
reasonable computational cost. Of the relatively we
established candidates in this class of improved gauge
tions, we choose the ‘‘doubly blocked Wilson 2’’~DBW2!
action @20,27#.
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The rest of this paper is organized as follows. In Sec
the lattice method for calculatinggA /gV is described. In Sec
III, the numerical results obtained for both Wilson an
DBW2 actions are described in detail. Finally, in Sec. IV w
summarize the present work and discuss future direction

II. GENERAL ANALYTIC FRAMEWORK

A. The vector and axial charges

As mentioned in the Introduction, four form factors a
needed to describe neutronb decay: the vector and induce
tensor form factors for the vector current,

^puVm
1~0!un&5ūp@gmgV~q2!2qlslmgT~q2!#un , ~3!

and the axial and induced pseudoscalar for the axial curr

^puAm
1~0!un&5ūp@gmg5gA~q2!2 iqmg5gP~q2!#un . ~4!

The right hand side of each is the most general form con
tent with Lorentz covariance. The momentum transferq
5pn2pp becomes very small in the forward limit because
the small mass difference between the neutron and proto
the limit q2→0, which we take in this work, the vector an
axial form factors dominate the matrix elements. We are
glecting the mass difference of the neutron and proton,
hence that of up and down quarks~we also neglect the elec
tromagnetic mass difference!. For zero quark massm5mu
5md50 the action is symmetric under global chiral SU(
3SU(2) flavor rotations acting on the quark fields. Ifm
Þ0, the symmetry is broken down to the vector~flavor!
SU~2! subgroup, and the associated vector chargegV is still
conserved (gV51). This situation is sometimes called CVC
conserved vector current. In the real world even this symm
try is softly broken by the small mass difference between
and down quarks,mu2md . The explicit violation of the
axial-vector symmetry by nonzero quark mass is sometim
called PCAC, or partially conserved axial-vector current.
is well known the axial SU~2! symmetry is also spontane
ously broken. Thus, the axial charge may in general dev
from unity, gAÞ1.

If the vector symmetry is preserved, a simple exercise
SU~2! Lie algebra leads to the following~see the Appendix!:

^puAm
1un&52^puAm

3 up&5^puAm
u up&2^puAm

d up&, ~5!

where Am
15ūgmg5d, Am

3 5(1/2)(Am
u 2Am

d ), Am
u 5ūgmg5u,

and Am
d 5d̄gmg5d. u and d stand for the up and down

quark fields. A similar relation holds for the vector case,

^puVm
1un&52^puVm

3 up&5^puVm
u up&2^puVm

d up&, ~6!

where Vm
15ūgmd, Vm

3 5(1/2)(Vm
u 2Vm

d ), Vm
u 5ūgmu, and

Vm
d 5d̄gmd. The isovector vector chargegV and the isovector

axial chargegA are defined by the strength of the right-ha
sides of Eqs.~5! and ~6! in the forward limit (q2→0). In
addition, the polarized quark distributions in the proton
each flavorf, Dc f , are defined by the forward matrix ele
ments of the flavor axial-vector currentsAm

f :
05450
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^k,suc̄ fgmg5c f uk,s&5Dc f ūp~k,s!gmg5up~k,s!, ~7!

wherek and s are the proton four-momentum and polariz
tion. From CVC we find the relationgA5Du2Dd.

Now consider the conserved electromagnetic currentj m
e.m.

expressed in terms of the flavor vector currentsVm
f :

j m
e.m.5(

f
QfVm

f 5
2

3
Vm

u 2
1

3
Vm

d 1¯ . ~8!

HereQf denotes the charge~in units of proton chargee! for
a quark of flavorf, and the ellipsis denotes possible flavors
heavier quarks which we henceforth ignore. Since the co
sponding electromagnetic U~1! gauge symmetry assures co
servation of electric charge, for the neutron we find

lim
q2→0

^nu j m
e.m.un&50. ~9!

It follows that

lim
q2→0

^nuVm
d un&523 lim

q2→0

^nuVm
u un&. ~10!

On the other hand, under the assumption of CVC we h
the following:

^nuVm
u un&5^puVm

d up&, ~11!

^nuVm
d un&5^puVm

u up&. ~12!

Thus we reach the following relation:

lim
q2→0

^pu j m
e.m.up&5 lim

q2→0

^puVm
d up&5 lim

q2→0

^puVm
u 2Vm

d up&.

~13!

Likewise, it follows that the vector chargegV must be unity
~in units of cosuC ande! under CVC since the proton electri
charge is unity. As already mentioned, we expect a v
small breaking from CVC because of the physical up a
down quark mass difference. In the axial case, we exp
nonconservation ofgA due to the small but nonzero up an
down quark masses as well as the spontaneous breakdow
chiral symmetry.

B. Nucleon matrix elements

In this subsection we describe our method of lattice n
merical calculation of the axial and vector charges of
nucleon. Hadronic matrix elements calculated on the lat
are determined from ratios of the relevant three-point to tw
point correlation functions. Since the charges are define
zero-momentum transfer, we do not have to introduce n
zero momentum projection for the nucleon source and s
for these correlation functions, nor for the current insertio
On the other hand since we are dealing with a spin-
baryon, both correlation functions possess nontrivial Di
spinor structure, so appropriate projections are necessar

The zero-momentum two-point function for the nucleon
given by the sum over all spatial coordinatesxW ,
9-3
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^N~ t !N̄~0!&ab5(
xW

^0uNa~xW ,t !N̄b~0W ,0!u0&, ~14!

whereN(xW ,t) can be any operator with the same quant
numbers as the nucleon, namely, unit baryon number,JP

5(1/2)1, and isospin doublet.a andb denote Dirac indices
Color and flavor indices are suppressed in the following
less noted otherwise. The two-point correlation has
asymptotic form

^N~ t !N̄~0!&ab5
AN

2
@11sgn~ t !g4#abe2MNutu ~15!

at large Euclidean timet. HereMN denotes the ground stat
mass of the nucleon. The amplitudeAN is defined as
^0uN(0)uN&5AANuN . In general, the baryon two-poin
function receives contributions from both positive- a
negative-parity states. By taking the trace with a project
operatorP15(11g4)/2, we eliminate contributions from
the opposite-parity state in the forward time direction. D
tails of the parity projection are described in@28#. Let us
abbreviate the notation for the two-point function of the p
ticle contribution from the desired~positive-parity! state as

GN~ t !5
1

4
Tr@P1^N~ t !N̄~0!&#. ~16!
n

ot
r

on

io

in
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The factor of 1/4 is our choice of normalization. At larget
this asymptotically approaches a simple exponential,

GN~ t !;exp~2MNt !. ~17!

For the proton, a standard choice for the interpolating ope
tor is

N~x!5«abc@ua
T~x!Cg5db~x!#uc~x! ~18!

where C is the charge conjugation matrix defined asC
5g4g2 , abc the color indices, andu andd the up and down
quark fields.

Next, let us define the zero-momentum three-point cor
lation function for quark bilinears,OG

( f )(x)5c̄ f(x)Gc f(x):

^N~ t !OG~ t8!N̄~0!&ab

5(
xW

(
xW8

^0uT$Na~xW ,t !OG~xW8,t8!N̄b~0W ,0!%u0&,

~19!

whereG is any of the 16 possible matrices in the Cliffor
algebra defined by the Dirac gamma matrices. Whent@t8
@0, the particle contribution of the zero-momentum thre
point function becomes
^N~ t !OG~ t8!N̄~0!&ab→AN lim
q2→0

gG~q2!exp~2MNt !~P1GP1!ab . ~20!
ns
ym-
he

tice

uire
are
e
f
ve a
Note two important points: first, the three-point function va
ishes forG other than 1,g4 , g ig5 ( i 51,2,3), ands i j ( i , j
51,2,3) becauseP1GP150 for G’s that do not commute
with g4 . Second, the right-hand side of the above asympt
formula does not depend on the insertion point of the ope
tor OG . Any t8 dependence arises from excited state c
tamination, i.e., away from the asymptotic regime.

In this paper, we calculate the isovector~quark-flavored!
vector chargegV and the isovector axial chargegA of the
nucleon. We define the spin projected three-point funct
for the relevant components of the vector currentVm

f

5c̄ fgmc f and the axial currentAm
f 5c̄ fgmg5c f by taking

traces with the projection operatorsPG5P1G21:

GV
f ~ t,t8!5

1

4
Tr@PV^N~ t !V4

f ~ t8!N̄~0!&#, ~21!

GA
f ~ t,t8!5

1

4
Tr@PAi

^N~ t !Ai
f~ t8!N̄~0!&#, ~22!

where PV5P1 and PAi
5P1g ig5 ( i 51,2,3). In order to

extract gG ~G is either V or A! on the lattice, we have to
identify a plateau in the ratio of the three- and two-po
functions,
-

ic
a-
-

n

t

gG
lattice5

GG
u~ t,t8!2GG

d~ t,t8!

GN~ t !
~23!

in the range oft.t8 with fixed t5tsink2tsource.
In general, lattice operators receive finite renormalizatio

relative to their continuum counterparts since the exact s
metries of the continuum are usually realized only in t
continuum limita→0. Thus

gG
ren5ZGgG

lattice ~24!

requires some independent estimation ofZG , the renormal-
ization of the quark bilinear currents,

@c̄Gc# ren5ZG@c̄Gc# lattice ~25!

Since DWFs possess full chiral symmetry at nonzero lat
spacing, a lattice conserved vector currentVm and partially
conserved axial-vector currentAm which receive no lattice
renormalization can be defined, namely,ZV5ZA51 @14#.
However these conserved currents are point split and req
sums over the extra fifth dimension of the DWF, so they
somewhat costly to work with in practice. Alternatively th
local currentsVm andAm , which are naive transcriptions o
the continuum operators, are easier to deal with but recei
9-4



a
s
en
a

he

e

m

S

, o
ti

al
e

ur
im

t
re

or
a

nc-

a
int
o-

olor
ult-

om

NUCLEON AXIAL CHARGE FROM QUENCHED LATTICE . . . PHYSICAL REVIEW D 68, 054509 ~2003!
finite renormalization since they do not correspond to
exact symmetry of the action. However, the Ward-Takaha
identity satisfied by both types of currents is enough to
sure that the lattice renormalizations of the local currents
equal,ZV5ZA , up to terms of orderO(a2) in the chiral limit
and neglecting explicit chiral symmetry breaking for t
DWF at finiteLs ,

S gA

gV
D ren

5S GA
m~ t,t8!2GA

d~ t,t8!

GV
u~ t,t8!2GV

d~ t,t8!
D lattice

1O~a2!. ~26!

Note that the vector charge computed from the local curr
provides an independent estimate ofZV since the renormal-
ization of an operator does not depend on any particular
trix element and the renormalized, or physical, value ofgV is
1 by CVC:

ZV5
GN~ t !

GV
u~ t,t8!2GV

d~ t,t8!
. ~27!

Comparison ofZV thus obtained to the value ofZA from the
relation @18#

^Am~ t !@c̄g5c#~0!&5ZA^Am~ t !@c̄g5c#~0!& ~28!

yields an estimate of theO(a2) systematic errors arising
from the method described here. These are discussed in
III.

Next we describe the particular interpolating operators
quark sources and sinks, used to calculate lattice correla
functions. In our earlier work we used so-called wall-w
correlation functions constructed with quark sources gen
ated from a unit source at each spatial site on a fixed so
time slice and summed over all spatial sites at the sink t
slice. Since the wall source or sink is gauge variant, we fix
the Coulomb gauge. Later we switched to wall-point cor
05450
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lation functions since they yield smaller statistical errors. F
three-point functions this approach is implemented with
sequential source. We discuss both types of correlation fu
tions in turn.

First, we introduce the forward quark propagators from
wall source to a wall sink and from a wall source to a po
sink, which may be written with the gauge fixed point-t
point quark propagatorSPP :

SWW~ t,t8!ab
ab 5(

xW
SPW~xW ,t;t8!ab

ab , ~29!

SPW~xW ,t;t8!ab
ab 5(

yW
SPP~xW ,t;yW ,t8!ab

ab ~30!

where the subscripts and superscripts denote Dirac and c
indices, respectively. The quark three-point function res
ing from insertion of the quark bilinear operatorc̄ fGc f is
defined as

SG~ t,t8,t9!ab
ab

5 (
xW ,yW ,zW

SPP~xW ,t;yW ,t8!ag
ac ~G!gg8SPP~yW ,t8;zW,t9!g8b

cb

5(
zW

g5,gd8SPW* ~xW ,t8;t !d8d
ca g5,da~G!gg8SPW~xW ,t8;t9!g8b

cb

~31!

where the second equality results fromSPP(xW ,t;yW ,t8)
5g5SPP

† (yW ,t8;xW ,t)g5 . Thus, SG(t,t8,t9) is constructed by
combining wall-to-point quark propagators generated fr
two different source time slicest and t9 at either end of the
lattice with the operator inserted in between them.

The two-point function for the nucleon in Eq.~14! is ex-
pressed in terms of quark propagators as
he
^N~ t !N̄~0!&aa85«abc«a8b8c8~Cg5!bgSWW
~d! ~ t,0!gg8

cc8 ~Cg5!b8g8

3@SWW
~u! ~ t,0!aa8

aa8 SWW
~u! ~ t,0!bb8

bb8 1SWW
~u! ~ t,0!ab8

aa8 SWW
~u! ~ t,0!ba8

bb8 #. ~32!

Following Ref. @29#, the three-point function in Eq.~19! is easily obtained from the two-point function by replacing t
ordinary quark propagator by the operator inserted one,SG(t,t8,0). Inserting thed andu quark currents, we obtain

^N~ t !OG
~d!~ t8!N̄~0!&aa85«abc«a8b8c8~Cg5!bgSG

~d!~ t,t8,0!gg8
cc8 ~Cg5!b8g8

3@SWW
~u! ~ t,0!aa8

aa8 SWW
~u! ~ t,0!bb8

bb8 1SWW
~u! ~ t,0!ab8

aa8 SWW
~u! ~ t,0!ba8

bb8 # ~33!

and

^N~ t !OG
~u!~ t8!N̄~0!&aa85«abc«a8b8c8~Cg5!bgSWW

~d! ~ t,0!gg8
cc8 ~Cg5!b8g8

3@SG
~u!~ t,t8,0!aa8

aa8 SWW
~u! ~ t,0!bb8

bb8 1SG
~u!~ t,t8,0!ab8

aa8 SWW
~u! ~ t,0!ba8

bb8 1SWW
~u! ~ t,0!aa8

aa8 SG
~u!~ t,t8,0!bb8

bb8

1SWW
~u! ~ t,0!ab8

aa8 SG
~u!~ t,t8,0!ba8

bb8 #. ~34!
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The nucleon three-point function is the sum of the up a
down quark contributions. The spin projected three-po
functions are obtained from Eqs.~21! and ~22!.

To enhance the signal, a point sink is more desirable t
an extended sink. The wall-point type of three-point fun
tions is implemented using the so-called sequential sou
method@6,30,31#. In addition we use a box source instead
a wall source to enhance the coupling to the ground stat
e

to

or

p

f
te

05450
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:

SPB~xW ,t;t8!ab
ab 5 (

0<yW<B
SPP~xW ;t;yW ,t8!ab

ab . ~35!

We adjust the box sizeB to about 1 fm. In describing the
construction of the sequential source, it is convenient to
troduce the ‘‘diquark’’ propagators:
oved
of the
Daa8~yW ,t;0!b8b
a8a

5«abc«a8b8c8~Cg5!db~Cg5!d8b8

3@SPB
~u!~yW ,t;0!bb8

bb8 SPB
~u!~yW ,t;0!gg8

cc8 1SPB
~u!~yW ,t;0!gb8

bb8 SPB
~u!~yW ,t;0!bg8

cc8 # ~36!

and

Uaa8~yW ,t;0!b8b
b8b

5«abc«a8b8c8SPB
~d!~yW ,t;0!gg8

cc8

3@~Cg5!bg~Cg5!b8g8SPB
~u!~yW ,t;0!aa8

aa8 1~Cg5!dg~Cg5!d8g8SPB
~u!~yW ,t;0!dd8

aa8dabda8b8

1~Cg5!bg~Cg5!d8g8SPB
~u!~yW ,t;0!ad8

aa8da8b81~Cg5!dg~Cg5!b8g8SPB
~u!~yW ,t;0!da8

aa8dab#. ~37!

The ‘‘down diquark’’~D! and ‘‘up diquark’’~U! are defined by the down quark removed propagator and one up quark rem
propagator from the nucleon two-point function. Now using the diquark we can reconstruct the point-to-wall type
nucleon two-point function as

^N~ t !N̄~0!&aa85(
yW
Daa8~yW ,t;0!b8b

ba SPB
~d!~yW ,t;0!bb8

ab
5

1

2 (
yW
Uaa8~yW ,t;0!b8b

ba SPB
~u!~yW ,t;0!bb8

ab . ~38!

In terms of the diquarks the three-point functions of an arbitrary quark bilinear operatorc̄ fGc f at a location (zW,t8) can be
written for the down quark as

^N~ t !OG
~d!~ t8!N̄~0!&aa85(

yW ,zW
Daa8~yW ,t;0!b8b

a8a SPP
~d!~yW ,t;zW,t8!bd

ae~G!dd8SPB
~d!~zW,t8;0!d8b8

ea8 ~39!

and for the up quark as

^N~ t !OG
~u!~ t8!N̄~0!&aa85(

yW ,zW
Uaa8~yW ,t;0!b8b

b8b SPP
~u!~yW ,t;zW,t8!bd

be~G!dd8SPB
~u!~zW,t8;0!d8b8

eb8 . ~40!
is

ol-
For the construction of the three-point functions we ne
the backward propagators from the sink point (yW ,t) to the
operator insertion point (zW,t8). However, it is highly expen-
sive to prepare the required point-to-point quark propaga
from all points (yW ,t). This difficulty is easily circumvented
by directly computing the generalized quark propagat
Daa8(yW ,t;0)SPP

(d)(yW ,t;zW,t8) and Uaa8(yW ,t;0)SPP
(u)(yW ,t;zW,t8)

with the sequential source method.
Before describing details of the sequential source pro

gator, we should apply the spin projectionPG to diquarks in
order to reduce the cost from having to calculate all 434
matrices for external spinor indices (a,a8). In this article,
we need only two kinds of spin projections, i.e.,PV andPA3

,

so that it reduces the amount of calculations by a factor o
in comparison with the unprojected case. The spin projec
source for a down quark insertion is
d

rs

s

a-

8
d

Fd~yW ,t;0!ab
ab 5

1

4
Dgg8~yW ,t;0!ab

ab ~PG!g8g , ~41!

and for the up quark

Fu~yW ,t;0!ab
ab 5

1

4
Ugg8~yW ,t;0!ab

ab ~PG!g8g . ~42!

Finally, the sequential source down quark propagator

TABLE II. Simulation parameters for each action and each v
ume studied in this work.

Gauge action b L33Nt Ls M5 Volume

Wilson 6.0 163332 16 1.8 ~1.6 fm!3

DBW2 0.87 163332 16 1.8 ~2.4 fm!3

83324 16 1.8 ~1.2 fm!3
9-6
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Sd~ t,0;zW,t8!ab
ab 5S (

yW ,t9
g5,bgSPP

~d!~zW,t8;yW ,t !gg8
be g5,g8dd t9,tFd* ~yW ,t9;0!ad

aeD *
, ~43!

and the sequential source up quark propagator is

Su~ t,0;zW,t8!ab
ab 5S (

yW ,t9
g5,bgSPP

~u!~zW,t8;yW ,t !gg8
be g5,g8dd t9,tFu* ~yW ,t9;0!ad

aeD *
, ~44!
e
o

s
rc

e-
on

ing
im-
of
e

one
ns.

t

con-
which may be calculated by solving the matrix equations

(
xW ,t9

Sf~ t,0;xW ,t9!ab
abM†~xW ,t9;zW,t8!bg

bc 5d tt8Ff~zW,t8;0!ag
ac ,

~45!

whereM is the Dirac matrix. Consequently, in terms of th
sequential source propagator, the spin projected three-p
function for the down quark is written

GG
d~ t,t8!5(

zW
Sd~ t,0;zW,t8!ab

ab ~G!bgSPB
~d!~zW,t8;0!ga

ba

~46!

and for the up quark is

GG
u~ t,t8!5(

zW
Su~ t,0;zW,t8!ab

ab ~G!bgSPB
~u!~zW,t8;0!ga

ba .

~47!

In the case of keeping the up and down quark mas
equal, the total cost for computing the sequential sou
05450
int

es
e

propagator is a factor of 2 over the cost for wall-wall corr
lation functions. However, the resulting box-point correlati
functions yield smaller statistical errors.

III. NUMERICAL RESULTS

We have performed quenched lattice calculations us
two different gauge actions, the standard Wilson and the
proved DBW2 @27#. Details and some relevant results
both simulations are summarized in Tables II, III, and IV. W
describe the nucleon matrix element results for each
separately, then compare them and draw some conclusio

A. Wilson gauge action results atbÄ6.0

We have performed a quenched simulation on a 163332
lattice with the standard single-plaquette Wilson action ab
56/g256.0 which corresponds to a lattice cutoff ofa21

51.922 GeV set by ther mass@18#. Quark propagators were
generated with four bare massesmf50.02, 0.03, 0.04, and
0.05, using DWFs withLs516 andM551.8. The nucleon
matrix elements were averaged on a set of 400 gauge
te
rk
the
es

he
FIG. 1. ZV51/gV
lattice, Wilson gauge action, as

a function of the current insertion time slice. No
the very fine scale. A good plateau for each qua
mass is observed in the middle range between
source and sink. The lines denote central valu
and statistical errors from constant fits over t
plateaus.
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TABLE III. More parameters for each action and each volume.

Gauge action~b! L33Nt Quark mass values Statistics~type! mpL

Wilson ~6.0! 163332 0.02, 0.03, 0.04, 0.05 400~wall! >4.3
DBW2 ~0.87! 163332 0.02, 0.04, 0.06, 0.08, 0.10 416~sequential! >4.8

83324 0.04, 0.06, 0.08, 0.10 400~sequential! >3.4
0.04, 0.06, 0.08, 0.10 400~wall!
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figurations. Hadron masses computed on these lattices
tabulated in Table V. Preliminary results for the nucle
charges were first reported in@24#.

We calculated wall-source quark propagators on e
Coulomb-gauge-fixed configuration for both periodic and
tiperiodic boundary conditions in the time direction for th
quarks. A simple linear combination of these propagat
then yields a forward~or backward! in time propagator. To
compute the correlation functions, we employed the w
wall method described in the previous section with sou
locations fixed attsrc55 andtsrc8 521.

In Fig. 1 we show the dependence of the vector renorm
ization ZV51/gV

lattice on the location of the current insertion
A good plateau is observed in the middle region between
source and sink. The quoted errors are estimated by a s
elimination jackknife method. The lines represent the av
age value and statistical error in the time-slice range 5<t
2tsrc<11. The mass dependence ofZV is rather mild as seen
in Fig. 2 and given in Table VI. The values 0.7601~31! for a
linear fit and 0.7610~52! for a quadratic fit atmf50 agree
well with ZA50.7555(3) @18#, which was obtained from a
calculation of meson two-point correlation functions. T
discrepancyDZ[u12ZA /ZVu is less than 0.6% which im
plies that theO(a2) error that remains after taking themf
→0 limit is quite small.

As is seen in Fig. 3, plateaus are evident for the sp
dependent distribution functionsDu andDd in the range 5
<t2tsrc<11. Thus, we compute the charge rati
(gA /gV) lattice at eachmf by taking a weighted average ove
this time-slice range. In Fig. 4 a strong dependence onmf
appears. A simple linear extrapolation tomf50 yields
0.812~112!, which is roughly 2/3 of the experimental valu
However, a simple linear ansatz may not describe the d
which show increasing downward curvature for lighter qua
mass~note that the points are correlated in this quench
calculation since they are computed on the same gauge
figurations!. In general chiral logarithms may appear a
were considered. In fact, the data are not compelling for s
terms, arising in either quenched or full chiral perturbati
theory @32,33#. The results for each mass are reproduced
Table VI.
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This implies the existence of other systematic errors.
was mentioned in the introduction, a large systematic erro
previous lattice calculations ofgA came from the determina
tion of the renormalization constantZA . As shown above
using DWFs, the value ofgA is determined in a fully non-
perturbative way, with or without explicit renormalization
The systematic error stemming from the incomplete can
lation of renormalization factors in the ratio is less than 1
as we saw by comparingZV51/gV

lattice and ZA calculated
from meson two-point functions. In addition, comparing t
chirally extrapolated values of (gA /gV) lattice and ZAgA

lattice

leads to an even smaller error, although it relies on the lin
extrapolation, which was not very compelling. Another po
sible systematic error is the contribution of excited states,
presence or absence of which was checked by slightly
larging the separation between wall sourcestsrc (55) and
tsink (527). While the larger separation induces more no
in the signal, the central value ofgA is essentially unchange
for each quark mass; thus we cannot detect a systemati
fect outside of the statistical errors. Still, this source of er
appears to be small.

Detailed detection of quenching effects such as quenc
chiral logarithms, unsuppressed fermionic zero modes,
the absence of the physical pion cloud is beyond our scop
present since these require very light quark masses and
respondingly large statistics. Thus, by a process of elimi
tion we are led to focus on finite volume effects which w
discuss in the next section. The volume employed for
calculations in this subsection is roughly~1.5–1.6 fm!3

which can barely accommodate a proton with mean squ
radius estimated to be about 0.8 fm@1#.

B. DBW2 action results at bÄ0.87

To determinegA in a large physical volume, say*~2
fm!3, we have performed a DWF simulation on a lattice w
larger spacing. In general, it is difficult to maintain the go
chiral properties of DWFs asa increases at fixedLs , espe-
cially with the Wilson gauge action@18,19#. It has been
shown that the Iwasaki gauge action enables studies
quenched DWFs with smallerLs than the Wilson gauge ac
n

TABLE IV. The residual massmres, hadron masses, inverse lattice spacing (ar

21, set by ther meson
mass!, and the renormalization factor of the axial-vector current (ZA). The r meson mass and the nucleo
mass are given in the chiral limit in each case.

Gauge action~b! M5 Ls mres mr mN ar
21 ~GeV! ZA Reference

Wilson ~6.0! 1.8 16 1.24(5)31023 0.404~8! 0.566~21! 1.922~40! 0.7555~3! @18#

DBW2 ~0.87! 1.8 16 5.69(26)31024 0.589~19! 0.780~27! 1.31~4! 0.77759~45! @20#
9-8
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tion @19,36#. Recent quenched studies by the RBC Collab
ration have shown that the chiral symmetry of DWFs is ev
better with a similar type of renormalization group improv
gauge action, DBW2@20#. The chiral symmetry of DWFs
with DBW2 is significantly improved over the Iwasaki a
tion. A very small additive quark massmres;0.8 MeV is
achieved on a lattice witha21'1.3 GeV andLs516. Good
scaling behavior of the light hadron spectrum is observed
well @20#.

To study finite volume effects numerical simulations we
performed atb50.87 (a'0.15 fm) on two lattice sizes 83

324 and 163332 with Ls516 andM551.8. Our results are
analyzed on 400 quenched gauge configurations for
smaller lattice (La;1.2 fm) and 416 configurations for th
larger lattice (La;2.4 fm). Hadron masses computed in th
calculation are summarized in Table VII. Meson masses (mp

andmr) for the 163332 lattice are evaluated from 100 co
figurations.

In this calculation, we utilize the sequential quark prop
gator method to compute three-point functions as descr
in Sec. II. We checked for consistency with the wall-w
method on the smaller 83324 lattice. The sequential- an
wall-type quark propagators in the Coulomb gauge w
computed at five evenly spaced values ofmf ranging from
0.02 to 0.10. The smallest quark mass corresponds to a
mass mp'390 MeV. The nucleon source and sink we
separated by about 1.5 fm, which corresponds to the s
physical separation in time used in the calculation with
Wilson gauge action atb56.0. A preliminary version of the
results presented below was first reported in@34,35#.

First, we check whetherZV5ZA is true even on this
coarse lattice. The vector renormalization 1/gV

lattice is plotted
against the location of current insertions in Fig. 5. The d
are calculated on the larger spatial volume with the sequ
tial quark propagator method. We take a weighted averag
1/gV

lattice with the three middle points (t2tsrc54,5,6) to
evaluate the vector renormalizationZV . The dependence o
ZV on mf is shown in Fig. 6 and given in Table IX below. I

TABLE V. Hadron masses computed using Wilson gauge ac
at b56.0, 163332, M551.8, Ls516 from Ref.@28#.

mf mp mr mN

0.02 0.2687~24! 0.4530~62! 0.645~12!

0.03 0.3224~21! 0.4814~45! 0.716~5!

0.04 0.3691~19! 0.5126~42! 0.754~6!

0.05 0.4116~18! 0.5395~36! 0.805~5!
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general Vm5ZVVm1O(a2,mfa
2) and Am5ZAAm

1O(a2,mfa
2), whereVm andAm denote the conserved vec

tor currents. It is not so apparent in our data. A linear e
trapolation yieldsZV50.7952(13) atmf50, while a linear
plus quadratic extrapolation gives the value 0.7991~25!. The
RBC Collaboration obtained the renormalization factor
the axial-vector currentZA nonperturbatively from a calcula
tion of meson two-point correlation functions@18,20#. The
result found wasZA50.77759(45) in the massless limit@20#
which is smaller than the value ofZV obtained above by
2–3 %. This discrepancy may be caused by an orderO(a2)
lattice artifact.

To explore this possibility further, we evaluate the ren
malization factor of different vector currents. According
Sec. II, the conserved currentVm guarantees that nucleo
matrix elements ofj m

e.m., Vm
d , andVm

u 2Vm
d should be identi-

cal. The local lattice currentsVm
f are renormalized asVm

f

5ZV
f Vm

f 1O(a2)5ZVVm
f 1O(a2) in the chiral limit. Figure 7

shows the values ofZV
f as well as the value ofZA from @20#.

The difference among values ofZV appears independent o
mf within statistical errors, and the discrepancy between
smallest and the largest is comparable to that betweenZV and
ZA noted above. We also note that the discrepancy is large

FIG. 2. Quark mass dependence of the vector current renor
ization ZV51/gV

lattice, Wilson gauge action~note scale!. Lines de-
note uncorrelated linear and quadratic fits to the data points.
trapolated values are consistent with the axial-vector curr
renormalization computed from meson two-point functions@18,22#
to less than 1%.

n

TABLE VI. Results for the nucleon axial charge,Du, Dd, andZV51/gV
lattice, Wilson gauge action,b

56.0, 163332, M551.8, Ls516, 400 configurations.

mf (gA) lattice (gA)ren (Du)ren (Dd)ren ZV

0.02 1.216~106! 0.929~82! 0.739~82! 20.189~40! 0.7637~23!

0.03 1.380~76! 1.056~59! 0.840~54! 20.215~26! 0.7654~17!

0.04 1.480~59! 1.135~46! 0.903~40! 20.232~19! 0.7671~13!

0.05 1.542~47! 1.186~37! 0.942~32! 20.243~15! 0.7689~11!
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FIG. 3. The lattice estimates of the spin
dependent densitiesDu ~upper curves! and Dd
~lower curves! for the Wilson gauge action. De
cent plateaus are observed for each quark ma
The lines denote central values and statistical
rors from constant fits over the plateaus.
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this lattice spacing, by roughly a factor of (1.922/1.3)2, than
the corresponding one for the Wilson gauge action res
discussed earlier. Of course, since the two gauge act
have differentO(a2) errors, the comparison is only a crud
one. We conclude thatZV5ZA is satisfied up to small dis
cretization errors ofO(a2) on this coarse lattice.

In Fig. 8 we plot unrenormalized spin-dependent densi
Du andDd, which are calculated with the sequential sour

FIG. 4. The ratio of nucleon chargesgA /gV , Wilson gauge ac-
tion, V'(1.6 fm)3. A marked decrease toward the chiral limit
evident. A linear fit significantly underestimates the experimen
value ~asterisk!.
05450
ts
ns

s
e

propagator@30#, against the location of the current insertio
In this calculation, the sequential source propagator was
culated with a box source and a point sink, so the result
three-point function has no time reflection symmetry ab
the midpoint betweentsrc andtsink because excited state con
tamination is worse for the nucleon propagating between
operator and the point sink. In Fig. 8 the plateaus app
shifted toward the wall source, as expected. Next we ev
ate the bare value ofgA

lattice5Du2Dd at eachmf , shown in
Fig. 9 for both lattice volumes and tabulated in Tables V
and IX. gA

lattice evaluated on the smaller volume is clear
smaller for each value ofmf , and the difference increases a
mf decreases. In contrast,gV does not show much depen
dence on the volume.

l

TABLE VII. Hadron masses computed using the DBW2 gau
action. All fits for r meson havex2/NDF,1.0, and,1.5 for pion
and nucleon.

L33Nt mf mp mr mN

83324 0.04 0.4255~38! 0.679~16! 1.071~13!

0.06 0.5094~34! 0.729~9! 1.127~11!

0.08 0.5865~30! 0.776~7! 1.205~9!

0.10 0.6567~27! 0.823~6! 1.292~10!

163332 0.02 0.3015~16! 0.647~22! 0.854~6!

0.04 0.4146~16! 0.681~10! 0.963~5!

0.06 0.5050~16! 0.725~6! 1.060~4!

0.08 0.5834~15! 0.771~5! 1.156~4!

0.10 0.6546~14! 0.819~4! 1.242~4!
9-10
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FIG. 5. ZV51/gV
lattice, DBW2 gauge action,

V'(2.4 fm)3, as a function of the current inser
tion time slice. Note the very fine scale, as in Fi
1. We use the three middle points, the spread
which is less than 0.5%. The lines denote the ce
tral values and statistical errors from constant fi
over them.
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To compare to our previous DWF results with the Wils
gauge action, we plot the value of (gA /gV) lattice as a function
of (mp /mr)2 in Fig. 10. The smaller volume results usin
the DBW2 gauge action (b50.87) are the same~within sta-
tistical errors! as our previous results using the Wilson gau
action (b56.0) on a slightly larger volume. The large vo
ume DBW2 results exhibit mild quark mass depende
while both smaller volume results show a marked decre
toward the chiral limit. We conclude that our previous DW
Wilson-gauge-action results were significantly adversely
fected by finite volume.

Finally, we extrapolategA
ren to the chiral limit. For this

purpose, we have two methods. One is to extrapolate
charge ratios (gA /gV) lattice to the chiral limit where the rela
tion ZV5ZA is valid. The second method is the convention
one utilized in all other calculations@2–8#. The chiral ex-
trapolation is performed ongA

lattice3ZA . Recall that the latter
requires the value ofZA , whether nonperturbatively or pe
turbatively calculated, while the former does not. In t
05450
e

e
se

f-

e

l

present case, we use the nonperturbative value ofZA from
@20#.

We plot (gA /gV) lattice and ZA3gA
lattice together in Fig. 11

and perform a simple linear extrapolation in each case.
two methods provide consistent results in the chiral limit: t
ratio method givesgA

ren51.212(27) while the conventiona
method givesgA

ren51.188(25). In light of our earlier discus
sion, the systematic difference, if there is one, is related
our choice of renormalization. A 2% error stemming fro
ZVÞZA yields 0.024. This is also the difference in the cent
values just obtained. Thus, we quote

gA
ren51.21260.027~stat!60.024~norm!, ~48!

which underestimates the experimental value of 1.267
less than 5%. We have not attempted to estimate resi
nonzero lattice spacing, finite volume, explicit chiral symm
try breaking, and quenching effects. The first three are pr
ably small@18–20#. The only remaining error not under goo
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control is the quenching one which does not appear to
large @5,6#, in light of the relatively good agreement wit
experiment shown above. This view does not change un
significant nonanalytic behavior, which we did not dete
here, arises near the chiral limit.

We note that Jaffe recently showed that in the chiral lim
the nucleon axial charge is delocalized, and he argued
this leads to a large reduction ingA calculated in a finite
volume surrounding the nucleon@37#. Subsequently, Cohe
showed that in a finite volume with periodic boundary co
ditions pertaining to lattice calculations, this phenomen
does not lead to a reduction ingA @38#. However, as empha
sized in@38#, this does not preclude other large finite volum
effects.

As mentioned above, this calculation ofgA is performed
for relatively heavy quark masses; the quenching error at
unphysically large mass scale is probably small. Howe
one may worry that such a calculation does not capture
evant physics in the region where the quark mass is m
lighter, and the so-called ‘‘pion cloud’’ surrounding th
nucleon becomes important. Nevertheless, the values ofgA

ren

at these heavier quark masses already lie just a few per
below the experimental value and show little dependence
the quark mass. This presents an important question conc
ing the role of the pion cloud: is it a few percent effect,
seems plausible from our first principles calculation, or is
larger, as estimated from phenomenological models@39#?

FIG. 6. Same as Fig. 2 except for the DBW2 gauge action, la
volume.
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The dependence of the productmNgA on the lattice vol-
ume is of interest~see Fig. 12!. While the smaller volume
results always lie below the larger volume ones, within o
standard deviation they almost always agree. There is o
one exception atamf50.08 in the bare lattice result. N
volume dependence is detected. This is in clear contras
the situation of the axial charge alone. Since the produc
the one that appears in the Goldberger-Treiman relation
would be interesting to see how its counterpart, the indu
pseudoscalar form factor, behaves at small momen
transfer.

IV. CONCLUSIONS

In this paper we have studied the nucleon axial charge
the vector charge in quenched lattice QCD. To capture
portant aspects of the chiral symmetry of QCD, we us
domain wall fermions to simulate the light quarks.

We first demonstrated that the lattice renormalization
the isovector vector and axial-vector currents satisfiesZV
5ZA to a high degree of precision, less than 1% ata21

'2 GeV and about 2% ata21'1.3 GeV. This is achieved
because in practice the DWF method preserves the ch
symmetry of QCD up to small corrections and hence ma

e FIG. 7. Determination of the vector current renormalizati
from 1/gV

lattice ~squares!, the electromagnetic current~circles!, and
the d quark current~diamonds!. The axial-vector current renormal
ization ~asterisks! @20# is shown for comparison. The differen
renormalization constants differ because ofO(a2) lattice artifacts.
TABLE VIII. Results for the nucleon axial charge,Du, Dd, andZV51/gV
lattice, DBW2 gauge action,b

50.87, 83324, M551.8, Ls516, 400 configurations.

mf (gA) lattice (gA)ren (Du)ren (Dd)ren ZV

0.04 1.303~146! 1.059~120! 0.690~99! 20.369~99! 0.8191~65!

0.06 1.342~74! 1.099~62! 0.817~52! 20.282~45! 0.8242~35!

0.08 1.373~46! 1.136~39! 0.876~32! 20.260~25! 0.8317~24!

0.10 1.398~30! 1.165~26! 0.902~21! 20.263~15! 0.8403~18!
9-12
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FIG. 8. Du and Dd. Same as Fig. 3, but for
the DBW2 gauge action, sequential source, a
V5(2.4 fm)3. The plateau is shifted toward th
wall source because the point sink allows mo
excited state contamination.
th
y
o
tt

.

tly
tains the relevant Ward-Takahashi identity. This holds if
underlying ~quenched! gauge configuration is sufficientl
smooth. Ensembles of such gauge configurations are
tained close to the continuum limit. For the single-plaque
Wilson gauge actionb56.0 (a21'2 GeV) is good enough
05450
e

b-
e

For the DBW2 action the lattice spacing may be significan
larger while still maintaining good chiral symmetry (a21

'1.3 GeV).
Our first calculation ofgA with the Wilson gauge action

was performed atb56.0 on a 163332 lattice. The corre-
TABLE IX. Results for the nucleon axial charge,Du, Dd, andZV51/gV
lattice, DBW2 gauge action,b

50.87, 163332, M551.8, Ls516, 416 configurations.

mf (gA) lattice (gA)ren (Du)ren (Dd)ren ZV

0.02 1.531~60! 1.229~49! 0.945~44! 20.284~27! 0.8040~19!

0.04 1.523~24! 1.230~20! 0.946~17! 20.284~10! 0.8115~9!

0.06 1.510~15! 1.230~12! 0.953~10! 20.277~6! 0.8184~6!

0.08 1.505~11! 1.236~9! 0.963~7! 20.273~4! 0.8260~5!

0.10 1.503~8! 1.246~7! 0.975~6! 20.271~3! 0.8347~5!
9-13
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sponding spatial volume;~1.6 fm!3 is similar to those used
in previous lattice calculations. This volume is rather sm
in comparison with the experimentally measured pro
charge radius. On this lattice we found that all the relev
three-point functions are well behaved and that we can r
ably extract the charges. The isovector vector current re
malization ZV determined from them agrees well with th
corresponding axial current renormalizationZA , indepen-

FIG. 9. Dependence of the unrenormalized nucleon axial cha
on quark mass and lattice volume. Results from the seque
source method~circles! and the wall source method~asterisks! on
the smaller lattice show good agreement. The sequential me
provides somewhat smaller statistical errors than the wall meth
The larger lattice results~solid circles!, obtained with the sequentia
method, exhibit higher values than the smaller lattice ones over
entire range of quark mass studied.

FIG. 10. The physical ratio of nucleon charges. DBW2 gau
action results on two different physical volumes~2.4 fm!3 ~solid
circles! and ~1.2 fm!3 ~open circles! reveal the existence of a sig
nificant finite volume effect. Wilson gauge action results~dia-
monds!, V'(1.6 fm)3, also appear to be affected by finite volum
05450
ll
n
t

li-
r-

dently obtained from the axial Ward-Takahashi identity. W
found that both the axial chargegA

lattice and its ratio to the
vector charge (gA /gV) lattice exhibit a very strong dependenc
on the quark mass. A simple linear extrapolation
(gA /gV) lattice to zero quark mass yielded a very small valu
about 2/3 of the experimental one.

The second quenched calculation employed the DB
gauge action withb50.87 set for a coarser lattice spacin
a'0.15 fm. This allowed a larger physical volume whi
maintaining good chiral symmetry. To study pure finite vo

e
ial

od
d.

e

e

FIG. 11. Two methods to obtain the physical nucleon ax
charge, the ratio of axial-vector to vector charge~circles!, and the
lattice axial-vector charge times the axial-vector current renorm
ization factor ZA in the chiral limit from Ref. @20#. They show
slightly different quark mass dependence, but extrapolate to con
tent values. Each underestimates the experimental value~asterisk!
by roughly 5%.

FIG. 12. The lattice volume and quark mass dependences o
product mNgA ~renormalized!. Closed ~large volume! and open
~small volume! circles. All agree within one standard deviation. N
volume dependence is detected.
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NUCLEON AXIAL CHARGE FROM QUENCHED LATTICE . . . PHYSICAL REVIEW D 68, 054509 ~2003!
ume effects, at fixed lattice spacing we calculated on latti
with sizes 163332 and 83324 @;~1.2 fm!3 and;~2.4 fm!3,
respectively#. A significant dependence on the volume is se
in both the axial chargegA

lattice and the charge ratio
(gA /gV) lattice, with the larger volume giving larger values. I
contrast,gV does not show such dependence. The dep
dence on the quark mass is also different. In the larger
ume the central values remain almost constant, while in
smaller volume they decrease noticeably with the qu
mass. In the chiral limit the two differ by about 20%. Th
behavior ofgA in the smaller volume is quite consistent wi
that observed in the earlier calculation with the Wilson gau
action.

Our estimate of (gA /gV)ren at zero quark mass from th
larger volume with DBW2 action is 1.21260.027(stat)
60.024(norm). The systematic error is estimated from
2% difference betweenZA and ZV which are theoretically
equivalent toO(a2), neglecting even smaller effects induce
by explicit chiral symmetry breaking in DWFs. It underes
mates the experimental value of 1.2670~30! by less than 5%.
This discrepancy is smaller than twice the theoretical err

Thus dependence on the volume seems to be the la
among the known sources of systematic error for the fi
principles lattice calculation ofgA . This suggests that clos
attention be paid to the finite volume effect in other latti
numerical studies of nucleon structure, in particular the m
ments of spin-polarized structure functions, which are rela
to the axial charge.

It should also be noted that although the crucial relat
ZV5ZA is satisfied well in the second calculation, we d
tected smallO(a2) differences among different determin
tions ofZV . Such differences were not detectable in the fi
set of simulations with the Wilson gauge action ata
'0.10 fm. Numerically this is at most a few percent effe
and does not affect the volume dependence.

As discussed at the end of Sec. III, the present calcula
of gA was performed using relatively heavy quark mas
(390<mp<860 MeV) so that the systematic error arisin
from quenching may be small. However, one may worry t
such a calculation does not capture the physics of the p
cloud surrounding the nucleon. In spite of this, the values
gA

ren at these unphysically heavy quark masses lie just be
the experimental value and show little, if any, dependence
the quark mass. It is also interesting to note that the prod
mNgA shows noticeably less volume dependence. Since
is the combination that appears in the Goldberger-Treim
relation, it would be interesting to see how its counterp
the induced pseudoscalar form factor, behaves at small
nonzero nucleon momentum.

ACKNOWLEDGMENTS

We thank Roger Horsley for his private communicati
providing the clover results prior to publication. We al
thank the other members, current and past, of the RIKE
05450
s

n

n-
l-
e
k

e

e

.
est
t

-
d

n
-

t

t

n
s

t
n
f
w
n
ct
is
n

t,
ut

-

BNL-Columbia~RBC! Collaboration. In particular, we than
Yasumichi Aoki for his help in optimizing the box sourc
size, Norman Christ for his careful reading of the man
script, and Chris Dawson for helpful discussion o
O(a2,mfa

2) corrections in local current renormalization
Thanks are also due to RIKEN, Brookhaven National Lab
ratory, and the U.S. Department of Energy for providing t
facilities essential for the completion of this work. The n
merical calculations were done on the 600 Gflops QCD
computer at the RIKEN-BNL Research Center. S.S. tha
the JSPS for a Grant-in-Aid for Encouragement of You
Scientists~No. 13740146!.

APPENDIX: CURRENT ALGEBRA AND CVC
HYPOTHESIS

Defining the chargeQV
a5 i *d3x V0

a(xW ,t),2 the transforma-
tion for the quark fields in the isospin SU~2! subgroup of the
SU(2)3SU(2) chiral symmetry can be represented by

@QV
a ,c~x!#52Tac~x!, ~A1!

@QV
a ,c̄~x!#51c̄~x!Ta, ~A2!

wherec5(u,d)T andVm
a (x)5c̄(x)gmTac(x). One can eas-

ily find that the axial currentAm
a (x)5c̄(x)g5gmTac(x) and

vector currentVm
a transform under isospin symmetry as

@QV
a ,Vm

b ~x!#5 i«abcVm
c ~x!, ~A3!

@QV
a ,Am

b ~x!#5 i«abcAm
c ~x!. ~A4!

According to the above SU~2! current algebra,Am
1 and Vm

1

can be expressed as

Am
6~x!5c̄~x!gmg5T6c~x!52@QV

6 ,Am
3 ~x!#, ~A5!

Vm
6~x!5c̄~x!gmT6c~x!52@QV

6 ,Vm
3 ~x!#, ~A6!

whereT65T16 iT2 . Hence, under the CVC hypothesis, on
can find

^puAm
1un&52^pu@QV

1 ,Am
3 #un&

52^puQV
1Am

3 un&1^puAm
3 QV

1un&

5^puAm
3 up&2^nuAm

3 un&52^puAm
3 up&. ~A7!

The third line follows fromQV
1un&5up& and^puQV

15^nu. A
similar calculation for the vector case yields the relati
^puVm

1un&52^puVm
3 up&.

2This definition ofQV
a is slightly different from the one in@28#.

The only difference is a factor ofi /2.
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@4# M. Göckeler, R. Horsley, E. M. Ilgenfritz, H. Perlt, P. Rakow
G. Schierholz, and A. Schiller, Phys. Rev. D53, 2317~1996!.

@5# TXL Collaboration, S. Gu¨skenet al., Phys. Rev. D59, 114502
~1999!.

@6# LHPC and SESAM Collaborations, D. Dolgovet al., Phys.
Rev. D66, 034506~2002!.

@7# S. Capitaniet al., Nucl. Phys. B~Proc. Suppl.! 79, 548~1999!.
@8# UKQCD Collaboration, R. Horsley, Nucl. Phys. B~Proc.

Suppl.! 94, 307 ~2001!.
@9# M. L. Goldberger and S. B. Treiman, Phys. Rev.110, 1178

~1958!.
@10# M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.175,

2195 ~1968!.
@11# D. B. Kaplan, Phys. Lett. B288, 342 ~1992!.
@12# Y. Shamir, Nucl. Phys.B406, 90 ~1993!.
@13# R. Narayanan and H. Neuberger, Phys. Lett. B302, 62 ~1993!.
@14# V. Furman and Y. Shamir, Nucl. Phys.B439, 54 ~1995!.
@15# Y. Kikukawa, Nucl. Phys.B584, 511 ~2000!.
@16# P. Hernandez, K. Jansen, and M. Luscher, Nucl. Phys.B552,

363 ~1999!.
@17# P. Hernandez, K. Jansen, and M. Luscher, hep-lat/000701
@18# RBC Collaboration, T. Blumet al., hep-lat/0007038.
05450
@19# CP-PACS Collaboration, A. Ali Khanet al., Phys. Rev. D63,
114504~2001!.

@20# RBC Collaboration, Y. Aokiet al., hep-lat/0211023.
@21# T. Blum, Nucl. Phys. B~Proc. Suppl.! 73, 167 ~1999!.
@22# T. Blum et al., Phys. Rev. D66, 014504~2002!.
@23# T. Blum and S. Sasaki, hep-lat/0002019.
@24# T. Blum, S. Ohta, and S. Sasaki, Nucl. Phys. B~Proc. Suppl.!

94, 295 ~2001!.
@25# N. Isgur and G. Karl, Phys. Rev. D20, 1191~1979!.
@26# A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Ph

Rev. D10, 2599~1974!.
@27# T. Takaishi, Phys. Rev. D54, 1050~1996!.
@28# S. Sasaki, T. Blum, and S. Ohta, Phys. Rev. D65, 074503

~2002!.
@29# R. M. Woloshyn and K. F. Liu, Nucl. Phys.B311, 527 ~1989!.
@30# G. Martinelli and C. T. Sachrajda, Nucl. Phys.B316, 355

~1989!.
@31# C. W. Bernard, T. Draper, G. Hockney, and A. Soni, in Pr

ceedings, Wuppertal 1985 Lattice Gauge Theory, 1985, p. 1
@32# M. Kim and S. Kim, Phys. Rev. D58, 074509~1998!.
@33# E. Jenkins and A. V. Manohar, Phys. Lett. B259, 353 ~1991!.
@34# RBC Collaboration, S. Sasaki, T. Blum, S. Ohta, and K. Or

nos, Nucl. Phys. B~Proc. Suppl.! 106, 302 ~2002!.
@35# RBC Collaboration, S. Ohta, hep-lat/0210006.
@36# RIKEN-BNL-CU Collaboration, L. L. Wu, Nucl. Phys. B

~Proc. Suppl.! 83, 224 ~2000!.
@37# R. L. Jaffe, Phys. Lett. B529, 105 ~2002!.
@38# T. D. Cohen, Phys. Lett. B529, 50 ~2002!.
@39# W. Detmold, W. Melnitchouk, and A. W. Thomas, Phys. Re

D 66, 054501~2002!.
9-16


