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Chiral perturbation theory with Wilson-type fermions including a2 effects: NfÄ2 degenerate case

Sinya Aoki
Institute of Physics, University of Tsukuba, Tsukuba 305-8571, Japan

~Received 24 June 2003; published 29 September 2003!

We derive the quark mass dependence ofmp
2 , mAWI , and f p , using chiral perturbation theory, which

includes thea2 effect associated with the explicit chiral symmetry breaking of the Wilson-type fermions, in the
case of theNf52 degenerate quarks. The distinct features of the results are~1! the additive renormalization for
the mass parametermq in the Lagrangian,~2! O(a) corrections to the chiral log (mqlog mq) term, ~3! the
existence of a more singular term logmq generated bya2 contributions, and~4! the existence of bothmqlog mq

and logmq terms in the quark mass from the axial Ward-Takahashi identitymAWI . By fitting the mass
dependence ofmp

2 andmAWI , obtained by the CP-PACS Collaboration forNf52 full QCD simulations, we
find that the data are consistently described by the derived formulas. Resumming the most singular terms
log mq , we also derive modified formulas, which show a better control over the next-to-leading order correc-
tion.

DOI: 10.1103/PhysRevD.68.054508 PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc, 12.39.Fe
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I. INTRODUCTION

One of the most serious systematic uncertainties in
current lattice QCD simulations is caused by chiral extra
lation. Because of the limitation of the current computatio
power, one cannot perform simulations directly at the phy
cal light quark~up and down! mass. Instead, one has to pe
form simulations at several heavier quark masses and
trapolate the results to the physical quark mass point, usi
polynomial ~linear, quadratic, etc.! or the formula derived
from chiral perturbation theory~ChPT! @1#. These extrapola-
tions cause large systematic uncertainties, in particular in
case of full QCD simulations, where the lightest quark m
employed in the current QCD simulations is roughly half
the physical strange quark mass (mp /mr.0.6).

Recently, a more serious problem has been pointed ou
particular, for full QCD simulations with Wilson-type
quarks: the expected chiral behavior predicted by the Ch
has not been observed. For example, the behavior of the
massmp

2 as a function of quark massmq is given by

mp
2 5AmqF11

Amq

16p2Nf f p
2

log~Amq /L2!G , ~1!

whereL is some scale parameter. Since the pion decay c
stant is experimentally known asf p593 MeV, only A and
L are unknown parameters. Unfortunately, such a tw
parameter fit cannot explain the lattice data well, which lo
almost linear in the simulated range of quark masses. If
includes f p as a free parameter, the best fit typically giv
f p

2 >53(93 MeV)2 @2#.
The most widely accepted interpretation for this discre

ancy is that the simulated range of quark masses in the
rent simulations is still too heavy to apply ChPT. If th
interpretation is true, the current lattice simulations with t
~Wilson-type! dynamical quarks lose a large part of the
power to predict properties of hadrons at the physical li
quark masses.
0556-2821/2003/68~5!/054508~10!/$20.00 68 0545
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In this paper, we investigate the theoretically more natu
alternative that the explicit breaking of the chiral symme
by the Wilson-type quark action modifies the formulas
ChPT at the finite lattice spacing. We first derive formulas
the modified chiral perturbation theory for the Wilson-typ
quark action, denoted by WChPT in this paper. Such
tempts have been made before at the leading order@3# and
the next-to-leading order@4#. At the leading order@3#,
WChPT predicts the existence of the parity-flavor break
phase transition@5–7# for two-flavor QCD as long as mass
less pions appear at the critical quark mass. This analysis
also shown that theO(a2) chiral breaking term plays an
essential role in generating the parity-flavor breaking ph
transition, which is necessary to explain the existence
massless pions for the Wilson-type quark action@5–7#. In the
next-to-leading order analysis@4#, however, only theO(a)
breaking effects are included, and it is concluded that
effect of the chiral symmetry breaking can always be a
sorbed in the redefinition of the quark mass, so that all f
mulas in ChPT remain the same if one replaces the qu
massmq with mq2mc , wheremc is the additiveO(a) coun-
terterm for the quark mass. In Sec. II, we perform the ne
to-leading order calculation in WChPT includingO(a2) chi-
ral symmetry breaking effects. To make the differen
between WChPT and ChPT clear, we consider only the c
of Nf52 QCD with degenerate quark masses, and derive
formulas for the mass and decay constant of the pion as
as the axial Ward-Takahashi identity quark mass, as a fu
tion of the ‘‘quark mass’’ in the effective theory. In Sec. II
the derived formulas are applied to the data of the pion m
and the axial Ward-Takahashi identity quark mass calcula
by the CP-PACS Collaboration@8#. We show that the data
are consistent with the formulas. We have attempted the
summation of the most singular term, and have derived
modified formulas in Sec. IV. Our conclusions and discu
sion are given in Sec. V.

II. WILSON CHIRAL PERTURBATION THEORY

A. Derivation of effective Lagrangian

It is difficult to derive the effective chiral Lagrangian fo
mesons directly from lattice QCD with Wilson-type quar
©2003 The American Physical Society08-1
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using the symmetry, since the quark mass requires a cou
term mc , which diverges asg2/a near the continuum limit,
so thatmca5O(1) and the conventional power counting
a fails. Therefore, following the proposal@3,4#, we overcome
this problem by first matching the lattice QCD to an effecti
continuumlike QCD including the scaling violations
higher dimensional local operators@9#, and then match the
latter to the effective Lagrangian for the Wilson chiral pe
turbation theory.

Close to the continuum limit, the lattice QCD can be d
scribed by an effective action in the continuum, which
expanded in powers ofa as

Seff5S01aS11a2S21•••, ~2!

whereS1 contains chiral noninvariant terms only, whileS2
contains chiral invariant as well as chiral noninvariant term
By using the equation of motion and the redefinition of t
quark field, quark mass, and coupling constant, only o
term is relevant inS1:

S15ar1c̄smnFmnc1•••. ~3!

A similar analysis can be done forS2 @10#.
We now derive the effective Lagrangian of WChPT fro

Seff , using the symmetries ofSeff such as parity, axis inter
change symmetry~rotational invariance in the continuum
limit !, and chiral symmetry. The last one is explicitly brok
not only by the quark massm but also by the breaking term
in S1 and S2, whose coefficients are denoted asr i( i
51,2,3, . . . ). One canmakeSeff formally chiral invariant by
transformingm and ther i ’s to compensate the chiral varia
tion of c and c̄. For example, if one writes the quark ma
term as

c̄M PRc1c̄M†PLc, ~4!

this term is invariant under

c→~RPR1LPL!c, c̄→c̄~L†PR1R†PL!, ~5!

M→LMR†, M†→RM†L†, ~6!

whereR andL are SU(Nf) chiral rotations. The usual mas
term is recovered by settingM5M†5m. Similar transfor-
mations can be defined for ther i ’s, but we do not give them
explicitly since their details are irrelevant for later discu
sion. From this argument one concludes that the effec
Lagrangian of the WChPT should have this~generalized!
chiral SU(Nf)R^ SU(Nf)L symmetry.

As mention in the Introduction, we consider theNf52
case to make our argument simple and clear. In this case
chiral field for the pseudoscalar mesons~pions! is given by

S~x!5S0 expH i (
a51

3

pa~x!ta/ f J
5S0@cos~p/ f !1 i p̂ata sin~p/ f !#, ~7!
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wherepa(x) is the pion field,ta[sa is the ordinary Pauli
matrix, andf is the pion decay constant, whose experimen
value is 93 MeV. The norm and the unit vector of the pi
fields are given byp25p•p5(apapa and p̂a5pa/p, re-
spectively. As discussed in Ref.@3#, the vacuum expectation
value S0 may have a complicated structure, leading to t
spontaneous breaking of parity-flavor symmetry, but in t
paper, we stay in the phase without this symmetry break
so thatS051232. Under chiral rotation, this field is trans
formed as S→LSR†. Under the transformation tha
p→2p, called ‘‘parity’’ in this paper,S→S†.

Using this field, we define the following naive operato
for scalar~S!, pseudoscalar~P!, vector~V!, and axial vector
~A!:

S05
1

4
tr~S1S†!5cos~p/ f !, Sa5

1

4
tr ta~S1S†!50,

~8!

P05
1

4
tr~S2S†!50,

Pa5
1

4
tr ta~S2S†!5 i p̂a sin~p/ f !, ~9!

Lm
0 5

1

2
tr~S]mS†!50, Lm

a 5
1

2
tr ta~S]mS†!, ~10!

Rm
0 5

1

2
tr~S†]mS!50, Rm

a 5
1

2
tr ta~S†]mS!, ~11!

Vm
0 5

1

2
~Lm

0 1Rm
0 !50, Am

0 5
1

2
~Lm

0 2Rm
0 !50, ~12!

Vm
a 5

1

2
~Lm

a 1Rm
a !5 ieabcp̂b sin~p/ f !]m@p̂c sin~p/ f !#,

~13!

Am
a 5

1

2
~Lm

a 2Rm
a !5 i $p̂a sin~p/ f !]m@cos~p/ f !#

2cos~p/ f !]m@p̂a sin~p/ f !#%, ~14!

where the superscripts 0 anda mean the flavor singlet and
triplet, respectively. We also introduce left-handed~L! and
right-handed~R! currents for later use. Due to the speciali
of the Nf52 case, some of the above operators are ide
cally zero. Here we do not consider the tensor~T! operator,
which must contain two derivatives, since it does not co
tribute to the one-loop calculation in this paper.

Now we construct the effective Lagrangian, which mu
be invariant under parity, axis-interchange symmetry, a
~generalized! chiral symmetry. In the one-loop calculation
which gives the main contribution at the next-to-leading
der in chiral perturbation theory, it is enough for us to co
struct the effective Lagrangian up to orderm, wherem is the
quark mass in the effective theory. On the other hand,
must include theO(a2) effect to realize massless pions
8-2
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aÞ0 @3#. At the next-to-leading order,O(m2) counterterms
~Gasser-Leutwyler coefficients! are also needed. We do no
include, however, these terms in our effective Lagrangi
since we do not intend to determine them in this paper.
stead we introduce arbitrary scale parameters in the logm)
terms which appear in the one-loop integrals. Roug
speaking, we consider the situation that 1@a>m.p2>a2

>ma.p2a>m2.p4.mp2, so that all terms up toma or
p2a in this inequality will be included in the effective La
grangian.

The chirally invariant contribution at the leading orde
which has the least number of derivatives, is construc
from Lm

a or Rm
a as follows:

2(
a51

3

Lm
a Lm

a 52(
a51

3

Rm
a Rm

a 5tr@]mS†]mS#

52$]m@cos~p/ f !#]m@cos~p/ f !#

1]m@p̂a sin~p/ f !#]m@p̂a sin~p/ f !#%, ~15!

Lm
0 Lm

0 5Rm
0 Rm

0 50. ~16!

Note that theRm
a Lm

a term is prohibited by parity invariance
The chirally noninvariant parity-even term accompanied
one power ofm, r 15O(a) or r i>25O(a2), is uniquely
given by S0. The chirally noninvariant terms whose coef
cients includer 1

25O(a2) or r 1•m5O(ma) are given by
(S0)2, (a(Pa)2, or tr(S1S†)2. For theNf52 case, how-
ever, the latter two terms are not independent, as evid
from the expressions(a50

3 (Pa)25(S0)221 and tr(S
1S†)2}(S0)2. An independent term atO(ap2) is given
uniquely by S03tr@]mS†]mS#, since tr@(S
1S†)]mS†]mS# is not independent for SU~2!.

Gathering all terms up tom,p2, a2 andma,p2a, the ef-
fective Lagrangian becomes

Leff5
f 2

4
@11c0~S021!#tr$]mS†]mS%2c1S01c2~S0!2,

~17!

where parametersc0 , c1, andc2 have leadingm and a de-
pendences as

c05W0a1O~m!, ~18!

c15W1a1B1m, ~19!

c25W2a21V2ma1O~m2!. ~20!

Sincec0 is dimensionless andc1 and c2 have mass dimen
sion 4, W0;L@11O(La)#, W1;L5@11O(La)#, W2
;L6@11O(La)#, V2;L4@11O(La)#, B1;L3, whereL
represents some mass scale of the theory such asLQCD. The
~subleading! a dependence of these parameters comes f
the chiral breaking terms ofa2S2 in the effective action Eq.
~2!, which correspond tor i>25O(a2) terms inc0 andc1, or
r 1•r i>25O(a3) andm•r i>25O(ma2) terms inc2. Chirally
invariant parameters such asf receive O(a2) corrections
from chirally invariant O(a2) terms in a2S2. Note that
05450
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W0 ,W1 ,V2;O(a) if nonperturbativelyO(a,ma) improved
fermions are employed for the lattice QCD action.

For later use, we define the operators in the effect
theory, which correspond to the ones in QCD up toO(a):

@S0#5ZSS0$11cS~S021!%, @Pa#5ZPPa$11cP~S021!%,
~21!

@Vm
0 #5 c̃V]mS0, @Vm

a #5ZVVm
a $11cV~S021!%, ~22!

@Am
a #5ZA$Am

a @11cA~S021!#1 c̃A]mPa% ~23!

wherecS,P,V,A andc̃A,V areO(a) in general, orO(a2) if the
lattice action and operators are nonperturbativelyO(a) and
O(ma) improved.

B. Next-to-leading order calculations

To perform the next-to-leading order~one-loop! calcula-
tion, we expandLeff in terms of the pion fieldpa as

Leff5const1
1

2 F ]mp•]mp1
c122c2

f 2
p2G1

1

6 f 2 F ~p•]mp!2

2S 11
3

2
c0D ~]mp•]mp!p2G1

~p2!2

4! f 4
~8c22c1! ~24!

and the operators as

@S0#5ZSS 12
p2

2! f 2D S 12cS

p2

2! f 2D 5ZSF12
p2

2! f 2
~11cS!G ,

~25!

@Pa#5 iZP

pa

f F12
p2

3! f 2
~113cP!G , ~26!

@Vm
a #5 iZVeabc

pb]mpc

f 2 S 12
p2

3! f 2
~113cV!D , ~27!

@Vm
0 #52 c̃V

p•]mp

f S 12
p2

3! f 2D , ~28!

@Am
a #5 iZAF ~11 c̃A!

]mpa

f
2

2]mpap2

3 f 3 S 11
3cA1 c̃A

4
D

1
2pap•]mp

3 f 3 S 12
c̃A

2
D G . ~29!

Using the pion propagator at the tree level, which is giv
by

^pa~2p!pb~p!&05dab

1

p21m0
2

, ~30!
8-3
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m0
25

c122c2

f 2
, ~31!

we evaluate the loop integrals as usual:

^pa~x!pb~x!&5dabI 5dab

m0
2

16p2
log

m0
2

L2
, ~32!

^]mpa~x!]npb~x!&5dab

dmn

4
~2m0

2I !, ~33!

where we introduce an arbitrary scale parameterL resulting
after removal of the power divergences of loop integrals
the local counterterms. Therefore, although we use the s
symbol, thisL varies depending on physical observables

The inverse pion propagator at the one-loop level is c
culated as

Leff
(2)5

1

2
~]mp!2H 12

I

3 f 2 S 21
9c0

2 D J
1

1

2
p2H m0

2S 12
I

6 f 2
~129c0!D 1

5c2I

f 4 J
5

1

2
@~]mpR!21mp

2 pR
2 #, ~34!

where

p5Z1/2pR , ~35!

Z5F12
I

3 f 2 S 21
9c0

2 D G21

, ~36!

mp
2 5m0

2F11
m0

2

32p2f 2
~116c0!log

m0
2

L2
1

5c2

16p2f 4
log

m0
2

L2G .

~37!

For the axial-vector current, we obtain

^@Am
a #~x!pR

b~y!&5dab

iZA

f
^]mpR

a~x!pR
b~y!&0Z1/2F ~11 c̃A!

2
I

3 f 2 S 41
9cA23c̃A

2
D G ; ~38!

therefore the decay constant at the one-loop order beco

f p5
iZA

A2 f 2
f ~11 c̃A!F12

m0
2

16p2f 2 S 11
3cA

2
2

11c̃A

6

2
3c0

4
D log

m0
2

L2G . ~39!

Taking ZA52 iA2 f 2, we have
05450
y
e

l-
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f p5 f ~11 c̃A!F12
m0

2

16p2f 2
~11cf p

!log
m0

2

L2G , ~40!

wherecf p
53cA/2211c̃A/623c0/4. Note thatf p receives an

O(a) correction even in the chiral limit:f p5 f (11 c̃A).
Similarly, we have

^]m@Am
a #~x!pR

b~y!&5^pR
a~x!pR

b~y!&0A2 f mp
2 Z1/2F ~11 c̃A!

2
I

3 f 2 S 41
9cA23c̃A

2
D G , ~41!

^@Pa#~x!pR
b~y!&5 i

ZP

f
^pR

a~x!pR
b~y!&

3Z1/2F12
5I

3! f 2
~113cP!G . ~42!

Then the partial conservation of axial-vector current~PCAC!
quark massmAWI is given by

mAWI5
^]m@Am

a #~x!pR
b~y!&

^@Pa#~x!pR
b~y!&

5
A2 f 2

iZP
mp

2 ~11 c̃A!

3F12
m0

2

32p2f 2
~113cA211c̃A/325cP!log

m0
2

L2G
5

11 c̃A

2B0
m0

2F11
m0

2cmAWI
110c2 / f 2

32p2f 2
log

m0
2

L2G , ~43!

where 1/(2B0)5A2 f 2/( iZP) and cmAWI
56c023cA

111c̃A/315cP .
Let us recall the leadingm and a dependences of the

parameters:

c05W0a, c15W1a1B1m, c25W2a21V2ma,
~44!

cP5WPa, cA5WAa, c̃A5W̃Aa, ~45!

and then the pion mass at the tree level is written as

m0
25

c122c2

f 2
5

m~B122V2a!1aW122a2W2

f 2

5A~m2mc![AmR ~46!

where
8-4
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TABLE I. Parameters ofNf52 full QCD simulations by the CP-PACS Collaboration@8#. The scalea is
fixed by mr5768.4 MeV.

b L33T cSW a ~fm! a21 ~GeV! La ~fm! mp /mr

1.80 123324 1.60 0.2150~22! 0.9178~94! 2.580~26! 0.55–0.81
1.95 163332 1.53 0.1555~17! 1.269~14! 2.489~27! 0.58–0.80
2.10 243348 1.47 0.1076~13! 1.834~22! 2.583~31! 0.58–0.81
2.20 243348 1.44 0.0865~33! 2.281~87! 2.076~79! 0.63–0.80
o

se

ti

in

n

In

-

fit
on

ale
-

.

A5
B122aV2

f 2
, mc52a

W122aW2

B122aV2
, mR5m2mc .

~47!

Here it is noted thatmc5O(a) does not correspond t
1/(2Kc) in lattice QCD, since the 1/a contribution to the
quark mass is already subtracted inm. Furthermore, form
,mc , the pion would become tachyonic (m0

2,0). As dis-
cussed in Ref.@3#, however, as long asc25W2a21V2mca
5O(a2).0, the parity-flavor symmetry breaking pha
transition @5–7# occurs atm5mc5O(a), so thatm0

2 is al-
ways positive. In other words, theO(a2) contribution inc2
is necessary for the consistency between the PCAC rela
(mp

2 ;mq) and the absence of tachyons.1

We summarize the result of the one-loop calculation
terms ofmR anda:

mp
2 5AmRF11

mR~A1w1a!

32p2f 2
log

AmR

L2
1

w0a2

32p2f 2
log

AmR

L0
2 G ,

~48!

mAWI5A0mRF11
mRw1

AWIa

32p2f 2
log

AmR

LAWI
2

1
w0a2

32p2f 2
log

AmR

L0
2 G ,

~49!

f p5 f ~11 c̃A!F12
mR~A1w1

decaya!

16p2f 2
log

AmR

Ldecay
2 G ~50!

where

w156W01
10V2

f 2
, w05

10

f 2 S mcV2

a
1W2D , ~51!

w1
AWI5w123WA1

11

3
W̃A15WP , w1

decay5
3

2
WA

2
11

6
W̃A2

3

4
W0 , ~52!

A05
A~11 c̃A!

2B0
.11O~a!. ~53!

1On the other hand, ifc2,0, no massless pion appears@3#.
05450
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Note that heremc /a5O(1) and we recover the distinctio
among scale parameters (L, L0 , LAWI , or Ldecay).

These results reveal the following features of WChPT.
general, the chiral log terms (mRlogmR) receiveO(a) scal-
ing violation. In addition to this, thea2 contribution gener-
ates a logmR term inmp

2 , which is more singular as a func
tion of mR than the usual chiral log term,mR logmR.
Furthermore, both themR logmR and logmR terms are gen-
erated inmAWI by the scaling violations,O(a) for the former
andO(a2) for the latter. The coefficient of the logmR term
in mAWI is the same as the one inmp

2 .
In the next section we employ the above formulas to

the full QCD data obtained by the CP-PACS Collaborati
@8#.

III. ANALYSIS OF CP-PACS DATA

In this section, we apply the WChPT formulas tomp
2 and

mAWI in theNf52 full QCD with the clover quark action@8#.

A. Data sets and WChPT formulas

The CP-PACS Collaboration has performed large sc
full QCD simulations with the renormalization group im
proved gauge action andNf52 ~tadpole improved! clover
quark action, at four different lattice spacingsa and four
different quark masses at eacha, as summarized in Table I

0 0.05 0.1 0.15 0.2 0.25
mAWI (GeV)

4.5

5

5.5

6

6.5

7

m
π2 /m

A
W

I (
G

eV
)

β=2.2
β=2.1
β=1.95
β=1.8

FIG. 1. The WChPT fits formp
2 andmAWI at eachb. Results are

shown for mp
2 /mAWI as a function ofmAWI . For comparison the

standard ChPT fits (w15w050) are also included.
8-5
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TABLE II. Parameters of the WChPT fit at eachb.

b Kc A ~GeV! L ~GeV! w1a ~GeV! w0a2(GeV2) w1
AWIa ~GeV! x2/DOF

1.80 0.147761~15! 5.114~28! 0.079~19! 25.525~64! 0.206~22! 20.560~74! 0.3
1.95 0.142160~19! 5.377~33! 0.193~51! 25.162~74! 0.241~42! 20.457~118! 0.3
2.10 0.139110~12! 5.807~14! 0.694~20! 25.24~18! 0.417~50! 21.15~27! 0.2
2.20 0.137691~23! 5.669~71! 0.128~88! 25.15~20! 0.039~16! 20.22~39! 0.7

Resummed WChPT
1.8 0.147562~15! 5.111~29! 0.067~12! 24.862~46! 0.787~21! 0.124~15! 1.5
1.95 0.142009~7! 5.366~23! 0.132~15! 24.538~52! 0.624~18! 0.310~32! 0.3
2.1 0.138959~13! 5.535~47! 0.131~71! 24.79~14! 0.280~37! 0.181~49! 1.2
2.2 0.137657~36! 5.789~106! 0.391~82! 24.63~12! 0.201~95! 0.195~96! 0.8
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In Ref. @8# the data formp
2 andmAWI were published. Unfor-

tunately, the data forf p at each quark mass are not availab
We define the quark massmR in the WChPT theory in

terms of the hopping parameterK in lattice QCD as

mR5ZmS 11bma
m

u0
D m

u0
, ma5

1

2K
2

1

2Kc
, ~54!

where Kc is the critical hopping parameter, andu0 is the
tadpole improvement factor, given by u05(1
20.8412/b)1/4. This mR is identical to the renormalized
VWI quark mass in Ref.@8#. By definition, mp

2 50 at mR

50 in lattice QCD. We identify thismR in lattice QCD with
mR in WChPT, sincem0

2, and thereforemp
2 , must vanish at

mR50 in WChPT. We also use the renormalizedmAWI de-
fined as

mAWI5
ZA

ZP
mAWI

bare. ~55!

We employ the following fitting forms formp
2 andmAWI :

mp
2 5AmRF11

mRA1mRaw1

32p2f 2
logS AmR

L2 D
1

a2w0

32p2f 2
logS AmR

L0
2 D G , ~56!

mAWI5A0mRF11
mRaw1

AWI

32p2f 2
logS AmR

LAWI
2 D

1
a2w0

32p2f 2
logS AmR

L0
2 D G . ~57!

B. Results

We first fit the data at eacha separately. Since there ar
only four data per observables at eacha, it is impossible to fit
an individual observable,mp

2 or mAWI , as a function ofmR

using Eq.~56! or Eq. ~57!, each of which contains four o
more parameters. Therefore, we try to fitmp

2 and mAWI si-
multaneously. Sincef cannot be determined without data
05450
.

f p , we fix f 593 MeV.2 Even in the simultaneous fit, th
number of independent fitting parameters is still too lar
Since theoreticallyA051 in the continuum limit and the fit
with A051 becomes more stable, we fixA051 in our fit. In
order to reduce a number of parameters further, we
LAWI5L05L, so we finally have six independent param
etersKc , A, L, w1 , w1

AWI , andw0, for eight data points.
Figure 1 shows data and fits formp

2 /mAWI as a function of
mAWI at eacha. For comparison, the results by the fit wit
standard chiral perturbation theory (w15w050) are also
given. It is manifest that the WChPT fits perform much bet
than the ChPT fits. The parameters extracted from the fits
given in Table II. Note, however, thatx2 per degree of free-
dom ~DOF! shown in the table has not been reliably es
mated due to the correlation betweenmp

2 andmAWI , which is
not given in Ref.@8#.

In Fig. 2, A, L, w1a, w1
AWIa, and w0a2 are plotted as

functions of a, together withKc as a function of the bare
gauge coupling constantg2. While A, L, and w1a are too
scattered to be fitted,Kc , w0a2, andw1

AWIa may be fitted as

Kc5
1

8
•

11d0~Kc!g
21d1~Kc!g

41d2~Kc!g
6

11@d0~Kc!20.02945#g2
, ~58!

where 0.02945 is the one-loop coefficient@11# and

w1
AWIa5d0~w1!a, w0a25d0~w0!a2. ~59!

Fit curves are also shown in Fig. 2, and the extracted par
eters are given in column~a! of Table III.

To determine thea dependences ofA, L, and w1a, we
have fittedmp

2 /mAWI as a function of bothmR anda, using
the following formula derived from Eqs.~56!,~57! with
LAWI5L:

mp
2

mAWI
5

A

A0
F11

~A1Dw1a!mR

32p2f 2
logS AmR

L2 D G , ~60!

2We have also performed the fit using measured values off p in
the chiral limit at eachb @8#. We found that the qualities of the two
fits are similar.
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FIG. 2. The fit parameters as a function ofa or g2.
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TABLE III. Continuum extrapolation of the WChPT fit parameters.~a! mp
2 and mAWI are fitted as a function ofmR at eacha. Then

parameters are fitted as a function ofa. ~b! mp
2 /mAWI are fitted as a function ofmR anda.

~a! ~b! x2/DOF51.3

X d0(X) d1(X) d2(X) x2/DOF X d0(X) d1(X) d2(X)

Kc 20.2127~10! 20.008300~55! 0.000787~31! 3.6 A 8.087~97! 21.002~29! 0.2672~29!

w0 0.202~17! 0 0 20 L 1.196~35! 20.8404~58! 0
w1

AWI 20.549~61! 0 0 3.4 Dw1 21.62~25! 0 0
A0 20.590~47! 0 0
f
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te

e

m

ing
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he

-
n

s

-
at
where

A5d0~A!@11d1~A!a1d2~A!a2#, A0511d0~A0!a,
~61!

L5d0~L!@11d1~L!a2#,

Dw15w12w1
AWI5d0~Dw1!a. ~62!

No logmR term is presented in Eq.~60!. Note, however, that
the logmAWI term appears again if we replacemR in the
right-hand side of Eq.~60! with mAWI , due to the presence o
the logmR term in Eq.~57!. With Kc fixed to the values in
Table II, the fit works well, as shown in Fig. 3, and the fitt
parameters are given in column~b! of Table III.

We roughly estimate the size of each parame
B1 ,V2 ,W1,2,3 from the continuum extrapolations ofA, w1 ,
w0, andmc . Since we cannot separate the 1/a contribution
in 1/Kc , however,mc cannot be extracted. Therefore, w
simply setmc50, giving thatW152aW2; the leading con-
tribution of W1 vanishes. To reduce the number of para
eters further, we setW050. Then, extractingB1 , W2, and
V2 as

B15 f 2d0~A![~LB1
!3, ~63!

0 0.05 0.1 0.15 0.2 0.25
mR (GeV)

4.5
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5.5

6
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7

m
π2 /m

A
W

I (
G

eV
)

β=2.2
β=2.1
β=1.95
β=1.8

FIG. 3. The WChPT fits formp
2 /mAWI as a function ofmR anda.

Results are shown formp
2 /mAWI as a function ofmR .
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r
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W25
f 2d0~w0!

10
[~LW2

!6, ~64!

V25
f 2d0~w1!

10

5
f 2@d0~w1

AWI !1d0~Dw1!#

10
[2~LV2

!4, ~65!

we obtain LB1
50.41 GeV, LW2

50.24 GeV, and LV2

50.21 GeV. Then LX takes a reasonable value,LX
50.2–0.4 GeV. IfaLX.m/LX , O(a) terms become more
important thanmR terms. WithLX50.2–0.4 GeV, this con-
dition at a2151 GeV or a2152 GeV corresponds tomR
,40–160 MeV ormR,20–80 MeV, respectively.

C. Validity of „W…ChPT

We now estimate the relative size of the next-to-lead
contribution to the leading contribution in WChPT formp

2 :

R~WChPT!5
mR~A1aw1!1a2w0

32p2f 2
logS AmR

L2 D ~66!

for WChPT at finitea, where the parametersA, L, w1, and
w0 depend on a. We plot R ~WChPT! in Fig. 4 at
a(GeV21)50, 0.44 (b52.2), 0.55 (b52.1), 0.79 (b
51.95), and 1.1 (b51.8). While the one-loop contribution
takes reasonable values, 10%–30%, at 0.1 GeV,mR
,0.2 GeV for alla, the contribution from logmR in WChPT
diverges asmR→0. This might invalidate WChPT in the
chiral limit. We will consider this problem in the next sec
tion.

IV. RESUMMATION OF log mR TERMS

As evident from the analysis in the previous subsecti
the logmR contribution becomes larger and larger toward t
chiral limit, so that we cannot neglect ‘‘higher order’’ term
such as (logmR)n(n52,3, . . . ). Wemust perform a resum
mation of the logmR term at all orders. Since it is possible i
principle but difficult in practice to calculate the (logmR)n

contribution atn-loop order, we derive resummed formula
from a different point of view.

As discussed in Refs.@5–7#, the massless pion corre
sponds to the inverse of the divergent correlation length
8-8
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the second order phase transition point. Since the effec
theory which describes this phase transition is some fo
dimensional scalar~pion! theory with rather complicated
interactions,3 the phase transition has a mean-field critic
exponent with possible log corrections. In particular, the pi
mass, the inverse of the correlation length, should beh
near the critical point as

mp
2 5CmRH logS mR

D D J n8
1•••, ~67!

where••• represent less singular contributions. If we expa

3Indeed, our WChPT is an approximation of this effective theo
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FIG. 4. ~a! The relative size of the next-to-leading contributio
to the leading one in WChPT as a function of the quark massmR at
b51.8, 1.95, 2.1, and 2.2, together with the one in the continu
limit ~ChPT!. ~b! Same quantities in the resummed WChPT.
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l
n
ve

d

H logS mR

D D J n8
5H logS L0

2

ADD 1 logS AmR

L0
2 D J n8

5Xn8(
n50

`
n8!

~n82n!!n!
S Y

XD n

5Xn8S 11n8
Y

X
1••• D , ~68!

where

X5 logS L0
2

ADD , ~69!

Y5 logS AmR

L0
2 D , ~70!

the formula at the next-to-leading order in WChPT, Eq.~56!,
is recovered, with the identification that

n8

X
5

a2w0

32p2f 2
, CXn85A. ~71!

To determinen8 andX separately, the explicit calculation i
WChPT at two-loops or more orders is necessary. This w
be considered in future investigations.

We have finally obtained the following resummed form
las for mp

2 andmAWI :

mp
2 5AmRH logS mR

L0
D J a2w0/32p2f 2

3F11
mRA1mRaw1

32p2f 2
logS AmR

L2 D G , ~72!

mAWI5A0mRH logS mR

L0
D J a2w0/32p2f 2

3F11
mRaw1

AWI

32p2f 2
logS AmR

LAWI
2 D G , ~73!

whereA, L0, and v0 may be different from those in Eqs
~56!,~57!. It is better to use these formulas instead of t
previous ones, Eqs.~56!,~57!, in future investigations. Equa
tion ~60! remains the same.

As a trial, we use these formulas withA051, LAWI5L,
andL051 GeV, in order to fitmp

2 andmAWI simultaneously,
at eacha. The quality of the fit is as good as the previo
one, and the fitting parameters are compiled in the end
Table II. In addition, the next-to-leading contribution, th
second term in Eq.~73!, vanishes towardmR50 as shown in
Fig. 4, whereR ~WChPT! in the previous subsection, whic
is now modified as.
8-9
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R~WChPT,resum!5
mRA1mRaw1

32p2f 2
logS AmR

L2 D , ~74!

is plotted atb51.8, 1.95, 2.1, and 2.2.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have derived the effective chiral L
grangian which includes thea2 effect of the Wilson-type
quark action in the case of theNf52 degenerate quarks
Using this effective Lagrangian the quark mass (mR) depen-
dences ofmp

2 , mAWI , and f p have been calculated at th
one-loop level. We have then simultaneously fittedmp

2 and
mAWI , obtained by the CP-PACS Collaboration forNf52
full QCD simulations, using the WChPT formula, and ha
found that the data are consistently described. We have
tempted the continuum extrapolation of the WChPT formu

Compared to standard ChPT, several distinct features s
as the additive mass renormalization,O(a) corrections to the
chiral log (mRlogmR) term, a more singular term (logmR)
generated byO(a2) contributions, and the presence of bo
mRlogmR and logmR terms inmAWI , lead to success for th
WChPT formula in describing the CP-PACS data. Althou
an ambiguity in the definition ofKc caused by the additive
mass renormalization can be avoided by the use ofmAWI , the
last feature, the existence of bothmRlogmR and logmR terms
in mAWI , makes the WChPT formula different from that
ChPT. The largeO(a) correction to themRlogmR term plays
an essential role in describing the actual data, although m
.

,’’

05450
-
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or fewer others have some contributions. We have also
rived the formula after resumming the logmR terms, using
the fact that the mean-field critical exponent receives the
correction.

Because of the limitation of available data, our WChP
analysis is far from complete. Therefore it is important
refine the analysis by taking the correlation betweenmp

2 and
mAWI into account and includingf p data in the simultaneou
fit, in order to establish the validity of WChPT. Reanalys
of other full QCD data have to be done of course. It is a
urgent to derive the WChPT formula for other cases@12#
such as the quench/partially quench cases, theNf53 nonde-
generate case, vector mesons and baryons, and heavy
mesons.

Once the validity of the WChPT to describe lattice QC
data is established, instead of thinking that the quark ma
in the current full QCD simulations are too heavy for th
ChPT to apply, we may say that some~but not all! lattice
data are well described by the~Wilson! chiral perturbation
theory, by which errors associated with the chiral extrapo
tion may be well controlled@13#.
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