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Pseudo Goldstone spectrum of 2-color QCD at finite density
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We examine the spectrum of two-color lattice QCD with one staggered quark field~four flavors! at a finite
chemical potential (m) for quark number, on a 123324 lattice. First we present evidence that the system
undergoes a transition to a state with a diquark condensate, which spontaneously breaks quark number atm
5mp/2, and that this transition is mean field in nature. We then examine the three states that would be
Goldstone bosons atm50 for zero Dirac and Majorana quark masses. The predictions of chiral effective
Lagrangians give a good description of the behavior of these masses form,mp/2. Except for the heaviest of
these states, these predictions diverge from our measurements, oncem is significantly greater thanmp/2.
However, the qualitative behavior of these masses indicates that the physics is very similar to that predicted by
these effective Lagrangians, and there is some indication that at least part of these discrepancies is due to
saturation, a lattice artifact.
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I. INTRODUCTION

Recently, there has been renewed interest in the prope
of nuclear matter—hadronic matter at a finite nonze
baryon number~and isospin! density@1,2#. Much of this in-
terest comes from a reevaluation of the old idea that qu
pairs might condense, giving rise to a transition to a co
superconducting state at high baryon-number density@3,4#.
These newer studies indicate that the energies assoc
with this transition are much larger than the original es
mates so that they could have a significant effect on
equation of state of nuclear matter. Unfortunately, addin
finite chemical potential for quark or baryon number to t
Euclidean QCD action renders the fermion determinant co
plex which precludes the naive application of standard lat
simulation methods.~Some advances have been made allo
ing studies at a small chemical potential and high tempe
tures, but their ranges of applicability are limited@5#.! For
this reason people have turned to the study of models w
have some of the properties of QCD at finite baryon num
but have real, positive fermion determinants, allowing latt
simulations.

One such model is two-color QCD with fundamen
quarks. WithSU(2)color , the quarks and antiquarks are
the same representation, leading to a fermion determin
which remains real and positive in the presence of a qu
number chemical potentialm. It is expected that, atm
5mp/2, this model exhibits a phase transition to a state w
a colorless diquark condensate which breaks quark num
and associated Goldstone bosons. Thus this condensed
is a superfluid rather than a superconductor. Chiral effec
Lagrangians have been used to predict the phase structu
this theory@6–10#, as have random-matrix models@11#.

This predicted phase structure including the mean-fi
nature of the transition has been observed in lattice sim
tions@12–18#. However, the only simulations in which it wa
possible to study the masses of potential Goldstone bo
0556-2821/2003/68~5!/054507~13!/$20.00 68 0545
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were performed at a quark mass so large that it was diffi
to measure those excitations which were significantly m
massive than the pion@13#. It was also unclear at such larg
quark masses if the masses of these pseudo Goldstone m
were well separated from the rest of the hadron spectr
Since these earlier simulations were performed at a qu
mass ofm50.1, we have performed new simulations at t
sameb ~1.5! and quark massm50.025 which should halve
the pion massmp . These simulations were performed on
123324 lattice again with the quark-number symmet
breaking parameterl50.1m and l50.2m to keep the
explicit symmetry breaking, which depends onl/m, small.
We have also performed simulations on a smaller (84) lattice
to give us some indication of the magnitude of finite si
effects.

These simulations had a single staggered quark fi
whose continuum limit would describe four degenerate qu
flavors. However, at the relatively strong couplings at wh
we work, the relevant flavor symmetry is the remnant flav
symmetry of the staggered quark field, which atm5l5m
50 is U(2), rather than theSU(8) of the continuum limit.
When this breaks spontaneously,U(2)→U(1), giving rise
to three Goldstone bosons. We study the behavior of th
three states formÞ0, mÞ0, andl!m, and compare with
the leading-order predictions from chiral effectiv
Lagrangians. Form,mp/2, the agreement with these predi
tions is excellent. Asm is increased beyondmp/2, the mass
of the excitation which would be a Goldstone boson forl
50 and that of the pion lie consistently below the pred
tions from tree-level effective Lagrangians. Part of this d
ference might be due to higher order corrections in the
fective Lagrangian calculations, which cannot
characterized by a single parameter in addition to those
tree-level chiral perturbation theory. However, at least so
of this ‘‘discrepancy’’ appears to be due to the fact that,
high densities, the fermionic constituents of these excitati
©2003 The American Physical Society07-1
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are revealed, indicating that we are beyond the reach of
ral perturbation theory. However, the high density behav
of the lattice theory is strongly affected by saturation, a l
tice artifact, so it is unclear how much of this would survi
to the continuum.

In Sec. II we review the expected pattern of symme
breaking for lattice two-color QCD with one fundament
staggered quark field~four flavors!, and the~pseudo! Gold-
stone spectrum associated with this breaking. Through
our analysis we compare the lattice results to analytical
culations derived from effective models. We use a no
linear-sigma model~chiral perturbation theory! at leading or-
der similar to that described in@7#, and a linear sigma mode
that models some of the higher order corrections to ch
perturbation theory. We present the linear sigma model ef
tive Lagrangian we use to fit our diquark condensates, an
predictions for the pseudo Goldstone spectrum in Sec.
while, for completeness, the nonlinear sigma model is p
sented in the Appendix. Section IV describes our simu
tions, presents our results for the condensates and the
dence for mean-field scaling. In Sec. V we present
measurements of the spectrum of this theory, and its c
parison with the predictions of effective Lagrangian ana
ses. Our conclusions are presented in Sec. VI.

II. SYMMETRY BREAKING IN TWO-COLOR LATTICE
QCD

The staggered fermion action for two-color lattice QC
with one staggered fermion in the fundamental represe
tion of the color group is

Sf5 (
sites

H x̄@D” ~m!1m#x1
1

2
l@xTt2x1x̄t2x̄T#J ~1!

whereD” (m) is the normal staggered covariant finite diffe
ence operator with links in the1t direction multiplied byem

and those in the2t direction bye2m. What follows summa-
rizes the analysis of the symmetries of this theory presen
in detail in @12#.

At m5m5l50, this action has aU(2) flavor symmetry
which breaks spontaneously toU(1). If it breaks forming a
chiral condensatêx̄x&, there will be three brokenU(2)
generators and three Goldstone bosons, namely,

1⇒x̄ex,

s1⇒xTt2x2x̄t2x̄T, ~2!

s2⇒xTt2x1x̄t2x̄T.

If it breaks forming a diquark condensate12 ^xTt2x

1x̄t2x̄T&, there will again be three broken generators a
three Goldstone bosons,

1⇒xTt2ex1x̄t2ex̄T,
~3!

s2⇒x̄x,
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s3⇒xTt2x2x̄t2x̄T.

If mÞ0 andm50, the staggered fermion action~1! is in-
variant underU(1)3U(1), which is completely spontane
ously broken by the diquark condensate. Therefore, only
two diquark states in Eq.~3! remain Goldstone bosons.

When mÞ0, the chiral condensate forms and the thr
Goldstone bosons of Eq.~2! gain equal masses given b
partial conservation of axial-vector current~PCAC!. As m is
increased from zero, the mass of the pion created byx̄ex
remains constant, since it has zero quark number and d
not feel the effect of the chemical potential. The energy a
hence the mass of the diquark state created byx̄t2x̄T is
increased tomp12m for diquarks propagating in the1t
direction. The mass of the forward propagating antidiquar
decreased tomp22m.

This latter mass vanishes atm5mp/2, and it becomes a
true Goldstone boson. This heralds the phase transition
state in which quark number is spontaneously broken b
diquark condensate12 ^xTt2x1x̄t2x̄T&. The Goldstone bo-
son is created by the orthogonal linear combinat
1
2 (xTt2x2x̄t2x̄T), which we note is just that Goldston
mode which is common to Eqs.~2! and ~3!.

For m.mp/2, it is useful to introduce the concept of
total condensateSc such that

^x̄x&5Sc cosa ~4!

and

1

2
^xTt2x1x̄t2x̄T&5Sc sina. ~5!

We then see that the heaviest of our three would-be G
stone bosons will be that created by the operator

1

2
~xTt2x1x̄t2x̄T!cosa2x̄x sina, ~6!

which has zero vacuum expectation value. Form just above
the transition, this is predominantly a diquark/antidiqua
state, while form large, it is predominantly the scalars/ f 0
meson, as expected sincem can be neglected. This state wi
be heavy since the scalar meson is not a Goldstone bo
when m.0, even whenm50. Finally, the pseudoscala
pseudo Goldstone boson is created by the operator

x̄ex cosā2
1

2
~xTt2ex1x̄t2ex̄T!sinā, ~7!

where effective Lagrangians suggestā5a, with a intro-
duced in Eqs.~4!,~5!. Form small, this state is predominantl
a pion, while for largem it is predominantly a pseudoscala
diquark. Since this pseudoscalar diquark would be a Go
stone boson ifm50, its mass should approach zero for lar
m whenm can be neglected.

When lÞ0, the remaining Goldstone boson becom
massive. For the details of thisl dependence and for them
7-2



bo
n

r
o

a
ha

ive
la

er
e
th
d

to

ia
tie
cu
an
-

ra
s

sa

t
al
n
d
g
e
x

th
e
La
b

hi

dial
d
he
tions
tur-

old-

r-

ni-
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dependence of the heavier, would-be Goldstone modes a
the transition, we must turn to effective Lagrangians a
chiral perturbation theory.

III. LINEAR SIGMA MODEL EFFECTIVE LAGRANGIAN

For small pion massmp , m, andl, we should be able to
use chiral perturbation theory to parametrize the behavio
the condensates, quark-number density, and pseudo G
stone spectrum of this theory, as was done in@6,7#. A rework-
ing of this analysis for the symmetries of the staggered qu
action is presented in the Appendix. However, we find t
mp , even for the lowest quark massm we use, is too large
for tree-level chiral perturbation theory to give a quantitat
description of the physics of this system except at a re
tively low chemical potential. While next-to-leading ord
chiral perturbation theory calculations have been perform
@8#, these do not yet include spectrum calculations. Even
calculation of the order parameters has not been exten
beyond the neighborhood of the critical point at next-
leading order.

We therefore introduce an alternative effective Lagrang
which incorporates at the tree level some of the proper
expected from an all-order chiral perturbation theory cal
lation. First, it should have the same phase structure
critical exponents~mean field! as tree-level chiral perturba
tion theory, and a critical point atm5mp/2. At l50, the
spectrum of pseudo Goldstone bosons form,mp/2 should
be that predicted in the previous section from fairly gene
arguments, and form.mp/2, it should have one massles
Goldstone boson. The magnitude of the total conden
A^x̄x&21( 1

2 ^xTt2x1x̄t2x̄T&)2 is independent ofm in tree-
level chiral perturbation theory, but depends onm at next-to-
leading order. Lattice results indeed indicate that the to
condensate increases whenm increases. Therefore the tot
condensate should be allowed to vary. Such variation ca
allowed if the magnitude of the condensate becomes a
namical field. With the chiral perturbation theory Lagran
ian, this would be a nonperturbative effect, since it involv
producing a bound state. Modifying our Lagrangian to e
plicitly incorporate such excitations requires replacing
chiral Lagrangian which is of the nonlinear sigma mod
class by the corresponding linear sigma model effective
grangian. Since we do not intend to use this Lagrangian
yond the tree level, we do not have to face the problems
trying to formulate a chiral perturbation theory based on t
Lagrangian@19#. The simplest Lagrangian of this form is

Leff5
1

2
Tr ¹nS l¹nS l

†2
1

2
v0Mp

2 Re TrM̂fS l2
1

2
z Tr S lS l

†

1
1

4
j~Tr S lS l

†!2. ~8!

We have used the same conventions as in@7#:

¹nS l5]nS l2m~BnS l1S lBn
T!,

~9!
¹nS l

†5]nS l
†1m~Bn

TS l
†1S l

†Bn!,
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Bn5d0nS 1 0

0 21D ,

M̂f5S i sinf cosf

cosf i sinf D ,

where tanf5l/m.
The field S l5(v1s)S containsv, the minimum of the

free energy of the linear sigma model, as well as the ra
and transverse fluctuations around that minimum. The fiels
describes the radial fluctuations around that minimum. T
three pseudo Goldstone modes are the transverse fluctua
around that minimum. They are the same as in chiral per
bation theory and are contained in the fieldS given by

S5US̄UT, ~10!

where

U5expS iP

A2v
D with P5S PS QR1 iQI

QR2 iQI PS
D
~11!

and

S̄5S i sina cosa

cosa i sina D ~12!

corresponds to the minimum of the free energy.Mp is the
pion mass in the presence of the Majorana quark massl,

Mp
2 5

Am21l2

m
mp

2 , ~13!

wheremp is the pion mass atl5m50. The Lagrangian is
written in such a way that the masses of the pseudo G
stone modes are given byMp at zero chemical potential.

Under a local flavor transformationVPU(2), the differ-
ent fields transform in the following way:

S→VSVT,

M̂f→V* M̂fV†, ~14!

Bn→VBnV†2
1

m
V]nV†.

At m50 andl50, the minimum of the free energy co
responds to

v05Amp
2 1z

2j
. ~15!

In general, the minimum of the free energy is given by mi
mizing

E5jv42zv224m2v2 sin2a22Mp
2 v0v cos~a2f!.

~16!
7-3
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Comparing this to the phenomenological effective potent

E5
1

4
R42

1

2
aR22

1

2
bm2R2 sin2a2cmRcosa2clR sina

~17!

used in our earlier work and in the next section, we see
these are identical under the substitutionsv5Ab/2R/2, z
54a/b, and j516/b2, provided the critical value ofm is
mc5mp/2.

The minimization conditions for theE of Eq. ~16! are
th
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v„2vm2 sin 2a2v0Mp
2 sin~a2f!…50, ~18!

v0mp
2 cos~a2f!1v~z22v2j14m2 sin2a!50.

The computation of the spectrum of the linear sigm
model is similar to that for chiral perturbation theory give
in the Appendix. For this case thes field mixes with both the
Q modes, but not with thePS mode. The secular equation fo
the s and the twoQ modes is given by setting the determ
nant of the matrix
F E22p21z26v2j14m2 sin2a 4m2 sin 2a 4mE sina

4m2 sin 2a E22p21z22v2j12m2~11cos 2a! 4mE cosa

4mE sina 4mE cosa E22p21z22v2j14m2
G ~19!
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to zero. The dispersion relation for thePS modes is

E25p21
v0

v
Mp

2 cos~a2f!. ~20!

In order to get the masses of the different modes,
secular equation and the dispersion relation must be so
together with the minimization equations. The secular eq
tion can be cast in a form more similar to that presented
@7#, by making use of the relation

z22v2j14m252
v
v0

Mp
2 sinf

sina
, ~21!

which is a consequence of Eq.~18!. With this form one can
see explicitly that in the ordered phase forl50, wheref
50 but sinaÞ0, there is a true Goldstone mode.

It is worth noting here that the reason that the effect
actions with lattice symmetries are the relevant ones to c
sider is that, at the relatively large couplings and hence
tice spacings at which we work, the additional modes wh
would become~pseudo! Goldstone modes in the continuu
have masses far larger than those which are~pseudo! Gold-
stone modes of the lattice symmetries. At much smaller c
plings and hence lattice spacings where this is no longer t
the relevant effective actions would be those with the sy
metries of the continuum theory, with the symmetry brea
ings of the staggered lattice incorporated as symmetry br
ing terms in the action.

IV. LATTICE SIMULATIONS AND SCALING

We have simulated lattice two-color QCD with one sta
gered quark field~four flavors! at finite quark-number chemi
cal potentialm on 84 and 123324 lattices atb54/g251.5
~close to thebc for Nt54) and quark massm50.025 in
lattice units. Simulations were performed with the expli
symmetry breaking parameterl50.0025,0.005~and zero,
for small m). We used a hybrid molecular-dynamics alg
e
ed
a-
n

e
n-
t-
h

u-
e,
-
-
k-

-

t

rithm, performing simulations of 2000 molecular-dynami
time units at eachm andl with dt as small as 0.0016. Th
chiral and diquark condensates, the quark-number den
and the spectrum of candidate pseudo Goldstone bo
were measured.

The diquark condensate,1
2 ^xTt2x1x̄t2x̄T&, is plotted for

the larger lattice in Fig. 1a. This condensate is seen to
small for m&mp/250.19264(7) and rapidly increases clo
to mp/2. In addition, the decrease with decreasingl suggests
that the condensate would vanish asl→0 for m<0.15,
while for m.0.225, the condensate appears destined to
main finite in this limit. These observations strongly sugg
that there is a phase transition somewhere in the range
,m,0.225. To quantify this observation, we have fitted t
behavior of these condensates to scaling forms sugge
from effective chiral Lagrangians. The fits to the simple
form which comes from the tree-level analysis of the chi
Lagrangian of the nonlinear sigma model variety describ
in the Appendix are poor,x2 per degree of freedom~DOF!
564, so we turn again to a form based on the tree-le
analysis of a Lagrangian of the linear sigma model class
described in Sec. III, which allows the magnitude of the co
densate to vary. We have had good experience with suc
form in the past for quenched theories and for QCD at fin
isospin chemical potential@20,21#. The diquark condensate i
fitted to the form

1

2
^xTt2x1x̄t2x̄T&5cRsina, ~22!

which derives from Eq.~17! whereR anda are given from
the minimization conditions of the previous section. For la
reference we note that the prediction for the chiral cond
sate is

^x̄x&5cRcosa ~23!

while the quark-number density is
7-4
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j 05bmR2 sin2a. ~24!

The constantc is defined in terms of the criticalm, mc ,
through

c5
bmc

2

m
Aa1bmc

2, ~25!

which is equivalent to Eq.~15!, providedmc5mp/2.
Our best fit to the form of Eq.~22! hasa50.662(14),b

50.736(13), m50.02528(4), mc50.19299(9), and
x2/DOF55.4, over the range 0<m<0.4. mc is in good
agreement with the measured value ofmp/250.19264(7),
while m is close to the value 0.025 used in our simulatio
considering the quality of the fit. Since thex2 for this fit
appears poor, we compare the fit with the measurement
both the 123324 lattice that we used for the fit, and on th
84 lattice in Tables I and II. While the difference between t
84 and 123324 ‘‘data’’ suggests that the finite size effects

FIG. 1. The diquark condensate as a function ofm on a
123324 lattice. The solid lines are fits to the form of Eq.~22!. The
dashed lines are fits to the chiral perturbation theory forms in
Appendix.~a! m50.025, ~b! m50.1.
05450
,

on

the measurements on the larger lattice are small, they
almost certainly comparable with and probably larger th
the statistical errors and the discrepancies between
‘‘data’’ and the fits given in these tables, over the range of
fits. For this reason we consider the fits to the linear sig
model form to be acceptable, indicating that the system
dergoes a second order transition with mean-field critical
ponents atm5mp/2. We have also shown the fit to the tre
level chiral perturbation theory mentioned above in o
figure. While this clearly has a more limited range of vali
ity, it does not appear very unreasonable over this ran
However, in order to obtain this quality of fit, we were force
to usem50.02632(2). This is far enough from the true mas

e

TABLE I. The diquark condensate (1/2)^xTt2x1x̄t2x̄T& as a
function of m for l50.0025.

l50.0025
84 12334 Fit

m ^xTt2x& ^xTt2x& ^xTt2x&

0.000 0.0730~2! 0.07351~5! 0.07361
0.100 0.0979~3! 0.1001~1! 0.09991
0.150 0.1604~9! 0.1747~3! 0.17458
0.175 0.2448~17! 0.2847~6! 0.28645
0.200 0.3856~28! 0.4475~13! 0.44775
0.225 0.5109~44! 0.5606~13! 0.56438
0.250 0.5900~51! 0.6320~14! 0.63519
0.300 0.6615~44! 0.7075~16! 0.71084
0.400 0.7257~50! 0.7758~16! 0.77845
0.500 0.7410~46! 0.8098~17! 0.82255
0.600 0.7586~53! 0.8312~18! 0.86512
0.800 0.6590~45!

0.900 0.4236~39!

1.000 0.0293~1!

TABLE II. The diquark condensate (1/2)^xTt2x1x̄t2x̄T& as a
function of m for l50.005.

l50.005
84 12334 Fit

m ^xTt2x& ^xTt2x& ^xTt2x&

0.000 0.1437~3! 0.1451~1! 0.14518
0.100 0.1902~5! 0.1936~2! 0.19316
0.150 0.2893~12! 0.3030~4! 0.30342
0.175 0.3826~19! 0.4077~8! 0.40704
0.200 0.4883~23! 0.5191~8! 0.51529
0.225 0.5820~29! 0.5962~9! 0.59698
0.250 0.6275~33! 0.6529~10! 0.65228
0.300 0.6963~33! 0.7193~12! 0.71715
0.400 0.7509~37! 0.7817~11! 0.78057
0.500 0.7795~38! 0.8162~12! 0.82395
0.600 0.7969~40! 0.8354~12! 0.86628
0.800 0.7078~33!

0.900 0.4945~27!

1.000 0.0584~2!
7-5
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m50.025 that, as we shall see, the prediction for the ch
condensate is considerably poorer.

Since this fit gives not only them andl dependence bu
also predicts them dependence, we have plotted the pred
tions of this fit for our old ‘‘data’’ atm50.1 @13# in Fig. 1b.
Considering the fact thatm50.1 is rather large to expect fit
aimed at the chiral limit to work well, the prediction is re
markably good belowm50.6, where the effects of saturatio
start to be seen.

On the smaller lattice we see that the diquark conden
has a broad peak nearm50.6, beyond which it falls, remain
ing very small abovem'1. Since, as we shall see later, th
quark-number density approaches 2, the maximum value
lowed by Fermi statistics, at thesem values, we interpret this
fall as a saturation effect, a finite lattice spacing artifa
Further evidence that this is indeed a lattice artifact is fou
by comparing simulations at different lattice spacings. Co
paring the results presented here atb51.5 with those atb
51.85 @15# where the lattice spacing is about 2/3 that atb
51.5, we notice that the value ofm in lattice units where
saturation is reached is consistent with being the sam
both cases. In addition, them of the peak in the diquark
condensate forb51.85~in lattice units! is at least as large a
at b51.5. If these were continuum effects the relevant l
tice m values forb51.85 would be smaller by roughly
factor of 2/3, sincem5mphysicala. Hence we conclude tha
the decrease in1

2 ^xTt2x1x̄t2x̄T& at large m is purely a
lattice artifact. Tables I and II indicate that finite size effec
increase withm, and that their effect is to depress the valu
of the condensate asm increases. Thus we should expect th
the infinite lattice peak will be at a higherm value. However,
it is probable that this value will still lie below the saturatio
m, so that the falloff will occur over a range ofm, even on
an infinite lattice, rather than as an abrupt discontinuity at
saturation value ofm. We come to this conclusion based o
our experience with the quenched theory, where we h
been able to examine the finite size effects more thoroug
@20#.

In Fig. 2a we show the chiral condensate^x̄x& as a func-
tion of m. As expected it remains approximately constant
m,mp , above which it falls toward zero. The predictions
Eq. ~23!, using the parameters obtained from fits to the
quark condensates, are plotted on this graph. The agree
appears excellent over the scaling window. For compari
we include the predictions form50.1 on our old ‘‘data’’ at
that mass. Here the agreement is considerably poorer.
sumably some of this is due tom50.1 being too high for
these chiral effective Lagrangians. In addition, the ch
condensate is expected to be more sensitive to cutoff effe
such as saturation, at higher quark mass. Note that the
diction from the chiral perturbation theory fit mentione
above does relatively poorly, because this predicts that
magnitude of the total condensate is independent ofm,
which is not true. Thus by forcing this form to fit the diqua
condensate, the prediction for the chiral condensate m
fail.

Finally we present the quark number densityj 0 as a func-
tion of latticem in Fig. 3a for our 123324 simulations. Since
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this data does not extend to the saturation region, we
plot the 84 ‘‘data’’ in Fig. 4, along with theb51.85 results
for comparison. Our corresponding ‘‘data’’ from our oldm
50.1 runs is plotted, along with the predictions from E
~24!, in Fig. 3b.

First we note that the 123324 measurements start to d
part from the predictions from our scaling form@Eq. ~24!#
somewhat earlier than do either of the condensates, nam
for m.0.3. Form50.025, this does admit a small scalin
window. Form50.01, since 0.3,mp/2, there is no scaling
window. The fact that the relevant variable appears to bem
rather than 2m/mp suggests that at least some of this dep
ture is a lattice artifact related to saturation.

As is observed in Fig. 4a, the quark-number density ri
even more rapidly at largerm, until it saturates at 2 nearm
51. Comparing theseb51.5 measurements with those
b51.85~Fig. 4b! indicates that saturation occurs at appro
mately the samem in lattice units, confirming that saturatio
is a lattice artifact. However,j 0 would reach saturation at th

FIG. 2. The chiral condensate as a function ofm on a 123324
lattice. The solid lines are from the fits to the diquark condens
The dashed lines are the predictions of the fit to the tree-level ch
perturbation theory form.~a! m50.025, ~b! m50.1.
7-6
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PSEUDO GOLDSTONE SPECTRUM OF 2-COLOR . . . PHYSICAL REVIEW D 68, 054507 ~2003!
same latticem independent of lattice spacing, ifj 0}m3, at
largem. This is precisely the behavior expected at largem in
the continuum.~This was pointed out by Son and Stephan
for QCD at finite isospin density@22#.! The linear rise in the
diquark condensate at largem, which is a property of the
linear sigma model fitting forms, does predict a cubic rise
j 0, but in every case we have considered the measuredj 0 far
exceeds our predictions. The hint that this might be real,
not completely attributable to saturation, comes from the
servation that the onset of this rapid rise inj 0 with m appears
to occur at a larger value ofm in lattice units atb51.5 ~Figs.
3b and 4a! than atb51.85 ~Fig. 4b!. This is what would be
expected if it is a real effect rather than a lattice artifact. T
earlier departure from the predictions from our tree-le
analysis of our effective Lagrangian should not come as
much of a surprise. This analysis parametrizes the depa
from tree-level chiral perturbation theory by a single ne
parameter. This parameter is set by our fit to the diqu

FIG. 3. The quark-number densityj 0 as a function ofm at b
51.5, on a 123324 lattice. The solid curves are the predictio
from Eq. ~24!. The dashed curves are from tree-level chiral pert
bation theory.~a! m50.0025,~b! m50.1.
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condensate. Our new Lagrangian retains the same rela
ship between the diquark condensate and the density as
chiral perturbation theory Lagrangian. What we are seein
evidence that this relationship breaks down at am value
considerably less than the saturation value. To retain ag
ment beyond this point would require more terms/parame
in our effective Lagrangian.

V. THE PSEUDO GOLDSTONE SPECTRUM

As discussed in Sec. II and made quantitative in Sec.
spontaneous breaking of the latticeU(2) flavor symmetry at
m5m5l50 should give rise to three Goldstone boson
When these parameters are small, but nonzero, these ex
tions become pseudo Goldstone bosons, gaining masse
pendent on the magnitude of these symmetry-breaking
rameters. We have measured the connected and disconn
contributions to the propagators of all local scalar and ps
doscalar mesons and diquarks in our 123324 runs every one

-

FIG. 4. ~a! The quark-number densityj 0 as a function ofm at
b51.5, m50.025 on a 123324 lattice. The curves are the predic
tions from Eq.~24!. ~b! j 0 at b51.85,m50.05 on a 164 lattice.
7-7
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KOGUT, TOUBLAN, AND SINCLAIR PHYSICAL REVIEW D 68, 054507 ~2003!
molecular-dynamics time step. The connected propaga
are measured using noisy estimators of a point source
each odd~even! site ~color! of one time slice of the lattice
The disconnected propagators are calculated using five
of noisy sources defined over the whole odd~even! sublat-
tice, and the noise-diagonal terms are discarded.

The first state considered is the scalar diquark created
applying the operator12 (xTt2x2x̄t2x̄T) to the vacuum. For
l50 this will be a true Goldstone boson in the diqua
condensed phase. With the smalll ’s we consider, it should
have a small mass in the broken phase. Tree-level analys
the chiral perturbation theory Lagrangian discussed in
Appendix predicts that, at finitel its mass should be give
by Eq. ~A7! for the state labeledQ̃. Note that atl50 this
reproduces the predictions of simpler argumentsmG5mp

22m for m,mp/2 and zero form.mp/2. For the linear
sigma model approach of Sec. III this is replaced by
lowest lying solution of the secular equation obtained fro
Eq. ~19!. At l50 the two forms are identical.

We fit our measured propagatorsPG to the form

PG~ t !5A$exp@2mGt#1exp@2mG~Nt2t !#% ~26!

giving the results shown in Fig. 5a. The solid curves in t
figure are the predictions from Eq.~19!. The dashed curve
are from Eq.~A7!. What we see is that Eq.~19! describes the
decrease in mass of this would-be Goldstone boson wel
m,mp/2, and the dip near the transition valuemp/2. Asm is
increased much beyondmp/2, the ‘‘data’’ falls below these
predictions. These linear sigma model predictions are a c
siderable improvement over those of tree-level chiral per
bation theory. This gives us confidence that even tho
these fits fail above the transition, this excitation will st
have the expected behavior in the limitl→0, indicating that
there is a phase transition to a state with a diquark cond
sate, and that this state is the massless Goldstone boso
sociated with the spontaneous breaking of quark numbe
Fig. 5b we compare our predictions with our earlier measu
ments atm50.1, and find the agreement to be somew
worse than atm50.025.

Such departures from the predictions of the linear sig
model form could well indicate that this model of the high
order terms in chiral perturbation theory is too naive to c
rectly predict more than the qualitative nature of the pse
Goldstone spectrum. The worse agreement form50.1,
where in terms of the scaling variablex52m/mp saturation
occurs much sooner, suggests that the deviation could
largely due to saturation.

Next we turn to the consideration of the pseudosca
pseudo Goldstone boson. As described in Sec. II and in
ticular in Eq.~7!, at l50 this is expected to be the pion fo
m,mp/2. Above this value it mixes with the pseudosca
diquark. For largem it should be predominantly a pseud
scalar diquark. Since the mixing angleā in Eq. ~7! is not
known, beyond the predictions of effective Lagrangia
which suggest thata5ā, we choose to fit the pion and pse
doscalar diquark propagators separately to a form analog
to that which we used for the Goldstone propagator. T
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graphs of the measured masses are presented in Figs. 6
7. We note that these masses have the expected behav
that they remain flat fromm50 to the vicinity ofmp/2, and
then commence to fall, becoming small for largem where
they should equal the masses of the would-be Goldst
boson. As expected these two estimators for the mas
the pseudoscalar pseudo Goldstone boson are in g
agreement.

The effective~chiral! Lagrangian analysis presented in th
Appendix predicts that this pseudoscalar boson should h
a mass given by thePS state of Eq.~A7!, while our linear
sigma model form is given in Eq.~20!. We have plotted these
curves on our ‘‘data’’ in Figs. 6a and 7a. Although the
predictions have qualitatively the same form as the ‘‘dat
clearly there is no quantitative agreement.~Note that the lin-
ear sigma model form of Sec. III gives a slightly better
than the chiral perturbation theory form in the Appendix!
The form of the mass of Eq.~20! suggests that we compar

FIG. 5. The Goldstone boson of quark-number violation a
function of m. ~a! m50.025, ~b! m50.1. The solid curves are th
predictions from our fits. The dashed curves are from tree-le
chiral perturbation theory.
7-8
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PSEUDO GOLDSTONE SPECTRUM OF 2-COLOR . . . PHYSICAL REVIEW D 68, 054507 ~2003!
our data with that of our earlier paper wherem50.1. This
we do in Figs. 6b and 7b. Again we find that the falloff
mass abovemp/2 is much more rapid form50.1 than for
m50.025. This comparison suggests that at least som
this is the effect of saturation, but if it is all a saturatio
effect, the range over which saturation has an effect is la
Any discrepancy between the measurements and fits tha
mains after removal of the effects of saturation should ag
be taken as an indication that our linear sigma model ef
tive Lagrangian is inadequate to describe all departures f
tree-level chiral perturbation theory.

We note that the term in each of our effective Lagrangia
which relatesj 0 to the diquark condensate is the term pr
portional tom2. As we see in Eq.~A6! of the Appendix and
its equivalent for the linear sigma model, this term also c
tributes to the masses of the pseudo Goldstone bosons.
deviations of j 0 from our predictions should imply differ
ences in the pseudo Goldstone boson masses from our
dictions. The contribution to the state which is a true Go

FIG. 6. The pion mass as a function ofm, on a 123324 lattice
at ~a! m50.025,~b! m50.1. The curves are the scaling predictio
mentioned in the text.
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stone boson atl50 is proportional to sin2a, while that for
the pseudoscalar is proportional to cos2a. Sincea rises from
zero abovem5mp/2, we would expect any departure from
our predictions to occur earlier for the pseudoscalar than
the would-be Goldstone boson, which is precisely what
see.

The third pseudo Goldstone boson is also a scalar stat
is the linear combination of the scalar diquark state and
flavor-singlet scalar meson given in Eq.~6!. Here a is un-
ambiguously defined by the requirement that this state
zero vacuum-expectation value, so we have calculated
propagator for this state. Form,mp/2 andl50 this state is
a pure diquark state whose propagator is identical to tha
the Goldstone state. Thus we will find both the Goldsto
excitation and the state we want in this propagator. This w
also remain true at finitel. Since for finitel, there is no
phase transition in going fromm,mp/2 to m.mp/2, it fol-
lows that these two states continue to mix above the tra
tion, although the mixing becomes small form@mp/2. For

FIG. 7. The pseudoscalar diquark mass as a functions ofm, on
a 123324 lattice at~a! m50.025, ~b! m50.1. The curves are the
scaling predictions mentioned in the text.
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KOGUT, TOUBLAN, AND SINCLAIR PHYSICAL REVIEW D 68, 054507 ~2003!
this reason we fit our propagator to the form

PS~ t !5A$exp@2mGt#1exp@2mG~Nt2t !#%

1B$exp@2mSt#1exp@2mS~Nt2t !#%, ~27!

wheremS.mG is the mass of this scalar state, in addition
the form withA50, which is appropriate to them50 propa-
gator wheremG5mS and tom@mp/2 where the lower lying
state decouples. Form small but nonzero, we extract thi
mass by fitting the propagator of the diquark state obtai
by applying the operatorx̄t2x̄T to the vacuum, to the form

Pqq5A$exp@2mSt#1exp@2mG~Nt2t !#%. ~28!

This is obtained from the observation that for a pure diqu
state~as opposed to a mixture of a diquark and an ant
quark! at l50, the effect of the chemical potential is to ad
2m to the effective mass for propagation forward in time a
subtract 2m from the effective mass for propagation bac
ward in time, thus separating the two scalar excitations.
masses obtained from these fits are plotted in Fig. 8.

The analysis of Sec. III predicts this mass to be the mid
mass obtained from solving the secular equation~19!, while
the corresponding prediction from chiral perturbation the
is the mass ofQ̃† given in Eq. ~A7! of the Appendix. We
show these predictions on the ‘‘data’’ of Fig. 8. The agre
ment is quite good, in contrast to the other two masses. In
low m regime, the mass increases asmp12m, as expected
from general arguments. Just abovemp the mass shows a di
past which it resumes its increase, eventually becoming
ear again with the same slope but zero intercept. Remem
ing that for m50.1 these masses should be roughly tw
those presented here form50.025, it is easy to see why the
were too difficult to measure with any precision at th
higher quark mass.

FIG. 8. The scalar mass as a function ofm, on a 123324 lattice
at m50.025. The curves are the scaling predictions mentione
the text.
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Finally we should mention the radial excitation. Even
l50, its mass is.2.76 for allm. Since this is close to the
momentum cutoff (p) on the lattice, it is not even clear i
this should be considered as a real state. In any case,
mass is too high to be of more than passing interest.

VI. CONCLUSIONS

We have simulated two-color lattice QCD with one sta
gered fermion field corresponding to four flavors which b
come degenerate in the continuum limit, in the fundamen
representation~doublet! of the color group@SU(2)#, at a
finite chemical potentialm, and quark massm50.025. As in
previous simulations, we have observed the transition fr
the normal state to one characterized by a diquark cond
sate which spontaneously breaks quark number. We h
found that the equation of state which describes the dep
dence of the diquark and chiral condensates onm and the
explicit symmetry breaking parameterl is well approxi-
mated by the tree-level approximation to a chiral Lagrang
in the linear sigma model class. The critical scaling impli
by this analysis indicates that the transition is second or
with mean-field critical exponents, as expected from ch
perturbation theory analyses through next-to-leading or
The measured critical value ofm is consistent withmp/2 as
expected. Applying the predictions of these fits to our ear
simulations atm50.1 we see evidence that our equation
state also gives a reasonable description of the mass de
dence of these condensates. However, it is clear that sa
tion effects~a lattice artifact! limit the range of applicability
of this equation for the higher mass, and we suspect tham
50.1 might well be close to the limit of applicability of thi
approximation to chiral perturbation theory, if not to the a
plicability of chiral perturbation theory itself.

Our equation of state also predicts them, l, andm de-
pendence of the quark-number density. Here, it appears
the scaling window is somewhat narrower than that for
condensates. While the effect of saturation might expl
why this density grows faster than the predictions for larg
m, we suspect that we are seeing the limitations of us
tree-level results from an effective Lagrangian with only o
more parameter than the leading order chiral perturba
theory Lagrangian to model departures from tree-level ch
perturbation theory. Use of next-to-leading order chiral p
turbation theory to fit our measurements would require go
beyond what has already been done@8#, and going beyond
next-to-leading order would be extremely difficult. In add
tion, going to higher order in chiral perturbation theory i
troduces more parameters and thus reduces its predi
power. At high enoughm chiral perturbation theory will
break down. The scale at which chiral perturbation the
breaks down is given by the pion decay constantFp . From
the numerous higher order calculations in chiral perturbat
theory, this breakdown scale can be estimated to be of
order of a few timesFp . In our case atm50, we know the
chiral condensate, the quark mass and the pion mass. F
the Gell-Mann–Oakes–Renner relation, we find thatFp

;0.25. We therefore expect that chiral perturbation the
will break down whenm;1. However, atm;0.5, higher

in
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PSEUDO GOLDSTONE SPECTRUM OF 2-COLOR . . . PHYSICAL REVIEW D 68, 054507 ~2003!
order corrections should already amount to 20–30 %.
therefore conclude that it is very doubtful that chiral pert
bation theory can describe our ‘‘data’’ for the largest chem
cal potentials used in our study. Note that thisFp is theFp

for chiral perturbation theory with the lattice symmetries~see
the Appendix!. The continuumFp is half this value.

Our largem data suggests thatj 0 is increasing consis
tently with the expected rise cubic inm. Since the argument
leading to this prediction suggest a counting of degrees
freedom identical to that for free quarks, this suggests
we are beyond the range of chiral perturbation theory, si
accounting for all these degrees of freedom in terms of h
rons requires including hadrons other than the pseudo G
stone bosons. Unfortunately, it is difficult to disentangle su
behavior from the effects of saturation. Am3 increase inj 0 is
just what is required to keep the saturation threshold a
constantm in lattice units as the lattice spacing is varie
which is what we observe. In addition, the decrease of
condensate close to saturation suggests that the quark
acting like free quarks, which makes it even harder to dis
guish real effects from saturation induced artifacts.

The main goal of this project was to measure the spect
of pseudo Goldstone bosons for this theory, to enhance
knowledge of the pattern of symmetry breaking. Sponta
ous breaking of theU(2) symmetry of the staggered lattic
implementation of two-color QCD with one staggered qua
field at m5l5m50, should give rise to three Goldston
bosons. Fixingm50.025, we have studied the variation
these now pseudo Goldstone bosons as functions ofm for
two choices ofl. Comparison with our earlier simulations
m50.1 gave some indication of them dependence of thes
spectra. We have obtained the predictions from our lin
sigma model effective Lagrangian for these masses, u
the parameters obtained from our fits to the diquark cond
sate.

For m50 our measurements confirm that all three pseu
Goldstone bosons are degenerate with mass consistent
the expectedMp . mp is approximately proportional toAm
as predicted by PCAC. The observed small deviations fr
PCAC suggest thatm50.1 is beyond the range of the lea
ing order prediction. Atl50, the lowest mass state is th
diquark state orthogonal to the condensate. The mass of
state is expected to fall linearly to zero asm is increased to
mp/2. Above this phase transition it should remain zero,
coming the Goldstone boson of spontaneously broken qu
number. At small nonzerol, our effective Lagrangian analy
sis predicts its behavior. What we have observed is that th
predictions are good up to and through the transition. Asm is
increased much beyond this value, the measured mass
consistently below these predictions. Examining the co
sponding predictions for the higher quark massm50.1,
where the deviation is more severe, suggests that at
some of this deviation is coming from saturation, a latt
artifact seen whenm is large enough that the Fermi surfa
approaches the lattice cutoff.

When l50, we expect that the pseudoscalar pseu
Goldstone mass will remain constant asm is increased up to
mp/2. Above this it is expected to decrease rapidly, a
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proaching zero for largem. Our measured values atm
50.025 and nonzerol show evidence for such behavio
However, the rate of decrease in this mass above the tra
tion is significantly faster than that predicted by the line
sigma model effective Lagrangian fits. Atm50.1, this de-
crease is even more precipitous. Here again, there is
dence to suggest that this more rapid decrease is due to
effects of saturation. The improvement in going to t
smaller mass, where the onset of saturation occurs at la
x52m/mp, supports this interpretation, and suggests tha
the mass were decreased, eventually the predictions wou
the ‘‘data.’’

We have noted that the term in the effective Lagrang
which controls the behavior of the quark-number dens
also contributes to these pseudo Goldstone masses, and
so in a way which would be expected to make the discr
ancies worse for the pseudoscalar state. Hence it is rea
able to assume that the addition of one extra paramete
going from the chiral perturbation theory Lagrangian to t
linear sigma model Lagrangian is inadequate to paramet
all departures from tree-level chiral perturbation theory. T
behavior ofj 0 at highm can be obtained from analyses oth
than those of effective Lagrangians. This suggests that
should abandon the use of effective chiral Lagrangians
signed for smallm and smallmp and adopt a different ap
proach for largem.

At l50, the final pseudo Goldstone mass should incre
linearly with m up to mp/2, above which it should briefly
decrease before continuing its rise. We see evidence for
behavior in our measurements form50.025. The predictions
from effective Lagrangians are in good agreement with
‘‘data’’ for this state.

We note that some of the other hadrons which could
expected to contribute at highm, are those that would hav
been pseudo Goldstone bosons were it not for the fla
symmetry breaking of the staggered lattice. On the latt
the symmetry breaking isU(2)→U(1), giving three Gold-
stone bosons. In the continuum the symmetry breaking
SU(8)→Sp(8), which gives 27 Goldstone bosons.

To summarize, we have foundm50.025 to be small
enough to see evidence for mean-field scaling and to st
the spectrum of the three pseudo Goldstone excitations
this quark mass, the pseudo Goldstone boson masses lie
below those expected for other ‘‘hadrons.’’ However, satu
tion, where all available fermion levels are filled, is st
close enough to the phase transition to make it difficult
disentangle real physics from this lattice artifact, ev
though we do find an adequate scaling region for sim
observables. Form50.1 the scaling window is too small to
obtain quantitative information. It would be useful to obta
the full next-to-leading order analysis of the pseudo Go
stone spectrum, and the expressions for the order param
beyond leading order ina. However, this is beyond the
scope of this paper.
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APPENDIX: CHIRAL PERTURBATION THEORY AND
THE GOLDSTONE SPECTRUM

In this appendix, we construct chiral perturbation theo
for the symmetry breaking pattern of the staggered ferm
action~1! at m5l5m50: U(2)→U(1), and westudy the
spectrum of the three Goldstone excitations. These G
stone modes become massive upon the introduction of a
zero quark mass or a nonzero diquark source. They domi
the physics at low energy. In this appendix we study
spectrum in chiral perturbation theory. This problem is sim
lar to what can be found in the literature. In@7#, chiral per-
turbation theory forNf quarks in the adjoint representatio
has been constructed. In this case the symmetry brea
pattern is given bySU(2Nf)→SO(2Nf). Notice that for any
number of flavors the symmetry breaking pattern of the st
gered fermion action isU(2Nf)→SO(2Nf).

Following @7,23#, we construct the low-energy effectiv
Lagrangian for the Goldstone modes induced by the spo
neous symmetry breakingU(2)→U(1). We find that the
effective Lagrangian is given by

Leff5
F2

2
Tr ¹nS¹nS†2F2Mp

2 Re TrM̂fS, ~A1!

where F is the pion decay constant, Mp
2

5Am21l2^c̄c&0/2F2, and ^c̄c&0 is the quark-antiquark
condensate atm5l5m50.

We have used the same conventions as in@7#. These no-
tations were already introduced in Sec. III, we just need
replaceS l by S in the expressions that appear in Sec.
with

S5US̄UT, ~A2!

where

U5expS iP

2A2F
D with P5S PS QR1 iQI

QR2 iQI PS
D ,

~A3!

and

S̄5S i sina cosa

cosa i sina D ~A4!

corresponds to the minimum of the free energy witha given
by
ys
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4m2 cosa sina5Mp
2 sin~a2f!. ~A5!

We now turn to the study of the spectrum. All the com
putations made in@7# can be easily implemented in our cas
since our effective Lagrangian is very similar to that stud
in @7#.

First, atm50, we find that the mass of the three pseu
Goldstone modes is given byMp . At mÞ0, we can expand
the effective Lagrangian~A1! to second order in the Gold
stone fields.

Following @7#, we find that the term quadratic in the Gold
stone fields in the effective Lagrangian is given by

Leff5Tr@~]nQR
†]nQR1]nQI

†]nQI !

24m cosa~QI
†]0QR1QR

†]0QI !#

1Mp
2 TrFQIQI

† sinf

sina
1QRQR

†S 4m2

Mp
2

sin2a1
sinf

sina D G
1TrF ]nPS]nPS1PS

2Mp
2 S 4m2

Mp
2

cos2a1
sinf

sina D G .

~A6!

TheQ andQ† modes are mixed. If we callQ̃ andQ̃† the
eigenmodes, we find that the dispersion laws for the differ
Goldstone modes are given by

PS :

E25p21Mp
2 S 4m2

Mp
2

cos2a1
sinf

sina D ,

Q†:

E25p21Mp
2 sinf

sina
12m2~113 cos2a!

12mAm2~113 cos2a!214 cos2aS p21Mp
2 sinf

sina D ,

~A7!

Q̃:

E25p21Mp
2 sinf

sina
12m2~113 cos2a!

22mAm2~113 cos2a!214 cos2aS p21Mp
2 sinf

sina D .
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