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Unquenched QCD with light quarks
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We present recent results in unquenched lattice QCD with two degenerate light sea quarks using the trun-
cated determinant approximation~TDA!. In the TDA the infrared modes contributing to the quark determinant
are computed exactly up to some cutoff in quark off-shellness~typically 2LQCD). This approach allows
simulations to be performed at much lighter quark masses than possible with conventional hybrid Monte Carlo
techniques. Results for the static energy and topological charge distributions are presented using a large
ensemble generated on very coarse (64) but physically large lattices. Preliminary results are also reported for
the static energy and meson spectrum on 103320 lattices~lattice scalea2151.15 GeV) at quark masses
corresponding to pions of mass<200 MeV. Using multiboson simulation to compute the ultraviolet part of the
quark determinant the TDA approach becomes an exact algorithm with essentially no increase in computational
effort. Some preliminary results using this fully unquenched algorithm are presented.
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I. INTRODUCTION

Although much progress has been made in the last
years towards the goal of simulating important hadro
quantities in fully unquenched lattice QCD, the physical
gime of light up and down sea quarks~quark masses
,10 MeV) remains basically intractable with the curre
standard algorithms@the hybrid Monte Carlo~HMC! algo-
rithm @1# and variants thereof@2–4## even with the Teraflop
scale parallel platforms which are presently coming onli
With these algorithms, the generation of a statistically s
nificant ensemble of dynamical gauge configurations w
‘‘light’’ quark masses chosen to give a pion mass just lig
enough to allow rho decay~on sufficiently large lattices! al-
ready consumes many Teraflop years of computational e
@5#. The high cost of performing unquenched HMC simu
tions with light sea quarks arises from a number of sourc
the sensitivity of conjugate gradient solvers of large syste
to the condition number of the matrix to be inverted, t
need for rapidly decreasing step sizes~in order to maintain
reasonable acceptances in standard leap-frog schemes! as the
sea quark masses decreases, and the growing autocorre
time due to critical slowing down as the critical point corr
sponding to the chiral limit at which the pseudoscalar m
vanishes is approached. For example, recent results o
CP-PACS Collaboration@6# ~Table II in @6#! show that the
computational load measured in hours per trajectory ty
cally increases by a factor of 8–9 asmp /mr is decreased
from 0.8 to 0.58. A recent improvement of the HMC meth
@7# which reduces the condition number by splitting t
quark operator decreases the computational load by up
factor of 2 relative to standard algorithms over a range
mp /mr from 0.86 to 0.68. Another interesting developme
is the two-step multiboson algorithm proposed by Montv
0556-2821/2003/68~5!/054505~11!/$20.00 68 0545
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@8,9#, which leads to a computational cost}(mp)2zp with
zp'324 in the light quark regime. The truncated determ
nant approximation approach described in this paper eli
nates the cost sensitivity of the underlying algorithm due
the first two sources described above in the light quark m
limit ~as a result of properties of the Lanczos algorithm d
cussed below! at fixed lattice volume, at the cost of a mo
severe volume dependence.

Let us first recall the origin of the problems with the i
erative solvers used in typical HMC simulations of u
quenched QCD. To be specific, we consider throughout
case of Wilson ~or Sheikoleslami-Wohlert ‘‘clover’’ im-
proved! quark actions. The desired quark determinant~with
two degenerate flavors of sea quark! is introduced via
pseudofermionic fields with a quadratic action involving t
inverseof the squared quark~Wilson/clover!-Dirac operator
Q. The system is then treated as a classical Hamiltonian
subjected to molecular dynamics evolution corresponding
the following Hamiltonian

HMD5 1
2 Tr~PU

2 !1Sgauge~U !1f†~Q†Q!21f ~1!

Q†Q5H2, H[g5Q ~Hermitian! ~2!

wherePU are the conjugate momenta to the gauge fieldsU,
Sgauge(U) is the pure gauge action, andf is a bosonic field
with a highly nonlocal action. In order to update the gau
fields, the force on these fields due to thef field must be
computed, and this involves the inversion of theQ†Q opera-
tor, which is identical to the square of theHermitianWilson-
Dirac operatorH[g5Q. As the quark mass is taken to zer
the operatorH frequently develops very small eigenvalue
equivalently, the condition number~ratio of highest to lowest
eigenvalue! not uncommonly becomes very large~in simula-
©2003 The American Physical Society05-1
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tions described later in this paper, condition numbers.1000
are quite common forH). The required inversion ofH2 in
Eq. ~1! then involves an operator of condition number.106,
which not surprisingly requires a very large number of co
jugate gradient sweeps. In a nutshell, most of the comp
tional difficulty with very light sea quarks in the standa
hybrid Monte Carlo algorithm arises from this source.

In contrast to the ‘‘freezing’’ problem encountered wi
linear solvers of the conjugate gradient variety, the extrac
of low eigenvalues by Krylov subspace methods such as
Lanczos algorithm@10# does not deteriorate as a conse
quence of the presence of a very small eigenvalue. The
pidity with which the Lanczos procedure extracts eigenv
ues in a given region of the spectrum is instead determi
by the local spectral density in that region, which for t
operatorH of interest to us here is in fact minimal near zer
The eigenvalues ofH ~cf. Sec. II! have the physical interpre
tation as a gauge-invariant extension of quark off-shelln
in the free theory, so the truncation of the full quark det
minant to a product of all modes with~absolute value! eigen-
value below some cutoffm corresponds to a gauge-invaria
approximation of the fully unquenched theory in which se
quark loops up to quark off-shellnessm are included exactly
and completely. This approximation will be referred to as
‘‘truncated determinant approximation’’~TDA! in the fol-
lowing. In previous publications various features of t
implementation of this algorithm have been discuss
@11,12#, as well as the application to the study of strin
breaking on large coarse lattices@13#. The work described
here is motivated to a large extent by a desire to prov
alternatives to HMC which would allow at least some qua
tities to be computed directly in the deep chiral regime a
check on the large extrapolations required from the qu
masses presently practicable in the HMC approach to
physical range.

In Sec. II, we review the basic features of a trunca
determinant approach to unquenched QCD in the light of
much more extensive simulations which we have perform
since the aforementioned references. In particular, we a
that many low-energy hadronic quantities~e.g. low-lying
hadron spectrum, string-breaking, low energy chiral phys!
can be studied quite precisely in the TDA, while other effe
which depend more sensitively on the ultraviolet structure
internal quark loops~e.g. channels involving the eta prime!
require a fully consistent treatment of the full quark determ
nant. In Sec. III we present recent results obtained with la
ensembles (.10000 configurations! of unquenched TDA
configurations on physically large, coarse lattices@64, with
O(a2) gauge action improvement#: the quantities studied in
clude the static energy of a heavy quark-antiquark pair
dependence of topological charge distributions on the qu
mass. In Sec. IV we present some preliminary results
tained on larger lattices (103320, with a lattice scalea21

51.15 GeV): here we concentrate on extracting the lo
lying meson spectrum at up and down sea-quark ma
close to their physical values (mp /mr,0.26). We also give
an example of a correlator in which the truncated deter
nant approximation introduces a visible anomaly analog
~but quantitatively less severe! to the one familiar from
05450
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quenched calculations: namely, the scalar isovector cha
@18#. Finally, in Sec. V, we describe a combine
TDA1multiboson approach which allows exact unquench
simulations in the very light quark regime with a small num
ber of multiboson fields. Some preliminary results of sim
lations on large coarse lattices with this technique are
scribed.

II. INFRARED AND ULTRAVIOLET QUARK MODES:
THE TRUNCATED DETERMINANT APPROXIMATION

The Hermitian~Euclidean! Dirac operatorH[g5@D” /(A)
2m# has a spectrum which can be regarded as the ga
invariant generalization to nontrivial gauge fields of t
quark off-shellness of the free quark theory. Indeed, the
genvalues of the free operatorH0[g5@D” /(A50)2m# are
just 6Ap21m2, which precisely corresponds to the sign
Euclidean off-shellness of a quark of massm and momentum
p. Moreover, the individual eigenvalues~though not, of
course, the eigenvectors! are gauge invariant. Roughl
speaking, we can therefore visualize the contribution to
quark determinant from the infrared modes~corresponding to
the eigenvalues ofH of smallest absolute value! as arising
from quark loops of large physical extension in Euclide
coordinate space, while the ultraviolet modes correspon
quark loops of small size. Gauge-invariant quark loops
small size correspond to the lowest dimension gau
invariant operators so we should expect that the contribu
to the quark determinant from the highest UV mod
amounts to a functional of exactly the same form~i.e.
*Fmn

2 d4x in the continuum! as the basic pure gauge actio
and therefore has the sole physical effect of changing
scale in any gauge-invariantly cutoff version of the theo
such as lattice QCD.

To make these arguments a little more concrete, let
imagine separating low and high quark eigenmodes in
analytically smooth way by switching off the higher eige
values above a sliding scalem. If we define

D~m![ 1
2 Tr lnS tanh

H2

m2D ~3!

then a weak-coupling expansion ofD(m) shows@11# that the
m dependence is given asymptotically for largem by

D~m!.bFln
m2

mq
2E d4xFmn

2 1OS 1

m2
~DF !2D ~4!

wherebF is the one-loop quark contribution to the beta fun
tion. This result illustrates in an explicit way the role of th
high quark modes in renormalizing the pure gauge acti
which physically corresponds to the screening of the ga
interactions by virtual quark-antiquark pairs.

The above considerations suggest in the case of la
QCD a natural~and gauge-invariant! truncation of the full
theory in which the quark determinant is split into an infr
red and ultraviolet part at an appropriately chosen scalem. In
the lattice case, the operatorH is a large, sparse Hermitia
matrix with eigenvaluesl i , and we may write
5-2
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UNQUENCHED QCD WITH LIGHT QUARKS PHYSICAL REVIEW D68, 054505 ~2003!
det~H2!5S )
ul i u,m

l i
2D S )

ul i u.m
l i

2D[DIR~m!•DUV~m!

~5!

for the quark determinant appropriate for two degenerate
quark flavors. For sufficiently highm, the contribution of
DUV to the effective action~after integrating out quark fields!
should amount to a renormalization of the pure gauge act
Specifically, we expect thatDUV should be accurately mod
elled by small Wilson loops which can then be absorbed i
the pure gauge part of the action and should induce, at l
for low energy quantities dominated by processes in wh
virtual quark off-shellness is typically lower thanm, only a
change of lattice scale, while leaving dimensionless qua
ties ~such as ratios of hadron masses! unchanged. This ex
pectation has been confirmed by extensive numerical stu
@12#, which show that in many casesDUV is accurately mod-
elled by linear combinations of loop operators containing
links or less. In these studies, it was important to perform
IR-UV split by choosing a fixed numberNeig of low eigen-
values: m is then the average value ofulNeig

u ~where the
eigenvalues ofH are always ordered with respect to absolu
magnitude!. Otherwise, a small variation of the gauge co
figuration can causeulNeig

u to cross the scalem, resulting in

a discontinuous jump inDUV , a situation clearly incompat
ible with a smooth analytical fit ofDUV to a fixed linear
combination of small Wilson loops. Accordingly, for the re
of this paper, we shall define

D IR~m![ ln )
i 51

i 5Neig

l i
2 ~6!

DUV~m![ ln )
i 5Neig11

l i
2 ~7!

m[^ulNeig
u&. ~8!

The TDA will correspond to the interpolation betwee
quenched and full QCD induced by replacing the full qua
determinant by the infrared pieceD IR in the effective pure
gauge action obtained after quark fields are integrated
We shall argue below that a choice of truncation scalem
.2LQCD is adequate to preserve both the important low
ergy chiral physics of QCD, as well as the low-lying hadr
spectrum~lowest states in each channel!. Moreover, the com-
putational difficulty of extracting the~typically, several hun-
dred! eigenvalues needed forD IR does notincrease as the
quark mass is taken to zero on a fixed size lattice, in cont
to conventional HMC algorithms.

III. TDA SIMULATIONS ON LARGE, COARSE LATTICES

The TDA approach has been applied previously to a st
of string breaking in physically large (2.4 F4) lattices at a
single value of the sea-quark mass@13#. These simulations
have been extended to four different sea-quark masses~with
2 degenerate flavors of sea quark! with ensembles 2–2.5
times larger than previously studied. In order to study lo
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distance features of the full theory, we work on coarse4

lattices~lattice spacinga50.4 F) but with O(a2) improved
gauge action. Following Alfordet al. @14#, we improve the
gauge action with a single additional operator, with coe
cients tuned to optimize rotational invariance of the stri
tension

S~U !5bplaq(
plaq

1

3
ReTr~12Uplaq!1b trt(

trt

1

3
ReTr~12U trt!

~9!

where ‘‘trt’’ refers to a 8 link loop of generic structure
(1x, 1y, 1x, 2y, 2x, 1y, 2x, 2y) ~the ‘‘twisted rect-
angle’’ of Ref. @14#!. With the choicesbplaq53.7, b trt
51.04bplaq, the violation of rotational invariance expecte
on such a coarse lattice are almost completely eliminated
that the static quark potential becomes a smooth function
lattice radial separation@14#. As the quark action is not im-
proved, the lattice spacing quoted here is determined
matching the initial linear rise of the string tension to
physical value~rather than by using the rho mass, for e
ample!.

All four values for the sea-quark hopping parameter st
ied here correspond to very light quarks by the usual st
dards of unquenched QCD. In Fig. 1 we show the plot
pion mass squared versus 1/k. The lightest quark shows a
clear finite volume effect in the pion mass, so we have
termined the critical kappa value from a fit to the heavi
three quarks only, as indicated in the figure. This fit giv
kc50.20706. In physical units, the three heaviest qua
correspond to pion masses of 210, 235, and 264 MeV, w
the lightest sea-quark studied corresponds to a pion mas
175 MeV in the finite volume system or an infinite volum
pion mass of about 150 MeV, very close to the physi
value.

In the TDA simulations described here the number of
frared modes included exactly in the low-energy determin
D IR has been chosen to be 840, for all four kappa values.
lattice scale as determined from the initial linear rise of t
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1/kappa
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FIG. 1. Fit of Mp
2 vs 1/k.
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TABLE I. Characteristics of 4 64 TDA ensembles,a50.4 fm.

Run k Mp Fp ^ulNeig
u& Acceptance ratio tdet t top

j1 0.2060 0.35160.008 0.19 0.826 0.49 .2.93103 75
j2 0.2050 0.41860.006 0.21 0.828 0.51 .1.43103 105
j3 0.2044 0.47260.006 0.20 0.827 0.57 .3.53103 157
j4 0.2038 0.52860.006 0.18 0.827 0.57 .2.33103 182
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static energy is essentially unchanged over the limited ra
of quark masses studied and so is the magnitude of the
est included eigenvalue ofH ~in lattice units: see Table I!, so
the scalem for the determinant truncation corresponds in
cases to a physical off-shellness of'410 MeV. The global
gauge-field update which precedes the accept/reject
based on the change inD IR is a standard multihit Metropolis
@13#, with parameters chosen to ensure an acceptance ra
the order of 50%~see Table I!. This gauge-field update pro
cedure~which satisfies overall detailed balance! consists of
picking randomly located blocks of links which do not inte
act ~i.e. no link in the block is in the action environment
any other!. Here links have been spaced by 3 lattice spaci
in all dimensions. Then a multihit Metropolis is performe
on each link in a block. The number of~randomly located!
blocks updated in one sweep was chosen so that a numb
links roughly equal to the total number on the lattice a
updated. For our 64 simulations we use 10 hits with a Me
tropolis factor of 0.08; so that roughly 80% of the links a
updated in each gauge configuration proposed. These pa
eters are thesamefor all four runs, but the acceptance rat
varies only from 49% to 58% even though the quark m
varies by a factor of 3.

In Table I, we also show the results of autocorrelati
studies of the infrared determinantD IR and of the topological
charge. The sequence of infrared determinantD IR values
shows the existence of very long correlations in this quan
as is apparent in Fig. 2, typically extending over thousa
of update steps~1 update step[1 global gauge-field updat
followed by an accept/reject based onD IR). This makes it
difficult to extract an accurate autocorrelation time, ev

FIG. 2. Monte Carlo sequence ofD IR for k50.2050.
05450
e
rg-

l

ep

of

s

of

m-

s

y,
s

n

with a sequence of 100000 steps. The determinant auto
relation timestdet shown in Table I are obtained by integra
ing the autocorrelation curves out to a Monte Carlo tim
where they first cross zero, but these curves are not e
approximately exponential~see Fig. 3!, so there are undoubt
edly several important time scales present in the Monte C
dynamics for this quantity.

For the topological charge, the situation is much clean
The topological chargeQ can be expressed@11# in terms of
the eigenvalues of the Wilson-Dirac operator

Q5
1

2k S 12
k

kc
D(

i 51

N
1

l i
.

In practice, this sum is quickly saturated by the low eige
values: in particular, we have evaluated it by settingN
5Neig, as these eigenvalues are in any case byproduct
the TDA update procedure. The autocorrelation curves foQ
for the 4 differentk values are shown in Fig. 4 and ar
roughly exponential: the autocorrelation timest top given by
the integral of the autocorrelation function are displayed
Table I. For the lighter quarks, the autocorrelation time d
termined by an exponential fit at small times is somew
smaller, indicating the presence of a longer range com
nent.

The static energy of a heavy quark-antiquark pair h
been studied for the four ensembles described above. C
lomb gauge Wilson lines@13# were accumulated after ever
update step until a bin size of 2000 steps was reached.
corresponding binned Wilson line averages~typically, of the

0 2000 4000 6000 8000 10000
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FIG. 3. Autocorrelation curve ofD IR for k50.2060.
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UNQUENCHED QCD WITH LIGHT QUARKS PHYSICAL REVIEW D68, 054505 ~2003!
order of 40–50! were then subjected to a standard bootst
analysis, allowing us to extract asymmetric errors. Also,
bin size was varied until the errors were stable to ensure
autocorrelation effects were eliminated. For the lightest t
quark masses~runs j1, j2! there is reasonably clear eviden
of string breaking once the Wilson line ratios are taken
tween Euclidean times 1.2 fm and 1.6 fm@T53/4 plots in
Figs. 5, 6, with the largeR value agreeing with~twice! the
measured mass for a heavy-light meson#. With the heaviest
mass sea quark the levelling off of the static energy at lar
distance is less clear~Fig. 7!. Even with the large ensemble
collected, it is clear that the sea-quark shielding of the str
tension induces very large fluctuations which makes h
precision very hard to achieve.

Another very characteristic feature of unquenched Q
in the chiral limit arises from the suppression of nontriv
topological charge as the quark mass goes to zero. The
tribution of topological chargeQ is known @17# to follow

0 200 400 600 800
update steps
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κ=0.2060
κ=0.2050
κ=0.2044
κ=0.2038

FIG. 4. Autocorrelation curves ofQ for k50.2060, 0.2050,
0.2044, 0.2038.

-

FIG. 5. Static energyV(R) for k50.2060~j1 run!.
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directly from the chiral symmetry of QCD. In the case of
theory with two degenerate light quark flavors, the norm
ized probability distribution ofQ in a system of finite space
time volumeV is given by

P~Q!5x
I Q~x!22I Q11~x!I Q21~x!

I 1~2x!

x[
1

2
V fp

2 Mp
2 . ~10!

An accurate determination off p in the usual fashion from
pseudoscalar-axial vector correlators is difficult on su
small lattices, as the only time window available is
51 –2 ~the axial correlator is antiperiodic and vanishes
T53). However, it is apparent from Eq.~10! that f p can be
extracted from the topological charge distribution by a on
parameter fit of the dimensionlessx variable, once the pion
masses have been measured. In Fig. 8 we show the mea

-

FIG. 6. Static energyV(R) for k50.2050~j2 run!.

-

FIG. 7. Static energyV(R) for k50.2038~j4 run!.
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FIG. 8. Topological charge distributions and fits fork50.2060, 0.2050, 0.2044, 0.2038.
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distributions~diamonds! of Q for the four different sea-quark
values as well as the fits to the chiral prediction~10!. The
narrowing of the distribution as one goes to lighter quarks
clearly visible. The values off p extracted from the fitx
values are given in Table I. Atk50.2050 the value off p has
been previously extracted from a large ensemble study
axial vector correlators using all-point quark propagat
@16#: this method givesf p50.18760.011, close to the value
of 0.21 found from the topological charge fit. Also, the val
of f p is fairly constant over the~limited! range of sea-quark
masses studied, as we expect. These results certainly co
ute to our confidence that the TDA method builds in all t
important low energy chiral physics of QCD.

IV. TDA SIMULATIONS ON FINER LATTICES

Although unquenched simulations on physically large
coarse lattices may yield useful qualitative insights~espe-
cially with regard to the dynamics of the simulation proces!,
we can only expect quantitatively useful results by simu
ing larger and finer lattices. A number of TDA simulations
103320 lattices at a lattice spacinga2151.15 GeV have
therefore been performed to assess the practicality of
TDA method for larger lattices~the increase in computa
tional effort required for even larger lattices is discussed
05450
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the end of this section!. The gauge action used in this case
a single plaquette one as improvement is not as impor
with a lattice spacing of the order of 0.17 F as it was in t
case of the coarse lattices with spacing 0.4 F discussed in
preceding section. However, we have used clover impro
ment ~with a Sheikoleslami-Wohlert coefficient ofCSW

51.57) for the fermions. This allows us to determine t
lattice spacing from the rho mass, rather than the string
sion, although the two values are basically quite consist
as we discuss below. The valueCSW51.57 was taken from
improved quenched simulations of the Fermilab group@15#
for the same lattice spacing. We have not yet retuned
CSW value for our TDA calculations, but because the TD
method here only includes the low eigenvalues of the de
minant, it is not likely thatCSW will be shifted substantially.
In the TDA simulations, the lowest 520 eigenvalues we
kept, corresponding to a TDA scale of about 504 MeV. T
Lanczos extraction of these eigenvalues for a single confi
ration takes about 1.3 h on a Pentium-4 1.7 GHz proces
as this completely dominates the computational effort, t
time also represents a single update step of the TDA sim
tion for these lattices.

The preliminary results described in this section were
tained from two separate ensembles corresponding to run
5-6
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UNQUENCHED QCD WITH LIGHT QUARKS PHYSICAL REVIEW D68, 054505 ~2003!
b55.7 andk50.1420~h1 run! and 0.1415~h2 run!. To this
point, 100 configurations separated by 50 update steps w
obtained for the h2 run and 80 configurations for the ligh
h1 run. Most of the discussion will concern the h2 run
finite volume effects, available statistics and autocorrelat
effects are all worse for the h1 run. The simulations are c
tinuing and we expect to accumulate significantly larger
sembles in the coming months, by implementing a co
pletely parallel version of the Lanczos process. However,
again emphasize here that the acceptance rates for the
simulations in the two runs are essentially identical~0.55 for
k50.1415 and 0.53 fork50.1420), once again illustratin
the immunity of the TDA approach to the critical slowin
down endemic in HMC approaches at light quark masse

As the spatial extent of the h2 run lattices is considera
smaller~1.7 fm as opposed to 2.4 fm for the 64 lattices! we
may expect that the string breaking effects will also be m
difficult to see. The static potential measured at various
clidean times is shown in Fig. 9, and there is as yet no e
dence for a flattening of the potential at distances where
errors are still reasonable at larger distances~for lattice times
,.6, or about 1 fm!. The expected asymptotic limi
(5twice the heavy-light meson mass! is indicated by the
dashed line: with the statistics available, this value is o
reached when the errors for Wilson lines of temporal ext
T.4 begin to explode. Much larger statistics will presum
ably be needed to reach the larger times and distances w
string breaking will appear on these lattices. We can howe
use the initial rise of the static potential to extract a rou
lattice scale. Extracting a slope from the region 2<R<4,
one findsa50.16 fm. A more reliable estimate of the sca
can be obtained from the rho massM r50.669(30), obtained
by fitting a set of 200 bootstrapped smeared-local rho pro
gators, as shown in Fig. 10. Using the rho mass to fix
lattice scale givesa2151.15 GeV, a50.17 fm for the h2
run: as in the case of the 64 runs discussed in Sec. III, th
scale is not very sensitive to the sea-quark mass in this
light regime, and atk50.1420 we find a rho mass o

-

FIG. 9. Static potential for the h2 run,k50.1415.
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0.693~30! in lattice units, giving a lattice scalea21

51.11 GeV.
The pion in the h2 ensemble is already very light a

autocorrelations are large, typically of the order of 100–1
update steps~with the autocorrelation time growing with Eu
clidean time!. To analyze the pion propagators, we ha
therefore binned the smeared-local pion propagators from
successive configurations~separated by 50 update steps! into
33 sets of bin size 3 before generating 66 bootstrap prop
tors for a bootstrap analysis. The corresponding aver
propagator file and fit is shown in Fig. 11, giving a pion ma
of 0.175 in lattice units or 201 MeV. For the h1 run atk
50.1420, the pion is even lighter~Fig. 12!, but with the
limited statistics~80 configurations! available so far the er-
rors at larger Euclidean time are substantial, so an accu
determination of the pion mass in this case is not possi
The h1 propagator is essentially flat forT.4, so this case is
presumably very close to kappa critical. We should point
that these h1 propagators were obtained by standard co
gate gradient as the stabilized biconjugate gradient rout

-

FIG. 10. Rho propagator, h2 run,k50.1415.
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FIG. 11. Pion propagator, h2 run,k50.1415.
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often fail to converge for very light quarks. Of course,
this smaller lattice finite size effects~which were small on
the 2.4 fm lattices for pion masses.200 MeV) may well be
significant.

The anomaly in the quenched theory induced in the sc
isovector channel by the incomplete cancellation of
quenched eta-prime double pole@18# is by now well under-
stood. The TDA while including effects of sea-quark loo
up to fairly high off-shellnessexactly, does not of course
treat valence and sea quarks identically, so we should ex
the appearance of incompletely cancelled double pole co
butions in isoscalar channels here also. In the case of
scalar isovector propagator, these contributions are nega
metric and result in the propagator going negative at in
mediate values of Euclidean time. A similar dip is observ
in the scalar isovector propagator obtained from the h2 r
~see Fig. 13!, although it is far less pronounced than in t
quenched case. In Sec. V we shall see that the same
relator is perfectly well behaved in the TDA1multiboson
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FIG. 12. Pion propagator, h1 run,k50.1420.
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FIG. 13. Scalar isovector propagator, h2 run,k50.1415.
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exact unquenched algorithm, and indeed allows a statistic
accurate extraction of the eta-prime mass without the n
for subtraction of disconnected contributions.

The computational effort required to compute all qua
eigenmodes up to a fixedLTDA on lattices of fixed lattice
spacing and growing volumeV increases likeVa where the
exponenta is slightly less than 2. For example, forLTDA
5450 MeV, we find that for lattices witha2151.15 GeV,
an update step amounts to'1, 3.5 and 35 h on a Pentium-
2.2 GHz processor on 103320 ~370 eigenvalues!, 123324
~850 eigenvalues! and 163332 ~2770 eigenvalues! lattices
respectively ~cf. Table II!. The scaling properties of the
LANCZOS code~employing SSE2 acceleration@19#! on a PC
cluster with myrinet interface appear very good, so a 16 n
cluster with 3 GHz processors should be adequate for us
simulations~and comparable in computational effort to th
simulations presented here! for even the physically quite
large (2.7 fm)33(5.4 fm) configurations~on 163332 lat-
tices!.

Although the volume dependence for the TDA algorith
~roughly V2) is more severe than in conventional HMC a
gorithms (V5/4), the quark-mass dependent prefactor~typi-
cally Mp

2(324) , @5#! is far better behaved in the TDA ap
proach, as the Lanczos algorithm convergence is comple
independent of quark mass. Thus the method should
provide a useful alternative for moderate size lattices~3 fm
or less in linear dimension!, for example in examining finite
volume effects at very small quark mass where Wilson HM
simulations are virtually useless, and in comparing with
results of chiral extrapolations of HMC results from th
heavier quark regime.

Although a detailed study has not yet been done, runn
at a variety of lattice spacings, one can get a rough estim
of the scaling behavior with lattice spacing by rescaling
103320 simulations to the same physical volume as the4

runs using theV2 scaling. We have done a special study
address this important issue. Keeping the TDA cutoff fixed
the value 410 MeV used in the 64 runs~and recalling that the
computational effort per TDA update is essentially indepe
dent of the quark mass!, we find that the computational effor
increases by about a factor of 28 in going from lattice sp
ing 0.4 fm to 0.174 fm. This corresponds to the power la
scalinga24.

In the next section we shall see that the inclusion of
ultraviolet part of the determinant by multiboson techniqu
increases the computational cost of an update insignifica
so these estimates hold also for exact algorithms where c
plete control of the infrared allows probing of the deep chi
limit without critical slowing down of the Monte Carlo dy
namics.

TABLE II. Volume scaling for TDA calculations.

Lattice 103320 123324 163332

Time 1 h 3.5 h 35 h
Neig 370 850 2770
Lanczos sweeps 28 000 74 000 200 00
5-8
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V. EXACT UNQUENCHED QCD WITH LIGHT QUARKS:
COMBINING TDA AND MULTIBOSON METHODS

The evaluation of the ultraviolet contribution to the qua
determinantDUV can be accomplished by the Lu¨scher multi-
boson technique@20#, as pointed out previously in@11#. The
basic idea of the multiboson technique is to introduce a
ries of polynomials in a variables ~shortly to be identified
with the square of the eigenvalues ofH, for two degenerate
sea quarks! which converge tos21:

lim
N→`

PN~s!5
1

s
, 0<s<1 ~11!

det~H2!5 lim
N→`

@detPN~H2!#21 ~12!

PN~H2!.)
k51

N

@~H2mk!
21nk

2# ~13!

Sbosonic5 (
k51

N

(
x

$u~H2mk!fk~x!u21nk
2ufk~x!u2%.

~14!

Specifically, it is convenient to pick Chebyshev polynomia
so that with u5(s2e)/(12e) and cosu52u21, Tr* (u)
5cos(ru). Then

PN~s![@11rTN11* ~u!#/s ~15!

with r chosen so thatPN(s) has a finite limit ass→0. With
these choices,sPN(s) differs from unity in the intervale
<s<1 by an amount less than 2@(12Ae)/(11Ae)#N11.

The N roots of the polynomialPN(s) typically lie on an
ellipse in the complex plane surrounding the spectrum ofH2

~with H rescaled so that the spectrum ofH2 lies between 0
and 1!. An example, for values ofN520, 80, is shown in
Fig. 8. The essential point is that accurate control of
infrared spectral region requires the number of multibos
fieldsN to be chosen large~specifically, if we demand a fixed
relative error uniformly in the rangee<s<1, then we must
holdAeN fixed ase→0) ~Fig. 14!. This then forces many o
the bosonic fields to appear in the action with sm
‘‘masses’’nk , which in turn leads to critical slowing down in
the multiboson sector.

Evidently, the exact control over a substantial segmen
the infrared quark spectrum provided in the TDA approa
suggests that we should be able to reduce substantially
number of multiboson fields, with a corresponding amelio
tion of the critical slowing down problem. The procedure f
correcting infrared inaccuracies in the multiboson appro
was first described by Alexandrouet al. @21#: here we pro-
pose computing alarge number of infrared eigenvalues i
order to push the sea-quark masses down to the phy
range while still keeping the number of multiboson fiel
small. Define a determinantal compensation factor forN
multiboson fields as follows:
05450
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e
n

l

f
h
he
-

h

al

DCF~N,Neig![ lnS )
i 51

Neig

l i
2PN~l i

2!D ~16!

whereNeig is the number of eigenvaluesl i ~ordered in ab-
solute value! of H calculated in the TDA approach. We ex
pect thatDCF should converge to a well-defined limit onc
lNeig

2 @e. At this point, the compensation factorDCF can be

used in an accept/reject step to correct the approximate
terminant generated by the multiboson part of the action.
get a quantitative feeling for how rapidly this convergen
takes effect, we show two examples in Figs. 15, 16. In F
15 we consider pairs of adjacent configurations in a simu
tion in which the 1000 lowest eigenvalues ofH2 on a 64

lattice ~with lattice spacinga.0.4 fm) are exactly computed
by the Lanczos method, while the multiboson action cor
sponds toN520,e50.02. The plot shows the difference o
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spectrum of H*H

FIG. 14. Zeroes of the approximating multiboson polynom
for 20, 80 boson fields.
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FIG. 15. Convergence of determinant correction, 64 lattice (N
520, e50.02).
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DCF for two successive configurations~needed for the
accept/reject step! as a function of the number of eigenvalu
Neig included in the computation ofDCF . Evidently, the
small number of pseudofermion fields used means that
simulated determinant is very inaccurate until several h
dred exactly computed eigenvalues are included, at wh
point the needed determinantal compensation factor c
verges rapidly. The dependence onNeig is shown for 6 sepa-
rate pairs of adjacent configurations in the Monte Carlo
quence. In Fig. 16 we show a similar plot for 103320
lattices ~lattice spacinga.0.17 fm) up to a maximum of
Neig5600, withN550,e50.003.

In order to get a feeling for the basic features of t
Monte Carlo dynamics of the combined TDA and multibos
approach described here, we have performed simulation
large, coarse lattices, roughly similar to the ensembles
scribed in Sec. III. The gauge action was improved exactly
described there, but with the couplingsbplaq53.65, b trt
50.75. The lowest 1000 eigenvalues~corresponding to a
TDA scale of about 560 MeV! were computed exactly, an
20 multiboson fields, withe50.02 were used to compute th
UV part of the determinant. The full algorithm breaks in
the following steps.

~1! Multiboson and gauge updates~satisfying detailed bal-
ance!:

~a! 1 over-relaxation update of the multiboson fields~with
over-relaxation parameterv51.9).

~b! Gauge fields update consisting of 10 hit Metropolis,
over-relaxation step and another 10 hit Metropolis updat

~c! 1 over-relaxation update of the multiboson fields.
~2! Computation of the determinant compensation fac

DCF , which is then used in an accept/reject step for the n
gauge and multiboson fields. The acceptance rate for
step is similar to that in the pure TDA approach, showi
little sensitivity to the quark mass in the chiral region~e.g.,
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FIG. 16. Convergence of determinant correction, 103320 lattice
(N550, e50.003).
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ranging from 46% atk50.1915, corresponding to a pio
mass of 380 MeV, to 36% atk50.1930, corresponding to
pion mass of 230 MeV!.

At k50.1920, where we have already equilibrated a
generated a reasonably large ensemble, we find a lattice s
of a50.36 fm ~from string tension measurements! or a21

.550 MeV. Thus these fully unquenched coarse lattices
roughly similar in size to the ones described in Sec. III.

As a simple example of a fully unquenched quantity co
puted in this approach, where consistent inclusion of
quark eigenmodes is important in avoiding unphysi
anomalies, we show in Fig. 17 the pseudoscalar~pion! and
scalar isovector propagators obtained from 100 configu
tions atk50.1920. One obtains a pion mass of 0.60 in l
tice units, while the exponential fall of the scalar correla
~corresponding to an intermediate s-wave two-body state
pion and anh8) corresponds to a mass of 1.94. Subtract
these we find anh8 mass of 1.34 in lattice units, or abou
735 MeV, not far from the value of 715 MeV expected in
fictional two-light flavor world@22#. The advantage of this
approach to theh8 mass is that the need to subtract disco
nected diagrams is completely circumvented Simulations
this exactly unquenched two-flavor system at lighter qu
masses~down to the physical up and down quark masses! are
continuing to check the chiral extrapolation of this resu
and we are also beginning simulations with 211 sea-quark
flavors ~up, down and strange dynamical quarks! in order to
study theh-h8 spectrum in a more realistic setting.
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