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We present recent results in unquenched lattice QCD with two degenerate light sea quarks using the trun-
cated determinant approximati¢éfiDA). In the TDA the infrared modes contributing to the quark determinant
are computed exactly up to some cutoff in quark off-shellnggsically 2Aocp). This approach allows
simulations to be performed at much lighter quark masses than possible with conventional hybrid Monte Carlo
techniques. Results for the static energy and topological charge distributions are presented using a large
ensemble generated on very coars®) (8ut physically large lattices. Preliminary results are also reported for
the static energy and meson spectrum orfiXI20 lattices(lattice scalea*=1.15 GeV) at quark masses
corresponding to pions of mass200 MeV. Using multiboson simulation to compute the ultraviolet part of the
quark determinant the TDA approach becomes an exact algorithm with essentially no increase in computational
effort. Some preliminary results using this fully unquenched algorithm are presented.
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I. INTRODUCTION [8,9], which leads to a computational cos{m,) *= with
z,~3—4 in the light quark regime. The truncated determi-

Although much progress has been made in the last fewmant approximation approach described in this paper elimi-
years towards the goal of simulating important hadronichates the cost sensitivity of the underlying algorithm due to
quantities in fully unquenched lattice QCD, the physical re-the first two sources described above in the light quark mass
gime of light up and down sea quarkguark masses limit (as a result of properties of the Lanczos algorithm dis-
<10 MeV) remains basically intractable with the currentcussed beloyat fixed lattice volume, at the cost of a more
standard algorithm§the hybrid Monte CarldHMC) algo- ~ Severe volume dependence. _ _
rithm [1] and variants thered®—4]] even with the Teraflop L€t us first recall the origin of the problems with the it-
scale parallel platforms which are presently coming online€rative solvers used in typical HMC simulations of un-
With these algorithms, the generation of a statistically sig-quenched QCD. To be specific, we consider throughout the
nificant ensemble of dynamical gauge configurations witicase of Wilson(or Sheikoleslami-Wohlert “clover” im-
“light” quark masses chosen to give a pion mass just lightProved quark actions. The desired quark determin@avith
enough to allow rho decafon sufficiently large latticasal- ~ tWo degenerate flavors of sea quaris introduced via
ready consumes many Teraflop years of computational eﬁORSGUdOfermIOHIC fields with a quadratlc action involving the
[5]. The high cost of performing unquenched HMC simula-inverseof the squared quar{WHson/cIove?—Dirac operator
tions with light sea quarks arises from a number of sourcesQ- The system is then treated as a classical Hamiltonian one
the sensitivity of conjugate gradient solvers of large system§ubjected to molecular dynamics evolution corresponding to
to the condition number of the matrix to be inverted, thethe following Hamiltonian
need for rapidly decreasing step siZ@s order to maintain

reasonable acceptances in standard leap-frog schemése Hup=3Tr(PY) +Sgaugd V) +¢"(Q"Q) ¢ (1)
sea quark masses decreases, and the growing autocorrelation
time due to critical slowing down as the critical point corre- Q'Q=H? H=vysQ (Hermitian (2)

sponding to the chiral limit at which the pseudoscalar mass

vanishes is approached. For example, recent results of thighereP are the conjugate momenta to the gauge filds
CP-PACS Collaboratiofi6] (Table Il in [6]) show that the  Sy,,{U) is the pure gauge action, anflis a bosonic field
computational load measured in hours per trajectory typiwith a highly nonlocal action. In order to update the gauge
cally increases by a factor of 8-9 as,/m, is decreased fields, the force on these fields due to tefield must be
from 0.8 to 0.58. A recent improvement of the HMC method computed, and this involves the inversion of B&Q opera-
[7] which reduces the condition number by splitting thetor, which is identical to the square of thermitian Wilson-
quark operator decreases the computational load by up to Rirac operatoH=ysQ. As the quark mass is taken to zero,
factor of 2 relative to standard algorithms over a range othe operatoH frequently develops very small eigenvalues:
m,./m, from 0.86 to 0.68. Another interesting developmentequivalently, the condition numbératio of highest to lowest
is the two-step multiboson algorithm proposed by Montvayeigenvalug¢ not uncommonly becomes very lar¢ia simula-
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tions described later in this paper, condition numbeff00 quenched calculations: namely, the scalar isovector channel
are quite common foH). The required inversion dfi> in ~ [18]. Finally, in Sec. V, we describe a combined
Eq. (1) then involves an operator of condition numbet0°, TDA +multiboson approach which allows exact unquenched
which not surprisingly requires a very large number of con-simulations in the very light quark regime with a small num-
jugate gradient sweeps. In a nutshell, most of the computeber of multiboson fields. Some preliminary results of simu-
tional difficulty with very light sea quarks in the standard lations on large coarse lattices with this technique are de-
hybrid Monte Carlo algorithm arises from this source. scribed.

In contrast to the “freezing” problem encountered with
linear solvers of the conjugate gradient variety, the extraction Il. INFRARED AND ULTRAVIOLET QUARK MODES:
of low eigenvalues by Krylov subspace methods such as the THE TRUNCATED DETERMINANT APPROXIMATION

Lanczos algorithm[10] does not deteriorate as a conse- The Hermitian(Euclidean Dirac operatoi = ye[ D/(A)

guence of the presence of a very small eigenvalue. The ra;m has a spectrum which can be reaarded as the gaude-
pidity with which the Lanczos procedure extracts eigenval- ]. pectrum e reg ) gaug
variant generalization to nontrivial gauge fields of the

ues in a given region of the spectrum is instead determinelf! .
by the local spectral density in that region, which for thequark off-shellness of the free quark theory. Indeed, the ei-

operatorH of interest to us here is in fact minimal near zero, 9envalues of the free operatbty=ys[D/(A=0)—m] are

The eigenvalues dfl (cf. Sec. 1) have the physical interpre- 1YSt = VP“+m*, which precisely corresponds to the signed
tation as a gauge-invariant extension of quark off-shellnes

Euclidean off-shellness of a quark of massnd momentum
in the free theory, so the truncation of the full quark deter-

p. Moreover, the individual eigenvalueghough not, of
minant to a product of all modes witlbsolute valueeigen-

course, the eigenvectorsare gauge invariant. Roughly
value below some cutoff. corresponds to a gauge-invariant speaking, we can therefore visualize the contribution to the
approximation of the fully unquenched theory in which sea

_quark determinant from the infrared modesrresponding to
quark loops up to quark off-shellnegsare included exactly

the eigenvalues ofl of smallest absolute valli@s arising
and completely. This approximation will be referred to as thefrorn quark loops of Igrge phyS|ca}I extension in Euclidean
“truncated determinant approximation’TDA) in the fol- coordinate space, while the ultraviolet modes correspond to
lowing. In previous publications various features of theduark 100ps of small size. Gauge-invariant quark loops of

implementation of this algorithm have been discussedsma”. size correspond to the lowest dimension gauge-
[11,17, as well as the application to the study of string Invariant operators so we should expect that the contribution

breaking on large coarse latticEs3]. The work described o the quark determmant from the highest UV 'modes
here is motivated to a large extent by a desire to providédm,?u'ltS .to a funcponal of exactly. the same fo(ma.-
alternatives to HMC which would allow at least some quan- F»d X In the continuum as the basic pure gauge action,
tities to be computed directly in the deep chiral regime as &"d therefore has the sole physical effect of changing the
check on the large extrapolations required from the quaric@le in any gauge-invariantly cutoff version of the theory,

masses presently practicable in the HMC approach to th&uch as lattice QCD. ,
physical range. To make these arguments a little more concrete, let us

In Sec. II, we review the basic features of a truncatedMagine separating low and high quark eigenmodes in an

determinant approach to unquenched QCD in the light of th@nalytically smooth way by switching off the higher eigen-
much more extensive simulations which we have performed@lues above a sliding scaje. If we define
since the aforementioned references. In particular, we argue

. o - H?2
that many low-energy hadronic quantitiés.g. low-lying D(w)=LTrinl tanh— 3
hadron spectrum, string-breaking, low energy chiral physics ()=2 w? &

can be studied quite precisely in the TDA, while other effects
which depend more sensitively on the ultraviolet structure othen a weak-coupling expansionD{«) shows[11] that the
internal quark loopge.g. channels involving the eta prilne w« dependence is given asymptotically for largeby
require a fully consistent treatment of the full quark determi-
nant. In Sec. lll we present recent results obtained with large u? a2

) ; D(u)=BeIn— [ d*xF% +0O
ensembles £10000 configurationsof unquenched TDA me uv
configurations on physically large, coarse lattig$, with d
O(a?) gauge action improvemepnthe quantities studied in- whereg; is the one-loop quark contribution to the beta func-
clude the static energy of a heavy quark-antiquark pair andion. This result illustrates in an explicit way the role of the
dependence of topological charge distributions on the quarkigh quark modes in renormalizing the pure gauge action,
mass. In Sec. IV we present some preliminary results obwhich physically corresponds to the screening of the gauge
tained on larger lattices ($& 20, with a lattice scala ! interactions by virtual quark-antiquark pairs.
=1.15 GeV): here we concentrate on extracting the low- The above considerations suggest in the case of lattice
lying meson spectrum at up and down sea-quark massé&3CD a naturaland gauge-invariapttruncation of the full
close to their physical valuesn(,/m,<0.26). We also give theory in which the quark determinant is split into an infra-
an example of a correlator in which the truncated determired and ultraviolet part at an appropriately chosen sgali
nant approximation introduces a visible anomaly analogoushe lattice case, the operatbris a large, sparse Hermitian
(but quantitatively less severao the one familiar from matrix with eigenvalues;, and we may write

- (DF)?
PE:

4
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Ihﬂ# )\lz) ( \?\EM )\'2) =Dr(u) Dyv(w)
5

for the quark determinant appropriate for two degenerate sea-
quark flavors. For sufficiently hight, the contribution of
Dy to the effective actioffafter integrating out quark fielgls
should amount to a renormalization of the pure gauge action.
Specifically, we expect thdd,,, should be accurately mod-
elled by small Wilson loops which can then be absorbed into
the pure gauge part of the action and should induce, at least
for low energy quantities dominated by processes in which
virtual quark off-shellness is typically lower than, only a
change of lattice scale, while leaving dimensionless quanti-
ties (such as ratios of hadron masgesichanged. This ex- 0 L ‘ ‘
pectation has been confirmed by extensive numerical studies 482 4.84 4.86 4.88 4.9 4.92
[12], which show that in many cas€x,y is accurately mod- Lkappa

elled by linear combinations of loop operators containing 6 FIG. 1. Fit of M2 vs 1/k.

links or less. In these studies, it was important to perform the T

:/';t’g’s_Spl';‘Sbi/hgzo%séngvir‘;xeed \?;“rjlb%;eig cif (I\c/)vvr\:eerg?ﬂt-a distance features of the full theory, we work on coarse 6
M 9 Neig lattices (lattice spacinga=0.4 F) but with O@?) improved

eigenyalues oH are always ordereq with respect to absolutegauge action. Following Alforcbt al. [14], we improve the

magnitudg. Otherwise, a small variation of the gauge con-gayge action with a single additional operator, with coeffi-

figuration can causpy, | to cross the scal@, resulting in - cients tuned to optimize rotational invariance of the string

a discontinuous jump D, , a situation clearly incompat- tension

ible with a smooth analytical fit oDy, to a fixed linear

0.4

de(H?)=

0.2 -

Pion Mass Squared

01| .

combination of small Wilson loops. Accordingly, for the rest 1 1
of this paper, we shall define S(U)=ﬂp|aqp|2aq gReTl(l—Umaq)JFﬁm% §R9T'(1— U
i:Neig (9)
Dr(p)=In T1 } 6) _ .
i=1 where “trt” refers to a 8 link loop of generic structure

(+%, ty, +x, =y, =X, +y, —X, —Y) (the “twisted rect-

D —In 2 7 angle” of Ref. [1_4])._ With the _choic_esﬁp!aqz 3.7, Bu
uv(s) i:l\1|}g+1 : ™ =1.048,4, the violation of rotational invariance expected
on such a coarse lattice are almost completely eliminated so
w={\y_ ). (8)  that the static quark potential becomes a smooth function of

€19 lattice radial separatiofil4]. As the quark action is not im-

The TDA will correspond to the interpolation between proved, the lattice spacing quoted here is determined by
quenched and full QCD induced by replacing the full quarkmatching the initial linear rise of the string tension to a
determinant by the infrared pied2 in the effective pure Pphysical value(rather than by using the rho mass, for ex-
gauge action obtained after quark fields are integrated oug@mple.

We shall argue below that a choice of truncation sgale  All four values for the sea-quark hopping parameter stud-
=2A ocp is adequate to preserve both the important low enied here correspond to very light quarks by the usual stan-
ergy chiral physics of QCD, as well as the low-lying hadrondards of unquenched QCD. In Fig. 1 we show the plot of
spectrum(lowest states in each chanhé¥loreover, the com- Pion mass squared versus<1/The lightest quark shows a
putational difficulty of extracting théypically, several hun- ~ clear finite volume effect in the pion mass, so we have de-
dred eigenvalues needed f@,z does notincrease as the termined the critical kappa value from a fit to the heaviest

quark mass is taken to zero on a fixed size lattice, in contraghree quarks only, as indicated in the figure. This fit gives
to conventional HMC algorithms. k.=0.20706. In physical units, the three heaviest quarks

correspond to pion masses of 210, 235, and 264 MeV, while
the lightest sea-quark studied corresponds to a pion mass of
175 MeV in the finite volume system or an infinite volume
The TDA approach has been applied previously to a studpion mass of about 150 MeV, very close to the physical
of string breaking in physically large (2.4'Flattices at a value.
single value of the sea-quark mdds3]. These simulations In the TDA simulations described here the number of in-
have been extended to four different sea-quark masads  frared modes included exactly in the low-energy determinant
2 degenerate flavors of sea quarkith ensembles 2—-2.5 D g has been chosen to be 840, for all four kappa values. The
times larger than previously studied. In order to study longattice scale as determined from the initial linear rise of the

[ll. TDA SIMULATIONS ON LARGE, COARSE LATTICES
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TABLE I. Characteristics of 4 6 TDA ensemblesa= 0.4 fm.

Run K M, F. (|)\Neig|) Acceptance ratio Tdet Tiop
j1 0.2060 0.35%*0.008 0.19 0.826 0.49 ~2 9x 10° 75
j2 0.2050 0.418 0.006 0.21 0.828 0.51 =1.4x10° 105
i3 0.2044 0.4720.006 0.20 0.827 0.57 =3.5x10° 157
4 0.2038 0.528 0.006 0.18 0.827 0.57 =2.3x10° 182

static energy is essentially unchanged over the limited rangaith a sequence of 100000 steps. The determinant autocor-
of quark masses studied and so is the magnitude of the largelation timesrye Shown in Table | are obtained by integrat-
est included eigenvalue ¢f (in lattice units: see Table,Iso  ing the autocorrelation curves out to a Monte Carlo time
the scaleu for the determinant truncation corresponds in allwhere they first cross zero, but these curves are not even
cases to a physical off-shellness#10 MeV. The global approximately exponentidtee Fig. 3, so there are undoubt-
gauge-field update which precedes the accept/reject stegally several important time scales present in the Monte Carlo
based on the change Dy is a standard multihit Metropolis dynamics for this quantity.
[13], with parameters chosen to ensure an acceptance ratio of For the topological charge, the situation is much cleaner.
the order of 50%see Table)l This gauge-field update pro- The topological charg€ can be expressdd1] in terms of
cedure(which satisfies overall detailed balanamnsists of the eigenvalues of the Wilson-Dirac operator
picking randomly located blocks of links which do not inter- N
act(i.e. no link in the block is in the action environment of 1 K 1
any othey. Here links have been spaced by 3 lattice spacings Q= Z( 1- K_c) 2, N
in all dimensions. Then a multihit Metropolis is performed
on each link in a block. The number @fandomly locatefl  In practice, this sum is quickly saturated by the low eigen-
blocks updated in one sweep was chosen so that a number wdlues: in particular, we have evaluated it by settiNg
links roughly equal to the total number on the lattice are= Neig. @s these eigenvalues are in any case byproducts of
updated. For our simulations we use 10 hits with a Me- the TDA update procedure. The autocorrelation curves)or
tropolis factor of 0.08; so that roughly 80% of the links arefor the 4 differentx values are shown in Fig. 4 and are
updated in each gauge configuration proposed. These paramughly exponential: the autocorrelation timeg, given by
eters are theamefor all four runs, but the acceptance ratio the integral of the autocorrelation function are displayed in
varies only from 49% to 58% even though the quark masSable I. For the lighter quarks, the autocorrelation time de-
varies by a factor of 3. termined by an exponential fit at small times is somewhat
In Table I, we also show the results of autocorrelationsmaller, indicating the presence of a longer range compo-
studies of the infrared determinabig and of the topological nent.
charge. The sequence of infrared determinBig values The static energy of a heavy quark-antiquark pair has
shows the existence of very long correlations in this quantitybeen studied for the four ensembles described above. Cou-
as is apparent in Fig. 2, typically extending over thousandsomb gauge Wilson line§13] were accumulated after every
of update stepél update step=1 global gauge-field update update step until a bin size of 2000 steps was reached. The
followed by an accept/reject based Drg). This makes it  corresponding binned Wilson line averagggically, of the
difficult to extract an accurate autocorrelation time, even

=1

1
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1420 | i

1460 | i
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Infrared Determinant (kappa=0.2050)
Autocorrelation of determinant

0.1 b

1500 B
0

1540 . . 0.1 ! ! ! !
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FIG. 2. Monte Carlo sequence Bfz for xk=0.2050. FIG. 3. Autocorrelation curve db g for k=0.2060.
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FIG. 4. Autocorrelation curves o for «=0.2060, 0.2050, . B .
0.2044, 0.2038. FIG. 6. Static energy¥/(R) for x=0.2050(j2 run).

] directly from the chiral symmetry of QCD. In the case of a
order of 40—5p were then subjected to a standard bootstragneory with two degenerate light quark flavors, the normal-

analysis, allowing us to extract asymmetric errors. Also, thgzeq probability distribution of in a system of finite space-
bin size was varied until the errors were stable to ensure thgjme volumeV is given by

autocorrelation effects were eliminated. For the lightest two
guark masseg&uns j1, j2 there is reasonably clear evidence IQ(x)Z—IQH(x)IQ,l(x)
. X ; ; . ) P(Q)=x

of string breaking once the Wilson line ratios are taken be 11(2X)

tween Euclidean times 1.2 fm and 1.6 ff=3/4 plots in

Figs. 5, 6, with the larg&R value agreeing withtwice) the

measured mass for a heavy-light mekadfvith the heaviest X

mass sea quark the levelling off of the static energy at larger

distance is less cledFig. 7). Even with the large ensembles an accurate determination df, in the usual fashion from

collected, it is clear that the sea-quark shielding of the stringyseudoscalar-axial vector correlators is difficult on such

tension induces very large fluctuations which makes higfsmall lattices, as the only time window available is T

precision very hard to achieve. =1-2 (the axial correlator is antiperiodic and vanishes at
Another very characteristic feature of unquenched QCDr—3)  However, it is apparent from E¢LO) thatf . can be

in the c_hlral limit arises from the suppression of no”t”V'al_extracted from the topological charge distribution by a one-

topological charge as the quark mass goes to zero. The digyrameter fit of the dimensionlegsvariable, once the pion

tribution of topological charge is known[17] to follow  masses have been measured. In Fig. 8 we show the measured

1
EVfETM';ZT. (10)

4 ¢ I
= T=1/2 T=1/2 j
® T=2/3 r .1 I
o125 IE o« T=2/3 RS
3+ -=--- 2*Heavy-light mass 1 3r * oo i - |
%I ------------ 2*Heavy-light mass

ot

Static energy V(R)
N
i
L
H—e—feif
e
e
Static energy V(R
n
et

* E =
10 - 1 1+ -+ 1
O L L L 0 L L L
0 1 2 3 0 1 3
R R
FIG. 5. Static energy¥(R) for k=0.2060(j1 run). FIG. 7. Static energ¥(R) for k=0.2038(j4 run).
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FIG. 8. Topological charge distributions and fits fer0.2060, 0.2050, 0.2044, 0.2038.

distributions(diamonds of Q for the four different sea-quark the end of this sectionThe gauge action used in this case is
values as well as the fits to the chiral predictid®). The a single plaquette one as improvement is not as important
narrowing of the distribution as one goes to lighter quarks isyith a lattice spacing of the order of 0.17 F as it was in the
clearly visible. The values of . extracted from the fix  case of the coarse lattices with spacing 0.4 F discussed in the
values are given in Table I. A&4=0.2050 the value of . has  preceding section. However, we have used clover improve-
been previously extracted from a large ensemble study ohent (with a Sheikoleslami-Wohlert coefficient o€gy,
axial vector correlators using all-point quark propagators— 1 57) for the fermions. This allows us to determine the
[16]: this method gived ,=0.187+0.011, close to the value |atice spacing from the rho mass, rather than the string ten-
of 0.21 found from the topological charge fit. Also, the valuegjon aithough the two values are basically quite consistent,
of f . is falrly. constant over th@imited) range of seg—quark as we discuss below. The val@y,~1.57 was taken from
rasses sudd,as v expect.These feslscetanly confirovea quenched smulatons f e Fermiah ot
important low energy chiral physics of QCD for the same lattice spacing. We have not yet retuned the
' Csw Vvalue for our TDA calculations, but because the TDA
method here only includes the low eigenvalues of the deter-
minant, it is not likely thatCs\, will be shifted substantially.
Although unquenched simulations on physically large butin the TDA simulations, the lowest 520 eigenvalues were
coarse lattices may yield useful qualitative insigkéspe- kept, corresponding to a TDA scale of about 504 MeV. The
cially with regard to the dynamics of the simulation progess Lanczos extraction of these eigenvalues for a single configu-
we can only expect quantitatively useful results by simulatration takes about 1.3 h on a Pentium-4 1.7 GHz processor:
ing larger and finer lattices. A number of TDA simulations onas this completely dominates the computational effort, this
10°X 20 lattices at a lattice spacing '=1.15 GeV have time also represents a single update step of the TDA simula-
therefore been performed to assess the practicality of thion for these lattices.
TDA method for larger latticegthe increase in computa- The preliminary results described in this section were ob-
tional effort required for even larger lattices is discussed atained from two separate ensembles corresponding to runs at

IV. TDA SIMULATIONS ON FINER LATTICES
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FIG. 10. Rho propagator, h2 rur=0.1415.
FIG. 9. Static potential for the h2 rum,=0.1415.

0.69330) in lattice units, giving a lattice scale !

B=5.7 andk=0.1420(h1 run and 0.1415h2 run. To this  =1.11 GeV.

point, 100 configurations separated by 50 update steps were The pion in the h2 ensemble is already very light and
obtained for the h2 run and 80 configurations for the lighter@utocorrelations are large, typically of the order of 100150
hl run. Most of the discussion will concemn the h2 run asuPdate stepéwith the autocorrelation time growing with Eu-
finite volume effects, available statistics and autocorrelatiof/ideéan timg. To analyze the pion propagators, we have

effects are all worse for the h1 run. The simulations are contnerefore binned the smeared-local pion propagators from 99

tinuing and we expect to accumulate significantly larger enSuccessive configuratioriseparated by 50 update stgpsio

sembles in the coming months, by implementing a com-33 sets of bin size 3 before generating 66 bootstrap propaga-
tors for a bootstrap analysis. The corresponding average

pletely parallel version of the Lanczos process. However, we fil d fitis sh in Fig. 11. aivi .
i hasize here that the acceptance rates for the Td) opagatqr ne an It S SNOWN In 9. 22, giving a pion Mass
again emp 0.175 in lattice units or 201 MeV. For the hl run at

simulations in the two runs are essentially identi@b5 for —0.1420, the pion is even lightdFig. 12, but with the
K:Q'Mls _and 0.53 fok=0.1420), once again |Ilustrat|ng limited statistics(80 configurationsavailable so far the er-
the immunity of the TDA approach to the critical slowing 45 4t larger Euclidean time are substantial, so an accurate
down endemic in HMC approaches at light quark masses. getermination of the pion mass in this case is not possible.
As the spatial extent of the h2 run lattices is conS|derany|-he h1 propagator is essentially flat fb&-4, so this case is
smaller(1.7 fm as opposed to 2.4 fm for thé Gatticeg we presumably very close to kappa critical. We should point out
may expect that the string breaking effects will also be morgy ¢ these h1 propagators were obtained by standard conju-
difficult to see. The static potential measured at various Eugate gradient as the stabilized biconjugate gradient routines

clidean times is shown in Fig. 9, and there is as yet no evi-
dence for a flattening of the potential at distances where the
errors are still reasonable at larger distandeslattice times
<=6, or about 1 fin The expected asymptotic limit
(=twice the heavy-light meson mass indicated by the
dashed line: with the statistics available, this value is only 4
reached when the errors for Wilson lines of temporal extent T
T>4 begin to explode. Much larger statistics will presum-
ably be needed to reach the larger times and distances where <
string breaking will appear on these lattices. We can however £
use the initial rise of the static potential to extract a rough
lattice scale. Extracting a slope from the regiogR<4,

one findsa=0.16 fm. A more reliable estimate of the scale
can be obtained from the rho mads = 0.669(30), obtained

by fitting a set of 200 bootstrapped smeared-local rho propa-
gators, as shown in Fig. 10. Using the rho mass to fix the
lattice scale gives 1=1.15 GeV,a=0.17 fm for the h2 1 : : : :
run: as in the case of the*Guns discussed in Sec. Ill, the T

scale is not very sensitive to the sea-quark mass in this very

light regime, and at«=0.1420 we find a rho mass of FIG. 11. Pion propagator, h2 rur=0.1415.

100

< smeared-local propagators
fit, pion mass=0.175(19)

ator
[l

on

P
o]
|
I
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15 TABLE Il. Volume scaling for TDA calculations.

Lattice 1620 12x 24 16x32

Time 1h 35h 35h
Neig 370 850 2770
Lanczos sweeps 28 000 74000 200 000

0.1420)

[y
o
T
L

$

E -+ exact unquenched algorithm, and indeed allows a statistically
E q accurate extraction of the eta-prime mass without the need
§ } % E E } u for subtraction of disconnected contributions.

The computational effort required to compute all quark
eigenmodes up to a fixedtp, On lattices of fixed lattice
spacing and growing volum¥ increases like/* where the

0 2 4 6 8 10 exponenta is slightly less than 2. For example, fdrtpa
T =450 MeV, we find that for lattices witla 1=1.15 GeV,
, an update step amounts4el, 3.5 and 35 h on a Pentium-4
FIG. 12. Pion propagator, h1 rur=0.1420. 2.2 GHz processor on 820 (370 eigenvalugs 12°x 24
(850 eigenvalugsand 16x32 (2770 eigenvalugslattices
often fail to converge for very light quarks. Of course, onrespectively(cf. Table Il). The scaling properties of the
this smaller lattice finite size effectsvhich were small on LANCZzOs code(employing SSE2 acceleratigd9]) on a PC
the 2.4 fm lattices for pion masses200 MeV) may well be  cluster with myrinet interface appear very good, so a 16 node
significant. cluster with 3 GHz processors should be adequate for useful

The anomaly in the quenched theory induced in the scalasimulations(and comparable in computational effort to the
isovector channel by the incomplete cancellation of thesimulations presented heréor even the physically quite
quenched eta-prime double pdEs] is by now well under- large (2.7 fm¥x (5.4 fm) configurationsion 16x32 lat-
stood. The TDA while including effects of sea-quark loopstices.
up to fairly high off-shellnesexactly does not of course Although the volume dependence for the TDA algorithm
treat valence and sea quarks identically, so we should expe@toughly V?) is more severe than in conventional HMC al-
the appearance of incompletely cancelled double pole contrigorithms (V*%), the quark-mass dependent prefadtiypi-
butions in isoscalar channels here also. In the case of theally M;“""), [5]) is far better behaved in the TDA ap-
scalar isovector propagator, these contributions are negatiy&oach, as the Lanczos algorithm convergence is completely
metric and result in the propagator going negative at interindependent of quark mass. Thus the method should still
mediate values of Euclidean time. A similar dip is Observe%rovide a useful alternative for moderate size lattic@$m
in the scalar isovector propagator obtained from the h2 rungr less in linear dimensionfor example in examining finite
(see Fig. 13 although it is far less pronounced than in the yolume effects at very small quark mass where Wilson HMC
quenched case. In Sec. V we shall see that the same cafimulations are virtually useless, and in comparing with the
relator is perfectly well behaved in the TDAmultiboson  results of chiral extrapolations of HMC results from the
heavier quark regime.

Although a detailed study has not yet been done, running
-+ at a variety of lattice spacings, one can get a rough estimate
of the scaling behavior with lattice spacing by rescaling the
6 L i 10°x 20 simulations to the same physical volume as the 6
runs using thév? scaling. We have done a special study to
address this important issue. Keeping the TDA cutoff fixed at
yu , the value 410 MeV used in the uns(and recalling that the
computational effort per TDA update is essentially indepen-
dent of the quark magswe find that the computational effort
2 - . increases by about a factor of 28 in going from lattice spac-
ing 0.4 fm to 0.174 fm. This corresponds to the power law
5 = scalinga™%.

E & : In the next section we shall see that the inclusion of the
§ § k3 ultraviolet part of the determinant by multiboson techniques
increases the computational cost of an update insignificantly,
2 : ; ; : so these estimates hold also for exact algorithms where com-
T plete control of the infrared allows probing of the deep chiral
limit without critical slowing down of the Monte Carlo dy-
FIG. 13. Scalar isovector propagator, h2 rus 0.1415. namics.

Pion Propagator (kappa

Scalar isovector propagator
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V. EXACT UNQUENCHED QCD WITH LIGHT QUARKS:
COMBINING TDA AND MULTIBOSON METHODS

The evaluation of the ultraviolet contribution to the quark
determinanD ;, can be accomplished by the $cher multi-
boson techniqug20], as pointed out previously ifll]. The

basic idea of the multiboson technique is to introduce a se-

ries of polynomials in a variabls (shortly to be identified

with the square of the eigenvaluesldf for two degenerate

sea quarkswhich converge tes ™ *:

lim PN(s)zé, Oss<1 (11
N—oo
det(H?)= lim [detPy(H?)] ! (12
N— o
PN<H2>zk1]l [(H— )2+ v{] (13)
Shosonic= 2 2 {I(H = 10 )2+ vl (001}
(14)

PHYSICAL REVIEW D68, 054505 (2003

0.4 T
X n=20
* n=80
0.3 - E
spectrum of H*H
0.2 4
L x = x XX % i
X SRR R e
0r 4
o1 s PRRR s AR
. ™ >< -
X X X X
02 - 4
03 - 1
0.4 L 1 L 1 L 1 L 1 L 1 L 1
0.2 0 0.2 0.4 0.6 0.8 1 1.2

FIG. 14. Zeroes of the approximating multiboson polynomial
for 20, 80 boson fields.

whereNgq is the number of eigenvalues (ordered in ab-

Neig

DCF<N,Neig>EIn( iljl NZPN(ND) (16)

Specifically, it is convenient to pick Chebyshev polynomialssolute valug of H calculated in the TDA approach. We ex-

so that withu=(s—e¢)/(1—¢€) and co¥=2u—1, T (u)
=cosfu). Then

*
N+1

Pn(s)=[1+pTy.1(UW)]/s (15
with p chosen so tha®y(s) has a finite limit as— 0. With
these choicessPy(s) differs from unity in the intervale
<s=<1 by an amount less tharf @L— \/e)/(1+\e) VL.
The N roots of the polynomiaPy(s) typically lie on an
ellipse in the complex plane surrounding the spectrurd of
(with H rescaled so that the spectrumtdf lies between 0

and 1. An example, for values oN=20, 80, is shown in

Fig. 8. The essential point is that accurate control of the
infrared spectral region requires the number of multiboson

fieldsN to be chosen largespecifically, if we demand a fixed
relative error uniformly in the range<s<1, then we must
hold \/eN fixed ase— 0) (Fig. 14. This then forces many of
the bosonic fields to appear in the action with small
“masses” vy, which in turn leads to critical slowing down in
the multiboson sector.

pect thatD ¢ should converge to a well-defined limit once
xﬁ,eig> €. At this point, the compensation factbr.g can be

used in an accept/reject step to correct the approximate de-
terminant generated by the multiboson part of the action. To
get a quantitative feeling for how rapidly this convergence
takes effect, we show two examples in Figs. 15, 16. In Fig.
15 we consider pairs of adjacent configurations in a simula-
tion in which the 1000 lowest eigenvalues df on a 6
lattice (with lattice spacinga=0.4 fm) are exactly computed

by the Lanczos method, while the multiboson action corre-
sponds toN=20,=0.02. The plot shows the difference of

3

pensation factor

Evidently, the exact control over a substantial segment of%
the infrared quark spectrum provided in the TDA approach £
suggests that we should be able to reduce substantially thes
number of multiboson fields, with a corresponding ameliora-
tion of the critical slowing down problem. The procedure for
correcting infrared inaccuracies in the multiboson approach
was first described by Alexandraat al. [21]: here we pro-
pose computing darge number of infrared eigenvalues in
order to push the sea-quark masses down to the physical
range while still keeping the number of multiboson fields

=
]
=
3]
=

1

2 Il Il Il Il
200 400 600 800

number of eigenvalues

1000

small. Define a determinantal compensation factor Nor
multiboson fields as follows:

FIG. 15. Convergence of determinant correctiof,|dtice (N
=20, €=0.02).
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l 20
N - - - — - Pion propagator ~ exp(-MnT)
(2} i ~ . Scalar propagator ~ exp(-(M+Mp)T)
g S S
E ’4“‘. ~ ~
s s o
8 8 | )
c E | -~
‘g : 1 - -
& m .
i g0l |
(<]
Q 3
E [%2]
O o
3 2
g Hl
£ :
£ T
m 5 '._' .....
6 : I .....................................
T e B S I
o X ‘ |
1 : 3
T

0 200 400 600

number of eigenvalues FIG. 17. Scalar and pseudoscalar isovector propagators, fully

unquenched.
FIG. 16. Convergence of determinant correctior?>420 lattice ] . .
(N=50, €=0.003). ranging from 46% at«=0.1915, corresponding to a pion

] ] ] mass of 380 MeV, to 36% at=0.1930, corresponding to a
Dcr for two successive configuration;ieeded for the nion mass of 230 Mey

accept/reject stem@s a function of the number of eigenvalues ¢ x=0.1920, where we have already equilibrated and
Neig included in the computation oDcr. Evidently, the  generated a reasonably large ensemble, we find a lattice scale
small number of pseudofermion fields used means that thg; 5—0 36 fm (from string tension measurementsr a~*
simulated determinant is very inaccurate until several hun= 5o MeV. Thus these fully unquenched coarse lattices are
dred exactly computed eigenvalues are included, at whichyygny similar in size to the ones described in Sec. Il
point the peeded determinantal compensation factor con- aq 3 simple example of a fully unquenched quantity com-
verges rapidly. The dependence g is shown for 6 sepa- pyted in this approach, where consistent inclusion of all
rate pairs of e}djacent conflguratlon_s in the Monte Carlo Seyuark eigenmodes is important in avoiding unphysical
quence. In Fig. 16 we show a similar plot for 2020  anomalies, we show in Fig. 17 the pseudoscion) and
lattices (lattice spacinga=0.17 fm) up to a maximum of gcajar isovector propagators obtained from 100 configura-
Neig= 600, withN=50,=0.003. _ tions atk=0.1920. One obtains a pion mass of 0.60 in lat-

In order to get a feeling for the basic features of thetice ynits, while the exponential fall of the scalar correlator
Monte Carlo dynamics of the combined TDA and multibosoncorresponding to an intermediate s-wave two-body state of a
approach described here, we have performed simulations ¥lon and any’) corresponds to a mass of 1.94. Subtracting
large, coarse lattices, roughly similar to the ensembles dgese we find any’ mass of 1.34 in lattice units, or about
scribe_d in Sec. Ill. The gauge action was improved exactly aggg MeV, not far from the value of 715 MeV expected in a
described there, but with the coupling®,.q=3.65, Bt fictional two-light flavor world[22]. The advantage of this
=0.75. The lowest 1000 eigenvaluésorresponding to & approach to the;’ mass is that the need to subtract discon-
TDA scale of about 560 Me)/were computed exactly, and nected diagrams is completely circumvented Simulations of
20 multiboson fields, witke=0.02 were used to compute the this exactly unquenched two-flavor system at lighter quark
UV part of the determinant. The full algorithm breaks into massegdown to the physical up and down quark masses

the following steps. o _ continuing to check the chiral extrapolation of this result,
(1) Multiboson and gauge updatesatisfying detailed bal- - ang we are also beginning simulations with 2 sea-quark
ance: flavors (up, down and strange dynamical quarksorder to

(@) 1 over-relaxation update of the multiboson fie{dsth  gtqy they-» spectrum in a more realistic setting.
over-relaxation parametes=1.9).

(b) Gauge fields update consisting of 10 hit Metropolis, an
over-relaxation step and another 10 hit Metropolis update

(c) 1 over-relaxation update of the multiboson fields. The authors are grateful for useful conversations with M.

(2) Computation of the determinant compensation factordiPierro and H. Thacker. The work of A.D. was supported in
D¢r, Which is then used in an accept/reject step for the newpart by NSF grant PHY00-88946. The work of E.E. was
gauge and multiboson fields. The acceptance rate for thigerformed at the Fermi National Accelerator Laboratory,
step is similar to that in the pure TDA approach, showingwhich is operated by University Research Association, Inc.,
little sensitivity to the quark mass in the chiral regi@g., under contract DE-AC02-76CD03000.
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