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We derive the quark mass dependencerrﬁ,f, maw > and f_, using chiral perturbation theory, which
includes thea? effect associated with the explicit chiral symmetry breaking of the Wilson-type fermions, in the
case of thé\;=2 degenerate quarks. The distinct features of the resul{d gilee additive renormalization for
the mass parameten, in the Lagrangian(2) O(a) corrections to the chiral lognf,logm,) term, (3) the
existence of a more singular term log generated by? contributions, and4) the existence of botglog my,
and logm, terms in the quark mass from the axial Ward-Takahashi idemtty, . By fitting the mass
dependence ormf, andmy,, , obtained by the CP-PACS Collaboration fdf=2 full QCD simulations, we
find that the data are consistently described by the derived formulas. Resumming the most singular terms
logm,, we also derive modified formulas, which show a better control over the next-to-leading order correc-
tion.
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[. INTRODUCTION In this paper, we investigate the theoretically more natural

alternative that the explicit breaking of the chiral symmetry

One of the most serious systematic uncertainties in th®y the Wilson-type quark action modifies the formulas of

current lattice QCD simulations is caused by chiral extrapoChPT at the finite lattice spacing. We first derive formulas in

lation. Because of the limitation of the current computationatthe modified chiral perturbation theory for the Wilson-type

power, one cannot perform simulations directly at the physiduark action, denoted by WChPT in this paper. Such at-
cal light quark(up and dowih mass. Instead, one has to per- t8mpts have been made before at the leading digleand
form simulations at several heavier quark masses and efhe next-to-leading ordef4]. At the leading order[3],

: : : ChPT predicts the existence of the parity-flavor breaking
trapolate the results to the physical quark mass point, using o
polynomial (linear, quadratic, etc.or the formula derived P12S€ transitiofi5-7] for two-flavor QCD as long as mass-

from chiral perturbation theorgChPT) [1]. These extrapola- less pions appear at the critical quark mass. This analysis has

tions cause large systematic uncertainties, in particular in thgls‘0 shown that the(a”) chiral breaking term plays an
; ) > ntial role in generating th rity-flavor breaking ph
case of full QCD simulations, where the lightest quark mas ssential role in generating the parity-flavor breaking phase

. . . ) Sransition, which is necessary to explain the existence of
employed in the current QCD simulations is roughly half of .., <jass pions for the Wilson-type quark acfisa7]. In the

the physical strange quark masa {/m,=0.6). next-to-leading order analys[€], however, only theD(a)
Recently, a more serious problem has been pointed out, ifreaking effects are included, and it is concluded that the
particular, for full QCD simulations with Wilson-type effect of the chiral symmetry breaking can always be ab-
quarks: the expected chiral behavior predicted by the ChPEorbed in the redefinition of the quark mass, so that all for-
has not been observed. For example, the behavior of the pigfiulas in ChPT remain the same if one replaces the quark
massmfT as a function of quark masg, is given by massm, with my—m,, wherem, is the additiveO(a) coun-
terterm for the quark mass. In Sec. Il, we perform the next-
to-leading order calculation in WChPT includif(a?) chi-
ral symmetry breaking effects. To make the difference
between WChPT and ChPT clear, we consider only the case
of Ny=2 QCD with degenerate quark masses, and derive the
formulas for the mass and decay constant of the pion as well
whereA is some scale parameter. Since the pion decay cor@s the axial Ward-Takahashi identity quark mass, as a func-
stant is experimentally known &s,=93 MeV, only A and  tion of the “quark mass” in the effective theory. In Sec. Il
A are unknown parameters. Unfortunately, such a twolhe derived formulas are applied to the data of the pion mass
parameter fit cannot explain the lattice data well, which lookdnd the axial Ward-Takahashi identity quark mass calculated

almost linear in the simulated range of quark masses. If onBY the CP-PACS r?orlllat?orati(?[ﬁ]. We hShOW that thedd?]ta
includesf . as a free parameter, the best fit typically gives2'€ consistent with the formulas. We have attempted the re-

ffT>5><(93 MeV)2 [2]. summation of the most singular term, and have derived the

i . . - modified formulas in Sec. IV. Our conclusions and discus-
The most widely accepted interpretation for this dlscrep-siOn are given in Sec. V.

ancy is that the simulated range of quark masses in the cur-

mZ=Amy| 1+ ﬂlog(AmqlAz) 1)
" 16m2Nf2 ’

rent simulations is still too heavy to apply ChPT. If this II. WILSON CHIRAL PERTURBATION THEORY
interpretation is true, the current lattice simulations with the o ) _

(Wilson-type dynamical quarks lose a large part of their A. Derivation of effective Lagrangian

power to predict properties of hadrons at the physical light It is difficult to derive the effective chiral Lagrangian for
qguark masses. mesons directly from lattice QCD with Wilson-type quarks
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using the symmetry, since the quark mass requires a counteshere 772(x) is the pion field,t?=c¢? is the ordinary Pauli
term m., which diverges ag?/a near the continuum limit, matrix, andf is the pion decay constant, whose experimental
so thatm.a=0O(1) and the conventional power counting of value is 93 MeV. The norm and the unit vector of the pion
afails. Therefore, following the proposg8,4], we overcome fields are given byr?= - w=3 ;77 and =7/, re-

this problem by first matching the lattice QCD to an effectivespectively. As discussed in R¢B], the vacuum expectation
continuumlike QCD including the scaling violations in yalue 3, may have a complicated structure, leading to the
higher dimensional local operatof8], and then match the gspontaneous breaking of parity-flavor symmetry, but in this
latter to the effective Lagrangian for the Wilson chiral per- paper, we stay in the phase without this symmetry breaking,
turbation theory. so that3y=1,,,. Under chiral rotation, this field is trans-

Close to the continuum limit, the lattice QCD can be de-formed as S—L3SR'. Under the transformation that
scribed by an effective action in the continuum, which is;_, _ 7 called “parity” in this paper,S —31.

expanded in powers af as Using this field, we define the following naive operators
for scalar(S), pseudoscalaiP), vector(V), and axial vector
Sui=Sot+aS,+a2S,+ - - -, @ () S, p aP) (V)
where S; contains chiral noninvariant terms only, whif 1

1
contains chiral invariant as well as chiral noninvariant terms.  S°= —tr(S +3"=cog#/f), SP=—trt32+3")=0,
. . . L 4 4
By using the equation of motion and the redefinition of the

quark field, quark mass, and coupling constant, only one ®)
term is relevant ir5;: 1
_ P°=Ztr(2—2T)=O,
Sl=al’11,00'lu,,|:#,,(//+- s (3)

1 R

A similar analysis can be done f&, [10]. P= _trt3(3 -3 ") =i#7?sin(w/f), 9
We now derive the effective Lagrangian of WChPT from 4
S, Using the symmetries & such as parity, axis inter- 1 1
change symmetry(rotational invariance in the continuum | 0_ Zy(v5 st—g [2=Zgtasg st 10
limit), and chiral symmetry. The last one is explicitly broken mo2 (20,2)=0. Ly 2 (2942, (19
not only by the quark mass but also by the breaking terms
in S, and S,, whose coefficients are denoted agi o_ L1 ot B a_ L oot
=1,2,3...). One cammakeS,4 formally chiral invariant by R.= 2”(E 9u%)=0, R.=5trt (219,2), (1)
transformingm and ther;’s to compensate the chiral varia-
tion of ¢ and . For example, if one writes the quark mass 0_ } 0. 0y _ 0_ E 0 B0y _
term as Va=5(La+ Ry =0, Au=5(L,~R,)=0, (12
YMPRy+ yM TP 4 1 . abe™ b s ~o s
YMPrY+YMIPLY, @ V=5 L+ R%)=ie* 7P sin(w/f)a,[ m° sin(m/f)],
this term is invariant under (13
RIS t 1 -
Vo (RPeFLPOY, 0 dLPet RO, O) pa 2 (13— Ra)=i{72 sin(mi1)a,[cog m/1)]
M—LMR", MTSRMILT, (6) .
—cog 7w/f)d,[m®sin(=/f)]}, (14

whereR andL are SU\;) chiral rotations. The usual mass
term is recovered by settingl =MT=m. Similar transfor-
mations can be defined for tmgs, but we do not give them
explicitly since their details are irrelevant for later discus-
sion. From this argument one concludes that the effectiv
Lagrangian of the WChPT should have thigeneralizey
chiral SUN¢)r® SU(Nf), symmetry.

As mention in the Introduction, we consider thg=2
case to make our argument simple and clear. In this case, ﬂ?)ee
chiral field for the pseudoscalar mesdp®ns is given by

where the superscripts 0 ardmean the flavor singlet and
triplet, respectively. We also introduce left-handgd and
right-handedR) currents for later use. Due to the speciality
of the Ny=2 case, some of the above operators are identi-
%ally zero. Here we do not consider the ten€br operator,
which must contain two derivatives, since it does not con-
tribute to the one-loop calculation in this paper.
Now we construct the effective Lagrangian, which must
invariant under parity, axis-interchange symmetry, and
(generalizeg chiral symmetry. In the one-loop calculation,
3 which gives the main contribution at the next-to-leading or-
. . aronea der in chiral perturbation theory, it is enough for us to con-
E(X)_EOEXP{ 'a; (0t /f} struct the effective Lagrangian up to ordeywherem s the
R quark mass in the effective theory. On the other hand, we
=3 [coq w/f)+imit?sin(w/f)], (7) must include theD(a?) effect to realize massless pions at
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a#0 [3]. At the next-to-leading orde)(m?) counterterms Wy, W, ,V,~0O(a) if nonperturbativelyO(a,ma) improved
(Gasser-Leutwyler coefficientsire also needed. We do not fermions are employed for the lattice QCD action.

include, however, these terms in our effective Lagrangian, For later use, we define the operators in the effective
since we do not intend to determine them in this paper. Intheory, which correspond to the ones in QCD upla):
stead we introduce arbitrary scale parameters in thempg(

terms which appear in the one-loop integrals. Roughly{S°]=ZsS%{1+cg(S°—1)}, [P¥]=ZpP31+cp(S'—1)},

speaking, we consider the situation that 4=m=p?=a? (21
=ma=p?a=m?=p*=mp?, so that all terms up tona or
2 . . - - B - . . ~
p<a in this inequality will be included in the effective La- [V2]=CV0MSO, [VZ]:ZVVZ{1+CV(SO_1)}' (22)
grangian.
The chirally invariant contribution at the leading order, - a 0 ~ a
which has the least number of derivatives, is constructegfa‘ﬂ]_ZA{A#[1+CA(S 1)]1+Cad,uP% (23

from L% or RY as follows: - _ .
wherecgp v A andc, y areO(a) in general, olO(a“) if the

3 3 ; lattice action and operators are nonperturbative(g) and
22, LiLi=22 RiR,=t(3,3'9,3] O(ma) improved.
=2{d,[cog w/f)]d,[cog m/f)] B. Next-to-leading order calculations
+o [wesin(m/f)]o.[72sin(#/f)]t, (15 To perform the next-to-leading ordéone-loop calcula-
plmsin(a/ )], [m=sin(m/ D]}, (19 tion, we expand_ .4 in terms of the pion fieldr® as
LOL°=ROR%=0. 16
reone - L 2| g a+c1_2022+1[(a)2
. _ Lo . =const- | 9,7 d,m T — | (7 d,m
Note that theRfLLj‘L term is prohibited by parity invariance. —ff 20 7#T Tp §2 6f2 IS

The chirally noninvariant parity-even term accompanied by
one power ofm, r;=0(a) or ri-,=0(a?), is uniquely
given by S°. The chirally noninvariant terms whose coeffi-
cients includer§=0(a2) or ri-m=0(ma) are given by
()% 2a(P?, or tr(X+37)% For theN;=2 case, how- and the operators as
ever, the latter two terms are not independent, as evident

from the expressions=3_,(P?)?=(S%)?~1 and tr®
+37)2x(S%2. An independent term aD(ap?) is given [SP]=Zg
uniquely by  Soxtfd,279,3],  since  tf(S

(m%)?

414

+

3
1+ ECO) (0,73, ,m)m (8c,—cy) (24

7T2 7T2 7T2
o e | = - (1+
! 2!f2)(1 CSZ!fZ) 25{1 TEA

+31M3,379,5] is not independent for S@). (25
Gathering all terms up t,p?, a?> andma,p?a, the ef-
fective Lagrangian becomes o w?
[Pa]ZIZpT 1_W(1+3CP) , (26)
f2 !
Le=[1+Co(S'~1)]tr{9,373,3} — 87+ cx(S)?,
o mt i
(17 [Vi]=iz,e**— —| 1- —(1+3cy) |, (27)
where parametersy, ¢4, andc, have leadingn and a de- f 3
pendences as
0 ~ 7T'(7#7T a2
Co=Woa+O(m), 18 [Vul=—cv—F 1_3lf2 , (28)
C1=W1a+ Blm, (19)
) ) as ~ d,m 2(?#71'6‘772 3Cp+Ch
c,=W,a%+V,ma+O(m?). 20 [A]=1Za (14 CA) 3f3 +—
Sincec, is dimensionless and; andc, have mass dimen- a ~
sion 4, Wo~A[1+0(Aa)], W;~A°[1+0(Aa)], W, L2 “"9#”( - C_A) (29)
~Af[1+0(Aa)], V,~AY1+0(Aa)], B;~A3, whereA 3f3 2

represents some mass scale of the theory sudh,ag. The

(subleading a dependence of these parameters comes from Using the pion propagator at the tree level, which is given
the chiral breaking terms af2S, in the effective action Eq. by

(2), which correspond to;~,=0(a?) terms inc, andc;, or

ri-ri=,=0(a% andm-r;~,=0(ma?) terms inc,. Chirally 1

invariant parameters such dsreceive O(a?) corrections (m(—pP)7(P))o=Sab—5 > (30
from chirally invariant O(a?) terms in aS,. Note that p=+mg
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2 2

C1—2C, ~ mg mg
s (31) fﬂ.=f(1+CA) 1—m(1+Cfﬂ)|OgP
T

f2

2__
my=

. (40

we evaluate the loop integrals as usual: _
wherecfﬂ:3cA/2— 11ca/6—3cy/4. Note thatf , receives an

2 2 ~
a by _ o Mo O(a) correction even in the chiral limitf ,=f(1+cp).
(m2007(x)) = ol 5ab167.,2 IOgAZ’ (32) Similarly, we have
(9,m3(X)d,m(X)) =6 %(—mzl) (33 a b a )b 2512 (147
g v ab7g {7 Mol): (FuLALIC0 TR(Y)) = (TR TR(Y))oV2FMZZM (1+Cp)
where we introduce an arbitrary scale paraméteesulting | ~
after removal of the power divergences of loop integrals by _ _( 90A_3CA) (41)
the local counterterms. Therefore, although we use the same 3f2 2 ’
symbol, thisA varies depending on physical observables.
The inverse pion propagator at the one-loop level is cal- 2
. &p
culated as ([P0 mR(Y)) =1 (R0 m(Y))
1 I 9cy
L@==(9,m)? 1——(2+—) 51
ot = 2 (%u 3f2 2 x 712 1—W(1+3cp) . (42)
| Col
+-m mjl 1— —(1—9c¢q) | + ——
2™ | 0( 6f2( 0)) f4 ] Then the partial conservation of axial-vector curré€AC)
quark massnpy, is given by
2}[(& 7TR)2+m277§ (39
22 " (@A mR(Y)) V282
Mawi = a b =57 Mz(1+Ca)
where ([PEI(x)me(y))  '4p
m=2"mg, (35) mg ~ mg
1- ———(1+3cp—1lca/3—5¢p)log—
B 327721‘2( A A P) gA2
7=|1- L[4 200 36
= _ﬁ +7 ) (36) _1+EA " méCmAWI+1&:2/f2| ma 43
2 2 2 2B, 0 32m%f2 rzl 43
m m 5c m
m2=mj| 1+ %(1+600)Iog—2+ §4Iog—2 . _
327%f A% 167%f4 T A where  1/(Bg)=12f%/(iZp) and cp,, =6Co—3Ca
@D 115,/3+5c,.
For the axial-vector current, we obtain Let us recall the leadingn and a dependences of the
parameters:
iZp ~
([ALI)TR(Y)) = Bab—— (0, mR(X) TR(Y))0Z Y7 (1+Cp) ComWoa, Ci—Wia+Bym, cy—W,a®+Vyma,
(44)
| 9ca—3C
——(4+ A A) : (38) ~
3f2 2 Cp:Wpa, CA:WAa, CA:WAa, (45)

therefore the decay constant at the one-loop order becomes . . .
and then the pion mass at the tree level is written as

iz mg 3cy 1icy
fr= ﬁfzf(”CA) e\t e _,_C1-2c,  M(By—2Va)+aWs—2a°W,
; , N E 2
Co Mg
- T)' e (39 =A(m—m,)=Amg (46)
Taking Z,= —i+2f2, we have where
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TABLE |. Parameters oN;=2 full QCD simulations by the CP-PACS Collaborati8]. The scalea is

fixed by m,=768.4 MeV.

B L3XT Csw a (fm) a ! (Gev La (fm) m,/m,
1.80 12x24 1.60 0.2152) 0.917894) 2.58026) 0.55-0.81
1.95 16x 32 1.53 0.1558L7) 1.26914) 2.48927) 0.58-0.80
2.10 24x 48 1.47 0.107@.3) 1.83422) 2.58331) 0.58-0.81
2.20 28448 1.44 0.086633) 2.28187) 2.0779 0.63-0.80
B,—2aV, W, —2aW, Note that herem./a=0(1) and we recover the distinction
= 5 v Me=—ag—5-y— Mr=M—Mm. among scale parameterd ( Ag, Aawi, OF Agecay-
f 17 caVa @7 These results reveal the following features of WChPT. In

Here it is noted thatm.;=0O(a) does not correspond to
1/(2K,.) in lattice QCD, since the &/ contribution to the
quark mass is already subtractednm Furthermore, fom
<m., the pion would become tachyonim§<0). As dis-
cussed in Ref[3], however, as long as,=W,a?+V,m.a
=0(a?)>0, the parity-flavor symmetry breaking phase
transition[5—7] occurs atm=m.,=0(a), so thatmj is al-
ways positive. In other words, th@(a?) contribution inc,

is necessary for the consistency between the PCAC relati
(mfr~ my) and the absence of tachyohs.

terms ofmg anda:

mg(A+wjia)  Am Wpa Am
2 R 1 R 0 R
ms=Amg| 1+ + lo ,
TR 327212 O AZ | 3om2f2 0 A2
(48
AWI 2
mgwia  Amg od Amg
Maw =ApMg| 1+ lo + lo ,
A = RoMR 2 ez 09\ T gpnere 09 A2
(49)
- me(A+w3ds)  Am
f,=f(1+Cp)| 1- —————log—— (50)
16’7Tf Adeca
where
B 10V, 10/ myV,
W1—6W0+ f2 y Wo—f_2 a +W2 ’ (51)
11 3
WM =w, — 3W,+ ZWa+5We, woeca >Wa
11. 3
~ g Wa~ zWo, (52
A(1+¢Cp)
Ay= ————=1+0(a). (53)
2By

0n the other hand, i€,<0, no massless pion appe&#i.

general, the chiral log termsrzglog mg) receiveO(a) scal-
ing violation. In addition to this, th@? contribution gener-
ates a logng term inm2., which is more singular as a func-
tion of mg than the usual chiral log termmglogmg.
Furthermore, both theng logmg and logmg terms are gen-
erated inmyy, by the scaling violationgD(a) for the former
andO(a?) for the latter. The coefficient of the logs term
in My, is the same as the one nnfT

In the next section we employ the above formulas to fit
the full QCD data obtained by the CP-PACS Collaboration

9.

We summarize the result of the one-loop calculation in

IIl. ANALYSIS OF CP-PACS DATA

In this section, we apply the WChPT formulasrtﬁ, and
May in theN;=2 full QCD with the clover quark actiof8].

A. Data sets and WChPT formulas

The CP-PACS Collaboration has performed large scale
full QCD simulations with the renormalization group im-
proved gauge action and;=2 (tadpole improved clover
quark action, at four different lattice spacingsand four
different quark masses at eaahas summarized in Table I.

7

\
6.5

4.5

Ofl O.iS
m, (GeV)

1
0.05 0.2 0.25

FIG. 1. The WChPT fits fome andmy,, at eachB. Results are
shown forme/mAWI as a function ofmy,, . For comparison the
standard ChPT fitsw;=wy=0) are also included.
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TABLE Il. Parameters of the WChPT fit at eagh

B K. A (GeV) A (GeV) w;a (GeV) woa?(GeV?) wiV'a (GeV) x*/DOF
1.80 0.14776(15) 5.11428) 0.07919 —5.52564) 0.20622) —0.56074) 0.3
1.95 0.14216(19) 5.377133 0.19351) —5.16274) 0.24142) —0.457118) 0.3
2.10 0.13911(12) 5.80714) 0.69420) —5.2418) 0.41750) —-1.1527 0.2
2.20 0.13769@3) 5.66971) 0.12§88) —5.1520) 0.03916) —-0.2239) 0.7
Resummed WChPT
1.8 0.14756015) 5.11129) 0.06712) —4.86246) 0.78721) 0.12415) 15
1.95 0.142000) 5.36623 0.13215) —4.53852) 0.62418) 0.31032 0.3
2.1 0.13895013) 5.53547) 0.13172) —4.7914) 0.28037) 0.18149) 1.2
2.2 0.13765736) 5.789106) 0.39182) —-4.6312) 0.20195) 0.19596) 0.8

In Ref.[8] the data forme andmpyy, were published. Unfor- f, we fix f=93 MeV.2 Even in the simultaneous fit, the

tunately, the data fof,. at each quark mass are not available.number of independent fitting parameters is still too large.
We define the quark massg in the WChPT theory in  Since theoreticallyA,=1 in the continuum limit and the fit

terms of the hopping parametkrin lattice QCD as with Ag=1 becomes more stable, we #g=1 in our fit. In
order to reduce a number of parameters further, we set
m| m 1 1 Aavi=Ao=A, so we finally have six independent param-
= — | — - AWI 0 ’
MR=Zm 1+bmau0 Uo’ ma=ox 2K’ 54 etersK., A, A, wy, wi"', andw,, for eight data points.

. - . _ Figure 1 shows data and fits fmf,/mAW, as a function of
where K is the critical hopping parameter, ang is the  m,,, at eacha. For comparison, the results by the fit with
tadpole  improvement  factor, given by up=(1  standard chiral perturbation theoryv{=w,=0) are also
—0.8412B)"*. This mg is identical to the renormalized gjven. It is manifest that the WChPT fits perform much better
VWI quark mass in Ref[8]. By definition,m2=0 atmg  than the ChPT fits. The parameters extracted from the fits are
=0 in lattice QCD. We identify thisng in lattice QCD with  given in Table Il. Note, however, thaf per degree of free-
mg in WChPT, sincem?, and thereforen?, must vanish at  dom (DOF) shown in the table has not been reliably esti-

mg=0 in WChPT. We also use the renormalizex,, de- mated due to the correlation betwemﬁ; andmpyy, , which is

fined as not given in Ref[8].
In Fig. 2, A, A, wya, wi"'a, andwga? are plotted as
_ ﬂ bare 55 functions ofa, together withK. as a function of the bare
Mawi Mawr - (55 . .
Zp gauge coupling constamgf®. While A, A, andw,a are too

scattered to be fitted ., woa?, andw/,""'a may be fitted as

We employ the following fitting forms fome andmgayy,

A A 1 1+4dg(Ko)g?+di(Ko)g*+da(Ke)g® (59)
MpA+ mgaw m =3 .
m2=Amg| 1+ —— <1 R ° 8 1+[do(Kc) —0.02945g
27212 A?
5 where 0.02945 is the one-loop coeffici¢hf] and
a“wy Amg
+ 55100l — | | (56) AW
3272f A wiVa=dg(wy)a,  wea?=dg(wg)a?. (59
mgaw;™"' Amg Fit curves are also shown in Fig. 2, and the extracted param-
Maw =AoMg| 1+ 397212 A2 eters are given in colum¢a) of Table III.
AWI To determine thea dependences of, A, andw,a, we
a2w, Amg have fittedmi/ may a@s a function of bottmg anda, using
+ 55100 — | |- (57) the following formula derived from Eqgs(56),(57) with
B. Results m?2 A L (A+Aw;a)mg [ Amg 50
We first fit the data at each separately. Since there are Mawi Ao * 327722 > || 69

only four data per observables at eaclit is impossible to fit

an individual observablemf, or My, as a function oimg

using Eq.(56) or Eq. (57), each of Wh'Ch_Conta'nS four. O 2we have also performed the fit using measured values, 6
more parameters. Therefore, we try torfif. and muy Si-  the chiral limit at eactB [8]. We found that the qualities of the two
multaneously. Sincé cannot be determined without data of fits are similar.
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FIG. 2. The fit parameters as a functionabr g.
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TABLE IIl. Continuum extrapolation of the WChPT fit paramete(a). m,z, and myy, are fitted as a function afng at eacha. Then
parameters are fitted as a functionaof(b) me/mAWI are fitted as a function ahg anda.

@ (b) x*/DOF=1.3
X do(X) di(X) da(X) x*/DOF X do(X) d1(X) da(X)
K —0.2127100 —0.00830055  0.00078731) 3.6 A 8.08797) —1.00229)  0.267229
Wo 0.20217) 0 0 20 A 1.19635) —0.840459) 0
wV! —0.54961) 0 0 34 Aw; —-1.6225) 0 0
Ao —0.59047) 0 0
where 2do(Wo)
Wo= —5—=(Aw)", (64
A=do(A)[1+d(A)a+dy(A)a?], Ay=1+dg(Aya,
(e _ dg(wy)
2 V2= 5
A=do(A)[1+dy(A)a],
[ do(W"") + do(Aw;)]
Aw,=w;—wiV'=dy(Aw,)a. (62) =— 10 s =—(Ay,)%, (65)

No logmg term is presented in E@60). Note, however, that e obtain Ag.=0.41 GeV, Ay, =0.24 GeV, and Ay
the logmAW'. term appears again if we replacey, in the =0.21 GeV. 'Il'hen Ay takes ; reasonable value&;
right-hand side of Eq:60) with mpy, , due to the presence of —0.2-0.4 GeV. lfaA,>m/Ay, O(a) terms become more

Table 1, th i works wel as shown in Fig. 3, and the ftea MPOTEN 1Nar terms. Wi~ 0.2-0.4 GeV, tis con-
parame,ters are given in éolurmb) of Table I.II , dition ata '=1 GeV ora”'=2 GeV corregponds g
. . : <40-160 MeV ormg<<20-80 MeV, respectively.

We roughly estimate the size of each parameter
B1,V,,W; , 3 from the continuum extrapolations &, w,, o
Wy, andm,. Since we cannot separate the Lontribution C. Validity of (W)ChPT
in 1/K., however,m, cannot be extracted. Therefore, we \We now estimate the relative size of the next-to-leading
simply setm.=0, giving thatW,=2aW,; the leading con-  contribution to the leading contribution in WChPT for> :
tribution of W, vanishes. To reduce the number of param-

eters further, we selV,=0. Then, extracting3,, W,, and mg(A+aw;) +a?w, Amg
ar

—f2 — 3
B1=1"do(A)=(As,)", (63 for WChPT at finitea, where the parameters A, w,, and

wy depend ona. We plot R (WChPT) in Fig. 4 at
a(Gev 1)=0, 0.44 (B=22), 055 B=2.1), 0.79 @B
=1.95), and 1.1 $=1.8). While the one-loop contribution
takes reasonable values, 10%-30%, at 0.1 GaW

1 <0.2 GeV for alla, the contribution from logng in WChPT
diverges asmg—0. This might invalidate WChPT in the
chiral limit. We will consider this problem in the next sec-
] tion.

6.5

o

IV. RESUMMATION OF log mg TERMS

m,, (GeV)

2

mT[

As evident from the analysis in the previous subsection,
the logmg contribution becomes larger and larger toward the
chiral limit, so that we cannot neglect “higher order” term
such as (logng)"(n=2,3, ...). Wemust perform a resum-
mation of the lognmg term at all orders. Since it is possible in
0 0.05 oL 015 02 025  principle but difficult in practice to calculate the (log)"

mg (GeV) contribution atn-loop order, we derive resummed formulas
from a different point of view.

FIG. 3. The WChPT fits fom?/mjy, as a function ofng anda. As discussed in Refd5-7], the massless pion corre-
Results are shown fan2/my,, as a function ofmg. sponds to the inverse of the divergent correlation length at

4.5
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04 | mg\|” | AZ | Amg
—_ - —_ + —_
o9l 5 09| 1) +1o9 2
- v'l Y\"
02 =X nZO (V,—n)|n|<i)
- !
o
e
O , Y
= =X 1+V’Y+ , (68
02
0
where
X=I Ao 69
=108\ Ap | (69
0.2
Y=log| AT 70
04 =log A_g ; (70
the formula at the next-to-leading order in WChPT, Exf),
is recovered, with the identification that
% 0.2
2 v aw ,
= ~ = ﬁ’ CX" =A. (71)
. X 327°f
o
<
g To determiner’ and X separately, the explicit calculation in
hd 0 WChPT at two-loops or more orders is necessary. This will
be considered in future investigations.
We have finally obtained the following resummed formu-
las form? andmuy, :
02 L 1 1 1
0 0.05 0.1 0.15 0.2 0.25 Mg awq/32m2f?
m, (GeV) mezAmR( Iog( —) ]
Ao
FIG. 4. (a) The relative size of the next-to-leading contribution AL A
to the leading one in WChPT as a function of the quark nmagsit |1+ MRAT MraW, MR (72)
B=1.8, 1.95, 2.1, and 2.2, together with the one in the continuum 327722 A2
limit (ChPT). (b) Same quantities in the resummed WChPT.
Mg awg/327%f2
the second order phase transition point. Since the effective Mawi =AoMgj 109 A_”
theory which describes this phase transition is some four- 0
dimensional scalafpion) theory with rather complicated mRaV\/i\W' Amg
interactions; the phase transition has a mean-field critical X[ 1+ 53 || (73
327<f A

exponent with possible log corrections. In particular, the pion

mass, the inverse of the correlation length, should behave ] )
near the critical point as where A, Ay, and wy may be different from those in Egs.

(56),(57). It is better to use these formulas instead of the
previous ones, Eq$56),(57), in future investigations. Equa-
) tion (60) remains the same.
+... (67) As a trial, we use these formulas wily=1, A=A,
andAy,=1 GeV, in order to fitrnfT andmp,, simultaneously,
at eacha. The quality of the fit is as good as the previous
one, and the fitting parameters are compiled in the end of
where- - - represent less singular contributions. If we expandTable 1. In addition, the next-to-leading contribution, the
second term in E(73), vanishes towardhg=0 as shown in
Fig. 4, whereR (WChPT) in the previous subsection, which
3Indeed, our WChPT is an approximation of this effective theory.is now modified as

4

2_ MR
m; = CmR[ Iog( D

054508-9



SINYA AOKI PHYSICAL REVIEW D 68, 054508 (2003

MRA + Mraw, . or fewer others have some contributions. We have also de-
R(WChPT,resun= 5o > (74 rived the formula after resumming the log terms, using
32m°f the fact that the mean-field critical exponent receives the log

correction.

Because of the limitation of available data, our WChPT
analysis is far from complete. Therefore it is important to
refine the analysis by taking the correlation betwm%pand

In this paper we have derived the effective chiral La-Mawi into account and including, data in the simultaneous
grangian which includes the? effect of the Wilson-type fit, in order to establish the validity of WChPT. Reanalyses
quark action in the case of thé;=2 degenerate quarks. Of other full QCD data have to be done of course. It is also
Using this effective Lagrangian the quark mass) depen-  urgent to derive the WC_:hPT formula for other cas&g]
dences Ofme, maw, and f_ have been calculated at the such as the quench/partially quench casesNtfe3 nonde- _
one-loop level. We have then simultaneously fitredl and generate case, vector mesons and baryons, and heavy-light
Muy » Obtained by the CP-PACS Collaboration fig=2 mesons.

full QCD simulations, using the WChPT formula, and hav Once the validity of the WChPT to describe lattice QCD

found that the data are consistently described. We have 2g_ata is established, instead of thinking that the quark masses

tempted the continuum extrapolation of the WChPT formula!” the current full QCD simulations are too heavy f_or the
Compared to standard ChPT, several distinct features suc hPT to apply, we may say tha_t somau.t not al) Iattlc_:e
as the additive mass renormalizati@ya) corrections to the hata ar(; welrll_dﬁscnbed by trfwnzon)_ ﬁh'hral pr)](_art?rbatlon |
chiral log (mglogmy) term, a more singular term (logy) theory, by which errors associated with the chiral extrapola-
generated byD(a?) contributions, and the presence of both tion may be well controlled13].
mglogmg and logmg terms inmyy, , lead to success for the
WChPT formula in describing the CP-PACS data. Although
an ambiguity in the definition oK. caused by the additive
mass renormalization can be avoided by the usey, , the I would like to thank Dr. O. Ba Dr. N. Ishizuka, and Dr.
last feature, the existence of batixlogmg and logmgterms A, Ukawa for useful discussions. This work is supported in
in Maw » Makes the WChPT formula different from that in part by the Grants-in-Aid for Scientific Research from the
ChPT. The largé(a) correction to thenglog mg term plays  Ministry of Education, Culture, Sports, Science and Technol-
an essential role in describing the actual data, although moregy (Nos. 13135204, 14046202, 15204015, 15540251

is plotted at3=1.8, 1.95, 2.1, and 2.2.

V. CONCLUSIONS AND DISCUSSIONS
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