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Reduction of the QCD string to a time component vector potential
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We demonstrate the equivalence of the relativistic flux tube model of mesons to a simple potential model in
the regime of large radial excitation. We make no restriction on the quark masses; either quark may have a zero
or finite mass. Our primary result shows that for fixed angular momentum and large radial excitation, the flux
tube or QCD string meson with a short-range Coulomb interaction is described by a spinless Salpeter equation
with a time component vector potentid(r)=ar—k/r.
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[. INTRODUCTION Recently we have shown semiclassically that in the limit of
large radial excitation, Eq1.1) and Eq.(1.2) follow in both

Although quantum chromodynamic&CD) is almost the flux tube model and in linear time component vector
surely the correct theory of strong interactions, it remainsconfinemen{8].
difficult to explore its predictions in the nonperturbative re-  |n this paper we demonstrate that the wave equation for
gime. For hadron states the nonperturbative, or confinemengqe flux tube meson with a short-range Coulomb interaction
regime corresponds to large distances. For mesons confingan be reduced to a spinless Salpeter equation with a pure
ment dominates the dynamics of even the heaviest quar{me component vectofTCV) potential interaction. This re-
states. It has long been suspected that when the color sourGggetion holds rigorously for large radial excitation but is ac-
are widely separated, the color electric fields collapse intq,ate for all states. This result establishes the close connec-

relatively thin configurations known as flux tubes, or QCDtion between flux tube dynamics and the TCV potential
strings. The evidence for such stringlike configurations ismodel for spinless quarks

primarily as follows: In Sec. Il we discuss the dynamics of a flux tube with
(i) Universal linear Regge trajectories, reflecting a linearquarks of arbitrary masses. The critical approximation that

confining potential and relativistic kinematigs. the string can be assumed to be nonrelativistic is shown to be
(i)  Lattice simulation of the energy densitg]. accurate fom>L in Sec. lll. In Sec. IV we establish the
(iii) Relativistic corrections of the flux tube modg3] TCV spinless Salpeter equation from the QCD string. We

agree with those of Wilson loop QCEA]. conclude in Sec. V. We include the detailed algebraic steps

(iv) For heavy onia, the flux tube model reduces to thefor Secs. Ill and 1V in the Appendix.
very successful linear confinement potential model.
(v)  Lattice simulations of excited QCD states with fixed
sourceq5,6]. Il. THE QCD STRING WITH ARBITRARY
QUARK MASSES
The relativistic string and quark model for mesons can be ) )
exactly solved numerically for arbitrary quark masggs There are two equivalent methods of extracting the con-
An excellent approximation for the bound state enefgy served quantities of the spinless quark-string system. The

of a meson consisting of one massive and one massle$gomentum-energy approach considers a straight color elec-
quark is the spectroscopic relation tric tube of energya per unit length. From Lorentz boosting
a string element perpendicular to its orientation, the momen-

E? 3 tum, angular momentum, and energy of the string are easily
Ta L+2n+ 2" (1. obtained 3,7]. This intuitive construction is appealing for its
simplicity.
Here the angular momentum quantum numbeand radial One can also extract the conserved quantities more for-
guantum numben take values 0,1,2 .. . Theconstant@ais  mally by using Noether’s theorem and an action formalism.
the tension of the QCD string. For a meson with two massiVe take an actiof9] consisting of two pieces: one piece, the
less quarks, the spectroscopic relationship becd®ies Nambu-Goto action, is proportional to the invariant surface
) area swept out by the string connecting the two quarks, the
E_: L+ont § (1.2 other piece is a sum of two terms, each proportional to the
2ma 2 ' invariant length of a quark worldline:
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In this expressionx{ andx% are the positions of the quarks,

andX*(o,7) is the position of the string. The quark masses Tpe action(2.1), momentum(2.5), and angular momen-

aremy andm,, a is the string tension, a dot denotes a de-yym (2.6) are invariant under changes of variablessirand
rivative with respect tor, and a prime denotes a derivative .

with respect too. In our notation, the dot product between
two four-vectorsA and B, uses a metric of signature 2;
A-B=A*B"p,,= —A°B%+ A.B. The string terminates on a
quark at each end

Lyt Jozdcr/js). 2.1)
g1

. (2.6

do

X2 (02X

(0',7)!9(5'(0',7'),;(0',7')), 2.7

as long as the boundaries remain at valuesrofhat are
independent of-.

XH(o)=x5, XH(oz)=x]. (2.2) We use this coordinate invariance to choose the parameter
7 to be the laboratory time, and the end points to be at par-

The momentum and angular momentum of the quarkficular values ofo; ando,
string system can be found from Noether’s theorem. The

action is invariant under the combination of a boost and a xg=x5=X%0,7)=7=t, 2.9
translation
0'1=O, 0'221. (29)
oxf'=ak+ o, X7, The straight string approximation to the equations of motion
is exact for uniform circular motion of the quarks and is a
SXH( o) =al+ ™, X¥(a). 2.3 good approximation in realistic mesofi]. In this approxi-

mation, the position of the string at any timelies along a
straight line between the quarks, which we can parametrize
The variation of the finite time action under E@8.3) is the  linearly as
sum of the translation times momentum change and rotation
times angular momentum change, X(o)=(1— o)X+ oX;. (2.10

v We further denote the separation between the quarks at a
O=5J dr(Lq+j dcr/ls) particular instant as
71

=a{P(m2) = Pu(1)] =T (2.13

1 Under the approximatiof2.10), the energy of the system
+ 50" L,u(m) —Lyu(T)]. (24  becomes
The resulting momentum and angular momentum are the ca PO= m + m2
nonical ones, Vli—vi V1-v;
Js -
+a| do
pM:L%+0__%+f“ZdU&?s o \Ir V(o) P~ 1+v%(0)]
Xy axh o1 IXH

1 1
=mMyy;+m +arJ do———, (2.12
171 272 0 m

=m X +m e
— i 2
|2 [ 2
X1 X2 wherev; =dx, /dt andv,=dx,/dt are the quark velocities
Xﬂ(xl)z_xl:(x_x,) and we have defined

+af”za : : . @5 _
a1 (KX)2— (X)2X)2 V(o) =X(0)= (1= o)Wyt vy,
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r-v(o) r 1 1 ar(Vi-v?,—yJ1-v?))
v, (o)=V(o)— T (2.13 arf do = (v T 11
0 \/1—1)L Vi1tvye
The momentum of the system with the straight string ap- ar P
proximation becomes = m(nz— Yi1)
k
__MVa | MaVe =yt . (2.19
P= >+ > r
Vi—vl 1-v3
1 V(a)r2=r[v(a)-r] The perpendicular momentum of the string from Eqj14) is
+af do — >
o Nr-v(o)]*P—r—1+v%0)] J'ld v, ar[arcsin(v, 1) +arcsifv )]
ar o =
N N J’ld v, (o) 0 Vl—vf Vi1tvy2
=My Vit MyysVoTar O
o J1-vi(0) —Xp. (2.20

(2.14

The angular momentum of the string from EQ.15 be-

The vector angular momentum is obtained frarp, asL' ~ COMes
= %e”"Lik, which, for a straight string, becomes

J’ld Xv ar . .
ar g = —-r —r
XXV XX Vs 0 \/1—vf 2(v,1+v,0) 1Y1r1— 12712
L—ml\/1 v2+m2\/1 Y

V1 U2

+——— [ arcsinv, 1) +arcsifv, )
1 r2X(o)Xv(a)—X(o)Xr[r-v(o)] vi1+vl2[ 11 12)]
+a o : T > ~
0 VIr-v(o)*=r—1+v%(0)] Viof1— vyl

+(yia— Y1) =N

+
1 X(a)XV, () vi1tli2

do——m——.
0 Vi—v? (o) (.21
(2.15 We can simplify the quark pieces of the conserved quan-

We evaluate the integrals in Eq8.12), (2.14, and(2.15 tities through use of the identity
for a string rotating about theaxis and instantaneously ly-

= m171X1><V1+ m272X2XV2+ ar

ing along thex-axis from—r, tor4. The string’s perpendicu- p,2+ m? 5 2 vr2
lar velocity runs from—v,, to v, 4, m2_ YU +1:1—v2—vl‘7 +1
r
X(o)=ari+(oc—1)r,, 1—vf e
=T 7 7=7 (2.22
1-vr—vi ¥I
v,(o)=0cv 1+ (c—L)v, 5. (2.16
or
The total length of the string is=r;+r,. Because we as-
sume that the string stays straight as it rotates, we have my=\pZ+m’y, =W, y, . (2.23
Vi1 Uiz 2.17) Using Egs.(2.19, (2.20, (2.21), and (2.23, we obtain
rq ro ' our final expressions for the conserved quantities
Equation(2.17) implies PO=W,17,1+ W2y, 2
o n_f +ar| L arcsiy, )+ - - arcsio )
1 2 ar| —arcsin(v ——arcsinv
—_— == (2.18 v LTy 127+
Viitvie U1 U2 ll 2
(2.29
We denote the nonquark pieces of the energy, momentum,
and angular momentum by,,, A\p, and X respectively. P =Wy 101— Wy 00,2
The only contribution toxp, and\| is from the string. The
energy\, has contributions from the Coulomb piece as well +a T2 yle_r_l 711> , (2.25
as the string. We find the string energy in E8.12 to be vip "t vyt
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L=W1y11011r1+ Wiy 0000

a r2 [arcsifv, ;) 1)
S
20, Vi1 +
2 .
a r5 [arcsinv,,) _1)
- —|——9y]. (2.26
2v,, Ui2 L2

These results are exactly the starting point in the momentum-

energy approacfs,7].
Finally, we note that the Nambu-Goto Lagrangian for a

straight string reduces to

1
L string= —arfo d(r\/l—vf(o)

aj rq . N Mo . )
= — —| —arlcsi —alcCsl
2 V1 r(UJ_l) V.o r(ULZ
+r17¢11+r2‘}’¢21)- (2.27

Ill. THE HIGH RADIAL EXCITATION REGIME

We now make the crucial observation that, for fixed an-
gular momentum and large radial excitation, we may assum
the string velocity is small without changing the meson dy-
namics. This is becausg only becomes large near the inner
turning point, where it reaches =1 in the case of a mass-

less quark. However, near the inner turning point the string is

short for very radial orbits so it carries little angular momen-

PHYSICAL REVIEW D68, 054022 (2003
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FIG. 1. Solution to Eq(3.8) for the perpendicular velocity of
the string end as a function of distance ar/E for two values of
B=alL/E? with no Coulomb potentialx=0. For any attractive
Coulomb interaction £>0) the velocities are lower, making the
approximationv<<1 better. We observe that for radially excited

statesB<<1 andv—0 except at the inner turning point.

k 2L
v E—arS+F +arf=T. (3.6

€ Toreach reasonably general numerical conclusions we de-

fine the dimensionless quantities

tum or energy. Henceforth, for notational convenience, we

generally suppress the subscript, and leb and y denote
v, andvy, .

To demonstrate our approximation, we consider the equal

qguark mass casm;=m,, from which followsv,=v,=v,
andr,=r,=r/2. We define

_arcsinv)

v) (3.2

1%

(3.2

1
f(v)= 57 (5107,

and hence Eq€2.19, (2.20 and(2.21) [or Egs.(A5), (A7),
and(A9)] can be expressed as

Ap=0, 3.3
1
A = zarf (3.9
2
k
)\MzarS—F. (3.5

The total energye and angular momentur of the system

_ar _aL _ak 3
X=F. B=gz, KTg2 3.7
In these dimensionless variables, E8.6) becomes
K
Xv(l—XS-F; +x%f=2p. (3.8

For fixedL and increasinde, we expect bottB and « to
be small anckv~23. We thus expect to be small unlesg
is small. In Fig. 1 we show the exact numerical solution of
Eq. (3.8) for two values of. For simplicity we consider no
short range interactionk(=0).

It remains to demonstrate that the ratio of string to quark
angular momentum is only appreciable whenis small.
From the total angular momentum relatioh6) we find

string angular momentum N\
~ quark angular momentum

(3.9

r
’2

whereQ)=W, v, is the quark kinetic energy. The total sys-
tem energy, Eq(A8), becomes

k
E=ZQ+arS—F. (3.10

are related to the quark separation and transverse velocitiés terms of dimensionless parameters, again in the &ase

by Eq. (A15). In this notation the relatiofA15) becomes

=0=«k, by using Eq.(3.10 we have
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2.00 obtain the radial energy factors, EqA13) and (A14),
1.75 L
1.50 UiQi:F+ai , 1=1,2, (4.7
1.25 _ _
e whereQ;=W,; v, ;. Most of the remainder of the Appendix
1.00 is devoted to finding the quantities, and 5.
0.75 We use Eq(4.1) to eliminate the(); in the energy equa-
0.50 tion (A8) and obtain Eq(A15),
0.25 L/i1 1 AN(T 1
M—)\M=F —+ — e —+ —
02 04 y 06 08 1 vr v v b2
1 1
FIG. 2. The ratioR of string to quark angular momentum as a +Ap v, 01 4.2

function of dimensionless distance as in Eg.(3.1) with B
=0.01. The string angular momentum is negligible for small quarkThis is our first relation betwean, andv,. Next, we use the

separation. definition of Q;=W,; y,; given in Eq.(A16) to eliminatep,
and obtain our second relation between and v,, Eq.
R xf(v) (3.19) (A19),
v(1-x9° '
(M=Aw[L N Ap(vi+v))
We showR as a function ok in Fig. 2 for 5=0.01 by using Towa. lr 7 T 2,7
) r r V1= Vs

Eq. (3.8). As we stated at the beginning of this section, the
string angular momentum becomes small compared to either \p
quark’s near the inner turning point. This tells us that, in the -
radially excited regime, we are justified in assuming that
is small for the string. In the regions in which this is not true, 4.3
the string contributes negligibly to the energy and angular o .
momentum. Our approach will be to keep full relativistic BY €liminating L/r between the two relation&t.2) and
kinematics for the quarks and to assume that the string vé4-3; We obtain the very useful relation given in H#20),
locity is small.

2L 2n, vi—v,] mM3—m3i

r r Pl)1+U2

U1 Uy

2, 2Ne 2
(M=Aw)+ ——(1—vw)(M—Ay)+Ap
IV. REDUCTION TO THE SPINLESS SALPETER V1702
WAVE EQUATION mg_ mi
. . . . = (v1+vy). (4.9
In the preceding section we examined the exact numerical V1~ U>p

solution of the QCD string equations for the equal mass case,
m;=m,. We saw that ifaL<E? the string perpendicular UPp to this point, we have made no approximations concern-
velocity can be assumed to be small without changing anyng the velocities; . In the auxiliary relatior(4.4) the terms
dynamical result. In the Appendix we examine the detailednvolving v,v, and\3 are higher order in quark velocities.
algebraic consequences of this approximation. We begin thi#/e now make the approximation of small quark velocities,
section by outlining the main results found there. so we drop these terms and use the approximations of Eq.

In Sec. Il we established the total perpendicular momen{A21) to sethp/(v,—v,)=ar/2. In the small quark velocity
tum, angular momentum, and energy for arbitrary masses limit, the string energy\y,, has no dependence on quark
andm, at the ends of a straight QCD string. The results arevelocities, so we may approximate Eg.4) as an equation
expressed in terms of the quark perpendicular velocities antdr (v,+v,)/(v,—v,) alone,
distances from the center of momentum point. This point is
defined by the conditio?, =0.

Our strategy will be first to set up the relations defining
vi=vq, andv,=v,, Iinterms ofr=r,+r,, the state mass
M, and the quark masses. We obtain an explicit solution fowhich is Eq.(A22). From Eq.(4.5 we can find the ratio of
v, andv, in the desired limit of small velocities. The result the quark velocities,
confirms the numerical result of the preceding section in that

):(M_)\M)(M_)\M+ar), (45)
2

Ul+02
2 2
(mz_m1)(

1~ U

v

v;—0 for large excitation energ¥ assuming the angular EZE (4.6)
momentumL is fixed. It then becomes evident that in this vy A+B’
limit the string does not enter the dynamics except for its
static energy. The TCV wave equation for arbitrary masses A=(M=Ay)(M—\y+ar), (4.7
then follows. —_—

Referring to the Appendix, we use Edél) to (A12) to B=(mz—my). (4.8

054022-5
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We now use the smalh; approximation of Eq.(A21) to
rework Eg.(4.3) as

2 2
m2_m1 U1U2 L ar
T

+€(vl+vz). (4.9

M_)\M V17U

Finally, we use Eq(4.6) for v,/v4 to obtainv, as a function
of r,

2L A-B
E_ M_)\M

2ar A

3 (ATB) (4.10

A similar expression obtains far, by replacingB by —B in
Eq. (4.10.

Equation(4.10 is the key to obtaining our final goal of
reducing the string equations to a TCV wave equation. We
can now evaluate; from Eq.(4.1). From the expression for

a4 given in Eq.(A13) and the smalb; expansions of Eq.
(A21), we find

ar
a=-— E(Zvl—vz). (4.1
Elimination of v, through the use of Eq4.6) yields
_arug A+3B i1
‘7776 | 'ATB (4.12

The correspondingy, follows by replacingv, by v, andB
by —B.
Finally, we use Eq(4.10 to eliminatev, and find

al (A+3B)
3| AZ-B2
(M—X\w)

(4.13

a1= —

2 A
§ar

The angular momentum relatigd.1) can then be expressed

as

L
Ul’Yler:F(l_Fl), (4.14
F (A+3B)ar/3
1= AZ_BZ 2 A
M—ny) 32

The corresponding quantity;, is obtained from Eq.
(4.14 by the replacement d8 by — B,

(A—3B)ar/3
2= AZ_BZ 2 (415
—(M - — §arA

We examine the two important limits of a “light-light”
and a “heavy-light” meson.

PHYSICAL REVIEW D68, 054022 (2003

A. Light-light limit

In the light-light limit, we takem;=m,=0, so thatB
=0 andM =E. In this case we have

ar/3
Fir=F3=——>— (4.16
E+—-—zar
r 3

B. Heavy-light limit

The heavy-light limit hasn; =0 andm,—c. In this case
we takeM =m,+E and find

ar/3
A= (419
E+F—§ar
HL 1 HL
Fit=— SR (4.18

The functionF, varies by at most a factor of 2 over the
whole mass range<Om, <, while F, varies at most by a
factor of 2, but can change sign over that region.

We can solve fory; from Eq. (4.14) using vqiy;

=vr1i—1,

L2
Qy=Wy7,= \/W?1+ Z(1-F)% (419

This result is added to the correspondifiy, using W,
= \/pr2+ mzi , to yield the Hamiltoniar(A8)

HZQl+Q2+)\M

L2 L2
= \/pr2+ (1= F1)2+mi+ \/p§+ (1= F2)2+m3

k
+ar— T (4.20
The spinless Salpeter equation,
Hy=My, (4.2)

follows from Eq.(4.20.

To complete the argument, we now observe that the an-
gular momentum ternL.?/r? is large only near the inner
turning point which in turn is small for highly radially ex-
cited states. Near this inner turning point, thefactors are
small since they are proportional toWhere theF; become
larger, their effect is negligible since their factors multiply
L2/r2. Thus, for highly excited radial states, dropping Ee
will not change any dynamical results. The subsequent
Hamiltonian(4.20 then becomes

(4.22

k
H=1p?+mi+p?+m;+ar—-,

which is the TCV Hamiltonian with a TCV potential
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dots represent the TCV solution wik=0 and a linear con-
finement potentiaM(r)=ar. The solid lines are interpola-
tions of the QCD string solutions. The latter are numerically
exact quantized solutions of the string equatigAd) to

s (A12). For swaves (=0) there is no transverse motion
(v, =0) and the string equations are exactly sh@ave TCV
equation and the curves for each radial state pass through the
L=0 dots. The nontrivial result of this paper is seen lfor

=1, 2, or 3, where the curves come closer to the dots as the
radial excitation increases.

j In previous work 8] we have approached this same result
0 ‘ from a different route. If one quantizes the string semiclas-
0 5 10 15 20 25 30 35 40 sically, one reproduces thiaumerically exact results of the

E’/ma string spectroscopy for highly radially excited states. Con-

N _ versely, if one semiclassically quantizes the TCV spinless
FIG. 3. The transition from a time component vectdCV)  Salpeter equation with a linear confining potential, again the
confinement to string dynamics. The lines represent exact numericalring spectroscopy emerges for highly radially excited
solutions to the string equations in the casg=0, m;==. The  states. The work of this paper shows directly from the con-
dots are exact numerical solutions to linear TCV confinement. Thgsgpyed string quantities that TCV dynamics result for the
squared excitation energieE€ M —m,) of the TCV system con- highly radially excited states
verge to those of the string for large radial excitations with small Finally, the situation can b.e clarified by going back to the
angular momenturt. string action. As we saw from E@2.27), the straight string
Lagrangian can be written as

1
Lsmngz—arfodm/l—vf(a). (5.2)

V(r)=ar—§. (4.23

We note that at every step we have imposed the center of ) )
momentum rest condition and hence the Hamiltonian, EqFor smallv, , the string Lagrangian above expands to
(4.22, satisfies all conservation laws, even for arbitrary

1
2 2
masses. I—S;tring'_v —ar| 1+ é(leULZ_ULl_UL2)+ R

5.2
V. DISCUSSION AND SUMMARY ®2

. . If one immediately sets, —0, the string action becomes
We have shown that a relativistic QCD string MESONihe Jinear piece of the TCV interaction Lagrangian. One

component vectofTCV) potential model for large radial ex- 9m|ght worry whether this is justifiable. The present paper

o . ) shows that it is.
citations. Our result follows for spinless quarks with any

masses from zero to infinite. The result is remarkable since In this work we began with the justification of the small
S ; : ; . U, string approximation. From the exact expressions for the
the relativistic string generally dominates dynamically, car-

. ) traight string momentum, angular momentum, and ener
rying both angular momentum and rotational energy. How->raight string momentum, anguiar momenium, & d energy,

over. for fixed angular momentum and eccentric orbits V€ systematically approximate these quantities for low string
' 9 X . ~. 7 “velocities. We are then able to recast the energy equation into
whereE“>al, the quarks act as if they were moving in a

. ) - . the spinless Salpeter form and finally, to show that this equa-
static TCV potential that is linear at large distances and Coufion must be dynamically identical to the TCV equation in
lombic at short ones.

- . . .. the large radial excitation regime.
The coincidence of the two systems in the radially excngdt We might remind the reader that the strict constraint of a
regime results from a confluence of effects. For large radlagtr

wcitation. the radial velocities dominate over th roen aight string can also be relaxed. Small deviations from
excitation, the radial velocities dominate over e perpe straightness do not change the conservation relations to first
dicular velocity, except near the inner turning point, where

L : . order and in ordinary hadrons the deviations from straight-
the motion is rotation and the transverse velocities reaclaeSS never become larfj0]

light velocity in the extreme limit of a massless quark. How-
ever, for large radial excitation, the inner turning point oc-
curs at small radius, so the string carries little angular mo- ACKNOWLEDGMENT

mentum. Thus we may assume that the transverse velocity is Thjs work was supported in part by the U.S. Department

small everywhere and approaches zero as the radial excitgs Energy under Contract No. DE-FG02-95ER40896.
tion increases.

Conversely, the quark’s radial energy is large and relativ-
istic and satisfies the spinless Salpeter equation given in Egs.
(4.21) and(4.22). To show that the final result is correct, we In this appendix we give the detailed algebraic steps in-
observe in Fig. 3 two numerically exact sets of solutions. Thevolved in writing the energy of the quark/string system in

APPENDIX
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terms of conserved quantities and the quark separation. We 3. Straight string yields uniform angular velocity
begin by finding the center of mass of the system. After .o straight string conditiof2.10 leads to equal quark
several steps, we can express the quark velocities in terms %gular velocities
the quark separation, the quark masses, and conserved quan- '
tities. V1 U2
—=— (A10)
g I
1. Notation
From Eqg.(A10) and the definition of the total quark separa-

We use the straight string conserved quantities given "%ion

Sec. Il and generally drop thé subscripts on the quark

velocities andys for notational simplicity. The coordinates r=ry+r,, (A11)
and velocitiesw; are relative to the, as yet unknown, center

of momentum point. The instantaneous positions of theve have

quarks are taken to be along tkeaxis, with quark 1 atx

=r, and quark 2 ak= —r,. Their transverse velocities are r=r Ui (A12)
I

v, and —v, respectively. We also define vituy’
Qi=Wrisi, (A1) 4. Quark kinetic energies
W, = ‘/pr2+ mi2, (A2) The first step in finding the total energy of the system in
terms of the conserved quantities and the relative positions of
1 the quarks is to write the quark kinetic energie@sin terms
N of the system quantitiek, r, and the quark perpendicular
Yii . (A3)
dl—vi velocitiesv;. We use Eq(A4) and Eq.(A12) to eliminate
Q, in Eq. (A6). We find
2. Conserved quantities L A v,
In Sec. Il we found the conserved quantities for the quark vihhy=rtar, e=— 7 v1+vz)\P . (AL3)
and straight string system. We gather these results together
here. The transverse momentyghl4) of the system is and
lel_QQU2+)\p=O, (A4) L )\L U1
0292=F+a2, az:_T+Ul+U2)\P. (A14)

where

5. Total energy

_F2 1 1 i
Np= v, 12 Ty M (AS) Next we express the total energf8) in terms of the
rewritten(;’s above. We find
The angular momentuif2.15 consists of the contribution

of the quarks plus that of the string, M=\ ZE i + i) _ﬂ(i + i
M r\vy vo r\vy vo
L=Qqv1r1+Qovara+ A, (A6) 1 1
. + T
with A s Ul) (A15)
a r% arcsir(v,) ) We can find another relation withodi;’s by going back
R e to the definition of(; andW,;
U1 U1
2 : +m
a r;[arcsinvs) 1 N — Pr i
> U_z T — Y. (A7) Qi=W,; i 1— Ui2 . (A16)

The energy of the systerf2.12 is the sum of the quark Because the string has no radial momentum, the quarks have
energies and the string energies equal and opposite radial momenta. We thus expand

M =0+ Qo Ay (A8) m3—m2=03(1-v3)— Q3(1-v3), (A17)

where the string plus Coulomb contribution is using Eq.(A4) and Eq.(A8), to find

. . (Q2= Q) (M=Ny) = Ap(Qov2+ Qqvq)
arcsinv,) arcsiv,) kK
Auw=ar; o1 +ar, o e (A9)

=mi—m?. (A18)
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Then, we use EqgA13) and (A14) to obtain 7. Solving for quark velocities
’ 2 We are now in a position to solve for the individugls.
(M—Aw) L A Ap(vitovg)|  Np 2L 2N We use the small; approximation of Eq(A21) in Eq. (A19)
vvy | I T v%— v% vi—Up| T r and again drop small terms. These small terms are the second

S bracket of Eq.(A19), whose origin is in theyf term from

V1~V ms—m .

e 172 MMy (A19) Eqg. (A16). The result is
vituv, V1~ VUo

By combining Egs.(A15) and (A19), we can eliminate M—Am U1~V
L/r in Eq. (A19). After a bit of algebra we find

2 2
m;—mi vqv L ar
2 ! 172 F+€(Ul+l}2). (A24)

From Eq.(A23) in the form of

2\p
(M—=\y)?+ ———(1-v)(M—\y) +Ap va_A-B
V1—Uy v, ATB’ (A25)
2 2
mz—m;
=( (v1tv2). (A20) A=(M=An)(M—A\ytar),
V1= Vo
o B=(m3—m3),
So far, we have made no approximations other than the
straight string assumption. we can substitute, from Eq. (A25) into Eq. (A24) to find

6. Low transverse velocity approximation 2L A-B _ 2ar A (A26)

. o vy M—Ay 3 (ATB)’
Now we use the low velocity approximation to solve for V1 M ( )

the ratio of the quark velocities,/v;. As we have seen in A corresponding expression fop, follows upon replacing?
Sec. lll,v;=v,; is small if n>L, except near the inner ra- by — B.

dial turning point. Near this point, the string angular momen- - There are two important special cases of E&R6).

tum and energy are small compared to either quark’s because (j) |n the equal mass case;=m, and soB=0. In this
the string is short. As far as the string is concerned, we cagase we definE=M and find

assume that;<<1 everywhere without changing the dynam-

ics. From Egs(A5), (A7), and(A9), we may make the ap- 2L k 2
proximations o, Bty zan (A27)
1
A zlar(v —0,) (ii) In the heavy-light casen,>m;. The total energy is
P2 voren M=m,+E, where the excitation energl is small com-

pared tom,. The leading terms are

1 V=00, + V2
a2 1 1v2 2 2L k 2
)\L 3ar U1+1)2 ’ (A21) :2 E+___ar
r r 3
k ! E+ i E+k +5 2
)\M—ar—F. my ; 3ar ; 6(ar) .

A28
We note that in Eq(A20) we may drop the small quantities (A28)

vqv, and )\,23, whereupon Eq(A20) reduces to We can estimate the region of validity of the heavy-light
approximation by noting that therhj correction is roughly

v1+v, E2/m,. We compare this witlE of the first term and con-

—02> =(M=Ap)(M—=\y+ar). clude that ifE<m,, we may neglect the i, correction.

(m5— mi)( -
U1
(A22)
8. String corrections to quark kinetic energies

We can solve Eq(A22) for v, /vy, The last step is to find the string corrections(9. The

. same type of small velocity approximation used for the
v (M=Ay)(M—Ay+ar)—(m;—mj) (A23) quarks, together with EA26) can be used with the; of
v (M=Ay)(M—Ay+ar)+(m—mj)’ Egs.(A13) and (A14). We find

We note that ifm;=m,, thenv,=v4, as expected. Also, if ay=— a_L (A+3B)(M—Aw)
m,>m,, then, sinceM=m,+E and E<m,, we find v, 3 A2—Bz—zarA(M—)\ )
<v,, as one might expect. 3 M

(A29)
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We find a similar expression faw,, which is obtained by k
replacingB by —B (i.e., my«=m;). In the light equal mass al 1 a2rL (E+ Far
limit we find = ——— 4+ — 5.
k 2 m, 12 k 2
3(E+r 3ar E+r 3ar
aL
aiL: B k 2 ' (A30) In either case, as in the general case;3f L .
3| E+—-— zar ' g
Es>L
a; — 0, (A32)
In the heavy-light limit we obtain the same expressionder  which is the high radial excitation regime. In this limit of
to lowest order, and find th&(1/m,) corrections, Q;—L/(rv;) the relativistic TCV wave equation follows.
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