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Nucleon axial charge from quenched lattice QCD with domain wall fermions
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We present a quenched lattice calculation of the nucleon isovector vector and axial-vector ghaages
ga - The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particu-
larly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same
renormalization, up to lattice spacing errors of or@g@?). The doubly blocked Wilson 2DBW2) gauge
action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice
spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high
statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on
lattices with (1.2 fm)® and (2.4 fm)® volumes @~0.15fm). On the large volume we findy=1.212
+0.027(stat): 0.024(norm). The quoted systematic error is the domirfenown) one, corresponding to
current renormalization. We discuss other possible remaining sources of error. This theoretical first principles
calculation, which does not yet include isospin breaking effects, yields a valyeafly a little bit below the
experimental one, 1.26700.0030.
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[. INTRODUCTION are called the vector and axial charges of the nucleay;
=gy(q?=0) and ga=ga(q°=0). Experimentally, gy
The axial charge, of the nucleon, or more precisely its =cosf. (with the Cabibbo mixing angled:), and ga
ratio to the vector chargg, , appears to be a good test of our =1.2670(30) gy, .
understanding of the structure of the nucleon. First of all, itis  Since they are defined at zero momentum transfer, a naive
very accurately measured from neutrghdecay, gda/Qv  expectation is thag, andg, are easier to calculate on the
=1.2670+0.0030[1].* And, among the nucleon form factors attice than form factors which require nonzero momentum
or moments of structure functions, it is technically the sim-yansfer. Despite this, quenched QCD lattice calculations
plest from the point of view of a lattice QCD numerical ith wilson fermions at finite lattice cutoffa 1~2 GeV)
calculation. . have underestimateg), by about 2094 2—4] (see Table | for
Fqur form factors appear in neutrgiidecay: the vector a summary of previous calculationg his suggests that sys-
and induced tensor form factors from the vector current, ... errors, which may arise frofd) the quenched ap-
proximation,(2) operator renormalizatiori3) nonzero lattice
1) spacinga and loss of chiral symmetry for Wilson and Kogut-
Susskind fermions, an@) finite volume, remain in the lat-

and the axial-vector and induced pseudoscalar form factoréce calculation.

<p|V;(x)|n> =up[ Vugv(qz) - q}\gng(q2)]une7iq-x,

from the axial-vector current, The first three errors have been addressed in previous cal-
_ culations. The SESAM and LHPC Collaborations found that
(plA;(x)|n>=Up[yﬂy5gA(q2)—iny5gp(q2)]une"q‘X. unquenching does not solve the problem as the estimated

(2)  valueg, decreases by 5-109b,6]. On the other hand, re-

ducing the lattice spacing error seems to increase the value,
Hereq=p,—p, is the momentum transfer between the pro-pyt only by a small amounts5% [7,8]. Perhaps more im-
ton (p) and neutror(n). In the limit |G| —0, the momentum  portant is the calculation of the renormalization facZarfor
transfer should be small because the mass difference of thge axjal current. The one-loop perturbative renormalization
neutron and proton is only about 1.3 MeV. This makes thq‘actor, used in the case of Wilson fermioigs-6], was prob-
limit q”—0, where the vector and axial-vector form factors ably overestimated. The QCDSF-UKQCD Collaboration re-
dominate, a good approximation. Their values in this IImItported that the non-perturbatively calculated renormalization

factor (Z)°""*™~0.8) is roughly 10% smaller than the one-

!Note that the Particle Data Group defirgsto be negative be- loop one dertwo'g) in the case of the nonperturbatively

. . . 71
cause no assumption about the structure of the weak interaction [2(2) improved Wilson fermions[8] at a™*~2-3 GeV.
made. In this artic|e’ assuming thé— A structure of the weak ThUS, the SyS'[ematIC error in the determ'natlon Of the renor-

interaction, the axial form factor in Eq2) is defined to makey, malization factor appears to be more important than the first
positive. two effects mentioned. The first two systematic errors listed
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TABLE |. Previous lattice calculations with Wilson @(a) improved Wilson(cloven fermions. In generalg, is significantly under-
estimated. Note that almost all volumes are small, most estimates use perturbative renormalization, and partially unquenching did not
increase the value af, .

Type Group Fermion L3XN, B Volume Statistics  m_L da Reference
Quenched KEK Wilson 20 57 (2.2fm° 260 =5.9 0.98%25) [2]
Kentucky Wilson 18x24 6.0 (1.5fm?° 24 =58 1.2G11) [3]
DESY Wilson 16x32 6.0 (1.5fm?° 1000 =4.8 1.079) [4]
LHPC-SESAM Wilson 18x32 6.0 (1.5fm? 200 =4.8 1.12998 (6]
QCDSF Wilson 18x32 6.0 (1.5fm? 0(500) 1.143)2 [7]
243x48 6.2 (1.6 fm)° 0(300)
32®%x48 64 (1.6fm° 0(100)
QCDSF-UKQCD  Clover 18x32 6.0 (1.5fm?° 0(500) 1.13%34) [8]
243x48 6.2 (1.6 fm)® 0O(300)
32Xx48 6.4 (1.6 fm)° 0O(100)
Full (Ny=2)  LHPC-SESAM Wilson 18x32 55 (1.7 fm?° 100 =4.2 0.914106) (6]
SESAM Wilson 16x32 56 (1.5fm° 200 =45 0.90720) [5]

&Continuum extrapolated value.

above likely cannot resolve the issue that previous latticézation of quark currents, which may be present and prob-
calculations ofg, underestimate the experimental value.  lematic in other fermion discretization schemes, is elimi-
The loss of chiral symmetry on the lattice is potentially nated. We emphasize that the DWF calculation of the
significant. As is well knownga/gy=1 in the absence of nucleon axial charge should not suffer from the systematic
chiral symmetry breaking in QCD. Further, in the realistic errors due to the operator renormalization and loss of chiral
case of spontaneously broken chiral symmetry, the ratio isymmetry[23,24.
still_constrained by the axial Ward-Takahashi identity = However, as is described in more detail in Sec. IlI, in our
d,AL(X)=2mP%(x). The Goldberger-Treiman relation de- first DWF calculation with the single-plaquette Wilson gauge
rives from the nucleon matrix elements of the currents oryetion at3=6.0 and lattice volume £& 32x 16 [which cor-
both sides of this identity in the soft pion limi9]. We can respond tca~'~2 GeV and spatial volume-(1.6 fm)?], we
easily understand the deviation of the ratio from unity in thes g thatg, exhibits a fairly strong dependence on the

context of the Gell-Mann—Oakes—Renner relatiph0] ; : :
o . = .. quark masg24]. A simple linear extrapolation af, to the
which is also related to the axial Ward-Takahashi |dent|ty.Chiral limit yielded a value that was almost a factor of 2

Thus, the explicit breaking of chiral symmetry at nonzero : T

lattice spacing for Wilson fermions may induce significant s?1alller thz?_n _:he elxpenm;m:l]._rTms |mplleq the pr(fasen(;:e

errors which are removed only in the continuum limit. ofafarge finite volume €efiect. 10 our Surprise, we found no
systematic study of such an effect in the literature. Note also

In this work we use domain wall fermiondWFs), a . . .
fermion discretization scheme with almost perfectly pre_that there is no volume dependence in the naive quark model

served chiral symmetrj11-13. This scheme introduces a [25]norinthe MIT bag mode]26]. In the former the ratio is
fictitious fifth dimension in addition to the four dimensions determined by a simple spin-isospin algebra, and in the latter
of space-time. In the limit where the fifth-dimensional extentit arises from a simple overlap integral of the upper and
L, is taken to infinity, DWFs preserve the axial Ward Taka-lower components of the bag Dirac wave function.

hashi identity[14] at nonzero lattice spacing. With finite; To address the finite volume issue we need to have at the
the suppression of explicit chiral symmetry breaking is ef-same time a sufficiently high lattice cutoff to preserve chiral
fectively exponential in quenched simulations if the gaugesymmetry reasonably well and at least two lattice volumes,
field is sufficiently smooti15—20. This is always true if the preferably ones that are large compared to the charge radius
lattice spacing is sufficiently small. In low energy cases likeof the proton. The Wilson gauge action will not work for this
the one investigated here, the small breaking of the symmepurpose since the chiral symmetry of DWFs in the quenched
try at finite L is parametrized by a single universal “residual case degrades rapidly as lattice spacrigcreases, while the
mass” parametem,., acting as an additive quark mass andcomputational cost necessitated by a very large lattice vol-
defined from the axial Ward-Takahashi idenfify8,21. Fur- ume would be prohibitive. Fortunately, various
thermore, the DWF scheme greatly simplifies the nonpertur<renormalization-group-inspired” improved gauge actions
bative determination of the renormalization of quark bilinearpreserve the chiral symmetry of the DWFs well while not
currents[22]. For example, the renormalization factors of demanding a large cutoffl9,20. Thus both requirements,
local vector and axial-vector current operators should bechiral symmetry and large physical volume, can be met at
equal,Z,=Z, [22]. This means the ratio of the nucleon axial reasonable computational cost. Of the relatively well-
and vector charges calculated on the lattice directly yieldestablished candidates in this class of improved gauge ac-
the continuum value, i.e., it is not renormalizg2B,24. By  tions, we choose the “doubly blocked Wilson ZDBW?2)
employing the DWF scheme, the ambiguity in the renormal-action[20,27).
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The rest of this paper is organized as follows. In Sec. Il m _ —
the lattice method for calculatingy /gy is described. In Sec. (kosliny, vsiilks) = Agitip(k,s) v, vsup(ks), - ()
lll, the numerical results obtained for both Wilson andwherek ands are the proton four-momentum and polariza-
DBW?2 actions are described in detail. Finally, in Sec. IV wetjon. From CVC we find the relatiogy=Au— Ad.
summarize the present work and discuss future directions.  Now consider the conserved electromagnetic curjgfit

expressed in terms of the flavor vector currém}ls
Il. GENERAL ANALYTIC FRAMEWORK

2

f_

1
A. The vector and axial charges ™= Z QfVM—EVZ— §Vi+--- . (8)
As mentioned in the Introduction, four form factors are
needed to describe neutrghdecay: the vector and induced Here Q; denotes the chargén units of proton charge) for
tensor form factors for the vector current, a quark of flavorf, and the ellipsis denotes possible flavors of
heavier quarks which we henceforth ignore. Since the corre-

(p|V;(O)|n>=Up[ Yu0v(0%) — 0\ 0, 97(a%) U, (3 sponding electromagnetic(l) gauge symmetry assures con-

. . . ervation of electric charge, for the neutron we find
and the axial and induced pseudoscalar for the axial curren?, g

_ ) lim (n|j$™n)=0. 9)
(pIA, (0)[n)=Up[ v, ¥59a(0%) —id, ¥s9p(a*) Up. (4) q2ﬁ0< 171
The right hand side of each is the most general form consist follows that
tent with Lorentz covariance. The momentum trangfer
=pn— P, becomes very small in the forward limit because of lim <n|Vi| ny=2x lim <n|VZ|n). (10
the small mass difference between the neutron and proton. In 420 q?—0

the limit g>— 0, which we take in this work, the vector and he other hand. under th . f h
axial form factors dominate the matrix elements. We are ne2" the other hand, under the assumption of CVC we have

glecting the mass difference of the neutron and proton, anf® following:

hence that of up and down quarkse also neglect the elec- Ul d

tromagnetic mass differenceFor zero quark massi=m, <n|VM|n)—(p|VM|p), (1)
=my=0 the action is symmetric under global chiral SU(2)
X SU(2) flavor rotations acting on the quark fields. nif
#0, the symmetry is broken down to the vectdiavor)
SU(2) subgroup, and the associated vector chaygés still

(n|V4Iny=(p|Vi|p). (12)

Thus we reach the following relation:

conserved §,=1). This situation is sometimes called CVC, lim (p|j®™p)= lim (p|V¢|p)= lim (p|V¥—V4|p).
conserved vector current. In the real world even this symme- 2, “ 20 g "
try is softly broken by the small mass difference between up (13

and down quarksm,—my. The explicit violation of the

axial-vector symmetry by nonzero quark mass is sometimekikewise, it follows that the vector chargg, must be unity

called PCAC, or partially conserved axial-vector current. As(in units of cosfic ande) under CVC since the proton electric

is well known the axial S(2) symmetry is also spontane- charge is unity. As already mentioned, we expect a very

ously broken. Thus, the axial charge may in general deviatémall breaking from CVC because of the physical up and

from unity, ga# 1. down quark mass difference. In the axial case, we expect
If the vector symmetry is preserved, a simple exercise ifionconservation ofj, due to the small but nonzero up and

SU(2) Lie algebra leads to the followingee the Appendix ~ down quark masses as well as the spontaneous breakdown of

chiral symmetry.
(plALIny=2(p|A%|p)=(p|AsIp)—(p|ALIp),  (5)

+_ — 3_ u d u_ T
wheredA#_—u;/Myg,d, Au=@2) A=A, Au=Uyuysy, In this subsection we describe our method of lattice nu-
and A,=dy,ysd. u andd stand for the up and down merical calculation of the axial and vector charges of the
quark fields. A similar relation holds for the vector case,  nycleon. Hadronic matrix elements calculated on the lattice
n 3 " d are determined from ratios of the relevant three-point to two-
(PIV, M =2(p|V,[p)=(pIV,IP) = (PIVLIP).  (6)  point correlation functions. Since the charges are defined at
g 3 U d u — zero-momentum transfer, we do not have to introduce non-
where V,, =uy,d, V,=(1/2)(V,=V,), V,=uyu, and ;o5 momentum projection for the nucleon source and sink
V4 =dy,d. The isovector vector chargg, and the isovector ~ for these correlation functions, nor for the current insertion.
axial chargeg, are defined by the strength of the right-handOn the other hand since we are dealing with a spin-1/2
sides of Eqgs(5) and (6) in the forward limit @>—0). In baryon, both correlation functions possess nontrivial Dirac
addition, the polarized quark distributions in the proton forspinor structure, so appropriate projections are necessary.
each flavorf, Ay, are defined by the forward matrix ele-  The zero-momentum two-point function for the nucleon is
ments of the flavor axial-vector currenﬁ: given by the sum over all spatial coordinates

B. Nucleon matrix elements
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_ L= . The factor of 1/4 is our choice of normalization. At large
(MUOMO))p= 2 (OINL(X,DNR(0,0[0), (14  this asymptotically approaches a simple exponential,
X

where N(X,t) can be any operator with the same quantum Gn(D)~exp(—Myt). (17)

numbers as the nucleon, namely, unit baryon number, For the proton, a standard choice for the interpolating opera-

=(1/2)*, and isospin doubletr and 8 denote Dirac indices. . P ' P 9 op
N g . tor is

Color and flavor indices are suppressed in the following un-

f;;mgt%tﬁg f(())rtrr;ervvlse. The two-point correlation has the MX) = £ and UL(X) C 750 (X) TUe(X) (18)

A where C is the charge conjugation matrix defined @s
(N(t)/\7(0)>a3=—N[1+sgr{t)y4]aﬁe"\"N“| (15) = vaY2, abcthe color indices, and andd the up and down
2 quark fields.
at large Euclidean time HereM,, denotes the ground state  \eXb 1€t us define the _Zgro-mor(rfl?ntum_three-p0|nt corre-
mass of the nucleon. The amplitudy is defined as lation function for quark bilinearsDy *(x) = ¢ (x)I"¢(x):

(O]M(0)|NY=Ayuy. In general, the baryon two-point

function receives contributions from both positive- and (MO Or(t')MO)) o

negative-parity states. By taking the trace with a projection o
operatorP, = (1+v,)/2, we eliminate contributions from =2 > (O]T{NL(KD)Op(X',t)N(0,0)}|0),
the opposite-parity state in the forward time direction. De- XX

tails of the parity projection are described [i28]. Let us (19

abbreviate the notation for the two-point function of the par-
ticle contribution from the desiregpositive-parity state as ~ wherel" is any of the 16 possible matrices in the Clifford
algebra defined by the Dirac gamma matrices. Wi’

Gy(t)= %Tr[PJr(N(t)j\_/(O))]. (16) i?O(i)r,1tt?ljené)t:;\cr)tr:cIbee((;:grrrl]t(;isk,)ution of the zero-momentum three-
|
(M) Op(t)MO0)) o—An |2im gr(g?)exp —Myt) (P TP ) 4. (20)
=0
|
Note two important points: first, the three-point function van- i G%(t,t’)—G%(t,t’)
ishes forl" other than 1,7,, ¥iys (i=1,2,3), andoy; (i,j o= (23

=1,2,3) becaus®_ I'P,=0 for I''s that do not commute G(t)

with y,. Second, the right-hand side of the above asymptotigy the range ot>t’ with fixed t =t tsource
formula does not depend on the insertion point of the opera- |n general, lattice operators receive finite renormalizations
tor Or. Any t’ dependence arises from excited state conrelative to their continuum counterparts since the exact sym-

tamination, i.e., away from the asymptotic regime. metries of the continuum are usually realized only in the
In this paper, we calculate the isovectouark-flavoredl  continuum limita— 0. Thus

vector chargegy and the isovector axial chargg, of the _
nucleon. We define the spin projected three-point function gie"=zglatice (24)
for the relevant components of the vector currenI;

=nyﬂwf and the axial currenAL=nyﬂy5¢f by taking
traces with the projection operatoPs =P, T "1

requires some independent estimationZef, the renormal-
ization of the quark bilinear currents,

[YT )= Z [ yT y]'attice (25)

Since DWFs possess full chiral symmetry at nonzero lattice
1 spacing, a lattice conserved vector currghtand partially
fooan_ = frery n conserved axial-vector currept, which receive no lattice
Galt.t) 4Tr[PAi</\/(t)A'(t SO, 22 renormalization can be defined, nameB,=2Z ,=1 [14].

) However these conserved currents are point split and require
where Py=P, and P =P, yjys (i=1,2,3). In order to  syms over the extra fifth dimension of the DWF, so they are
extractgr (I' is eitherV or A) on the lattice, we have to somewhat costly to work with in practice. Alternatively the
identify a plateau in the ratio of the three- and two-pointlocal currentsV,, andA,,, which are naive transcriptions of
functions, the continuum operators, are easier to deal with but receive a

1 —
GU(tt)= 7 TIPMV(t)IMO)], (D)
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finite renormalization since they do not correspond to arlation functions since they yield smaller statistical errors. For
exact symmetry of the action. However, the Ward-Takahashtihree-point functions this approach is implemented with a
identity satisfied by both types of currents is enough to ensequential source. We discuss both types of correlation func-
sure that the lattice renormalizations of the local currents aréons in turn.

equal,Zy=2Z,, up to terms of orde®(a?) in the chiral limit First, we introduce the forward quark propagators from a
and neglecting explicit chiral symmetry breaking for the wall source to a wall sink and from a wall source to a point
DWF at finiteLq, sink, which may be written with the gauge fixed point-to-
gl Gﬁ(t,t’)—Gﬂ(t,t’) attice point quark propagatd®pp:
o = u ’ d ’ +O(a2) (26)
9v Gy(t,t") —Gy(t,t") Sywlt,t)? 2 Spw(%,t;t1)35, (29
Note that the vector charge computed from the local current
provides an independent estimateZyf since the renormal- 2 t.pryab _ - .o ab
ization of an operator does not depend on any particular ma- Sew(X, 61 ) ap % Spp(X, Y, t) op (30)
trix element and the renormalized, or physical, valugpfs . _ _
1 by CVC: where the subscripts and superscripts denote Dirac and color
indices, respectively. The quark three-point function result-
Gn(t) ing from insertion of the quark bilinear operatgsI" s is
Zy=—y n_ ~d N (27) defined
Gy(t,t")—Gy(t,t") efined as
Comparison ofZ,, thus obtained to the value @f, from the Sr(tt! 't")iﬁ
relation[18]
=2 Sep(XET)IUT) y Sep(Tt 2t
(A (O[dys91(0) =Za(A(O[P7541(0)  (28) iy ’ e
B . 2 . . .
yields an estimate of th€@(a®) systematic errors arising 2 yswspw(xt t)yﬂsaa(r)wspw(Xt t”)(;i?l@

from the method described here. These are discussed in Sec. z

i . S . (31)
Next we describe the particular interpolating operators, or

quark sources and sinks, used to calculate lattice correlaﬂonthere the second equality results fro®ep(X,t;y,t")

functions. In our earlier work we used so-called wall-wall = y5SpP(yt i X,t)ys. Thus, Sp(t,t',t") is constructed by

correlation functions constructed with quark sources genereombining wall-to-point quark propagators generated from

ated from a unit source at each spatial site on a fixed sourasvo different source time slicesandt” at either end of the

time slice and summed over all spatial sites at the sink timéattice with the operator inserted in between them.

slice. Since the wall source or sink is gauge variant, we fix to  The two-point function for the nucleon in E¢l4) is ex-

the Coulomb gauge. Later we switched to wall-point corre-pressed in terms of quark propagators as

(MOMO)) o = Eabctarbre (Cs) g, SO S (Cys)
X[swwt,0>iiﬁs%m,0>;z,+swm.mier«Wt,mZi’,i]- (32

Following Ref.[29], the three-point function in Eq.19) is easily obtained from the two-point function by replacing the
ordinary quark propagator by the operator inserted &hét,t’,0). Inserting thed andu quark currents, we obtain
(MO IMO)) 4o =EancEarbrer (CYs) gy S (6,005, (Cys) oy

X SO0 SWWL.0) s + S 1,0) 5%, SWt.0) o ] (33

and
(MOOM (' )MO)) o = EancEartre (C¥5) g, S 1.0 S5 (Cs) g1
X[SM(t,t/ oa‘a St O)M, +S8M(t,t O)Qﬁ,SWW(t O)Ba +s<A“,>W(t,0)aa St O)ﬁﬁ,
+ S0 2%, S (0050 1. (34

054509-5



SASAKI et al. PHYSICAL REVIEW D 68, 054509 (2003

The nucleon three-point function is the sum of the up and
down quark contributions. The spin projected three-point Spa(%,t;t)3% = X Sep(Kityt’ )25 (39
functions are obtained from Eq&1) and (22). 0<y=<8

To enhance the signal, a point sink is more desirable than
an extended sink. The wall-point type of three-point func-
tions is implemented using the so-called sequential sourcé/e adjust the box siz8 to about 1 fm. In describing the
method[6,30,31. In addition we use a box source instead of construction of the sequential source, it is convenient to in-
a wall source to enhance the coupling to the ground state: troduce the “diquark” propagators:

Do (Y,1:0) 5. 5= ancEarvrc (C¥5) 55(C¥s) 570

X[ SEY(Y.:0) 55, SEA(Y.1:0)%, + SHA(Y.1:0)°5, SHA(Y.1:0) 5 (36)

BB/
and
~ b'b N !
uaa’(yvt;o)ﬁfﬁz Sabcsa’b’C’S(Pdé(yvt;o)(;fyf
X[(C¥5) g (C¥5) g1y SRV, 1;0)22,+ (C¥5) 5,(C¥5) 575 SEB(Y,1,0) 5 SapBur 7

+(Cy5) 5y(C¥5) 57y SP(Y,1:0) 55 8ar g1+ (C¥5) 5, (C5) o1 SER(Y 1:0) 50 S (37
The “down diquark” (D) and “up diquark” (/) are defined by the down quark removed propagator and one up quark removed

propagator from the nucleon two-point function. Now using the diquark we can reconstruct the point-to-wall type of the
nucleon two-point function as

(MOMO)) e =2 D (Y.1:0) 57 ;IR 1:0) =5 2 Unar (5,1:0)57 ,SEBY,1:0) - (39)
y

In terms of the diquarks the three-point functions of an arbitrary quark bilinear op&d‘irwf at a location Z,t") can be
written for the down quark as

(MOOP (VMO gt = 2 Doy (9,105, 5SKB(Y, 121 )35 55 SSR(Z,10) 5%, (39
Y,z
and for the up quark as
(MOOFH(INO))r = 2 Uit (J,8:0) 5SRO LZ )BT 55 SER(ZL 100575 (40)
Y,z

For the construction of the three-point functions we need 1
the backward propagators from the sink poigitt] to the Dy(yt; O)aB_4 D, (V.:003%(Pr) ., (41)
operator insertion pointzZ(t’). However, it is highly expen-
sive to prepare the required point-to-point quark propagator
from all points §,t). This difficulty is easily circumvented
by directly computing the generalized quark propagators
Do (V,1:0)SEXY,LZ ) and U, (¥,1:0)SEX(Y,tZ,t")
with the sequential source method.

Before describing details of the sequential source propa- TABLE Il. Simulation parameters for each action and each vol-
gator, we should apply the spin projectifq to diquarks in  ume studied in this work.
order to reduce the cost from having to calculate all#

and for the up quark

1
Dy(Y.1;0)55= 7 Uy (V.10)eR(Pr) 5y (42)

Finally, the sequential source down quark propagator is

matrices for external spinor indicest(a’). In this article, ~Gauge action B LN, Ls Ms  Volume
we need only two kinds of spin projections, i.By andP,,,  \yjiison 60 16x32 16 1.8 (16fm?
so that it reduces the amount of calculations by a factor of &Bw2 087 16x32 16 1.8 (24fm°
in comparison with the unprojected case. The spin projected 83x 24 16 1.8 (1.2fm?

source for a down quark insertion is
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*
=5 ¢/ =S 4+ \7 b 7 /.
34(t,0:Zt )i?f(z Yo,y SER(Zt 1 Y.00° s 51 500 @ (Y 1 ,0>2%) , (43)
y't!/
and the sequential source up quark propagator is

*
Eu(t,o,f,t’)z%: ( Z ’}/Sﬁ,ysg:)u'%(z,t’ 1y’t)3$’, ’)/5’7/{55“/'»[(1): (y,t//,o)?l%) , (44)
y,t”

which may be calculated by solving the matrix equations propagator is a factor of 2 over the cost for wall-wall corre-
lation functions. However, the resulting box-point correlation

functions yield smaller statistical errors.
ay’?

> SO MR ZH) G = S Di(Z,17;0)3
X,t//
(45 IIl. NUMERICAL RESULTS

where M is the Dirac matrix. Consequently, in terms of the  We have performed quenched lattice calculations using
sequential source propagator, the spin projected three-poitwo different gauge actions, the standard Wilson and the im-
function for the down quark is written proved DBW2[27]. Details and some relevant results of
both simulations are summarized in Tables II, lll, and IV. We
describe the nucleon matrix element results for each one

d 1 — .3 ¢r\ab (d)/ 3 +r.n\ba .
Gr(t.t') EZ: 24(t,0:2,t ap(1') gy Sp(Z,1:0)5q separately, then compare them and draw some conclusions.

(46)
and for the up quark is A. Wilson gauge action results atB=6.0
We have performed a quenched simulation on 3x1&2
lattice with the standard single-plaquette Wilson actioiB at
A .3 ¢+r\ab = 17.0\b
Gr(t,t )—22: Z(LOZ) AT 5 SER(2.L 10055 =6/g?=6.0 which corresponds to a lattice cutoff af !
(47) =1.922 GeV set by thg masg 18]. Quark propagators were

generated with four bare masses=0.02, 0.03, 0.04, and
In the case of keeping the up and down quark masse8.05, using DWFs with.g=16 andMs=1.8. The nucleon
equal, the total cost for computing the sequential sourcenatrix elements were averaged on a set of 400 gauge con-

0.780 0.780
=0.02 =
orsf M ozrsp Mi=008
0.770 T 0.770 _
Ny 0765 &y o7est = %
0.760 | f 0.760 | % %
0.755} 0.755 =
FIG. 1. Zy=1/g"°® Wilson gauge action, as
O e s 0z 14 s B T R VRET a function of the current insertion time slice. Note
t- by -ty the very fine scale. A good plateau for each quark
mass is observed in the middle range between the
0.780 0.780 source and sink. The lines denote central values
ogrsl. Mi1=004 g5l Mi=005 and statistical errors from constant fits over the
' ) plateaus.
0.770} - | 0770} %@
o ores| %%% - % % & orest %{% %§%
0.760} % 0.760 |-
0.755} 0.755 -
0.750 1 1 1 1 i 1 1 0.750 i 1 1 L 1 1 1
0 2 4 [} 8 10 12 14 16 0 2 4 6 8 10 12 14 16
-t t-t

SIC
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TABLE lll. More parameters for each action and each volume.

Gauge action(B) L3X N, Quark mass values Statisti@ype) m,_L
Wilson (6.0) 16°x 32 0.02, 0.03, 0.04, 0.05 4Qvall) =4.3
DBW?2 (0.87) 16°x 32 0.02, 0.04, 0.06, 0.08, 0.10 4l€equential =4.8
8%x 24 0.04, 0.06, 0.08, 0.10 4Q8equentigl =34

0.04, 0.06, 0.08, 0.10 40@vall)

figurations. Hadron masses computed on these lattices are This implies the existence of other systematic errors. As
tabulated in Table V. Preliminary results for the nucleonwas mentioned in the introduction, a large systematic error in
charges were first reported [24]. previous lattice calculations @f, came from the determina-
We calculated wall-source quark propagators on eackion of the renormalization constai@,. As shown above
Coulomb-gauge-fixed configuration for both periodic and anysing DWFs, the value of, is determined in a fully non-
tiperiodic boundary conditions in the time direction for the pertyrbative way, with or without explicit renormalization.
quarks. A simple linear combination of these propagatorsrhe systematic error stemming from the incomplete cancel-

then yields a forwardor backwardl in time propagator. To |ation ‘of renormalization factors in the ratio is less than 1%
compute the correlation functions, we employed the wall- lattice

. . . . . w w mparing, =1 nd Z Iculat
wall method described in the previous section with sourcc?as e saw by co pa @\{ oy a“d A ca cuged
. . , rom meson two-point functions. In addition, comparing the
locations fixed atq,.=5 andtg,=21.

i lattice lattice
 Fig e 3 e depindence of he vetor renomal£ 1% 36O bales o0 E OB E
ization Z,= 1/g&"°® on the location of the current insertion. ; , ’ gnitr
extrapolation, which was not very compelling. Another pos-

A good plateau is observed in the middie region between th%ible systematic error is the contribution of excited states, the

source and sink. The quoted errors are estimated by a singje ; . i
elimination jackknife method. The lines represent the aver-presence or absence of which was checked by slightly en

-~ ; ! . larging the separation between wall sourt¢gs(=5) and
age value and statistical error in th_e tlme-sllc_e ranget 5 tsink (=27). While the larger separation induces more noise
—ts=11. The mass dependenceyf is rather mild as seen . . . .
s . . in the signal, the central value g}, is essentially unchanged
in Fig. 2 and given in Table V1. The values 0.7681) for a for each quark mass; thus we cannot detect a systematic ef-
linear fit and 0.761(2) for a quadratic fit ain;=0 agree q ! Y

well with Z,=0.7555(3)[18], which was obtained from a fect outside of the statistical errors. Still, this source of error

calculation of meson two-point correlation functions Theappears to be small.
discrepancyAZ=|1—27,/2,]| is less than 0.6% which im- Detailed detection of quenching effects such as quenched

. 5 . . chiral logarithms, unsuppressed fermionic zero modes, and
pluce)sl_thit_theo_t(a ) erlzor that remains after taking they the absence of the physical pion cloud is beyond our scope at
— 0 Iimit1s quite smafl. . ._present since these require very light quark masses and cor-

As is seen in Fig. 3, plateaus are evident for the spin

R . . respondingly large statistics. Thus, by a process of elimina-
iepende<n;1dlst[||_lr)]utlon functionsu and Ar(]j in tr;]e range 5. tion we are led to focus on finite volume effects which we
\t_tS’Cche' us, we compute the charge Tatios jisoss in the next section. The volume employed for the
(9a/gy)™"™™" at eachm; by taking a weighted average Over q5icjations in this subsection is roughl.5-1.6 fm?

this time-slice'range.'ln Fig. 4 a stropg dependenc;eupn which can barely accommodate a proton with mean square
appears. A simple linear extrapolation ;=0 yields | ,jius estimated to be about 0.8 e,
0.812112), which is roughly 2/3 of the experimental value.

However, a simple linear ansatz may not describe the data,
which show increasing downward curvature for lighter quark
mass(note that the points are correlated in this quenched To determineg, in a large physical volume, sag(2
calculation since they are computed on the same gauge cofm)®, we have performed a DWF simulation on a lattice with
figurations. In general chiral logarithms may appear andlarger spacing. In general, it is difficult to maintain the good
were considered. In fact, the data are not compelling for suckhiral properties of DWFs aa increases at fixetls, espe-
terms, arising in either quenched or full chiral perturbationcially with the Wilson gauge actiofl8,19. It has been
theory[32,33. The results for each mass are reproduced irshown that the Iwasaki gauge action enables studies of
Table VI. guenched DWFs with smallérg than the Wilson gauge ac-

B. DBW?2 action results at =0.87

TABLE IV. The residual massn,.s, hadron masses, inverse lattice spaciaglc set by thep meson
masg, and the renormalization factor of the axial-vector curref)( The p meson mass and the nucleon
mass are given in the chiral limit in each case.

Gauge actiof) Mg Lg Myes m my a,jl (GeVv) Zy Reference

p

Wilson (6.0) 1.8 16 1.24(5x10°3 0.4048) 0.56621) 1.92340) 0.75533) [18]
DBW2 (0.87 1.8 16 5.69(26X10 4 0.58919) 0.78027) 1.314) 0.7775%45  [20]
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TABLE V. Hadron masses computed using Wilson gauge action 0.78
at8=6.0, 16X 32, Mg=1.8, L =16 from Ref.[28].

m; m, m, my

0.77 |-
0.02 0.268724) 0.453@62) 0.64512)

0.03 0.322421) 0.481445) 0.7145)
0.04 0.369119) 0.512642) 0.7546)
0.05 0.411618) 0.539536) 0.8055)

0.76 -

Zy

tion [19,36. Recent quenched studies by the RBC Collabo-

ration have shown that the chiral symmetry of DWFs is even

better with a similar type of renormalization group improved

gauge action, DBWZ20]. The chiral symmetry of DWFs

with DBW?2 is significantly improved over the Iwasaki ac- 0741 . ! . .

tion. A very small additive quark mas®,.s~0.8 MeV is 0.00 0.02 0.04 0.06

achieved on a lattice with " 1~1.3 GeV and_;=16. Good m;

scaling behavior of the light hadron spectrum is observed as

well [20]. _ I_:IG. 2. Qua}rllﬁ mass dependence of the vector curra_ant renormal-
To study finite volume effects numerical simulations wereiZation Zy="1/gy"*, Wilson gauge actiorinote scalg Lines de-

performed at3=0.87 (@~0.15 fm) on two lattice sizes33 note uncorrelated linear and.quadratllc fits to thg data points. Ex-

%24 and 18x 32 with L.=16 andMs=1.8. Our results are trapolategl v_alues are consistent with the _aX|aI-ve_ctor current

) : renormalization computed from meson two-point functiph®,22]

analyzed on 400 quenched gauge configurations for tho less than 1%

smaller lattice La~1.2 fm) and 416 configurations for the '

larger lattice La~ 2.4 fm). Hadron masses computed in this

calculation are summarized in Table VII. Meson masses ( general VéFZvVM*‘ O(a?,m@®) and A,=Z,\A,

andm,) for the 16x 32 lattice are evaluated from 100 con- +O(a”,msa®), whereV, and.A, denote the conserved vec-

figurations. tor currents. It is not so apparent in our data. A linear ex-
In this calculation, we utilize the sequential quark propa-trapolation yieldsZ,,=0.7952(13) atm;=0, while a linear

gator method to compute three-point functions as describeBlus quadratic extrapolation gives the value 0.129L The

in Sec. Il. We checked for consistency with the wall-wall RBC Collaboration obtained the renormalization factor of

method on the smaller®k 24 lattice. The sequential- and the axial-vector currenf, nonperturbatively from a calcula-

wall-type quark propagators in the Coulomb gauge werdion of meson two-point correlation functiori48,20. The

computed at five evenly spaced valuesnof ranging from  result found waZ,=0.77759(45) in the massless linh20]

0.02 to 0.10. The smallest quark mass corresponds to a piothich is smaller than the value &, obtained above by

mass m,~390 MeV. The nucleon source and sink were2—3%. This discrepancy may be caused by an o@fer’)

separated by about 1.5 fm, which corresponds to the saniattice artifact.

physical separation in time used in the calculation with the To explore this possibility further, we evaluate the renor-

Wilson gauge action g8=6.0. A preliminary version of the Mmalization factor of different vector currents. According to

results presented below was first reporteddd,35. Sec. Il, the conserved curred, guarantees that nucleon
First, we check whetheZ,=Z, is true even on this matrix elements of %™, V5, andV},—V% should be identi-

coarse lattice. The vector renormalizatio'd/° is plotted ~ cal. The local lattice current¥!, are renormalized a3,

against the location of current insertions in Fig. 5. The date= Z{,VL+ O(az):ZVVLJr O(a?) in the chiral limit. Figure 7

are calculated on the larger spatial volume with the sequershows the values ozt{, as well as the value da, from [20].

tial quark propagator method. We take a weighted average dfhe difference among values @f, appears independent of

1/g™ee with the three middle pointst(ty=4,5,6) to  m; within statistical errors, and the discrepancy between the

evaluate the vector renormalizati@y . The dependence of smallest and the largest is comparable to that betwgend

Zy, onmg is shown in Fig. 6 and given in Table IX below. In Z, noted above. We also note that the discrepancy is larger at

0.75

lattice

TABLE VI. Results for the nucleon axial chargau, Ad, andZ,=1/gy
=6.0, 16Xx32,M 5=1.8,Ls=16, 400 configurations.

, Wilson gauge actiong

mg (gA)Iattice (gA) ren (Au)ren (Ad)ren ZV

0.02 1.216106 0.92982) 0.73982) —0.18940) 0.7637123)
0.03 1.38076) 1.05659) 0.84054) —0.21526) 0.765417)
0.04 1.48059) 1.13546) 0.90340) —0.23719) 0.767113
0.05 1.54247) 1.18637) 0.94432) —0.24315) 0.768911)
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15k m;=0.02 15k m;=0.03
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3.
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0.0} W QW 0.0} ﬁ§o° @W
T O O o °*
) TR0
o5k k Xo) ¢ 05k * 0 o #
) ) ) ) L ) : . ; . , , , \ FIG. 3. The lattice estimates of the spin-
o s 10 15 2 25 30 0 5§ 10 15 20 25 30 dependent densitieAu (upper curvesand Ad
t t (lower curves for the Wilson gauge action. De-
cent plateaus are observed for each quark mass.
sk . m,;=0.04 Sl - . M=0.05 The lines denote ce_ntral values and statistical er-
* rors from constant fits over the plateaus.
Hytirggist *ssiiapnte
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this lattice spacing, by roughly a factor of (1.922/%,3han  propagatof30], against the location of the current insertion.
the corresponding one for the Wilson gauge action resultén this calculation, the sequential source propagator was cal-
discussed earlier. Of course, since the two gauge actiorsulated with a box source and a point sink, so the resulting
have differentO(a?) errors, the comparison is only a crude three-point function has no time reflection symmetry about
one. We conclude that,,=Z, is satisfied up to small dis- the midpoint betweety,. andtg, because excited state con-
cretization errors oD(a?) on this coarse lattice. tamination is worse for the nucleon propagating between the
In Fig. 8 we plot unrenormalized spin-dependent densitie®perator and the point sink. In Fig. 8 the plateaus appear
Au andAd, which are calculated with the sequential sourceshifted toward the wall source, as expected. Next we evalu-
ate the bare value @f?"*= Au—Ad at eachm;, shown in

20 Fig. 9 for both lattice volumes and tabulated in Tables VIII
and IX. g% evaluated on the smaller volume is clearly
smaller for each value af;, and the difference increases as

15k m; decreases. In contrag,, does not show much depen-
dence on the volume.

° . .
L% mmmmmmmm 5“'“"‘“"'"@' TABLE VII. Hadron masses computed using the DBW2 gauge
S 1of ‘““”"i’ ,,,,,,,, é action. All fits for p meson havey?/Npp<1.0, and<1.5 for pion
;j %MM»M“ and nucleon.
L3XN, m; m, m, my
oo 8%x 24 0.04 0.425688) 0.67916) 1.07113)
0.06 0.509434) 0.7299) 1.12711)
0.08 0.58680) 0.7767) 1.2059)

O o0s o oos 010 06567 0.8236)  1.29210)

my 16°x 32 0.02 0.3018.6) 0.647122 0.8546)

0.04 0.414616) 0.68110) 0.9635)

FIG. 4. The ratio of nucleon charges /gy, Wilson gauge ac- 0.06  0.505Q16) 0.7256) 1.0604)
tion, V~(1.6 fm)®. A marked decrease toward the chiral limit is 0.08 0.583415 0.7715) 1.1564)
evident. A linear fit significantly underestimates the experimental 0.10 0.654614) 0.8194) 1.2424)

value (asterisk.
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0.820 ) 5 o830k 3 FIG. 5. Z,=1/gy"*®, DBW2 gauge action,
E = V~(2.4 fm)?, as a function of the current inser-
L S & ossh tion time slice. Note the very fine scale, as in Fig.
¢ 3 1. We use the three middle points, the spread of
0810 0.8201- 3 which is less than 0.5%. The lines denote the cen-
0505 ¢ 0815 tral values and statistical errors from constant fits
’ ’ 3 over them.
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To compare to our previous DWF results with the Wilsonpresent case, we use the nonperturbative valugaofrom
gauge action, we plot the value aj{/gy)'®°® as a function  [20]. _
of (m,/m,)? in Fig. 10. The smaller volume results using ~ We plot (ga/gy) '3 and Z,x g'"°® together in Fig. 11
the DBW2 gauge actiong=0.87) are the sam@vithin sta-  and perform a simple linear extrapolation in each case. The
tistical errorg as our previous results using the Wilson gaugetwo methods provide consistent results in the chiral limit: the
action (3=6.0) on a slightly larger volume. The large vol- ratio method givegyx"=1.212(27) while the conventional

ume DBW2 results exhibit mild quark mass dependencenethod givegs"=1.188(25). In light of our earlier discus-
while both smaller volume results show a marked decreasgjon, the systematic difference, if there is one, is related to

toward the chiral limit. We conclude that our prEViOUS DWF- our choice of renormalization. A 2% error Stemming from
Wilson-gauge-action results were significantly adversely afz, 7, yields 0.024. This is also the difference in the central

fected by finite volume. values just obtained. Thus, we quote
Finally, we extrapolateg," to the chiral limit. For this
purpose, we have two methods. One is to extrapolate the gx'=1.212+0.027 stap =0.024 norm), (48)

charge ratios @, /gy)'*"® to the chiral limit where the rela-

tion Zy=2Z, is valid. The second method is the conventionalwhich underestimates the experimental value of 1.267 by
one utilized in all other calculation®2—8|. The chiral ex- less than 5%. We have not attempted to estimate residual
trapolation is performed 0g2"®x Z, . Recall that the latter nonzero lattice spacing, finite volume, explicit chiral symme-
requires the value af 5, whether nonperturbatively or per- try breaking, and quenching effects. The first three are prob-
turbatively calculated, while the former does not. In theably small[18—20. The only remaining error not under good
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FIG. 6. Same as Fig. 2 except for the DBW2 gauge action, large FIG. 7. Determination of the vector current renormalization
volume. from 1/ (squares the electromagnetic currefitircles, and
the d quark curren{diamonds. The axial-vector current renormal-

control is the quenching one which does not appear to biation (asterisks [20] is shown for Compagson'_The different
large [5,6], in light of the relatively good agreement with renormalization constants differ becauseOgfa“) lattice artifacts.
experiment shown above. This view does not change unless
significant nonanalytic behavior, which we did not detect The dependence of the produofgs on the lattice vol-
here, arises near the chiral limit. ume is of interes{see Fig. 12 While the smaller volume
We note that Jaffe recently showed that in the chiral limitresults always lie below the larger volume ones, within one
the nucleon axial charge is delocalized, and he argued th&tandard deviation they almost always agree. There is only
this leads to a large reduction Wy calculated in a finite One exception atm;=0.08 in the bare lattice result. No
volume surrounding the nucledB7]. Subsequently, Cohen Volume dependence is detected. This is in clear contrast to
showed that in a finite volume with periodic boundary con-the situation of the axial charge alone. Since the product is
ditions pertaining to lattice calculations, this phenomenorthe one that appears in the Goldberger-Treiman relation, it
does not lead to a reduction @, [38]. However, as empha- Wwould be interesting to see how its counterpart, the induced
sized in[38], this does not preclude other large finite volumepseudoscalar form factor, behaves at small momentum
effects. transfer.
As mentioned above, this calculation @f is performed
for relatively heavy quark masses; the quenching error at this
unphysically large mass scale is probably small. However,
one may worry that such a calculation does not capture rel- In this paper we have studied the nucleon axial charge and
evant physics in the region where the quark mass is mucthe vector charge in quenched lattice QCD. To capture im-
lighter, and the so-called “pion cloud” surrounding the portant aspects of the chiral symmetry of QCD, we used
nucleon becomes important. Nevertheless, the valuggdf domain wall fermions to simulate the light quarks.
at these heavier quark masses already lie just a few percent We first demonstrated that the lattice renormalization of
below the experimental value and show little dependence othe isovector vector and axial-vector currents satisigs
the quark mass. This presents an important question concers-Z, to a high degree of precision, less than 1%aat
ing the role of the pion cloud: is it a few percent effect, as~2 GeV and about 2% &~ '~1.3 GeV. This is achieved
seems plausible from our first principles calculation, or is itbecause in practice the DWF method preserves the chiral
larger, as estimated from phenomenological mofe®y? symmetry of QCD up to small corrections and hence main-

IV. CONCLUSIONS

TABLE VIII. Results for the nucleon axial chargdu, Ad, andZ,=1/g'¢""®, DBW2 gauge actiong
=0.87, &x24, M 5=1.8,Ls=16, 400 configurations.

mg (gA) lattice (gA) ren (Au)ren (Ad)ren ZV

0.04 1.308146 1.059120 0.69099) —0.36999) 0.819165)
0.06 1.34274) 1.09962) 0.817152) —0.28245) 0.824235)
0.08 1.37846) 1.13639) 0.87632) —0.26025) 0.831724)
0.10 1.39830) 1.16526) 0.90221) —0.26315) 0.840318)
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FIG. 8. Au andAd. Same as Fig. 3, but for
the DBW2 gauge action, sequential source, and
V=(2.4fm)%. The plateau is shifted toward the
wall source because the point sink allows more
excited state contamination.

tains the relevant Ward-Takahashi identity. This holds if theFor the DBW?2 action the lattice spacing may be significantly
underlying (quenchell gauge configuration is sufficiently larger while still maintaining good chiral symmetra (*

smooth. Ensembles of such gauge configurations are ob=1.3 GeV).
tained close to the continuum limit. For the single-plaquette Our first calculation ofg, with the Wilson gauge action
Wilson gauge actiof8=6.0 (a~1~2 GeV) is good enough. was performed a=6.0 on a 18x32 lattice. The corre-

=0.87, 16x32, Ms=1.8,L,=16, 416 configurations.

lattice

TABLE IX. Results for the nucleon axial chargau, Ad, andZ,=1/gy

, DBW2 gauge actiong

mg (gA) lattice (gA) ren (Au)ren (Ad)ren ZV
0.02 1.53160) 1.22949) 0.94544) —0.28427) 0.804@19)
0.04 1.52824) 1.23020) 0.94617) —0.28410) 0.81159)
0.06 1.51015) 1.23012) 0.95310) —0.2776) 0.81846)
0.08 1.50%511) 1.2369) 0.9637) —-0.2734) 0.82605)
0.10 1.5088) 1.2487) 0.9756) —0.2713) 0.83475)

054509-13



SASAKI et al.

lattice
9a

2.0

1.8

1.6

1.4

1.2

(=5 <

Sy e

R e

(ga)"

PHYSICAL REVIEW D 68, 054509 (2003

exp

1 ga=1.267

1or 11k lattice
® (ga/gy)

0.8 lattice X Zp

B ga

0.6 1 1 1 1 1 I 1.0 ! 1 1 | 1 1 1
000 002 004 006 008 010 0.12 000 002 004 006 008 010 0.2

my my

FIG. 9. Dependence of the unrenormalized nucleon axial charge FIG. 11. Two methods to obtain the physical nucleon axial
on quark mass and lattice volume. Results from the sequentiatharge, the ratio of axial-vector to vector chakgécles, and the
source methodcircles and the wall source methdadsterisks on lattice axial-vector charge times the axial-vector current renormal-
the smaller lattice show good agreement. The sequential methddation factorZ, in the chiral limit from Ref.[20]. They show
provides somewhat smaller statistical errors than the wall methodslightly different quark mass dependence, but extrapolate to consis-
The larger lattice resultsolid circleg, obtained with the sequential tent values. Each underestimates the experimental \akterisk
method, exhibit higher values than the smaller lattice ones over thby roughly 5%.
entire range of quark mass studied.

dently obtained from the axial Ward-Takahashi identity. We
sponding spatial volume (1.6 fm)? is similar to those used found that both the axial charggs ' and its ratio to the
in previous lattice calculations. This volume is rather smallvector charge g /gy) " exhibit a very strong dependence
in comparison with the experimentally measured protoron the quark mass. A simple linear extrapolation of
charge radius. On this lattice we found that all the relevanfga/gy)'®"°® to zero quark mass yielded a very small value,
three-point functions are well behaved and that we can reliabout 2/3 of the experimental one.
ably extract the charges. The isovector vector current renor- The second quenched calculation employed the DBW?2
malization Z, determined from them agrees well with the gauge action with3=0.87 set for a coarser lattice spacing,
corresponding axial current renormalizati@ , indepen- a~0.15fm. This allowed a larger physical volume while
maintaining good chiral symmetry. To study pure finite vol-
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FIG. 10. The physical ratio of nucleon charges. DBW2 gauge
action results on two different physical volumés4 fm)® (solid FIG. 12. The lattice volume and quark mass dependences of the
circles and (1.2 fm)® (open circles reveal the existence of a sig- product myg, (renormalizedl Closed (large volume and open
nificant finite volume effect. Wilson gauge action resultia- (small volume circles. All agree within one standard deviation. No
monds, V~ (1.6 fm)?, also appear to be affected by finite volume. volume dependence is detected.
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ume effects, at fixed lattice spacing we calculated on latticeBNL-Columbia(RBC) Collaboration. In particular, we thank
with sizes 18x 32 and §x24[~(1.2 fm)® and~(2.4 fm)®, Yasumichi Aoki for his help in optimizing the box source
respectively. A significant dependence on the volume is seersize, Norman Christ for his careful reading of the manu-
in both the axial chargegf®® and the charge ratio script, and Chris Dawson for helpful discussion on
(ga/gy)'3 with the larger volume giving larger values. In O(a?,msa?) corrections in local current renormalization.
contrast,g,, does not show such dependence. The depenFhanks are also due to RIKEN, Brookhaven National Labo-
dence on the quark mass is also different. In the larger volratory, and the U.S. Department of Energy for providing the
ume the central values remain almost constant, while in th&cilities essential for the completion of this work. The nu-
smaller volume they decrease noticeably with the quarknerical calculations were done on the 600 Gflops QCDSP
mass. In the chiral limit the two differ by about 20%. The computer at the RIKEN-BNL Research Center. S.S. thanks
behavior ofg, in the smaller volume is quite consistent with the JSPS for a Grant-in-Aid for Encouragement of Young
that observed in the earlier calculation with the Wilson gaugeScientists(No. 13740146

action.
Our estimate of g5/gy)"™" at zero quark mass from the APPENDIX: CURRENT ALGEBRA AND CVC
larger volume with DBW2 action is 1.2120.027(stat) HYPOTHESIS

+0.024(norm). The systematic error is estimated from the - A 3o jAre ey 2
2% difference betwee, and Z,, which are theoretically Defining the charg@y=i/d"x Vo(X,1),” the transforma-

equivalent toO(a?), neglecting even smaller effects induced tion for the quark fields in the isospin $2) subgroup of the
by explicit chiral symmetry breaking in DWFs. It underesti- SY(2)X SU(2) chiral symmetry can be represented by

mates the experimental value of 1.2630 by less than 5%. [Q3,y(x)]=—T2(x), (A1)
This discrepancy is smaller than twice the theoretical error.
Thus dependence on the volume seems to be the largest [Q2 W)=+ P(x) T2 (A2)

among the known sources of systematic error for the first

principles lattice calculation of 5. This suggests that close _

attention be paid to the finite volume effect in other latticewherey=(u,d)" andV?(x) = ¢(x) 7, T*¥(x). One can eas-
numerical studies of nucleon structure, in particular the moily find that the axial currenAi(x)zJ(x) YsYuT2(x) and

ments of spin-polarized structure functions, which are relategector currentv? transform under isospin symmetry as
to the axial charge. .

b o
It should also be noted that although the crucial relation [QV,Va(X)]=ieancVp(X), (A3)
Zy=1Z, is satisfied well in the second calculation, we de- a b . .
tected smallO(a?) differences among different determina- [QV, AL ]=ieapAL(X). (A4)

tions of Z,,. Such differences were not detectable in the first
set of simulations with the Wilson gauge action at According to the above S@) current algebraA; andV;
~0.10 fm. Numerically this is at most a few percent effectcan be expressed as
and does not affect the volume dependence. . — . L3

As discussed at the end of Sec. IIl, the present calculation AL (X)=(X) v, ysT ()= —[Qy . AL(X)],  (A5)
of ga was performed using relatively heavy quark masses . _ .
(390<m, <860 MeV) so that the systematic error arising Vi (X)=(X) y, T (x)=—[Qy ,Vo(x)], (AB)
from quenching may be small. However, one may worry that

such a calculation does not capture the physics of the piofyhereT*=T,=+iT,. Hence, under the CVC hypothesis, one

cloud surrounding the nucleon. In spite of this, the values otan find
ren

g, at these unphysically heavy quark masses lie just below

the experimental value and show little, if any, dependence on  (p|A}In)=—(p|[Qy ,A>]|n)

the quark mass. It is also interesting to note that the product 43 3 A4

myga shows noticeably less volume dependence. Since this =—(plQuALIN +(p|ALQy(n)

is the combination that appears in the Goldberger-Treiman :<P|Ai|p>_<n|Ai|n>:2<p|Ai|p>- (A7)

relation, it would be interesting to see how its counterpart,

the induced pseudoscalar form factor, behaves at small but . N N
nonzero nucleon momentum. The third line follows fromQy, |n)=|p) and(p|Qy =(n|. A

similar calculation for the vector case yields the relation
+ _ 3
ACKNOWLEDGMENTS <p|VM|n)—2<p|VM|p>-
We thank Roger Horsley for his private communication

providing the clover results prior to publication. We also 2This definition of Q2 is slightly different from the one ifi28].
thank the other members, current and past, of the RIKENThe only difference is a factor af2.
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