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Reduction of the QCD string to a time component vector potential
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We demonstrate the equivalence of the relativistic flux tube model of mesons to a simple potential model in
the regime of large radial excitation. We make no restriction on the quark masses; either quark may have a zero
or finite mass. Our primary result shows that for fixed angular momentum and large radial excitation, the flux
tube or QCD string meson with a short-range Coulomb interaction is described by a spinless Salpeter equation
with a time component vector potentialV(r )5ar2k/r .
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I. INTRODUCTION

Although quantum chromodynamics~QCD! is almost
surely the correct theory of strong interactions, it rema
difficult to explore its predictions in the nonperturbative r
gime. For hadron states the nonperturbative, or confinem
regime corresponds to large distances. For mesons con
ment dominates the dynamics of even the heaviest qu
states. It has long been suspected that when the color so
are widely separated, the color electric fields collapse i
relatively thin configurations known as flux tubes, or QC
strings. The evidence for such stringlike configurations
primarily as follows:

~i! Universal linear Regge trajectories, reflecting a line
confining potential and relativistic kinematics@1#.

~ii ! Lattice simulation of the energy density@2#.
~iii ! Relativistic corrections of the flux tube model@3#

agree with those of Wilson loop QCD@4#.
~iv! For heavy onia, the flux tube model reduces to

very successful linear confinement potential mode
~v! Lattice simulations of excited QCD states with fixe

sources@5,6#.

The relativistic string and quark model for mesons can
exactly solved numerically for arbitrary quark masses@7#.

An excellent approximation for the bound state energyE
of a meson consisting of one massive and one mass
quark is the spectroscopic relation

E2

pa
5L12n1

3

2
. ~1.1!

Here the angular momentum quantum numberL and radial
quantum numbern take values 0,1,2, . . . . Theconstanta is
the tension of the QCD string. For a meson with two ma
less quarks, the spectroscopic relationship becomes@8#

E2

2pa
5L12n1

3

2
. ~1.2!
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Recently we have shown semiclassically that in the limit
large radial excitation, Eq.~1.1! and Eq.~1.2! follow in both
the flux tube model and in linear time component vec
confinement@8#.

In this paper we demonstrate that the wave equation
the flux tube meson with a short-range Coulomb interact
can be reduced to a spinless Salpeter equation with a
time component vector~TCV! potential interaction. This re-
duction holds rigorously for large radial excitation but is a
curate for all states. This result establishes the close con
tion between flux tube dynamics and the TCV potent
model for spinless quarks.

In Sec. II we discuss the dynamics of a flux tube w
quarks of arbitrary masses. The critical approximation t
the string can be assumed to be nonrelativistic is shown to
accurate forn@L in Sec. III. In Sec. IV we establish the
TCV spinless Salpeter equation from the QCD string. W
conclude in Sec. V. We include the detailed algebraic st
for Secs. III and IV in the Appendix.

II. THE QCD STRING WITH ARBITRARY
QUARK MASSES

There are two equivalent methods of extracting the c
served quantities of the spinless quark-string system.
momentum-energy approach considers a straight color e
tric tube of energya per unit length. From Lorentz boostin
a string element perpendicular to its orientation, the mom
tum, angular momentum, and energy of the string are ea
obtained@3,7#. This intuitive construction is appealing for it
simplicity.

One can also extract the conserved quantities more
mally by using Noether’s theorem and an action formalis
We take an action@9# consisting of two pieces: one piece, th
Nambu-Goto action, is proportional to the invariant surfa
area swept out by the string connecting the two quarks,
other piece is a sum of two terms, each proportional to
invariant length of a quark worldline:
©2003 The American Physical Society22-1
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S52m1E dtA2 ẋ1
22m2E dtA2 ẋ2

2

2aE dtE
s1

s2
dsA~Ẋ•X8!22~Ẋ!2~X8!2,

5E dtS Lq1E
s1

s2
dsLsD . ~2.1!

In this expressionx1
m andx2

m are the positions of the quarks
andXm(s,t) is the position of the string. The quark mass
are m1 and m2 , a is the string tension, a dot denotes a d
rivative with respect tot, and a prime denotes a derivativ
with respect tos. In our notation, the dot product betwee
two four-vectorsA and B, uses a metric of signature12;
A•B5AmBnhmn52A0B01A•B. The string terminates on
quark at each end

Xm~s1!5x2
m , Xm~s2!5x1

m . ~2.2!

The momentum and angular momentum of the qua
string system can be found from Noether’s theorem. T
action is invariant under the combination of a boost an
translation

dxi
m5am1v n

m xi
n ,

dXm~s!5am1v n
m Xn~s!. ~2.3!

The variation of the finite time action under Eqs.~2.3! is the
sum of the translation times momentum change and rota
times angular momentum change,

05dE
t1

t2
dtS Lq1E dsLsD

5am@Pm~t2!2Pm~t1!#

1
1

2
vmn@Lnm~t2!2Lnm~t1!#. ~2.4!

The resulting momentum and angular momentum are the
nonical ones,

Pm5
]Lq

] ẋ1
m

1
]Lq

] ẋ2
m

1E
s1

s2
ds

]L s

]Ẋm

5m1

ẋ1m

A2 ẋ1
2

1m2

ẋ2m

A2 ẋ2
2

1aE
s1

s2
ds

Ẋm~X8!22Xm8 ~Ẋ•X8!

A~Ẋ•X8!22~Ẋ!2~X8!2
, ~2.5!
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Lmn5x1[m

]Lq

] ẋ1
n]

1x2[m

]Lq

] ẋ2
n]

1E
s1

s2
dsX[m~s!

]L s

]Ẋn]

5m1

x1[mẋ1n]

A2 ẋ1
2

1m2

x2[mẋ2n]

A2 ẋ2
2

1aE
s1

s2
ds

X[mẊn]~X8!22X[mXn]8 ~Ẋ•X8!

A~Ẋ•X8!22~Ẋ!2~X8!2
. ~2.6!

The action~2.1!, momentum~2.5!, and angular momen
tum ~2.6! are invariant under changes of variables ins and
t,

~s,t!°„s̃~s,t!,t̃~s,t!…, ~2.7!

as long as the boundaries remain at values ofs̃ that are
independent oft̃.

We use this coordinate invariance to choose the param
t to be the laboratory time, and the end points to be at p
ticular values ofs1 ands2,

x1
05x2

05X0~s,t!5t5t, ~2.8!

s150, s251. ~2.9!

The straight string approximation to the equations of mot
is exact for uniform circular motion of the quarks and is
good approximation in realistic mesons@10#. In this approxi-
mation, the position of the string at any timet lies along a
straight line between the quarks, which we can paramet
linearly as

X~s!5~12s!x21sx1 . ~2.10!

We further denote the separation between the quarks
particular instant as

r[x12x2 . ~2.11!

Under the approximation~2.10!, the energy of the system
becomes

P05
m1

A12v1
2

1
m2

A12v2
2

1aE
0

1

ds
r 2

A@r•v~s!#22r 2@211v2~s!#

5m1g11m2g21arE
0

1

ds
1

A12v'
2 ~s!

, ~2.12!

wherev15dx1 /dt and v25dx2 /dt are the quark velocities
and we have defined

v~s!5Ẋ~s!5~12s!v21sv1 ,
2-2
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v'~s!5v~s!2
r•v~s!

r

r

r
. ~2.13!

The momentum of the system with the straight string
proximation becomes

P5
m1v1

A12v1
2

1
m2v2

A12v2
2

1aE
0

1

ds
v~s!r 22r @v~s!•r #

A@r•v~s!#22r 2@211v2~s!#

5m1g1v11m2g2v21arE
0

1

ds
v'~s!

A12v'
2 ~s!

.

~2.14!

The vector angular momentum is obtained fromLmn as Li

5 1
2 e i jkL jk , which, for a straight string, becomes

L5m1

x13v1

A12v1
2

1m2

x23v2

A12v2
2

1aE
0

1

ds
r 2X~s!3v~s!2X~s!3r @r•v~s!#

A@r•v~s!#22r 2@211v2~s!#

5m1g1x13v11m2g2x23v21arE
0

1

ds
X~s!3v'~s!

A12v'
2 ~s!

.

~2.15!
We evaluate the integrals in Eqs.~2.12!, ~2.14!, and~2.15!

for a string rotating about thez-axis and instantaneously ly
ing along thex-axis from2r 2 to r 1. The string’s perpendicu
lar velocity runs from2v'2 to v'1,

X~s!5sr 11~s21!r 2 ,

v'~s!5sv'11~s21!v'2 . ~2.16!

The total length of the string isr 5r 11r 2. Because we as
sume that the string stays straight as it rotates, we have

v'1

r 1
5

v'2

r 2
. ~2.17!

Equation~2.17! implies

r

v'11v'2
5

r 1

v'1
5

r 2

v'2
. ~2.18!

We denote the nonquark pieces of the energy, momen
and angular momentum bylM , lP , and lL respectively.
The only contribution tolP and lL is from the string. The
energylM has contributions from the Coulomb piece as w
as the string. We find the string energy in Eq.~2.12! to be
05402
-

m,

l

arE
0

1

ds
1

A12v'
2

5
ar~A12v'2

2 2A12v'1
2 !

v'11v'2

5
ar

v'11v'2
~g'2

212g'1
21!

[lM1
k

r
. ~2.19!

The perpendicular momentum of the string from Eq.~2.14! is

arE
0

1

ds
v'

A12v'
2

5
ar@arcsin~v'1!1arcsin~v'2!#

v'11v'2

[lP . ~2.20!

The angular momentum of the string from Eq.~2.15! be-
comes

arE
0

1

ds
Xv'

A12v'
2

5
ar

2~v'11v'2! F2r 1g'1
212r 2g'2

21

1
ar

v'11v'2
@arcsin~v'1!1arcsin~v'2!#

1~g'2
212g'1

21!
v'2r 12v'1r 2

v'11v'2
G[lL .

~2.21!

We can simplify the quark pieces of the conserved qu
tities through use of the identity

pr
21m2

m2 5g2v r
2115

v r
2

12v r
22v'

2 11

5
12v'

2

12v r
22v'

2 [
g2

g'
2 , ~2.22!

or

mg5Apr
21m2g'[Wrg' . ~2.23!

Using Eqs.~2.19!, ~2.20!, ~2.21!, and ~2.23!, we obtain
our final expressions for the conserved quantities

P05Wr1g'11Wr2g'2

1arS r 1

v'1
arcsin~v'1!1

r 2

v'2
arcsin~v'2! D ,

~2.24!

P'5Wr1g'1v'12Wr2g'2v'2

1aS r 2

v'2
g'2

212
r 1

v'1
g'1

21D , ~2.25!
2-3
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L5Wr1g'1v'1r 11Wr2g'2v'2r 2

1
a

2

r 1
2

v'1
S arcsin~v'1!

v'1
2g'1

21D
1

a

2

r 2
2

v'2
S arcsin~v'2!

v'2
2g'2

21D . ~2.26!

These results are exactly the starting point in the moment
energy approach@3,7#.

Finally, we note that the Nambu-Goto Lagrangian for
straight string reduces to

Lstring52arE
0

1

dsA12v'
2 ~s!

52
a

2 S r 1

v'1
arcsin~v'1!1

r 2

v'2
arcsin~v'2!

1r 1g'1
211r 2g'2

21D . ~2.27!

III. THE HIGH RADIAL EXCITATION REGIME

We now make the crucial observation that, for fixed a
gular momentum and large radial excitation, we may assu
the string velocity is small without changing the meson d
namics. This is becausev' only becomes large near the inn
turning point, where it reachesv'51 in the case of a mass
less quark. However, near the inner turning point the strin
short for very radial orbits so it carries little angular mome
tum or energy. Henceforth, for notational convenience,
generally suppress the' subscript, and letv and g denote
v' andg' .

To demonstrate our approximation, we consider the eq
quark mass casem15m2, from which follows v15v2[v,
and r 15r 25r /2. We define

S~v !5
arcsin~v !

v
, ~3.1!

f ~v !5
1

2v
~S2A12v2!, ~3.2!

and hence Eqs.~2.19!, ~2.20! and~2.21! @or Eqs.~A5!, ~A7!,
and ~A9!# can be expressed as

lP50, ~3.3!

lL5
1

2
ar2f ~3.4!

lM5arS2
k

r
. ~3.5!

The total energyE and angular momentumL of the system
are related to the quark separation and transverse veloc
by Eq. ~A15!. In this notation the relation~A15! becomes
05402
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vS E2arS1
k

r D1ar f 5
2L

r
. ~3.6!

To reach reasonably general numerical conclusions we
fine the dimensionless quantities

x5
ar

E
, b5

aL

E2 , k5
ak

E2 . ~3.7!

In these dimensionless variables, Eq.~3.6! becomes

xvS 12xS1
k

x D1x2f 52b. ~3.8!

For fixedL and increasingE, we expect bothb andk to
be small andxv'2b. We thus expectv to be small unlessx
is small. In Fig. 1 we show the exact numerical solution
Eq. ~3.8! for two values ofb. For simplicity we consider no
short range interaction (k50).

It remains to demonstrate that the ratio of string to qu
angular momentum is only appreciable whenv is small.
From the total angular momentum relation~A6! we find

R[
string angular momentum

quark angular momentum
5

lL

2Vv
r

2

, ~3.9!

whereV[Wrg' is the quark kinetic energy. The total sy
tem energy, Eq.~A8!, becomes

E52V1arS2
k

r
. ~3.10!

In terms of dimensionless parameters, again in the cask
505k, by using Eq.~3.10! we have

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

β = 0.05

β = 0.01

x

v

FIG. 1. Solution to Eq.~3.8! for the perpendicular velocity of
the string end as a function of distancex5ar/E for two values of
b5aL/E2 with no Coulomb potential;k50. For any attractive
Coulomb interaction (k.0) the velocities are lower, making th
approximationv!1 better. We observe that for radially excite
statesb!1 andv→0 except at the inner turning point.
2-4



he
ith
th

e
la
ic
v

ic
as
r
an
le
th

en

ar
an
t i

ng

fo
lt
ha
r
is
it
se

x

rn-

.
s,
Eq.

rk

a

ar

REDUCTION OF THE QCD STRING TO A TIME . . . PHYSICAL REVIEW D 68, 054022 ~2003!
R5
x f~v !

v~12xS!
. ~3.11!

We showR as a function ofx in Fig. 2 for b50.01 by using
Eq. ~3.8!. As we stated at the beginning of this section, t
string angular momentum becomes small compared to e
quark’s near the inner turning point. This tells us that, in
radially excited regime, we are justified in assuming thatv'

is small for the string. In the regions in which this is not tru
the string contributes negligibly to the energy and angu
momentum. Our approach will be to keep full relativist
kinematics for the quarks and to assume that the string
locity is small.

IV. REDUCTION TO THE SPINLESS SALPETER
WAVE EQUATION

In the preceding section we examined the exact numer
solution of the QCD string equations for the equal mass c
m15m2. We saw that ifaL!E2 the string perpendicula
velocity can be assumed to be small without changing
dynamical result. In the Appendix we examine the detai
algebraic consequences of this approximation. We begin
section by outlining the main results found there.

In Sec. II we established the total perpendicular mom
tum, angular momentum, and energy for arbitrary massesm1
andm2 at the ends of a straight QCD string. The results
expressed in terms of the quark perpendicular velocities
distances from the center of momentum point. This poin
defined by the conditionP'50.

Our strategy will be first to set up the relations defini
v1[v1' andv2[v2' in terms ofr 5r 11r 2, the state mass
M, and the quark masses. We obtain an explicit solution
v1 andv2 in the desired limit of small velocities. The resu
confirms the numerical result of the preceding section in t
v i→0 for large excitation energyE assuming the angula
momentumL is fixed. It then becomes evident that in th
limit the string does not enter the dynamics except for
static energy. The TCV wave equation for arbitrary mas
then follows.

Referring to the Appendix, we use Eqs.~A1! to ~A12! to

0.2 0.4 0.6 0.8 1

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x

R

FIG. 2. The ratioR of string to quark angular momentum as
function of dimensionless distancex as in Eq. ~3.11! with b
50.01. The string angular momentum is negligible for small qu
separation.
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obtain the radial energy factors, Eqs.~A13! and ~A14!,

v iV i5
L

r
1a i , i 51,2, ~4.1!

whereV i[Wri g' i . Most of the remainder of the Appendi
is devoted to finding the quantitiesa1 anda2.

We use Eq.~4.1! to eliminate theV i in the energy equa-
tion ~A8! and obtain Eq.~A15!,

M2lM5
L

r S 1

v1
1

1

v2
D2

lL

r S 1

v1
1

1

v2
D

1lPS 1

v2
2

1

v1
D . ~4.2!

This is our first relation betweenv1 andv2. Next, we use the
definition of V i5Wri g' i given in Eq.~A16! to eliminatepr
and obtain our second relation betweenv1 and v2, Eq.
~A19!,

~M2lM !

v1v2
FL

r
2

lL

r
1

lP~v1
21v2

2!

v1
22v2

2 G
2

lP

v12v2
F2L

r
2

2lL

r
1lP

v12v2

v11v2
G5

m2
22m1

2

v12v2
.

~4.3!

By eliminating L/r between the two relations~4.2! and
~4.3!, we obtain the very useful relation given in Eq.~A20!,

~M2lM !21
2lP

v12v2
~12v1v2!~M2lM !1lP

2

5S m2
22m1

2

v12v2
D ~v11v2!. ~4.4!

Up to this point, we have made no approximations conce
ing the velocitiesv i . In the auxiliary relation~4.4! the terms
involving v1v2 andlP

2 are higher order in quark velocities
We now make the approximation of small quark velocitie
so we drop these terms and use the approximations of
~A21! to setlP /(v12v2).ar/2. In the small quark velocity
limit, the string energy,lM , has no dependence on qua
velocities, so we may approximate Eq.~4.4! as an equation
for (v11v2)/(v12v2) alone,

~m2
22m1

2!S v11v2

v12v2
D5~M2lM !~M2lM1ar !, ~4.5!

which is Eq.~A22!. From Eq.~4.5! we can find the ratio of
the quark velocities,

v2

v1
5

A2B

A1B
, ~4.6!

A5~M2lM !~M2lM1ar !, ~4.7!

B5~m2
22m1

2!. ~4.8!

k

2-5
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We now use the smallv i approximation of Eq.~A21! to
rework Eq.~4.3! as

m2
22m1

2

M2lM

v1v2

v12v2
5

L

r
1

ar

6
~v11v2!. ~4.9!

Finally, we use Eq.~4.6! for v2 /v1 to obtainv1 as a function
of r,

2L

rv1
5

A2B

M2lM
2

2ar

3

A

~A1B!
. ~4.10!

A similar expression obtains forv2 by replacingB by 2B in
Eq. ~4.10!.

Equation~4.10! is the key to obtaining our final goal o
reducing the string equations to a TCV wave equation.
can now evaluatea1 from Eq.~4.1!. From the expression fo
a1 given in Eq.~A13! and the smallv i expansions of Eq.
~A21!, we find

a152
ar

6
~2v12v2!. ~4.11!

Elimination of v2 through the use of Eq.~4.6! yields

a152
arv1

6 S A13B

A1B D . ~4.12!

The correspondinga2 follows by replacingv1 by v2 andB
by 2B.

Finally, we use Eq.~4.10! to eliminatev1 and find

a152
aL

3 S ~A13B!

A22B2

~M2lM !
2

2

3
arAD . ~4.13!

The angular momentum relation~4.1! can then be expresse
as

v1g1Wr15
L

r
~12F1!, ~4.14!

F15
~A13B!ar/3

A22B2

~M2lM !
2

2

3
arA

.

The corresponding quantity,F2 is obtained from Eq.
~4.14! by the replacement ofB by 2B,

F25
~A23B!ar/3

A22B2

~M2lM !
2

2

3
arA

. ~4.15!

We examine the two important limits of a ‘‘light-light’
and a ‘‘heavy-light’’ meson.
05402
e

A. Light-light limit

In the light-light limit, we takem15m250, so thatB
50 andM5E. In this case we have

F1
LL5F2

LL5
ar/3

E1
k

r
2

2

3
ar

. ~4.16!

B. Heavy-light limit

The heavy-light limit hasm150 andm2→`. In this case
we takeM5m21E and find

F1
HL5

ar/3

E1
k

r
2

2

3
ar

, ~4.17!

F2
HL52

1

2
F1

HL . ~4.18!

The functionF1 varies by at most a factor of 2 over th
whole mass range 0,m2,`, while F2 varies at most by a
factor of 2, but can change sign over that region.

We can solve for g1 from Eq. ~4.14! using v1g1

5Ag1
221,

V15Wr1g15AWr1
2 1

L2

r 2 ~12F1!2. ~4.19!

This result is added to the correspondingV2, using Wri

5Apr
21mi

2, to yield the Hamiltonian~A8!

H5V11V21lM

5Apr
21

L2

r 2 ~12F1!21m1
21Apr

21
L2

r 2 ~12F2!21m2
2

1ar2
k

r
. ~4.20!

The spinless Salpeter equation,

Hc5Mc, ~4.21!

follows from Eq.~4.20!.
To complete the argument, we now observe that the

gular momentum termL2/r 2 is large only near the inne
turning point which in turn is small for highly radially ex
cited states. Near this inner turning point, theFi factors are
small since they are proportional tor. Where theFi become
larger, their effect is negligible since their factors multip
L2/r 2. Thus, for highly excited radial states, dropping theFi
will not change any dynamical results. The subsequ
Hamiltonian~4.20! then becomes

H5Ap21m1
21Ap21m2

21ar2
k

r
, ~4.22!

which is the TCV Hamiltonian with a TCV potential
2-6
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V~r !5ar2
k

r
. ~4.23!

We note that at every step we have imposed the cente
momentum rest condition and hence the Hamiltonian,
~4.22!, satisfies all conservation laws, even for arbitra
masses.

V. DISCUSSION AND SUMMARY

We have shown that a relativistic QCD string mes
model, with a short range Coulomb part, reduces to a t
component vector~TCV! potential model for large radial ex
citations. Our result follows for spinless quarks with a
masses from zero to infinite. The result is remarkable si
the relativistic string generally dominates dynamically, c
rying both angular momentum and rotational energy. Ho
ever, for fixed angular momentum and eccentric orb
whereE2@aL, the quarks act as if they were moving in
static TCV potential that is linear at large distances and C
lombic at short ones.

The coincidence of the two systems in the radially exci
regime results from a confluence of effects. For large ra
excitation, the radial velocities dominate over the perp
dicular velocity, except near the inner turning point, whe
the motion is rotation and the transverse velocities re
light velocity in the extreme limit of a massless quark. Ho
ever, for large radial excitation, the inner turning point o
curs at small radius, so the string carries little angular m
mentum. Thus we may assume that the transverse veloc
small everywhere and approaches zero as the radial ex
tion increases.

Conversely, the quark’s radial energy is large and rela
istic and satisfies the spinless Salpeter equation given in
~4.21! and~4.22!. To show that the final result is correct, w
observe in Fig. 3 two numerically exact sets of solutions. T

0

1

2

3

0 5 10 15 20 25 30 35 40

L

π__
_

aE2

FIG. 3. The transition from a time component vector~TCV!
confinement to string dynamics. The lines represent exact nume
solutions to the string equations in the casem150, m25`. The
dots are exact numerical solutions to linear TCV confinement.
squared excitation energies (E5M2m2) of the TCV system con-
verge to those of the string for large radial excitations with sm
angular momentumL.
05402
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e

dots represent the TCV solution withk50 and a linear con-
finement potentialV(r )5ar. The solid lines are interpola
tions of the QCD string solutions. The latter are numerica
exact quantized solutions of the string equations~A1! to
~A12!. For s-waves (L50) there is no transverse motio
(v'50) and the string equations are exactly thes-wave TCV
equation and the curves for each radial state pass throug
L50 dots. The nontrivial result of this paper is seen forL
51, 2, or 3, where the curves come closer to the dots as
radial excitation increases.

In previous work@8# we have approached this same res
from a different route. If one quantizes the string semicl
sically, one reproduces the~numerically! exact results of the
string spectroscopy for highly radially excited states. Co
versely, if one semiclassically quantizes the TCV spinle
Salpeter equation with a linear confining potential, again
string spectroscopy emerges for highly radially excit
states. The work of this paper shows directly from the co
served string quantities that TCV dynamics result for t
highly radially excited states.

Finally, the situation can be clarified by going back to t
string action. As we saw from Eq.~2.27!, the straight string
Lagrangian can be written as

Lstring52arE
0

1

dsA12v'
2 ~s!. ~5.1!

For smallv' , the string Lagrangian above expands to

Lstring.2arF11
1

6
~v'1v'22v'1

2 2v'2
2 !1•••G .

~5.2!

If one immediately setsv'→0, the string action become
the linear piece of the TCV interaction Lagrangian. O
might worry whether this is justifiable. The present pap
shows that it is.

In this work we began with the justification of the sma
v' string approximation. From the exact expressions for
straight string momentum, angular momentum, and ene
we systematically approximate these quantities for low str
velocities. We are then able to recast the energy equation
the spinless Salpeter form and finally, to show that this eq
tion must be dynamically identical to the TCV equation
the large radial excitation regime.

We might remind the reader that the strict constraint o
straight string can also be relaxed. Small deviations fr
straightness do not change the conservation relations to
order and in ordinary hadrons the deviations from straig
ness never become large@10#.
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APPENDIX

In this appendix we give the detailed algebraic steps
volved in writing the energy of the quark/string system

al
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terms of conserved quantities and the quark separation.
begin by finding the center of mass of the system. Af
several steps, we can express the quark velocities in term
the quark separation, the quark masses, and conserved
tities.

1. Notation

We use the straight string conserved quantities given
Sec. II and generally drop the' subscripts on the quar
velocities andgs for notational simplicity. The coordinatesr i
and velocitiesv i are relative to the, as yet unknown, cen
of momentum point. The instantaneous positions of
quarks are taken to be along thex-axis, with quark 1 atx
5r 1 and quark 2 atx52r 2. Their transverse velocities ar
v1 and2v2 respectively. We also define

V i5Wri g' i , ~A1!

Wri 5Apr
21mi

2, ~A2!

g' i5
1

A12v' i
2

. ~A3!

2. Conserved quantities

In Sec. II we found the conserved quantities for the qu
and straight string system. We gather these results toge
here. The transverse momentum~2.14! of the system is

V1v12V2v21lP50, ~A4!

where

lP5
ar2

v2
g2

212
ar1

v1
g1

21 . ~A5!

The angular momentum~2.15! consists of the contribution
of the quarks plus that of the string,

L5V1v1r 11V2v2r 21lL , ~A6!

with

lL5
a

2

r 1
2

v1
S arcsin~v1!

v1
2g1

21D
1

a

2

r 2
2

v2
S arcsin~v2!

v2
2g2

21D . ~A7!

The energy of the system~2.12! is the sum of the quark
energies and the string energies

M5V11V21lM , ~A8!

where the string plus Coulomb contribution is

lM5ar1

arcsin~v1!

v1
1ar2

arcsin~v2!

v2
2

k

r
. ~A9!
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3. Straight string yields uniform angular velocity

The straight string condition~2.10! leads to equal quark
angular velocities,

v1

r 1
5

v2

r 2
. ~A10!

From Eq.~A10! and the definition of the total quark separ
tion

r 5r 11r 2 , ~A11!

we have

r i5r
v i

v11v2
. ~A12!

4. Quark kinetic energies

The first step in finding the total energy of the system
terms of the conserved quantities and the relative position
the quarks is to write the quark kinetic energiesV i in terms
of the system quantitiesL, r, and the quark perpendicula
velocitiesv i . We use Eq.~A4! and Eq.~A12! to eliminate
V2 in Eq. ~A6!. We find

v1V15
L

r
1a1 , a152

lL

r
2

v2

v11v2
lP , ~A13!

and

v2V25
L

r
1a2 , a252

lL

r
1

v1

v11v2
lP . ~A14!

5. Total energy

Next we express the total energy~A8! in terms of the
rewrittenV i ’s above. We find

M2lM5
L

r S 1

v1
1

1

v2
D2

lL

r S 1

v1
1

1

v2
D

1lPS 1

v2
2

1

v1
D . ~A15!

We can find another relation withoutV i ’s by going back
to the definition ofV i andWri

V i5Wri g i5Apr
21mi

2

12v i
2 . ~A16!

Because the string has no radial momentum, the quarks h
equal and opposite radial momenta. We thus expand

m2
22m1

25V2
2~12v2

2!2V1
2~12v1

2!, ~A17!

using Eq.~A4! and Eq.~A8!, to find

~V22V1!~M2lM !2lP~V2v21V1v1!

5m2
22m1

2 . ~A18!
2-8



th

or

-
n

au
ca
-

-

s

cond

ht

he

REDUCTION OF THE QCD STRING TO A TIME . . . PHYSICAL REVIEW D 68, 054022 ~2003!
Then, we use Eqs.~A13! and ~A14! to obtain

~M2lM !

v1v2
FL

r
2

lL

r
1

lP~v1
21v2

2!

v1
22v2

2 G2
lP

v12v2
F2L

r
2

2lL

r

1lP

v12v2

v11v2
G5

m2
22m1

2

v12v2
. ~A19!

By combining Eqs.~A15! and ~A19!, we can eliminate
L/r in Eq. ~A19!. After a bit of algebra we find

~M2lM !21
2lP

v12v2
~12v1v2!~M2lM !1lP

2

5S m2
22m1

2

v12v2
D ~v11v2!. ~A20!

So far, we have made no approximations other than
straight string assumption.

6. Low transverse velocity approximation

Now we use the low velocity approximation to solve f
the ratio of the quark velocitiesv2 /v1. As we have seen in
Sec. III, v i[v' i is small if n@L, except near the inner ra
dial turning point. Near this point, the string angular mome
tum and energy are small compared to either quark’s bec
the string is short. As far as the string is concerned, we
assume thatv i!1 everywhere without changing the dynam
ics. From Eqs.~A5!, ~A7!, and ~A9!, we may make the ap
proximations

lP.
1

2
ar~v12v2!,

lL.
1

3
ar2S v1

22v1v21v2
2

v11v2
D , ~A21!

lM.ar2
k

r
.

We note that in Eq.~A20! we may drop the small quantitie
v1v2 andlP

2 , whereupon Eq.~A20! reduces to

~m2
22m1

2!S v11v2

v12v2
D5~M2lM !~M2lM1ar !.

~A22!

We can solve Eq.~A22! for v2 /v1,

v2

v1
5

~M2lM !~M2lM1ar !2~m2
22m1

2!

~M2lM !~M2lM1ar !1~m2
22m1

2!
. ~A23!

We note that ifm15m2, thenv25v1, as expected. Also, if
m2@m1, then, sinceM5m21E and E!m2, we find v2
!v1, as one might expect.
05402
e

-
se
n

7. Solving for quark velocities

We are now in a position to solve for the individualv i ’s.
We use the smallv i approximation of Eq.~A21! in Eq. ~A19!
and again drop small terms. These small terms are the se
bracket of Eq.~A19!, whose origin is in theg'

2 term from
Eq. ~A16!. The result is

m2
22m1

2

M2lM

v1v2

v12v2
5

L

r
1

ar

6
~v11v2!. ~A24!

From Eq.~A23! in the form of

v2

v1
5

A2B

A1B
, ~A25!

A5~M2lM !~M2lM1ar !,

B5~m2
22m1

2!,

we can substitutev2 from Eq. ~A25! into Eq. ~A24! to find

2L

rv1
5

A2B

M2lM
2

2ar

3

A

~A1B!
. ~A26!

A corresponding expression forv2 follows upon replacingB
by 2B.

There are two important special cases of Eq.~A26!.
~i! In the equal mass casem15m2 and soB50. In this

case we defineE5M and find

2L

rv1
5E1

k

r
2

2

3
ar. ~A27!

~ii ! In the heavy-light case,m2@m1. The total energy is
M5m21E, where the excitation energyE is small com-
pared tom2. The leading terms are

2L

rv1
52S E1

k

r
2

2

3
ar D

2
1

m2
F S E1

k

r D
2

2
5

3
arS E1

k

r D1
5

6
~ar !2G .

~A28!

We can estimate the region of validity of the heavy-lig
approximation by noting that the 1/m2 correction is roughly
E2/m2. We compare this withE of the first term and con-
clude that ifE!m2, we may neglect the 1/m2 correction.

8. String corrections to quark kinetic energies

The last step is to find the string corrections toV i . The
same type of small velocity approximation used for t
quarks, together with Eq.~A26! can be used with thea i of
Eqs.~A13! and ~A14!. We find

a152
aL

3 S ~A13B!~M2lM !

A22B22
2

3
arA~M2lM !D . ~A29!
2-9
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We find a similar expression fora2, which is obtained by
replacingB by 2B ~i.e., m2↔m1). In the light equal mass
limit we find

a1
LL52

aL

3S E1
k

r
2

2

3
ar D . ~A30!

In the heavy-light limit we obtain the same expression fora1
to lowest order, and find theO(1/m2) corrections,
th

05402
a1
HL52

aL

3S E1
k

r
2

2

3
ar D 1

1

m2

a2rL

12

S E1
k

r
2ar D

S E1
k

r
2

2

3
ar D 2 .

~A31!

In either case, as in the general case, ifE@L

a i →
E@L

0, ~A32!

which is the high radial excitation regime. In this limit o
V i→L/(rv i) the relativistic TCV wave equation follows.
ev.
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