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Pseudo Goldstone spectrum of 2-color QCD at finite density
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We examine the spectrum of two-color lattice QCD with one staggered quark(ffieidflavors at a finite
chemical potential &) for quark number, on a £X 24 lattice. First we present evidence that the system
undergoes a transition to a state with a diquark condensate, which spontaneously breaks quark number at
=m_/2, and that this transition is mean field in nature. We then examine the three states that would be
Goldstone bosons gi=0 for zero Dirac and Majorana quark masses. The predictions of chiral effective
Lagrangians give a good description of the behavior of these massgsdor,/2. Except for the heaviest of
these states, these predictions diverge from our measurementsuoiscgignificantly greater tham,/2.
However, the qualitative behavior of these masses indicates that the physics is very similar to that predicted by
these effective Lagrangians, and there is some indication that at least part of these discrepancies is due to
saturation, a lattice artifact.
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[. INTRODUCTION were performed at a quark mass so large that it was difficult
to measure those excitations which were significantly more
Recently, there has been renewed interest in the propertiesassive than the piofl3]. It was also unclear at such large
of nuclear matter—hadronic matter at a finite nonzeroguark masses if the masses of these pseudo Goldstone modes
baryon numbefand isospii density[1,2]. Much of this in-  were well separated from the rest of the hadron spectrum.
terest comes from a reevaluation of the old idea that quarisince these earlier simulations were performed at a quark
pairs might condense, giving rise to a transition to a coloimass ofm=0.1, we have performed new simulations at the
superconducting state at high baryon-number denSi#l.  samep (1.5 and quark masm=0.025 which should halve
These newer studies indicate that the energieS aSSOCiatﬁqg pion mass'nﬂ__ These Simu'ations were performed on a
with this transition are much larger than the original esti-123x 24 |attice again with the quark-number symmetry
mates so that they could have a significant effect on th%reaking parametei =0.1m and A=0.2m to keep the
equation of state of nuclear matter. Unfortunately, adding aexplicit symmetry breaking, which depends bfm, small.

finite chemical potential for quark or baryon number to theWe have also performed simulations on a smallé) (8ttice

Euclidean QCD action renders the fermion determinant com:_ "~ . o . - .

. . N . _to give us some indication of the magnitude of finite size

plex which precludes the naive application of standard Iattlcee ffects
simulation methodg.Some advances have been made allow- j . . , )

These simulations had a single staggered quark field

ing studies at a small chemical potential and high tempera- X - !
tures, but their ranges of applicability are limitgsl.) For whose continuum limit would describe four degenerate quark

this reason people have turned to the study of models whicHiavors. However, at the relatively strong couplings at which
have some of the properties of QCD at finite baryon numbelVe work, the relevant flavor symme_try is thg remnant flavor
but have real, positive fermion determinants, allowing latticeSymmetry of the staggered quark field, whichna¢\ = u
simulations. =0 isU(2), rather than th&sU(8) of the continuum limit.
One such model is two-color QCD with fundamental When this breaks spontaneously(2)—U(1), giving rise
quarks. WithSU(2).i0r,» the quarks and antiquarks are in to three Goldstone bosons. We study the behavior of these
the same representation, leading to a fermion determinarhree states fom#0, w#0, and\<m, and compare with
which remains real and positive in the presence of a quarkthe leading-order predictions from chiral effective
number chemical potentiak. It is expected that, aju Lagrangians. Fop<m_/2, the agreement with these predic-
=m_/2, this model exhibits a phase transition to a state withions is excellent. A is increased beyonoh,/2, the mass
a colorless diquark condensate which breaks quark numbeof the excitation which would be a Goldstone boson Xor
and associated Goldstone bosons. Thus this condensed phas® and that of the pion lie consistently below the predic-
is a superfluid rather than a superconductor. Chiral effectivéions from tree-level effective Lagrangians. Part of this dif-
Lagrangians have been used to predict the phase structure fefence might be due to higher order corrections in the ef-
this theory[6—10], as have random-matrix modglsl]. fective Lagrangian calculations, which cannot be
This predicted phase structure including the mean-fieldcharacterized by a single parameter in addition to those of
nature of the transition has been observed in lattice simulatree-level chiral perturbation theory. However, at least some
tions[12—18. However, the only simulations in which it was of this “discrepancy” appears to be due to the fact that, at
possible to study the masses of potential Goldstone bosorggh densities, the fermionic constituents of these excitations
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are revealed, indicating that we are beyond the reach of chi-
ral perturbation theory. However, the high density behavior

of the lattice theory is strongly affected by saturation, a lat-f w#0 andm=0, the staggered fermion actiga) is in-

tice artifact, so it is unclear how much of this would survive yariant underU(1)xU(1), which is completely spontane-

to the continuum. ously broken by the diquark condensate. Therefore, only the
In Sec. Il we review the expected pattern of symmetryyyo diquark states in Eq3) remain Goldstone bosons.

breaking for lattice two-color QCD with one fundamental  \whenm+0, the chiral condensate forms and the three

staggered quark fielfour flavorg, and the(pseudo Gold-  Ggldstone bosons of Ed2) gain equal masses given by

stone spectrum associated with this breaking. ThroughoWartial conservation of axial-vector currei®CAC). As u is
our analysis we compare the lattice results to analytical cal- o

cuitions derived ffom efectve models. We Use 3 nononi'condan, s i has 2ero quark number and docs
der similar to that described {7], and a linear sigma model not feel the effect of the chemical potential. Thgerfrgy and
1 . T .
that models some of the higher order corrections to chiral’€nc€ the mass of the diquark state createdybyy' is
perturbation theory. We present the linear sigma model effedlcreased tom,+2u for diquarks propagating in the-t
tive Lagrangian we use to fit our diquark condensates, and ifdiréction. The mass of the forward propagating antidiquark is
predictions for the pseudo Goldstone spectrum in Sec. lijdecreased ton,—2u. _
while, for completeness, the nonlinear sigma model is pre- 1hiS latter mass vanishes at=m,/2, and it becomes a
sented in the Appendix. Section IV describes our simulalrue Goldstone boson. This heralds the phase transition to a
tions, presents our results for the condensates and the ewtate in which quark number is spontaneously broken by a
dence for mean-field scaling. In Sec. V we present oudiquark condensate(x mx+ x7.x"). The Goldstone bo-
measurements of the spectrum of this theory, and its conson is created by the orthogonal linear combination

parison with the predictions of effective Lagrangian analy-%(yTr,y— xy7x"), which we note is just that Goldstone

o= X T X XT2X

ses. Our conclusions are presented in Sec. VI. mode which is common to Eq&2) and(3).
For u>m_/2, it is useful to introduce the concept of a
II. SYMMETRY BREAKING IN TWO-COLOR LATTICE total condensatEc such that
QCD _
(Xx)=2 cosa (4)

The staggered fermion action for two-color lattice QCD
with one staggered fermion in the fundamental representagng
tion of the color group is

1 _
_ 1 _ —(XTTZ)(-I—)(TZ)(T):E sina. (5)
Si= > {x[D(w)+mlx+ SAX axtxm2x'lp (D) 2 ‘

sites
We then see that the heaviest of our three would-be Gold-

whereD () is the normal staggered covariant finite differ- stone bosons will be that created by the operator
ence operator with links in the t direction multiplied bye*
and those in the-t direction bye™*. What follows summa-
rizes the analysis of the symmetries of this theory presented
in detail in[12].

At u=m=\=0, this action has &(2) flavor symmetry which has zero vacuum expectation value. jaojust above
which breaks spontaneously ti(1). If it breaks forming a the transition, this is predominantly a diquark/antidiquark
chiral condensatdyy), there will be three brokets(2)  State, while foru large, it is predominantly the scalaff,

generators and three Goldstone bosons, namely, meson, as expected singecan be neglected. This state will
be heavy since the scalar meson is not a Goldstone boson

when x>0, even whenm=0. Finally, the pseudoscalar

1 - T — -
5 (X"2x+ x72x")COSa— yx sina, (6)

1= xex, .
Xex pseudo Goldstone boson is created by the operator
o1= X Tox— xTax" (2 _ _ 1 o _
o X€X COSa— E(XTTZG)(-FXTZGXT)Sin a, )
o= X Xt XT2X -

. . . T where effective Lagrangians suggeztz a, with « intro-
I _t _bTreaks formmg ? diquark - condensate(x' ox duced in Eqgs(4),(5). For u small, this state is predominantly
+x72x"), there will again be three broken generators and; pion while for largeu it is predominantly a pseudoscalar

three Goldstone bosons, diquark. Since this pseudoscalar diquark would be a Gold-
- — — stone boson in=0, its mass should approach zero for large
1= moex+ xmaex’, « whenm can be neglected.
o () When A #0, the remaining Goldstone boson becomes
To= XX, massive. For the details of this dependence and for the
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dependence of the heavier, would-be Goldstone modes above 1 0
the transition, we must turn to effective Lagrangians and B,= 60, 0 -1/
chiral perturbation theory.
- ising cosg¢
Il. LINEAR SIGMA MODEL EFFECTIVE LAGRANGIAN M ,= o ,
CoS¢p ising

For small pion mass., ., and\, we should be able to
use chiral perturbation theory to parametrize the behavior ofvhere tarnp=\/m.
the condensates, quark-number density, and pseudo Gold- The field3,=(v+ )3 containsv, the minimum of the
stone spectrum of this theory, as was dong6i]. Arework-  free energy of the linear sigma model, as well as the radial
ing of this analysis for the symmetries of the staggered quarknd transverse fluctuations around that minimum. The &eld
action is presented in the Appendix. However, we find thadescribes the radial fluctuations around that minimum. The
m,., even for the lowest quark masswe use, is too large three pseudo Goldstone modes are the transverse fluctuations
for tree-level chiral perturbation theory to give a quantitativearound that minimum. They are the same as in chiral pertur-
description of the physics of this system except at a relabation theory and are contained in the fi@ldgiven by
tively low chemical potential. While next-to-leading order _
chiral perturbation theory calculations have been performed >=U3UT, (10
[8], these do not yet include spectrum calculations. Even the
calculation of the order parameters has not been extendadhere
beyond the neighborhood of the critical point at next-to-

leading order. B iTI T Ps  QrtiQ
We therefore introduce an alternative effective Lagrangian Y ~ €X 20 wit ~lor-iQ Ps
which incorporates at the tree level some of the properties (12)

expected from an all-order chiral perturbation theory calcu-
lation. First, it should have the same phase structure andnd
critical exponent§mean field as tree-level chiral perturba-

tion theory, and a critical point gb=m_/2. At A\=0, the — [isina cosa
spectrum of pseudo Goldstone bosons fiorm_/2 should :( ) (12)
be that predicted in the previous section from fairly general

arguments, and fop>m_/2, it should have one massless corresponds to the minimum of the free enemyy, is the

GoEstone boson. Tie r_nagnitude of the total condensatgion mass in the presence of the Majorana quark mass
\/(XX>2+(%<XT72X+X72XT))2 is independent of. in tree-

cosa iSina

level chiral perturbation theory, but dependsomat next-to- M2= Vmo+A m?2 (13)
leading order. Lattice results indeed indicate that the total g m ™

condensate increases whgnincreases. Therefore the total

condensate should be allowed to vary. Such variation can b&herem_ is the pion mass at=u=0. The Lagrangian is
allowed if the magnitude of the condensate becomes a dyaritten in such a way that the masses of the pseudo Gold-
namical field. With the chiral perturbation theory Lagrang-Stone modes are given By . at zero chemical potential.

ian, this would be a nonperturbative effect, since it involves Under a local flavor transformatiovie U(2), the differ-
producing a bound state. Modifying our Lagrangian to ex-ent fields transform in the following way:

plicitly incorporate such excitations requires replacing the

) . L ! . T

chiral Lagrangian which is of the nonlinear sigma model I-VEVY,

class by the corresponding linear sigma model effective La- R R

grangian. Since we do not intend to use this Lagrangian be- M ,—V*M VT, (14)

yond the tree level, we do not have to face the problems of
trying to formulate a chiral perturbation theory based on this 1

; : ; : : B,—VB,V'——Vvg, V'
Lagrangian 19]. The simplest Lagrangian of this form is v v w Y
At ©=0 and\=0, the minimum of the free energy cor-

1 1 A 1
— I 2 _Z t
Lt 5 v,z V2, ZUOMW ReTrM %, 2( Tr3,3, responds to

1 2
- 12 mz+{
We have used the same conventions a7in In general, the minimum of the free energy is given by mini-
V,3=9,% - uB,3+3B)), mizing
©) E=tv*— v’ 4uv? Sinza—ZMfTvov coga— ).

V3=a,5/+uB2+3B,), (16)
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Comparing this to the phenomenological effective potential v (2v u? sin Za—voMi sin(a— ¢))=0, (18)
Toa 1 o 1 oo ; 2 ;

£=7R'=saR—Sbu’R sirfa—cmRcosa— cAR sina vom2 cof a— @) +v({— 202+ 4u? sirfa)=0.

4 2
17 : : :
The computation of the spectrum of the linear sigma
used in our earlier work and in the next section, we see thahodel is similar to that for chiral perturbation theory given
these are identical under the substitutians Vb/2R/2, ¢ in the Appendix. For this case thefield mixes with both the
=4a/b, and é&=16Mb?, provided the critical value of. is  Q modes, but not with th®s mode. The secular equation for

pme=m_/2. the o and the twoQ modes is given by setting the determi-
The minimization conditions for thé of Eq. (16) are nant of the matrix
|
E%2—p?+ {—6v2E+4u? sirfa 4u? sin 2a 4uE sina
42 sin 2« E2—p?+ ({—2v%é+2u?(1+ cos 2u) 4uE cosa (19
AuE sina 4uE cosa E2—p?+(—2v%¢+4u?
|

to zero. The dispersion relation for ti modes is rithm, performing simulations of 2000 molecular-dynamics

time units at eachw and\ with dt as small as 0.0016. The

(20 chiral and diquark condensates, the quark-number density,
and the spectrum of candidate pseudo Goldstone bosons
were measured.

In order to get the masses of the different modes, the . T — T\
secular equation and the dispersion relation must be solvetg] eT{;?gd;?l.llg.{tli(C(;OIi’]nd?:ri]gS.atf;'XTﬁi)s( tc))(r?égnéaltsé ﬁft;iirf]o:o be
together with the minimization equations. The secular equag | for w=m._/2=0.19264(7) and rapidly increases close
tion can be.cast in a form more similar to that presented iqo m./2. In add?tion, t'he decrease with decreasinguggests
7], by making use of the relation that the condensate would vanish Bs-0 for u=<0.15,
v sing while for ©>0.225, the condensate appears destined to re-
[—20%+4p%=— —M2 — (21)  main finite in this limit. These observations strongly suggest
vo that there is a phase transition somewhere in the range 0.15

which is a consequence of E(L8). With this form one can <M<Q-225- To quantify this observation', we have fitted the
see explicitly that in the ordered phase for0, where g behavior o_f thes_e condensat_es to scall_ng forms s_uggested
=0 but sina#0, there is a true Goldstone mode. from effective chiral Lagrangians. The fits to the simplest
It is worth noting here that the reason that the effectivelOrM which comes from the tree-level analysis of the chiral
actions with lattice symmetries are the relevant ones to corl-2grangian of the nonllneg\r sigma model variety described
sider is that, at the relatively large couplings and hence latn the Appendix are poor* per degree of freedorDOF)
tice spacings at which we work, the additional modes which=64, SO we turn again to a form based on the tree-level
would become(pseudd Goldstone modes in the continuum analysis of a Lagrangian of the linear sigma model class, as
have masses far larger than those which (aseudd Gold- described in Sec. Ill, which allows the magn_ltude of_the con-
stone modes of the lattice symmetries. At much smaller coudensate to vary. We have had good experience with such a
plings and hence lattice spacings where this is no longer trud0rm in the past for quenched theories and for QCD at finite
the relevant effective actions would be those with the symiS0spin chemical potentigP0,21. The diquark condensate is
metries of the continuum theory, with the symmetry break-fitted to the form
ings of the staggered lattice incorporated as symmetry break-

: . . 1 .
ing terms in the action. §<XT72X+X72XT>=CRS"W: (22

v
E?=p?+ —M? coga—¢).

Tsina’

IV. LATTICE SIMULATIONS AND SCALING . . .
which derives from Eq(17) whereR and « are given from

We have simulated lattice two-color QCD with one stag-the minimization conditions of the previous section. For later
gered quark fieldfour flavor9 at finite quark-number chemi- reference we note that the prediction for the chiral conden-
cal potentialy on 8 and 12x 24 lattices at3=4/g°=1.5 sate is
(close to theB. for N;=4) and quark massn=0.025 in o
lattice units. Simulations were performed with the explicit (xx)=CcRcosa (23
symmetry breaking parameter=0.0025,0.005(and zero,
for small «). We used a hybrid molecular-dynamics algo- while the quark-number density is
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SU(2) f=1.5 m=0.025 12°%x24 lattice TABLE |. The diquark condensate (1A mx+x7ox') as a
1.0 function of u for A =0.0025.
[ A=0.0025
0871 g* 1% 4 Fit
i p (xT72x) (xT72x) (xT72x)
=~ 067 0.000 0.073@) 0.073515) 0.07361
Fliv 0.100 0.0978B) 0.10011) 0.09991
g4l 0.150 0.160) 0.17473) 0.17458
[ 0.175 0.2448L7) 0.28476) 0.28645
0.200 0.385628) 0.447513) 0.44775
0.2 0.225 0.510844) 0.560613) 0.56438
] 0.250 0.590(61) 0.632@14) 0.63519
oot o v v L L] 0.300 0.661644) 0.707516) 0.71084
0.0 0.2 0.4 0.6 0.400 0.725%0) 0.775816) 0.77845
(a) M 0.500 0.741046) 0.809817) 0.82255
5 ) 0.600 0.75863) 0.831218) 0.86512
SU(R) B=1.5 m=0.1 12°x24 lattice 0.800 0.659045)
1or 0.900 0.423639)
C 1.000 0.0294a1)
0.8 2 -
[ 8 ] the measurements on the larger lattice are small, they are
/%1 0671 . ] almost certainly comparable with and probably larger than
o i * ] the statistical errors and the discrepancies between the
E oal ° ] “data” and the fits given in these tables, over the range of the
I R ] fits. For this reason we consider the fits to the linear sigma
i 1 model form to be acceptable, indicating that the system un-
0.2 ; - 118'8? * ] dergoes a second order transition with mean-field critical ex-
o _ )\;0:02 1 ponents _atu=m7,/2. We have also shovyn the fit to the_ tree-
0.0l L, \L A I 15 level chiral perturbation theory mentioned above in our
0.00 0.25 050 0.75 1.00 1.25 figure. While this clearly has a more limited range of valid-
(b) w ity, it does not appear very unreasonable over this range.

However, in order to obtain this quality of fit, we were forced

FIG. 1. The diquark condensate as a function :0fon a g ysem=0.0263%2). This is far enough from the true mass
128x 24 lattice. The solid lines are fits to the form of Eg2). The

dashed lines are fits to the chiral perturbation theory forms in the

; T T
Appendix. (8 m=0.025, (b) m=0.1. TABLE II. The diquark condensate (1&)' mox+x7ox') as a

function of u for A =0.005.

jO: bMRz Sinza. (24) A=0.005
: ) . " 84 122x4 Fit
;I;]he constantt is defined in terms of the criticak, w., u (XT7x) (XTx) (XTrax)
rough
) 0.000 0.143B) 0.14511) 0.14518
bug 0.100 0.19015) 0.19362) 0.19316
c= 5 Vatbuc, (29 o150 0.289812) 0.303a4) 0.30342
0.175 0.382619) 0.40778) 0.40704
which is equivalent to Eq(15), providedu,=m_/2. 0.200 0.488@3) 0.51918) 0.51529
Our best fit to the form of Eq22) hasa=0.662(14),b  0.225 0.582(29) 0.59629) 0.59698
=0.736(13), m=0.025284), w«.=0.192999), and 0.250 0.627833) 0.652910) 0.65228
X?/DOF=5.4, over the range ®u<0.4. u. is in good  0.300 0.696®3) 0.719312) 0.71715
agreement with the measured valuemf/2=0.192647), 0.400 0.750837) 0.781711) 0.78057
while mis close to the value 0.025 used in our simulations,0.500 0.779839) 0.816212) 0.82395
considering the quality of the fit. Since thg for this fit  0.600 0.796840) 0.835412) 0.86628
appears poor, we compare the fit with the measurements angoo 0.707633
both the 18x 24 lattice that we used for the fit, and on the 9.900 0.494B7)
84 lattice in Tables | and Il. While the difference between theq ggo 0.058@)

8* and 12x 24 “data” suggests that the finite size effects in

054507-5



KOGUT, TOUBLAN, AND SINCLAIR PHYSICAL REVIEW D 68, 054507 (2003

m=0.025 that, as we shall see, the prediction for the chiral SU(2) B=1.5 m=0.025 12°x24 lattice
condensate is considerably poorer. 1.0

Since this fit gives not only thg and\ dependence but I © ——— x=0.0000 ]
also predicts then dependence, we have plotted the predic- I X ——— A=0.0025 ]
tions of this fit for our old “data” atm=0.1[13] in Fig. 1b. 0.8 E==2- © ——— 2=0.0050

Considering the fact thah=0.1 is rather large to expect fits
aimed at the chiral limit to work well, the prediction is re-
markably good below.= 0.6, where the effects of saturation
start to be seen.

On the smaller lattice we see that the diquark condensate
has a broad peak near=0.6, beyond which it falls, remain-
ing very small aboveu~1. Since, as we shall see later, the
qguark-number density approaches 2, the maximum value al-
lowed by Fermi statistics, at thegevalues, we interpret this
fall as a saturation effect, a finite lattice spacing artifact.
Further evidence that this is indeed a lattice artifact is found
by comparing simulations at different lattice spacings. Com-
paring the results presented hereBat 1.5 with those aiB
=1.85[15] where the lattice spacing is about 2/3 thatBat 10
=1.5, we notice that the value @f in lattice units where I O ——— Xx=0.00
saturation is reached is consistent with being the same in X ——— x=0.01
both cases. In addition, the of the peak in the diquark 0.8F O ——— X=0.02 =
condensate foB=1.85(in lattice unitg is at least as large as 1
at B=1.5. If these were continuum effects the relevant lat-
tice u values for3=1.85 would be smaller by roughly a
factor of 2/3, sinceu= unysica®- Hence we conclude that i
the decrease i (x"rx+x7ox') at large u is purely a 0.4
lattice artifact. Tables | and Il indicate that finite size effects
increase withu, and that their effect is to depress the values

(xx)

1 A I I B

(a) [

SU(2) B=1.5 m=0.1 12°x24 lattice

0.6

$%%

of the condensate as increases. Thus we should expect that C

the infinite lattice peak will be at a higher value. However, i \L . 1
it is probable that this value will still lie below the saturation 0.0 * .
w, so that the falloff will occur over a range @f, even on 0.00 025 050 075 1.00 1.25
an infinite lattice, rather than as an abrupt discontinuity at the () H

saturation value ofx. We come to this conclusion based on FIG. 2. The chiral condensate as a functioruobn a 18x 24

our experience Wlt.h the qggnchgd theory, where we h"’Wﬁ’:lttice. The solid lines are from the fits to the diquark condensate.
been able to examine the finite size effects more thorouth)fhe dashed lines are the predictions of the fit to the tree-level chiral
[20]. _ perturbation theory form@ m=0.025, (b) m=0.1.

In Fig. 2a we show the chiral condensdjgy) as a func-
tion of u. As expected it remains approximately constant forthis data does not extend to the saturation region, we also
w<m_, above which it falls toward zero. The predictions of plot the & “data” in Fig. 4, along with the=1.85 results
Eqg. (23), using the parameters obtained from fits to the di-for comparison. Our corresponding “data” from our afa
quark condensates, are plotted on this graph. The agreemen®0.1 runs is plotted, along with the predictions from Eq.
appears excellent over the scaling window. For comparisoii24), in Fig. 3b.
we include the predictions fan=0.1 on our old “data” at First we note that the £X 24 measurements start to de-
that mass. Here the agreement is considerably poorer. Prpart from the predictions from our scaling forfgq. (24)]
sumably some of this is due tm=0.1 being too high for somewhat earlier than do either of the condensates, namely,
these chiral effective Lagrangians. In addition, the chiralfor ©>0.3. Form=0.025, this does admit a small scaling
condensate is expected to be more sensitive to cutoff effectgyindow. Form=0.01, since 0.8 m_/2, there is no scaling
such as saturation, at higher quark mass. Note that the predndow. The fact that the relevant variable appears tqube
diction from the chiral perturbation theory fit mentioned rather than 2/m_ suggests that at least some of this depar-
above does relatively poorly, because this predicts that theure is a lattice artifact related to saturation.
magnitude of the total condensate is independentuof As is observed in Fig. 4a, the quark-number density rises
which is not true. Thus by forcing this form to fit the diquark even more rapidly at larges, until it saturates at 2 neax
condensate, the prediction for the chiral condensate must1. Comparing thes@=1.5 measurements with those at
fail. B=1.85(Fig. 4b indicates that saturation occurs at approxi-

Finally we present the quark number dengigyas a func-  mately the same in lattice units, confirming that saturation
tion of lattice u in Fig. 3a for our 13X 24 simulations. Since is a lattice artifact. Howevef, would reach saturation at the
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SU(R) B=1.5 m=0.025 12%x24 lattice SU(2) B=1.5 m=0.025 8* lattice
0.6

r © ——— A=0.0000 e 50 © ——— A=0.0000 -
I X ——— A=0.0025 1 i X ——— A=0.0025 e
i O ——— A=0.0050 y . O ——— A=0.0050 1
0.4 1.5~ *
.2 I .2 L - ]
r 1.0~ —
0.2+ ]
I 0.5 ® —
L I - ]
- [ £-) 7
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FIG. 3. The quark-number densify as a function ofu at 8 FIG. 4. (a) The quark-number density, as a function ofu at

=15, on a 13x 24 lattice. The solid curves are the predictions 5= 1.5, m=0.025 on a 12x 24 lattice. The curves are the predic-
from Eq. (24). The dashed curves are from tree-level chiral pertur-tions from Eq.(24). (b) jo at 5=1.85,m=0.05 on a 18 lattice.
bation theory(a) m=0.0025,(b) m=0.1.

condensate. Our new Lagrangian retains the same relation-
same latticew independent of lattice spacing, jife u3, at sh!p between the diquark condenfsate and the density as t'he
large . This is precisely the behavior expected at laugim ch!ral perturbatlon theory Lag_ranglan. What we are seeing is
the continuum(This was pointed out by Son and Stephanovevidence that this relationship breaks down aj avalue
for QCD at finite isospin densitj22].) The linear rise in the considerably Ie;s thgn the saturation value. To retain agree-
diquark condensate at large, which is a property of the ment beyonq this point vyould require more terms/parameters
linear sigma model fitting forms, does predict a cubic rise inln Our effective Lagrangian.
jo, butin every case we have considered the meagyréat
exceeds our predictions. The hint that this might be real, i.e.,
not completely attributable to saturation, comes from the ob-
servation that the onset of this rapid risg gwith . appears As discussed in Sec. Il and made quantitative in Sec. Il
to occur at a larger value @f in lattice units a{3=1.5(Figs.  spontaneous breaking of the lattidg€2) flavor symmetry at
3b and 4athan atB=1.85(Fig. 4b. This is what would be m=ux=XA=0 should give rise to three Goldstone bosons.
expected if it is a real effect rather than a lattice artifact. Thiswhen these parameters are small, but nonzero, these excita-
earlier departure from the predictions from our tree-leveltions become pseudo Goldstone bosons, gaining masses de-
analysis of our effective Lagrangian should not come as togendent on the magnitude of these symmetry-breaking pa-
much of a surprise. This analysis parametrizes the departurameters. We have measured the connected and disconnected
from tree-level chiral perturbation theory by a single newcontributions to the propagators of all local scalar and pseu-
parameter. This parameter is set by our fit to the diquarkdoscalar mesons and diquarks in oufX24 runs every one

V. THE PSEUDO GOLDSTONE SPECTRUM
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molecular-dynamics time step. The connected propagators SU(Z) ﬁil 5 m=0.025
are measured using noisy estimators of a point source on 0.4 i )
each odd(even site (color) of one time slice of the lattice. o — A=0.0000 qq ]

The disconnected propagators are calculated using five sets
of noisy sources defined over the whole d@den sublat-
tice, and the noise-diagonal terms are discarded.

The first state considered is the scalar diquark created by
applying the operatof(x " rx— x72x ") to the vacuum. For
A=0 this will be a true Goldstone boson in the diquark
condensed phase. With the smals we consider, it should
have a small mass in the broken phase. Tree-level analysis of
the chiral perturbation theory Lagrangian discussed in the
Appendix predicts that, at finit® its mass should be given
by Eq. (A7) for the state labele. Note that at\=0 this
reproduces the predictions of simpler argumemis=m_.

—2u for u<m_/2 and zero foru>m_/2. For the linear

sigma model approach of Sec. lll this is replaced by the (@) n

lowest lying solution of the secular equation obtained from

Eqg. (19). At A=0 the two forms are identical. SU(R) f=1.5 m=0.1
We fit our measured propagatdPg, to the form 0.8

I X — A=0.0025 qq -
i O — A=0.0050 qq ]

0.3

mass

A ¢ — A=0.00 qq |
Ps(t)=A{exd —mgt]+exd —mg(N—t)]}  (26) i X — A=0.01 qq -
0.6 O — A=0.02 qq
giving the results shown in Fig. 5a. The solid curves in this [
figure are the predictions from E¢L9). The dashed curves
are from Eq(A7). What we see is that E¢L9) describes the
decrease in mass of this would-be Goldstone boson well for
pn<m_/2, and the dip near the transition valume/2. As u is
increased much beyond /2, the “data” falls below these
predictions. These linear sigma model predictions are a con-
siderable improvement over those of tree-level chiral pertur-
bation theory. This gives us confidence that even though I |
these fits fail above the transition, this excitation will still 0.0 ol b
have the expected behavior in the limit>0, indicating that 000 025 050 0% 1.00 1.25
there is a phase transition to a state with a diquark conden- ®) K
sate, and that this state is the massless Goldstone boson 8515 5 The Goldstone boson of auark-number violation as a
sociated with the spontaneous breaking of quark number. lPunctioﬁ o.f (@ m= _ q ;

. S . . ©. (@ m=0.025,(b) m=0.1. The solid curves are the
Fig. Sb we compare our predictions with our earlier measure redictions from our fits. The dashed curves are from tree-level
ments atm=0.1, and find the agreement to be somewhaﬁhiral perturbation theory.
worse than am=0.025.

Such departures from the predictions of the linear Sigm%raphs of the measured masses are presented in Figs. 6 and

model form (_:ould_well |nd|catg fhatinis model of t.he h|gher7. We note that these masses have the expected behavior in
order terms in chiral perturbation theory is too naive to cor-

rectly predict more than the qualitative nature of the pseudcglat they remain flat from. =0 to the vicinity ofm,/2, and
Goldstone spectrum. The worse agreement fioe0.1, en commence to fall, becoming small for largewhere

: ; . . they should equal the masses of the would-be Goldstone
where in terms of the scaling variable= 2,/ M saturann boson. As expected these two estimators for the mass of
occurs much sooner, suggests that the deviation could b['ﬁe pseudoscalar pseudo Goldstone boson are in good
largely due to saturation. agreement

N%Xt (VBVGI dtutrn tobthe C?Ans:(jjeratl_gn do_f tge plsleudggcalar The effective(chiral) Lagrangian analysis presented in the
pseudo Soldstone boson. AS described in Sec. 1T and in p"",r&ppendix predicts that this pseudoscalar boson should have
ticular in Eq.(7), at).\=0 th|s_|s e_xpecte_d to be the pion for a mass given by th®g state of Eq.(A7), while our linear
M m,/2. Above th|§ value it mixes W'th. the pseudoscalarsigma model form is given in E¢20). We have plotted these
diquark. For largeu it should be predgmlnantly a pseudo- curves on our “data” in Figs. 6a and 7a. Although these
scalar diquark. Since the mixing angiein Eq. (7) is not  predictions have qualitatively the same form as the “data,”
known, beyond the predictions of effective Lagrangiansciearly there is no quantitative agreemeiote that the lin-
which suggest that = «, we choose to fit the pion and pseu- ear sigma model form of Sec. Il gives a slightly better fit
doscalar diquark propagators separately to a form analogoudkan the chiral perturbation theory form in the Appendix.
to that which we used for the Goldstone propagator. Thélhe form of the mass of E420) suggests that we compare

mass
o
N
]

0.2~
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FIG. 7. The pseudoscalar diquark mass as a functions, an
a 12x 24 lattice at(a) m=0.025, (b) m=0.1. The curves are the
scaling predictions mentioned in the text.

FIG. 6. The pion mass as a function of on a 12x 24 lattice
at (a) m=0.025,(b) m=0.1. The curves are the scaling predictions
mentioned in the text.

our data with that of our earlier paper where=0.1. This  Stone boson at =0 is proportional to sifw, while that for
we do in Figs. 6b and 7b. Again we find that the falloff in the pseudoscalar is proportional to t@sSincea rises from
mass aboven_/2 is much more rapid fom=0.1 than for zero aboveu=m_/2, we would expect any departure from
m=0.025. This comparison suggests that at least some @fur predictions to occur earlier for the pseudoscalar than for
this is the effect of saturation, but if it is all a saturation the would-be Goldstone boson, which is precisely what we
effect, the range over which saturation has an effect is largesee.
Any discrepancy between the measurements and fits that re- The third pseudo Goldstone boson is also a scalar state. It
mains after removal of the effects of saturation should agaifs the linear combination of the scalar diquark state and the
be taken as an indication that our linear sigma model effecflavor-singlet scalar meson given in E@). Here « is un-
tive Lagrangian is inadequate to describe all departures frorambiguously defined by the requirement that this state has
tree-level chiral perturbation theory. zero vacuum-expectation value, so we have calculated the
We note that the term in each of our effective Lagrangiangropagator for this state. Fegr<m_/2 and\ =0 this state is
which relatesj, to the diquark condensate is the term pro-a pure diquark state whose propagator is identical to that of
portional tou?. As we see in Eq(A6) of the Appendix and the Goldstone state. Thus we will find both the Goldstone
its equivalent for the linear sigma model, this term also con€xcitation and the state we want in this propagator. This will
tributes to the masses of the pseudo Goldstone bosons. Thalso remain true at finita.. Since for finite, there is no
deviations ofj, from our predictions should imply differ- phase transition in going from<m_/2 to u>m_/2, it fol-
ences in the pseudo Goldstone boson masses from our priews that these two states continue to mix above the transi-
dictions. The contribution to the state which is a true Gold-tion, although the mixing becomes small fa&m_/2. For
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SU(Z) 5:1 5 m=0.025 Finally we should mention the radial excitation. Even at
1.50 A=0, its mass is>2.76 for all u. Since this is close to the
F © — A=0.0000 scalar ] momentum cutoff {r) on the lattice, it is not even clear if

{ o5 [LX — A=0.0025 scalar this should be considered as a real state. In any case, this

O — A=0.0050 scalar

mass is too high to be of more than passing interest.

1.00
VI. CONCLUSIONS

0.75 We have simulated two-color lattice QCD with one stag-

gered fermion field corresponding to four flavors which be-

mass

come degenerate in the continuum limit, in the fundamental
representatior{double} of the color group[SU(2)], at a
finite chemical potentigl, and quark mass1=0.025. As in
previous simulations, we have observed the transition from
R the normal state to one characterized by a diquark conden-
O-O% 0 0.2 0.4 0.6 sate which spontaneously breaks quark number. We have
' ' ' ) found that the equation of state which describes the depen-
dence of the diquark and chiral condensatesuoand the
FIG. 8. The scalar mass as a functiorgafon a 18x 24 lattice ~ explicit symmetry breaking parameter is well approxi-
at m=0.025. The curves are the scaling predictions mentioned irmated by the tree-level approximation to a chiral Lagrangian

0.50

0.25

the text. in the linear sigma model class. The critical scaling implied
by this analysis indicates that the transition is second order
this reason we fit our propagator to the form with mean-field critical exponents, as expected from chiral
perturbation theory analyses through next-to-leading order.
Po(t)=Alexd —mat]+exg — ma(N,—t)]} The measured critical value @f is consistent wittm_/2 as

expected. Applying the predictions of these fits to our earlier
+B{exd —mgt]+exd —mg(N;—t)]}, (270  simulations aim=0.1 we see evidence that our equation of

state also gives a reasonable description of the mass depen-
wheremgs>mg is the mass of this scalar state, in addition todence of these condensates. However, it is clear that satura-
the form withA=0, which is appropriate to the=0 propa- tion effects(a lattice artifack limit the range of applicability
gator wherang=mg and tou>m_/2 where the lower lying of this equation for the higher mass, and we suspectrthat
state decouples. Fgu small but nonzero, we extract this =0.1 might well be close to the limit of applicability of this
mass by fitting the propagator of the diquark state obtaine@pPproximation to chiral perturbation theory, if not to the ap-

by applying the operatoyrx" to the vacuum, to the form plicability of chiral perturbation theory itself.
y applying peratogr2x Our equation of state also predicts the N, and m de-

pendence of the quark-number density. Here, it appears that
the scaling window is somewhat narrower than that for the
o ] ) ) condensates. While the effect of saturation might explain
This is obtained from the observation that for a pure diquarkyhy this density grows faster than the predictions for larger
state(as opposed to a mixture of a diquark and an antidi-, ‘e suspect that we are seeing the limitations of using
quark atA =0, the effect of the chemical potential is to add tree-level results from an effective Lagrangian with only one
2 to the effective mass for propagation forward in time andmore parameter than the leading order chiral perturbation
subtract 2« from the effective mass for propagation back- theory Lagrangian to model departures from tree-level chiral
ward in time, thus Separating the two scalar excitations. Th%erturbation theory_ Use of next-to-|eading order chiral per-
masses obtained from these fits are plotted in Fig. 8. turbation theory to fit our measurements would require going
The analysis of Sec. Ill predicts this mass to be the middlebeyond what has already been ddB8¢ and going beyond
mass obtained from solving the secular equatit®), while  next-to-leading order would be extremely difficult. In addi-
the corresponding prediction from chiral perturbation theorytion, going to higher order in chiral perturbation theory in-
is the mass ofQ" given in Eq.(A7) of the Appendix. We troduces more parameters and thus reduces its predictive
show these predictions on the “data” of Fig. 8. The agree-power. At high enoughu chiral perturbation theory will
ment is quite good, in contrast to the other two masses. In thereak down. The scale at which chiral perturbation theory
low w regime, the mass increasesrag+2u, as expected breaks down is given by the pion decay consfant From
from general arguments. Just abaowg the mass shows a dip the numerous higher order calculations in chiral perturbation
past which it resumes its increase, eventually becoming lintheory, this breakdown scale can be estimated to be of the
ear again with the same slope but zero intercept. Remembewrder of a few timed= .. In our case ap=0, we know the
ing that form=0.1 these masses should be roughly twicechiral condensate, the quark mass and the pion mass. From
those presented here for=0.025, it is easy to see why they the Gell-Mann—Oakes—Renner relation, we find tifkat
were too difficult to measure with any precision at that~0.25. We therefore expect that chiral perturbation theory
higher quark mass. will break down whenu~1. However, atu~0.5, higher

Pqq=A{exd —mgt]+exd —mg(N;—1t)]}. (29

054507-10



PSEUDO GOLDSTONE SPECTRUM OF 2-CORD .. PHYSICAL REVIEW D 68, 054507 (2003

order corrections should already amount to 20—30 %. Weroaching zero for largew. Our measured values ah
therefore conclude that it is very doubtful that chiral pertur-=0.025 and nonzera. show evidence for such behavior.
bation theory can describe our “data” for the largest chemi-However, the rate of decrease in this mass above the transi-
cal potentials used in our study. Note that tRis is theF,  tion is significantly faster than that predicted by the linear
for chiral perturbation theory with the lattice symmetrigee ~ sigma model effective Lagrangian fits. At=0.1, this de-
the Appendix. The continuunF . is half this value. crease is even more pr_ecipitous. Here again, t_here is evi-
Our large u data suggests thgt is increasing consis- dence to suggest Fhat this more rapid decr_ease is due to the
tently with the expected rise cubic jn. Since the arguments ©ffects of saturation. The improvement in going to the

leading to this prediction suggest a counting of degrees o§;ma|ler mass, where the _onset of s_aturatlon occurs at Iarger
=2ul/m_, supports this interpretation, and suggests that if

freedom identical to that for free quarks, this suggests th e .
we are beyond the range of chiral perturbation theory, sinc e mass were decreased, eventually the predictions would fit
' e “data.”

accounting for all these degrees of freedom in terms of had- We have noted that the term in the effective Lagrangian

rons requires including hadro'n.s othgr than the pseudo GOIqﬂ/hich controls the behavior of the quark-number density
stone posons. Unfortunately, it is dl_fflcult tp dlsenta_n_glg SUCh%iIso contributes to these pseudo Goldstone masses, and does
pehawor fr.om the_effects of saturation (& increase inois g4 in way which would be expected to make the discrep-
just what is required to keep the saturation threshold at gpcjes worse for the pseudoscalar state. Hence it is reason-
constantu in lattice units as the lattice spacing is varied, gpje to assume that the addition of one extra parameter in
which is what we observe. In addition, the decrease of th@oing from the chiral perturbation theory Lagrangian to the
condensate close to saturation suggests that the quarks 3jfigear sigma model Lagrangian is inadequate to parametrize
acting like free quarks, which makes it even harder to distinall departures from tree-level chiral perturbation theory. The
guish real effects from saturation induced artifacts. behavior ofj, at highu can be obtained from analyses other

The main goal of this project was to measure the spectrurthan those of effective Lagrangians. This suggests that one
of pseudo Goldstone bosons for this theory, to enhance owhould abandon the use of effective chiral Lagrangians de-
knowledge of the pattern of symmetry breaking. Spontanesigned for smallu and smallm,. and adopt a different ap-
ous breaking of th&J(2) symmetry of the staggered lattice proach for largeu.
implementation of two-color QCD with one staggered quark At A =0, the final pseudo Goldstone mass should increase
field at m=A=u=0, should give rise to three Goldstone linearly with x up to m_/2, above which it should briefly
bosons. Fixingn=0.025, we have studied the variation of decrease before continuing its rise. We see evidence for this
these now pseudo Goldstone bosons as functiong &r  behavior in our measurements for= 0.025. The predictions
two choices ofi\. Comparison with our earlier simulations at from effective Lagrangians are in good agreement with the
m=0.1 gave some indication of thra dependence of these “data” for this state.
spectra. We have obtained the predictions from our linear We note that some of the other hadrons which could be
sigma model effective Lagrangian for these masses, usingxpected to contribute at high, are those that would have
the parameters obtained from our fits to the diquark conderseen pseudo Goldstone bosons were it not for the flavor
sate. symmetry breaking of the staggered lattice. On the lattice,

For ©=0 our measurements confirm that all three pseudahe symmetry breaking i6l(2)— U (1), giving three Gold-
Goldstone bosons are degenerate with mass consistent wighone bosons. In the continuum the symmetry breaking is
the expectedM .. m_, is approximately proportional t§m  SU(8)—Sp(8), which gives 27 Goldstone bosons.
as predicted by PCAC. The observed small deviations from To summarize, we have founth=0.025 to be small
PCAC suggest than=0.1 is beyond the range of the lead- enough to see evidence for mean-field scaling and to study
ing order prediction. AN =0, the lowest mass state is the the spectrum of the three pseudo Goldstone excitations. At
diquark state orthogonal to the condensate. The mass of thikis quark mass, the pseudo Goldstone boson masses lie well
state is expected to fall linearly to zero asis increased to below those expected for other “hadrons.” However, satura-
m_/2. Above this phase transition it should remain zero, betion, where all available fermion levels are filled, is still
coming the Goldstone boson of spontaneously broken quardlose enough to the phase transition to make it difficult to
number. At small nonzerh, our effective Lagrangian analy- disentangle real physics from this lattice artifact, even
sis predicts its behavior. What we have observed is that thedbough we do find an adequate scaling region for simple
predictions are good up to and through the transitionuAs  observables. Fom=0.1 the scaling window is too small to
increased much beyond this value, the measured mass lietain quantitative information. It would be useful to obtain
consistently below these predictions. Examining the correthe full next-to-leading order analysis of the pseudo Gold-
sponding predictions for the higher quark mass=0.1, stone spectrum, and the expressions for the order parameters
where the deviation is more severe, suggests that at leakeyond leading order inx. However, this is beyond the
some of this deviation is coming from saturation, a latticescope of this paper.
artifact seen when is large enough that the Fermi surface
approaches the lattice cutoff.

When =0, we expect that the pseudoscalar pseudo
Goldstone mass will remain constantass increased up to D.K.S. is supported by the U.S. Department of Energy
m_/2. Above this it is expected to decrease rapidly, ap-under contract W-31-109-ENG-38. J.B.K. and D.T. are sup-
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4u? cosa sina=M?2 sin(a— ¢). (A5)

We now turn to the study of the spectrum. All the com-
putations made ifi7] can be easily implemented in our case,
APPENDIX: CHIRAL PERTURBATION THEORY AND since our effective Lagrangian is very similar to that studied

THE GOLDSTONE SPECTRUM in [7].
) ) ) ) First, atu=0, we find that the mass of the three pseudo
In this appendix, we construct chiral perturbation theorys,igstone modes is given W . At x#0, we can expand

for the symmetry breaking pattern of the staggered fermionne effective LagrangiaAl) to second order in the Gold-
action(1) atm=A=u=0: U(2)—U(1), and westudy the  gione fields.

spectrum of the three Goldstone excitations. These Gold- Following[7], we find that the term quadratic in the Gold-
stone modes become massive upon the introduction of a N0Bzsne fields in the effective Lagrangian is given by

zero quark mass or a nonzero diquark source. They dominate

the physics at low energy. In this appendix we study the Les=Tr[(9,Qkd,Qr+,Q/9,Q))

spectrum in chiral perturbation theory. This problem is simi- t T

lar to what can be found in the literature. [Ifi], chiral per- —4p cosa(Q)dpQr+ QrdoQ))]
turbation theory folN; quarks in the adjoint representation

has been constructed. In this case the symmetry breaking +M2 Tr Q,Q,TSI_L(/)JF QrQL ﬂsinzoﬁs'_ﬂ
pattern is given bys U(2N;) — SO(2N;). Notice that for any Sina M2 Sina
number of flavors the symmetry breaking pattern of the stag- 5 _
gered fermion action i&J (2N;) —SO(2Ny). 20,2 4L sin¢

Following [7,23], we construct the low-energy effective +T1 9,Psd,PstPsMz M2 coSa+ sina | |’
Lagrangian for the Goldstone modes induced by the sponta- i
neous symmetry breaking (2)—U(1). We find that the (A6)
effective Lagrangian is given by The Q andQ' modes are mixed. If we ca andQ' the

F? eigenmodes, we find that the dispersion laws for the different

L= Tr V,EV,3'-F?M2 ReTrM 3,  (Al)  Goldstone modes are given by

where F is the pion decay constant, Mf, Ps:
= JmZ+ N2(yih)ol2F2, and (yh)o is the quark-antiquark

condensate an=\=u=0. P e sin¢
We have used the same conventions ag7in These no- E*=p"+ M7 WCOS’_‘H sina |’
tations were already introduced in Sec. lll, we just need to "
replaceX, by X in the expressions that appear in Sec. 1, Qt:
with
ST 2_ 2 2Sin¢ 2
S=U3UT, (A2) E2=p +Mwm+2,u, (1+3coga)
where -
+2 \/ 2(1+ 3 cofa)?+4 coda p%Mzﬂ
p( i1 ) _ ( Ps  Qgr+iQ, A\ 7sina)’
U=ex wit = . ,
2\2F Qr—iQ, Ps (A7)
(A3)
and Q:
— [isin cos sin
= “ o “ (A4) E2=p’+ Mi.—¢+2,u2(1+3 coa)
cosa isina Sina
ini ithi sin
E(})/rresponds to the minimum of the free energy witlgiven —2u \/M2(1+3 coa)2+4 codal| PP+ Misinﬁ)'
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