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We calculate the expectation values of QCD operators consisting of the products of the four operators of the
light quarksql'*qql"Yq, with 'Y corresponding to the scalar, pseudoscalar, vector, pseudoyaxia), and
tensor Lorentz structures, in the nucleon. All combinations of the light flavors are considered. For the evalu-
ation we use elements of the perturbative chiral quark m@€RM), approximating the contribution of the
valence quarks by the contribution of the PCQM constituent quarks. The contribution of the sea quarks is
treated by averaging over the QCD pions with the distribution of the pion field being determined by the
PCQM. For quarks with the same flavor the expectation values are dominated by the contribution of the sea
quarks. In the scalar case the contribution of the sea quarks is dominated by the “disconnected terms” where
one of the pairs of thaq operators acts on the vacuum while the other one acts on the quarks of the pion. The
role of the interference terms with one of tEq pairs acting on the sea quarks and the other one acting on the
valence quarks increases for quarks with different flavors. The result for the scalar condensate is compared to
that obtained earlier in the framework of the Nambu—Jona-Lasinio model.
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[. INTRODUCTION we resort to previously derived resuftkl], such as nucleon
wave function renormalization and self-energy contributions,
It is known that the expectation values of the two-quarkwhich are used as an input in the present derivation. Al-

QcD operators?q give the total number of quarks and an- though we do not apply the full perturbative ma_lchinery of
tiquarks in a hadron under certain reasonable assumptiorIiEe P(_:QM’ as I"?“d out if10], the present evaluation serves
[1,2]. The motivation for studies of the expectation values Ofgzt:SfIrSt indication for the values of the four-quark conden-
the _four-quark operators |.n haijrons_ 's that they carry |.nfor- We calculate the expectation values of the four-quark op-
mation about the correlation afg pairs. These expectation erators as the matrix elements of the PCQM nucleon. In gen-
values in nucleons determine the coefficients of the next-togrg| the QCD operatorg act on the valence and the sea
leading order operators of deep inelastic scattefBIgAn-  quarks. We approximate the averaging over the valence
other more reason is the manifestation of such operators iguarks by averaging over the PCQM constituent quarks and
QCD sum rules in nuclear mattg4,5]. The lack of data on  also approximate the averaging over the sea quarks by aver-
the expectation values of these operators became one of thging over the pions. In the original formulation of the
main obstacles for further development of this approach. PCQM the pions were treated as separate degrees of free-
Unfortunately, the calculations of these expectation valueslom, without taking into account their quark structure. Ac-
require some model assumptions on the quark structure afially, in [11] the sigma-term was calculated in the frame-
the nucleon. As it stands now, the only calculation of thework of PCQM, with the pions determining the sea-quark
four-quark condensates in the nucleon is that carried out bgontribution. We shall employ an additional extension of the
Celenzaet al.[6] for the scalar case in the framework of the PCQM, considering the pions as physical particles with their
Nambu—Jona-LasinigNJL) model [7] under certain addi- quark contents being determined by QCD. In this approach
tional assumptions. Also, some constraints on the valuewe therefore obtain the excess of the four-quark operator
were obtained by Johnson and Kissling8t by analyzing expectation value over that of the vacuum in the nucleon
QCD sum rules for nucleons and isobars. volume.
In this paper we calculate the expectation values of the In the following we calculate the expectation values
four-quark condensates in nucleons by using elements of the
perturbative chiral quark modéPCQM). The chiral quark UXYfifa= (N|TXY f1f2| N) 1)
model, originally suggested 9], was fully set up inf10—
12]. In the PCQM the nucleon is treated as a system obf the four-quark operators of light quarks
relativistic valence quarks moving in an effective static field.
In addition, the valence quarks are supplemented by a perfX¥-f1f2=(:qf12rXq"12" g 2P Yq 2" ) (8,4 Sppr — Saby Shar)-
turbative cloud of pseudoscalar mesons as dictated by chiral )
symmetry requirements. In this paper we restrict to the sim-
plest SU2) version of the PCQM, which includes only HereI'*, ' are the matrices acting on the Lorentz indices,
pions. To facilitate the evaluation of the four-quark operatorsy’ denote QCD quark operators witlstanding for the flavor.
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The dots denote the normal ordering of the operatorsferent quarks. The expectation value is proportional to the
a,a’,b,b’ represent the color indices. We calculate the con{probability to find the two constituent quarks at the same

densates for the basicd4 matrices
\Y A
IS=1, IP=ys, Ti=y,, Th=v.7s,

i
F;rLV:E( YuYv™ 71/}’#)

space point

1
4d3~
[t~ =

with R standing for the size of the system of the three con-
stituent quarkgquark core radius while i is the constituent

with y, being the Dirac matrices, that is we consider theq,ark wave function. The factor I4comes from the four

scalar, pseudoscalar, vector, pseudove@rial), and tensor

cases. We also obtain the results for the mixed condensa

USYdu which is important in applications.

These are three types of contributionsué” 12 in our
approach. All four operatorg can act on the constituent
quarks, providing the ter@*"-f1f2, Also, four operators can
act on the pions providing the terR"'f1"2. There is also a

possibility that two of the operators act on the constituent
guarks while the other two act on the pions. Denoting the last

term asJ*¥:f12. we present the expectation values as

(4)

UXY,fleZCXY,f1f2+ PXY,f1f2+ JXY,flfz‘

angular wave functions 1/(#)'? integrated over the solid
%gle. Since the PCQM deals with a quark wave function
#(r) provided in explicit form, the contributior@*""f12 are
also evaluated explicitly. The effect of the wave function
renormalization induced by the interaction of the constituent
quarks with the pion provides noticeable corrections in the
case of scalar and vector structures only.

The averaging of the operatogd™*qql’Yq over the sea
quarks is treated as the expectation value of these operators
in pions. The distribution of the pion field is assumed to be
that determined by the PCQM.

The pion expectation values where expressed in paper

In Appendix A we show how these contributions manifest[13] by using the current algebra technique through the four-

themselves in the PCQM formalism.
To simplify the notations we introduce

Uvalf2: UXX,flfz

©)

with a similar convention for the other function€ (P,J,T)
involved.

quark expectation values in vacuum. We obtain the expres-
sions for PXY:f1f2 through these expectation values. How-
ever, to obtain the specific numbers, we use the factorization
approximation for the vacuum expectation values, suggested
first by Shifmanet al. [14]. In the factorization approxima-
tion it is assumed that the vacuum states dominate in the sum
over the intermediate states. While there are indications that

While the four-quark condensates are Lorentz scalars ithis approximation may be violated in some of the channels
the scalar and pseudoscalar channels, they have a more coli}, the factorization was advocated recently{ I5]. Under
plicated structure in the case of the vector and axial channel¢his approximation the expectation valuBg"f1'2 are ex-

P.P
V(A) _ V(A V(A) FuEY
Uph=a"PWg,,+bV(N ==, (6)

Herep, is the momentum of the nucleon, whihe denotes
the nucleon mass. Also, in the tensor channel we have

@)

T —
U;wyaﬁ_ aTSMV'aﬁ_F thMVvaﬁ

with

®)

S,u,v,aB: g,uagvﬁ_ gMBgva ’

1
tuv,aﬁzﬁ(pp«pagvﬁﬁ_ pvpﬁgua_ p,u,pﬁgva_ pvpag,uﬁ)'

We shall denote the values af**T andbV"A'T correspond-
ing to the contribution<, P, andJ by the lower indices, i.e.
\Y
aC'P’J y etC. o o
We approximate the averaging of the operatbr‘qql’Yq

pressed by the?q vacuum expectation values which are
known to be[16]

22
T

(0|qql0y=— 9)

my+my

for each of the light flavors witiM . andF . being the mass
and the decay constant of the pion, whitgy are the cur-
rent quark masses. Here we adopt the notations accepted in
chiral perturbation theorj{17]. In Eq. (9) q stands for theu
or d quark field, and isotopic invariance of the vacuum is
assumed. The valu@®|qq|0) gives the characteristic size of
the contribution of the pion sea. Thus the contribution of the
constituent quarks is expected to be smaller than that of the
sea quarks since (1#[(0|qq|0)R3|=1%.

In the “interference term” one of the operatoy$ *q acts
on the valence quarks while the othgdf Yq acts on the sea
quarks. Following our strategy, we approximate the corre-

sponding matrix elements by those averaged over the con-
stituent quarks and over the PCQM pion field. There are

over the valence quarks by the expectation values of theeveral possibilities to insert this four-quark operator. The

products of the constituent quark operatQr&veraged over

operator can connect the pion with any of the constituent

the renormalized constituent quark PCQM states. Due to th@uarks of the nucleon. This contributi¢the “contact inter-
normal ordering of the operators they should act on two difference”) is proportional to(#|ql'¥q|#) which does not
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vanish for the scalar case Only. ThUS, Only the COntribUtion%ok)Hess Combinatioras‘qa in the color asymmetric expec-
JSV=J"% and J°° have nonzero values which are propor- tation value defined by Eq2). In the case of the scalar
tional to the expectation valye.7] condensate the sea quarks provide the main contribution. A
5 _ large part of it is determined by the disconnected term, re-
MZ  (0[qal0) lated by Eq.(13) to the sea-quark contribution to theN
my+my F2

(mlag|m)= (10 sigma term. The internal contributions, coming mostly from

the sea quarks, are several times smaller. The expectation

However, there is an additional small factor besides the chawalues of the operators with the same flavat (1)? in the
acteristic paramete(0|qq|0). This factor reflects the small other channels are also determined mostly by the sea quarks.
probability for the pion and the constituent quark to overlapFor the mixed-flavor condensatel’udl’d the sea-quark
at the same space point for a nucleon Fock state described byrms and the interference terms provide contributions of the
the valence quarks and a pion. The interference process caame magnitude in most of the channels. The valence quarks
determine @ Q= vertex as well, since the pseudovector andprovide a smaller correction. In the case of the scalar-vector
pseudoscalar currents connect the pion and vacuum statemndensatéSV=0, and for the neutron, the valence quarks
Thus, one can consider the self-energy diagram with one grovide the main contribution, while in the proton the inter-
the PCQM vertices being replaced by the four-quark operaference effects contribute to the same order.
tor. That would be the first-order diagram in the PCQMND In the calculations carried out below, we use the values
interaction. This “vertex interference” leads to a numerically F .=92.4 MeV for the pion decay constant and the value
larger contribution, except for the case of the scalar-vectom,+my=11 MeV for the sum of the light quark masses.
condensate. The neutral pions provide the contribution to theatter value, given iff18], leads to the conventional value
termsJ* " andJ”s'" of the quarks with the same flavor. The (0[qq|0)=(—245 MeV)* at the normalization scale of 1
charged pions contribute to the condensateé8ddl'u and ~ GeV. This set of values was also used in pgdérNote that
uI'PsddI'Psu. Thus, they provide the contributions to all the in papers[10,11] another value for the sum of the quark
structures)*“? with coefficients defined by the Fierz trans- masses has been used, ew,+my=14 MeV. This value
form. was also given if18] as one of the possible values. Both

Following the general strategy of the PCQM we includeVvalues form,+my are consistent with nowadays experimen-
only the lowest-order contributions in theQ interactions. tal data[19]. B
We also assume that only the ground states of the constituent We present the results for the condensatds*(s)? both
quarks are included as intermediate states in the self-energy protons and neutrons. The values of td&'{d)?2 conden-

diagrams. This means that the nucleon and delta isobars ongtes are determined by the isotopic invariance relations
are included as intermediate states of the nucleon self-energy.

This is a standard assumption of PCQM calculatidr11. XAV 2 ) —X \2

It was shown in[13] that in the scalar case in the four- {pl(dI”d)*[p)=(nl(ul"u)*n),
quark pion expectation value a “disconnected term,” in
which one ofgq pairs acts on vacuum, can be singled out in
a natural way. This is strongly pronounced in the case of the )
color-singlet four-quark operataq®qPqP for which while for the mixed-flavor condensates we have

(n|(dT*d)?[n)=(p|(uT"*u)?|p)

(mlaqqq| =) =2(0[qq|0)(7|qq|7)+(7|(aqaq)ind 7). (p[uT*udl*d|p) = (n|ul*udl*d|n)

(11) v
) o except for the pseudoscalar cd3®=I"Y=ys. In the pseu-
The “internal” contribution presented by the second term ongoscalar case an explicit dependence of the interference
the right hand sidérhs) of Eq. (11) appeared to be about an terms on the current quark masseg, causes contributions
order of magnitude smaller than the “disconnected” one,which break the isotopic invariance. These terms are numeri-
presented by the first term. For the color asymmetric operaga|ly small.
tor determined by Eq(2) the disconnected terms still pro-  The results enable to obtain also values for the conden-

. g . . . _ _
vide about; of the totgl pion expectation value. This leads to satesul’*ddI™u. This can be done by using the Fierz trans-
the natural presentation. form

pSfifo— pSfifay pShifa (12) ‘We compare the value of the contributio¢N|(Uu
dis nt +dd)?|N) with the value obtained ifi6] in the framework

with of the NJL model under certain additional assumptions. The

values appear to differ by about 70%.
P5:u9=2[2(0[qq|0)(N|(qq)sedN)] (13) For the sake of simplicity we shall use the wording “sca-

lar,” “pseudoscalar,” etc. condensates for the expectation

for the different flavors, wheréN) represents the fully values of the operators with the repeated Lorentz structures

dressed nucleon state. The facfofit is 2 for identical fla- qI'qgl’g. Thus the scalar expectation values are rather

vors) on the right hand side of E¢13) is the weight of the scalar-scalar ones, etc.
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with
FX)=PyO)T* () p )T p(X). (19

Here P stands for the projection on the symmetric spin state
of the two-quark system, while the total antisymmetrization
FIG. 1. The contribution of the valence quarks to the expectais provided by the color variables. For the condensate

tion values of the four-quark operators. Solid lines denote the vayTXydI'*d we find both for the proton and neutron
lence quarks, the dark squares denote the four-quark operator.

Il. CONTRIBUTION OF THE VALENCE QUARKS CXud— zf d3x F(x) (20)

In this section we calculate the contribution to the four- ]
quark expectation values arising from averaging over thé&ince there are twad pairs.
system of three valence quarks. Using the results of Appen- The invariant coefficients of the rhs of Eq&) and (7)
dix A we present this contribution by can be obtained in a specific reference frame. Assuiinamgl
j to be the three-dimensional indices, corresponding to the
_ four-dimensional indiceg and v, we find in the rest frame
CXVMif2=(gby| f d*a"1(x)I*a'2(x)q"2(x)r"q'2(x)|¢o)  of the nucleon
14
49 a.=—3C; "6y, bo=Chy " -a, (21)
with ¢ denoting the nucleon as a bound state of three va-
lence quarks. Our main assumption here is that the matrifor the coefficients of Eq.(6), i.e., for the vector and
element in the rhs of Eq14) is approximated by the matrix pseudovector cases. Denoting the three-dimensional indices
element of the renormalized constituent quark opera@ts corresponding to the four-dimensional indicesand 8 ask
ie., andl, respectively, we obtain in the same frame
CX"faf2= (| f d*Q"1()T*Q" () Q" 2(x) 'Y a=3Ciid"dwdi. be=-a;=35Coly. (22
. Above equations are true for any constituent quark model.
X Q"'2(x)| o). (15 In the specific case of the PCQM the wave functions of both

— U andD constituent quarks arfel1]
The renormalization effects are expected to manifest

themselves through small corrections only. As we shall see

below, these corrections are of the order of several percent . (- 2122 )fﬁ

only, except for the scalar and vector structures. Thus, we p(x)=Ne . (oX) (23

start with the unrenormalized constituent quark operaf@rs PR

in which the pion cloud is not included. The corresponding

contribution with the normalization constant
N=[7¥R(1+34%)] 12 (24

CXYlfa= (g f d*>xQ1()IQ"(x)Q"2(x)
Vi and y being the two-component spinor.
XTYQ"2(x)| po) (16) The model parameters

is illustrated by Fig. 1. The constituent quark operators pro- B=0.39, R=(0.6=0.05 fm (25)
vide a nonzero value while acting on different quarks of the
¢o system only. This is due to their normal ordering. Thusare fitted to reproduce the value of the axial coupling con-
we find immediately stant and of the proton charge radius. We will present the
numerical values for the mean value R# 0.6 fm.
(":ﬁYvuuzo (17 A straightforward calculation provides for the expectation

_ _ . valuesCX"" in the proton
for the neutron. Using Eq16) we obtain expressions for the

contributions of the constituent quarks through the wave OSUU_ 14 3 2.y 15 pdy A[2
functions;(x). Assuming that the constituent quatdsand Co'=(1—2f"+ N (26)
D are described by the same wave functighgx) = ¥4(X)
= (x), we present the general expressions for the proton as
N2
AX,uu_ 3 No=——— (27
Cp J d X]:(X) (18) 23/2(1+ %BZ)
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while the value is zero for neutron. For thedd condensate the four-quark operators connect the only valekhcguark

we get with the intermediatéJ quark of thew~ U self-energy loop
of the valenceD quark. The value is
ESUI=2(1-$ B2+ B BHN2. (29) -
X Ix" o
: : Cru=—2— Ccx\ (37
The details of the calculations for the other structures are n JE TP

presented in Appendix B.
For the structuresﬁfxu)z in the proton we find for the with 3~ standing for the contribution ofr~ to the self-

pseudoscalar case energy of the valence quark with the enefgyThe direct
calculation gives?> ~/9E=—0.082.
APSUU_ _ p2p/2 Now we take into account the changé of the shape of
c BN?, (29) : .
P the single quark wave functiot(x), caused by renormal-
while in the vector channel ization [10]
o 2 o P(X)=p(X)+ SP(x), Sp(x) = A(h(X)+ yo) h(X)
agp=—zgAN?  bd,=(1+FA+EAIN (30 (38)
and for the pseudovector case with
o o o ; J’_ é 2 2
88p=—H(1-3E2+ BEIND BE,=-al,. (3D A= ARt X
2 1+3p2 1+3p% R?

Note thatbA=—a? since the matrix element of the time
component of the pseudovector operator turns to zero. This is Here 5m<<0 is the shift of the effective mass of the con-
true for the solution of the Dirac equation in any effective stituent quark caused by the pion cloud. The numerical val-

field. For the tensor case we get ues areA = —2.5x10 2, h(x)=1.06-x?/R2.
The term containing the functioh(x) provides correc-
al=1(1+1p2+LpYN2  bl=-1(1+1p? tions which do not exceed 3%. This happens due to the
s strong cancellations of the two terms, composir{g). We
+ 1 BHNZ (32 shall neglect these corrections. The term containing the Dirac

. ) i matrix vy, mixes the Lorentz structure of the condensates. It
Following the previous analysis, these values turn to zero foprayides nonvanishing contributions to the scalar, vector, and

the neutron. _ _ scalar-vector expectation values.
Turning to the case of different flavors, we find the expec- Thus, we obtain for renormalized values defined by Eq.

tation values of the operatord™udI'*d in a nucleon to be  (15)
twice as large as the values afI{*u)? in the proton

o o 1

o o CS,uu:CS,uu+4ACSV,uu_’

Cyud=2Cxu, (33) P P Py

We also present an example of the condensate for the
mixed scalar-vector structur@’, “®'=dduy,u, which is

needed in applications. In the rest frame of the nucleon only
the time component of the vectdr, survives, providing

CS,ud:éS,ud_l_ZA(éSV,du_l_éSV‘ud)%, (39

CSVdu. &SVduy op

o o 1
S,ud \%
c-u v+ bC;

ESVdu=p(1- B N2, (34)
_ _ _ _ with y=(1-28%)/(1+2B?). Thus, the scalar-scalar con-
It is convenient to express the values in “units” of the densates are reduced by 16% due to the renormalization ef-
valueeg, defined as fects. The scalar-vector condensate is reduced by 11%. Also,
_ in the vector case we have
e3=—(0|qq|0), £o=245 MeV. (35)
vV_2v V_pV

To get a feeling for the relative size of the contributions, ac=ac, bc=bc(1+4Ay) (40

we present the numerical value ) o\
reducing the value db: by about 6%. For the pseudoscalar,

N?=1.50<10"° GeVP=0.1G] (36)  axial, and tensor structures the corrections are negligibly
small and we put
which is the result of the straightforward computation of the
rhs of Eq.(27). cXfafa_ @XMt (41)
The wQ interactions provide the nonzero values of the P P
condensatesI'*uul’"u in the neutron. This happens since in these cases.
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N This leads to
@ 3°+4BT+2B 43,
. PXva1f2: (45)
9 M2
w
for the proton with
a b
( ) ( ) ,Ba:<’7Ta|TXY’flf2|7Ta>. (46)
FIG. 2. The contribution of the sea quarks to the expectatio - - .
values of the four-quark operators. The dashed lines represent tr%a“e cogfflcc:jlintshmultlpllgd b% tEe expeli:tatlcr)]h ;]/allﬁé’SarQ h
pions. Other notations are the same as in Fig. 1. The dark circle ?termc'(ne y the number of the quarks which can emit the
denote the vertices of the pion-quark interaction. pon @ a?d by the strength of theQQ vertex. For ex-
ample, 437 means that there are two quarkbese areJ
[1l. CONTRIBUTION OF THE SEA QUARKS quarks coupling to aw™, and each of ther"DU vertices

contributes the factor/2, etc.

Now we calculate the contribution of the sea quarks. In" £ the neutron we get

the PCQM the excess of the sea quarks in nucleons over the
QCD vacuum sea inside the nucleon volume is contained in 0 + _
the mesons, coupling to the constituent quarks. In th€5U pXY.fifa— 3pTH2p HAB 7% )
version of the model, which we assume in this paper, only 9 &Mfr
the pions are included. In the framework of the PCQM this

contribution is contained in the next-to-leading order of theThe valueds,/dM?2 was evaluated earlier in the calculation
model. In other words, it is sufficient to include pion ex- of the sigma ternj11], providing

change in the one-loop approximation.

(47)

The distribution of the pion fieldr®(x) is determined by PR L
the PCQM quark-pion interaction PYE; ~1.3 GeV . (48)
— . S(xX)Tm(X)
HI) =¥ (X)iys—F——V(X) (42 The pion expectation valugd® can be expressed by the

m

vacuum expectation values of the four-quark operators. This

where ¥ (x) represents the SB) doublet of light quarks, Was done irf13] by using the reduction formula obtained by

while S(x) is the effective scalar field. Lehmann, Symanzik, and Zimmermajf#i]. Due to the par-
In the 0ne_|oop approximation Of the PCQM the pions arenal conservation Of the aX|aI CUrre(PCAC) the pIOI’l State

contained in the constituent quark self-energy diagrams an¢ector can be expressed by the vacuum(see, e.g., Ref.

in the diagram describing the pion exchange between th22l)

constituent quarkgFig. 2. The contribution of the sea

quarks[see Eq.(4)] can be presented as | )= ;5 A%(x)]0). (49
V2F M2 HH

Ix* A T

J’_

M2 gMm2

PXY,f1f2: 2 <7Ta|TXY,f1f2| 7Ta>
a

(43

Here A 75(x) is the axial current of the light quarks,

with ¢ and A“ standing for the self-energy and exchange B — .
contributions of the pionsr® (a=+,—,0). A similar pre- Aﬂs(x)zg d®(X) 7, ¥su*(X) (50
sentation was actually used [ihl] for the calculation of the

sigma term. In that casBwas the scalar quark operatgg.  with ¢ being the color index(We shall assume the summa-

The rhs of Eq(43) can be simplified by noticing that in tijon over the colors in all the equations presented below.
the PCQM the relation for the total energy shifts caused byrhjs enables to present the expectation values defined in Eq.
the self-energy and exchange diagrdi2@] (46) by the vacuum matrix elemenf43]

10
Av=—o 2, 3 44 1
; 9 E & p*=—7(0B%0) (51)
holds also for each pion separately, when limiting single
qguark lines to the ground state. with
Using Eq.(44) we present the total pion contribution to

1
the nucleon mass as BQZWJ’ d3xdyed 2o (X —Yo) 8(2o— Xo)

— 10 @ —
T=(1+ )2 3 X [Q(20),[Q2(yo), TXV-M1T2(x)]]. (52)
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HereV is the normalization volume, and in the double com- e~ 1 _
mutator occur the axial chargedg, corresponding to the (0] ail"’q;0;T%q;|0)=— g SR T')(0[a;ail0)
axial currentA j5(x). For example, in the scalar channel it ’

was found ><<0|qu,-|0> (60)
B* = — (uduPu? ub’ + uduPd? d° + d?y5uPu? y5d®') which is true fori=j andi#j, while
X(ﬁabﬁa'b’ - 5ab’ 5a’b) (53) o~ o~
> qil'?qiq;T4q;[0)=0 (61)
p

for the operatoSUY, averaged over the charged pions.

The total contribution of the pion cloud to theiuu conden-

fori+#j.
sate in theSSchannel—see Eq$45), (47)—takes the form :

In the factorization approximation the contribution of the
sea quarks contains the factor

2 -— —— ’ a — !
pSuu= vy (0]2uduPu? uP + uduPd? d®

_ ) 5
e - (<O|UFUZ|O>) mM+m (0[au[0). 62
+UPysuPuP ysu? + utysd®d®’ yu?')|0) m
3, see Eq(9), and we can present
X (Saar Spb' — Oap Obar ) 5 - (54
M7, iy, M2 IS0 g
pritfe— T = 351z, (63)

. . p.n 2 70%,n
In [13] the pion expectation values were expressed by My+ Mg GM7

those of the vacuum for all channels. Thus similar equations .
can be presented for all structures. Since only the vacuurhlere we denoted® Pp "2 and the rhs of Eq(46)
expectation values are involved, we find for the coefficientgurns to zero fob(q&Y The subscript denotes proton or neu-
in the rhs of Eqs(6), (7) tron.

Using the results of13], we find for the same flavors

XX, f1fy_

by T=0. (55)
SSuu §uu 196’ Sgs,uuzsﬁs,uuz_g, (64)
To avoid complicated formulas we shall present the final
results in the framework of the factorization hypothesis for —gVuu= _ghuu=_2q = gVli=_ghiu__2q
the vacuum expectation values. P . . .
It is convenient to present T, T, 4
p S uu__ S uu_ =— 38,05
2 . ,
S S — 2 NP NP., (56  With the tensors,, .4 defined by Eq(8).
3 aarthb aa Moo For the quarks of different flavors we obtain for the pro-
ton and neutron
with A? standing for the S(B) Gell-Mann matrices normal-

5aa/ 5bb’ - 5ab’ 5ba’ =

ized by the relation SpP\"=25"". SSud= 4, gPsud=Z  gVud- _ghud=2g .
In the factorization approximation we find for quarks of
the same flavor STUd=—2s,, 45- (65)
(0]qT,qol'sq|0) = &[SP, Spl's— $Sp(T',T'5) 1((0[qq|0))? We now show that in the scalar channel the disconnected
(57)  terms are separated in a natural way. We have the result
for any 4x4 matricesl's, acting on Lorentz indices. If the Si=—-3-%, Soni=-4-% (66)

quarks have different flavors, we come to
As it was shown in[13] the expectation values of the
(0|QiFrQinrsqj|0>:%SFfrSWS<O|QiQi|O><O|QJQj|0> scalar four-quark operators are dominated by the discon-
(58)  nected terms with one of thgq pairs coming from the

vacuum. This corresponds to the approximation
and

SS,uu= g_uz_% SSud d _%1 (67)
_ — _ _ pb,n is ' is™ .
<O|CIiFrCIqu'qui|0>: _f?SWrFs<O|QiQi|O><O|QjQJ|O>-
(59 On the other hand, the facthT/(mu+ my) in the rhs of Eq.

- (63) is just the expectation value of the operatmy in the
For the matrice$’} ;=TI"; (A” this approximation provides pion—see Eq(10). Then we have
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Mi 93, IV. INTERFERENCE TERMS

my+ My &Mi

02

2 J—
M We now turn to the situation when one @F *q operators

=(m|aq| )

1 -
zz(N|uu+dd|N>Sea.

68 acts on the constituent quark while the other one acts on the
Thus, in the scalar channel there is a contribution of disconpion. In the one-loop approximation of the PCQM this con-
nected terms tribution corresponds to the Feynman diagrams illustrated by
. . Fig. 3.
PGietb,n=8(2(0[uu|0)(N|uu|N)seo) (69)
corresponding to the approximation, expressed by (Ed. A. Contact interference

Of course, there is a similar expression ig;dp,n
. . . . The four-quark condensate can connect the pions of the
Pﬁ';gf’pynz§(<O|uu|0)<N|dd|N)sea+<0|dd|0)(N|uu|N)Sea). nucleon self-energy loop with the quarks composing the

(70) nucleon. The contribution can be presented as

— . — Hi|én, qrXq| ¢ Y(ar|qTY . 7H d*k, d*k
(N|qT"q g Yq|N) = D f (dolHil . 7m){nld Q|.¢n Y{(7|q Q|7T><¢'n 7| I|¢O>Aw(k1)A7T(k2) i- 24.
Q'n’n' (Eo_klo_En+|8)(EO_k20_EnI+|8) (277) | (277) |
(71)
|
where k;,k, are the four-momenta of the piond .(k) with
=1/(k2—MfT+is) is the pion propagator. Recall that we
include intermediate quark states with=n"=0 only. The 1 o
state vector§¢,) compose the complete set of the quark  F%(z)= CT d3XW (X)i ys W (X)S(X)D (X— 2),
states with the enerdy,,, index 0 corresponds to the ground ™ (74)

state andH, denotes the quark-pion interactiqd2). The
tsrt]Jmma?on is carried out over the qua@swhich compose  yhereW s the SU2) doublet of the light quarks. In E474)
e nucleon.
In the quark language this means that the four-quark con-

. . . . 1 e*/.LX
densate can connect the pions with the intermediate quark of D (x)= —
the self-energy loop or with another quark. These contribu- g A7 X
tions are shown in Figs.(8,b. The corresponding exchange
diagrams are shown in Figs(c3d). These expectation values is the three-dimensional pion propagator witk- M ., while

contain the matrix elementsr|ql'*qg|7) and(Q|ql''q|Q).
The former has a nonvanishing value in the scalar case only. S(x)=M +cx2 (76)
The latter matrix element survives in the scalar and vector
cases only, for a unpolarized nucleon. Thus, only the expegs the scalar field with the parametdfsi]
tation valuesJ®®andJ®Y obtain nonzero values.
The connections of the piomr® with the intermediate 5
state quark XY [shown in Fig. 8a)] and with another quark _1-38 B

M=——, c=——. 7
KXY [shown in Fig. 8b)] are tied by the relation 2BR 2R3 (77

(75

<y <y Parameter® andR already occurred in the definition of the
Ko =—2lg (72)  valence quark wave function of E3. Only terms with
the scalar structuré* provide a nonzero value. Also the
for a fixed quark flavor. This relation can be obtained byintegral in the rhs of Eq(73) does not turn to zero for the
comparing the results of the integration over the pion energgcalar and vector structurds’ only.
in the loops of the diagrams shown in Figga). The total contribution of such interference terms to the
One can write expectation values of the operatargql’'q (Y=S,V) can
be expressed by the contributiop’ of the moU loop to the
self-energy diagram of the quark—see Eq(73),
13'=—(m|alq| =) f d*zF 2 (2T W(2)F*(2)
73 ISV=—2(1+)I15" (79)
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Here we use the standard notation ®yf¢ 2/\/wr[ ’ge‘yzdy
and

e3()=1-p%2,  V(t)=1+p%2 (82

being caused by the matrix elementel Sy= 4y and
(a) (b) YUVir=yop. For the coefficienC; we get

w1
(2mRF,)* (1+56%)°

C, ~8.4x10 2. (83

The interference terms provide for the scalar condensates

JPU=6.2x10"%5, JPU'=2.2x10 %3,

Jﬁ'Ud:JEVUd:8-4X 107283- (84)

For the operatodduy,u we finally obtain

P -2Pu
- o107t R, a3t 5.ax10 2R g
(e) (0 »

FIG. 3. The contribution of the interference term to the expec-where the subscriptp,n represent the proton and neutron,
tation values of the four-quark operators. The contact interference i5§(\’1)#=3§(¥1)o5#o in the nucleon rest frame.

illustrated by(a)—(d). The vertex interference is shown {g)—(f). Note that the insertion of the four-quark operator can lead
The permutated diagrams are not shown. The notations are the samg a charge-exchange pion-quark interaction between the
as in Figs. 1 and 2. points of emission and absorption of the pion by the constitu-

. 10 o ent quark. This mechanism is also described by the diagram
with the factor (1) taking into account the exchange of Figs. 3a)—3(d) and provides a contribution to the expec-

diagram shown in Fig. ®)—Eg. (44), while the coefficient . XA Y ) . )
£ is the weight of the color-asymmetric state. The fastor tation valueul"ddl™u. The charge-exchange matrix ele

takes into account the charge dependence ofrQ&) verti- ment(7°[dy,u| "), which is related to the vector part of
ces and the number of the corresponding diagrams. We finti€ weak decay amplituder” —m"e"ve, has a nonzero
n=20 for the @TU)Z condensate in the proton. turning o value. However, the contribution is suppressed by an addi-

i the p ' 9 tional small factorm,/M ; when compared to the expecta-
=7 for the neutron. It im=27 for theuudd condensate. For

i tion values(w®|qqg|=*). When calculated in the approach
the scalar-vector condensatduy, u we haven= 20 for the described in Sec. Il the matrix elemerfts®[dy,u| =+) and
proton andn=7 for the neutron. ®

Details of the calculation for the valug" are given in (°|dul7 ™) vanish. Nonvanishing values are provided by

Appendix C. Here we present the result. By expressing thgorrectiorésbof éhtzgrelative orde . to the PCAC relation
pion matrix element by the vacuum one—see Ed), we expressed by E49).

obtain
B. Vertex interference
1SY=c.AY(0lgalo 79 Anqther type of interferencg term, illustrated by Figs.
o =CsA'(0lqq[0) (79 3(e,f, is due to the PCAC relatiof22]
with o
(Olgy,ysTalm*(k)=iv2F k,, (86)
AY= Jm ng(t)eftz(pY(t) (80) where the pseudovector current connects the pion and
t? ' vacuum states. The equations of motion lead to similar rela-
. tions for the matrix elements of the pseudoscalar operator
while between the pion and vacuum states. In particular
\/; 2 Zﬁzts 2 - I\/EF q2
—- _ —tc_ —t “N\N— 7
f(t) 5 erf(t)—te 2—326 . (81 (Oluysd|7 ™) e~ (87
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where g? denotes the square of the four-momentum of thefor any matrixI'* and
pion. If one of the matrices acting on Lorentz indices, i.e.,
I'Y, has a pseudovector or a pseudoscalar structure, there is a arZr _f d3x ¥ Z_a
' Tt . ' = XV (X)['“7W(X). 89
nonvanishing matrix element (golal 7"l o) GO (0 ®9

_ _ The sum over color is carried out in both matrix elements in
{polalr?rqql Y 7%q| ¢g, 7%) the rhs of Eq(88).
o . Replacing the PCQM vertex in the nucleon self-energy by
=(polql'*7q| po)(0|ql' Y rg|7*)  (88)  the vertex defined by Eq88) we obtain[see Figs. &,f]

— X (ol Hil ¢ ) bul AT * 70| po)(7*[aL Y 7°q|0)
X .« Y —
(N[ar*7*qalY7qIN) = 2, f( o ko—E. 1o
N <0|Erxraq|wa><¢o|ErYraq|¢n><¢n;wa|H.|¢o>)A L 90
Eo—ko—Entie U emh
|
The rhs of Eq(90) does not turn to zero only when both ~ The tensor structure
I'’* andI'Y are either pseudovector or pseudoscalar matrices.
These cases must be treated separately. We shall use the stan- p.p
dard PCQM approacfil0,20 where the sum oven in Eq. 19,=Cl'| Gpo— (92
(90) is restricted to the quark ground state. m
1. Pseudovector case is determined by setting the time components to zero. The

We start with the case where both matrig@sandTY in  coefficientsCi*=317,g"” can be expressed through the con-
Eq. (90) are the pseudovector ones. The manifestation of th&fioutions X5 [Fig. 3()] of each quark to the total self-
vertex interference in the self-energy diagrams is describe@nergy of the nucleon. _ .
by a certain tensd,, with vanishing time components—see _ We start with the interference in the UD vertex. Put-
Appendix B, Eq.(B11). Thus the integration over the energy ting I'*=v,ys, I'"=7v,ys in Eq. (88) and projecting it on
ko in the rhs of Eq(90) can be carried out in the same way the quark states treated in momentum space, we obtain
as for the self-energy PCQM diagrafz0]. We present the - -
contribution as (0ldy, ysul 7" )}{U[uy,ysd|D)g*”

_ o d3k/ — - I

=S 1, (1) - aF, | SRRk

a 3 a - a dsk/ I\ UL
|pg=f B FA2) WV (2) y,ys7 V¥ (2) =2J§wa (277)3¢(k )iysS(K) (k' —k)  (93)

X(0la(2) 7, 757927 +FAD W (2) yoys7 W (2) with S(k) standing for the scalar effective field, whil€
X (7 q(2) y,757q(2)[0)]. denotes the momentum of the quark. The last equality is due
to the PCQM equation of motion. The rhs of E§3) is 2F2
The two terms correspond to the manifestation of the mechdimes the PCQM quark-pion vertex—E@2).
nism in the two vertices of the one-loop self-energy Being substituted to Eq91) for | **, Eq. (93) provides
diagram—see Fig.(®). The functions=%(z) are determined the valueC; = %Ff,Eé with Eé denoting the contributions
by Eq. (74). of the single quarks in the self-energi&s. One can also
Since the operatag°q does not change flavor, the neu- obtain thatCP=3F239. To show this, note that

tral pions w° contribute to the pseudovector condensates
(ul'*u)? and ul"udI'Ad only. The charged pions~ pro- ulu=3ql'(¥°+1)q (94)
vide contributions to the expectation values of the operators
uy,ysddy,ysu. Thus the charged pions give contributions (with | standing for the X2 unit matriy for any 4<4 ma-
to all the structuresil’*udl’Yd with the weights being de- trix I acting on Lorentz indices. Sincg|ql'lg|#°)=0,
termined by the Fierz transform. one finds
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1 iV2F k
E<0luvpy5UIw°>=Tp (95

with the further procedure as in the charged case.
All the contributions can be expressed by the value

4
Cl=5F23", (96)

which can be presented as

[ BZ 2
4 2
L Y15 (1+y9)
o 21 1= Y2V
6m (1+38%)2 R3Jo , KR
y o+ 2
97)
In the chiral limit x>=0 we obtain
o V2 1-3p%+5BY 1 arxio®
T 24 (11322 R R
=—1.14x10 %3 (98)
while for u=M . we have
CP=—1.0x10"2}. (99)
This provides
JA uu_ 3nu(1+ 10) - pg pg, (100

where the factor (3 1) also includes the exchange diagram
shown in Fig. 3)—Eq. (44—while the factor$ is the
weight of the color asymmetric state. Thus we finally have

P.P

JA UU=—1.4x10 °n 80( Ouv— TZV) (101

pseudovector structure

Jomd=(=ny=ng)(1+%)55,,6,,19,
~ PP,
=4.2x10 ng(gl“,— #) (102

PHYSICAL REVIEW D 68, 054021 (2003

In our case the pseudovector term with the diagonal color
structure contributes only to

urXudr¥d=—4x2dy,ysuul *y?ysl Vd+ - -
(104)

Here the summation over colors is carried out, providing the
factor — 5. The dots denote the terms which do not contrib-
ute.

Following the previous analysis we must separate the
pseudovector component,ys in the operatol Xy ysI'" in
the rhs of Eq(104). The interference terms can be expressed
by the tensor

1S,=2(1+ %) (ny+ng)l2, (105

The tensonﬁ, is obtained by the summation of the rhs of
Eqg. (91) over the charged pion states and over the constituent
quarks of the nucleon and by inclusion of the exchange
terms. The coefficient! is given by Eq.(96). The contribu-
tions are

JS,ud: _1

C
6900"

o JPs,ud:

—J3ud, (106

JV,Ud: IC

1 C
§5ﬂ 51/0" po Gg,uvgp(r po?
IC

Jﬁ;JUd:‘]A'Ud—i_ 6 5 69;.ngp0 po?

Ouv 1/0' po'

JTUd —

C
uv,af isqauv’}/poaﬁ’)/o’)lpa'

2. Pseudoscalar case

Now we consider the pseudoscalar case, T&=I""
=15 Iin Eq. (90). If the charged pions are exchanged, the
matrix elements of the quark operators between the vacuum
and the pion states are given by E8§7) which respects the
isospin symmetry. However, the contribution of the neutral

Turning to condensates of quarks with different flavors,PiON €xchange contains the matrix elements

we set for the contribution of the neutral pions to the

F'n'qz e 0 iFﬂ'qz
2mu ' <0|d75d|ﬂ- >_ 2md

(107)

<0|U75U| 70)=—

which depend on the quark masseg 4 separately. This
breaks form,# my the isospin symmetry explicitly.
After the integration ovek, in the rhs of Eq.(90) (see

The charged pions provide a direct contribution to theAppendix D we can present the contribution in a form simi-

expectatlon values of the operatorsypy5ddy(,y5u

lar to the pseudovector case—HEQ1),

=3 qu°y,ysd° d%y,ysu? with ¢ and g standing for the

color indices. Their contribution to the expectation values of T= z T
the operatorsiPT*u? d°T'Yd® (S, Spbr — Saby Sbar), Which a
we are looking for, is determined by the Fierz transform

(108

~a: 3 a Y a oy a a
u‘;'ﬁg E FaBdFAuﬁ - 642 PANE, AT I fd ZAF*(2)(2) ys7*¥(2)(0|a(2) ys7*q(2)| %)
(103 +F(2)¥(2) ys(2)(md(2) y57q(2)|0)],
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where we must put)®=

PHYSICAL REVIEW D 68, 054021 (2003

2 in the matrix elements deter- pectation value turns to zero when we neglect the possible

mined by Eqs.(87), (108) The expectation values can be intermediate state excitations of the constituent quarks—see

expressed by the terii” of Eq. (108 corresponding to the
7" meson

2

= J d3xdBy S(X) ¢(X) ysh(X)D (X )

my+my

+:

X y(y) ysih(y) (109

with D, and S defined by Eqs(75), (76). Numerically we
get

TT=7.0x10%s3. (110

Proceeding in the same way as in the pseudovector case,
we find for the contributions of the interference terms con-

taining the neutral=® mesons to ysu)? and uysudysd
condensates

3= 5(1+P)n Ty (111)
and
JEsUd=—2(1+ L) (n T4+ ngly) (112
with
~ T (my+my)
Usingm,=4 MeV, my=7 MeV we find

T,=4.8x10 %3, T4=2.8x10 &3

Eq. (B11). The terms withl'' = ypyS,I‘ = y5 provide non-
zero values. When we focus on the expectation value
dduy,u (which isdduyou in the rest frame of the nuclepn
among the mixed condensates, we must calculate the expec-
tation value of the operatorsuysddyyysu and
Uyoysddysu. Contrary to the pseudoscalar caBé=TI"Y

=5, such terms do not contain the large fachr,./(m,
+my)~12—see Eq(109), providing thus a minor contribu-
tion ~10 3s3.

C. Total contribution of the interference

Now we can present the total contribution of the interfer-
ehce terms. For the quarks of the same flavor they are pre-
sented in Egs(84), (101, (111, and

JyU=0.065, J5U=0.023, (116
Ps,uu_oom 3 Auu —0.01 pp.pv 3
J =0.0hyeq, J, hyl 90— 2 €g

(117

turning to zero for the other structures. Recall thasstands
for a number ofu valence quarks in a nucleon. For the
quarks of different flavors Eq$84), (106), (115 provide for
the proton

JSud=0.225, JPSUI=—0.283, (118
PuPy
V,ud_ KM A,ud_
3= | ~0.08,,+ 00457 65, I =0.14,,23

The chargedr™ mesons contribute to the expectation values

of the operatorsiysddysu providing thus the contributions

to all basic structures defined by E@). They contain the
factor

Te=(1+2)(n,+ng)T*=0.443, (114
for
JSud_ %Tc, JPs,ud:JS,ud+J0Ps,ud, (115
Ii=—=2gulc, I=tgulc,
J,Twuiﬁ %3 aBTC

In more sophisticated models of the piof&3] the quarks
obtain large effective masses. Thus the tetfhwill become
much smaller.

3. Mixed case

If one of the matrices in the rhs of E(88) is a pseudo-

T,ud
J,U-V af

=(0.25,,, 5~ 0.08t,, ,5) 5.

Of course, the values presented by EdL8) coincide for
the proton and neutron except for the pseudoscalar case
where

Jhsud—gpsud=0,033. (119

Also the value for the Eysu)z condensate for the proton
differs from the value dysd)? for the neutron by

(3655 = (35%9%) ;= 0.063. (120
These characteristics obtain nonzero values due to the ex-
plicit dependence on the current quark masses. As we noted
earlier, these effects would be much smaller if more sophis-
ticated models for the pions are ugeB].

Finally, for the scalar-vector condensates we obtain by
using Eq.(85)

scalar (ys) while the other one describes the pseudovector

(7,vs) we find contributions to the condensates with mixed

Dirac structuresg*qal'¥q. If T*=1y,y5,I'Y=1ys the ex-

JSVdU

9.6x 1072 F:: g, Jnvi=3.4x 10*2%‘83.
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V. THE VALUES OF THE FOUR-QUARK CONDENSATES for both proton and neutron. The internal terms are expressed

Now we sum the partial contributions obtained in the pre—by Egs.(28), (39), (69), (66) and Eq.(118:

vious sections. We present the results in units of the charac- csud_g 143 P_S,tjd: 0513 JSud—p 23’?8
. H n . ) . ’

teristic scales3= —(0|qq|0) [see Eq(35)]. The partial con- (127
tributions to the expectation values defined by EL). are

due to the constituent quarkdenoted byC and shown in USud=CSudy pSudy jSud= 0 133,

Fig. 1), to the pion clouddenoted byP and shown by Fig.

2), and to the interference ternigenoted byl and shown in Upti=upti=ugei+Uiid=—3.1%3. (129

Fig. 3). This is expressed by Eg4). We do not present the
values of the parameters which are negligibly small in ourThere are no disconnected terms in the other channels, thus

scale. U=Ujn.

A. Scalar channel B. Scalar-vector channel

Recall that in the scalar case there are specific discon- For this case there is no contribution if all the four quarks
nected terms in which one of the produq_q acts on the belong_to the sea. They_contribute t_hrough the interfe_zrence
QCD vacuum. Such terms emerge from the contributions ofl€teérmined by EQ(85) while the constituent quark contribu-
the pion cloud. Thus in the scalar case the values of thd0n IS given by Eqs(34), (39)
fqur-quark condensates can bg presented as the sum of the CcSVdu_( 1g:3 (129
disconnected termd 4;s and the internal termb;,; , 0

for both proton and neutron. The interference terms are, Eq.

Upny=Udis;p(n) T Yint:p(n) 12D (g5,

with the indicesp,n denoting the proton or neutron. For the
other structures the disconnected terms vanish.

We start by presenting the results for the disconnected |, o Eqgs.(34), (39), and (85) provide for the mixed
terms. Using Eqs(63) and (67) we obtain ' ——
scalar-vector condensatiel uygyu

du__ du__
V=0.105, IFVM=0.033.

Ugis"'=Pais"'= —3.8%; (122 USVdu= cSvauy gSWdu—0,28:3, (130
for both proton and neutron.

Consider now the internal contributions. For the scalar
case they are expressed by E6), (37), (39), (63), (64),

USVau_ cSVduy gSVidu_( 213

(116 C. Pseudoscalar channel
Suu_ S, s, Suu_ _ 3 For the pseudoscalar case we find by using Eg9),
Utp=Ca "t PRip 35 = —0.015, (129 /O O Ty y using &8
Ubin=Cot+ PRin+ I = —0.233, UPsuu=CPsuuy pPsudy gPsui— 1 93,3 (131)

with the partial contribution UES'““=CPS~”“+ Ppsyud_’_‘]r}:s,uu: —1.96;8.

Suu_ 3 Suu_ 3
Cp 0.08;, Cp 0015, The partial values are

Pitp=Pintn= —0.25, (124 CPsWi=— 0,023, PPSU=pPsii= 2033,
JPUU=0.065, Jy"'=0.023. IPW=0.143,  IPSU=0.07%3.
The total values oUﬁjﬂ“ (121 are the sums of Eq122) and  The numerical values are determined mostly by the contri-
(123 bution PPSUY of the sea quarks. In the case of the condensate
Suu_ 3 Suu_ 3 uysudysd we obtain from Eqgs(29), (33), (41), (63), (65),
Upt'=—3.947, US"'=—4.05%3]. (129  and(118
In this case the sea quarks mainly contribute, the rest coming CPsud= 0033, PPsUd=0513, (132
from the direct action of the four-quark operator on the con-
stituent i .
.qua'rks and frpm the interference terms JFF)’s,ud: —0.283, Jﬁs,ud: —0-3188
Considering the mixed-flavor condensatesdd, we ob-
tain for the disconnected terms presented by (Z6) composing, following Eq(4)
U§i§d= §i§d= _3'0638 (126) UES’Ud= CSS’Ud-f— PES’Ud-F JES’Ud=0.2023, (133
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UES’Ud=CES’Ud+ PES’Ud-FJES'Ud:O.l?Sg-

The difference in the valugg>"® andU}*"* is caused

PHYSICAL REVIEW D 68, 054021 (2003

ayyi=-0.0%3, ajy'=-0.0%],

by the explicit dependence on the current quark masses—see

Eqg. (119.

For the vector, axial, and tensor structures we present the

values of the coefficientaV® ™) andbV" T, Recall that we

introduced a notation where the partial contributions of the

valence and sea quarks and of the interference terms are bA WU=0.0%3,
denoted by the subscrip&, P, andJ [see the text below Eq.
(8)]. The second index labels the specific nucleon. Ta\kﬁ%,
denotes the contribution of the sea quarks to the parameter
labeling

the vectorV, axial A and tensoiT cases, are kept for the total

a" of the proton, etc. The notatiots ,, andbj, ,

contributions to these parameters for the protoautron).

We omit the subscript index if the values coincide for both

ayU'=agh'+app+alt=0.45%],
ayU=agh'+aphi+al =050
and
b5s =0.0%3, bjn"=0.01e],

(140
bAuu bAuu bAuu 006’-:3,
b4 UU=p}u"=0.01s3.

For the expectation value of the operatdt*udl'd we

nucleons. Note that in all the channels the sea quarks do nget with Egs.(31), (33), (41), (63), (64), (118

contribute to the parameteéy, ,, i.e.,

b ()= (134

for all composition of flavors. Recall also that the interfer-

ence does not contribute to the expectation values of the
operator of the same flavors in the vector and tensor casesand

see Sec. V.

D. Vector channel
By using Eqs.(30), (40), (63), (64) we obtain

aly'=-00%k), aly'=app'=-05%;, (135
ay=alt'+aly'=-0523, ay''=aln'=-05I]
while

quu quu 01&3 quu quu 002_;0

(136

For the mixed-flavor condensate we find E(R0), (33),
(40), (63), (69), (118),

ati= 0,063, ap'd=-0513, a}'i=0.143,
(141)

afud= gAud gAudy gAud_ _ g 438
bAud=pAud=0.063. (142

F. Tensor channel
Using Egs.(32), (41), (63), (64) we obtain

agp'=0.047, apy'=aph'=—-1.025, (143
al=alu'talii=—0.983,
ars-alirali'-~ 1023

while
by i=b4'=—0.05%3. (144

For the mixed-flavor operator, Eq&2), (33), (41), (63),

alUi=—-0023, ay''=051.3, ayvi=-o00%3 (69 (119
(137
ag'"=0.0%3, ap'i=-0513, a)vi=0.25%3,
aVui=al+ap i+ ayi9=0.443, (145
which are the same for the proton and neutron, as well as the alVd=aludygludyglid=—0.193
parameters
while
be!9=0.25%3, bY'9=0.043, (139
bi'%=-0.13, bJUi=-0.08&3, (146)
b¥:ud=b" 4 by U9=0.2%3.
,ud ,ud_
bTud=pludtpld=—0.183.

E. Pseudovector channel
Here we find by using Eq4$31), (41), (63), (64), (117

agh'=-0.0%3, app'=apn'=05l], (139

The final results of this section are presented in a compact
form in Tables | and l(keeping the values larger than 0.1 in

modulug. The numbers are given in units ofsg
=1.47x10"? Ge\?, see Eq(35). The valuedU* 12 gre
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TABLE I. The nucleon expectation values of the four-quark the proton are determined by the contribution of the constitu-
operators in the scalar-scalar, scalar-vector, and pseudoscalant quarks.

pseudoscalar channels. In the case of the mixed-flavor condensaf&‘udl’'*d the
role of the vertex interference increases due to the large com-

X UX,uu UX,uu UX,ud UX,ud - : .
P n P n binatorial factor. These terms become as important as the
S -39 —41 ~32 ~32 sea-quark terms in most of the channels. The parameters
SV 0.3 0.3 bVAT) are determined mostly by the contributions of the
Ps ~-1.9 20 0.2 0.2 constituent quarks.
The contributions of the sea quarks are expressed by the
expectation values of the four-quark operators in pions. Lat-
U>I\(l,flf2:<N|:aflal—«xqfla’afzbl—vxqub’:|N> ter values are in turn exprgssed by the expectatiop_ values of
the four-quark operators in vacuup@3]. The specific nu-
X (8azr Oob — Oaty Oarp) merical values are obtained by using the vacuum factoriza-
tion approximationg14]. Thus the contribution of the sea
with N=p,n—see Eqs(1),(2),(6),(7). quarks is expressed by the well known vacuum expectation
value(0|qq|0).
VI. SUMMARY In the case of the scalar-vector condenshteyyu there

. is no contribution coming from the pions only. Averaging
We calculated the expectation values of the four-quarkyyer the neutron is dominated by the contribution of the
QCD operatorg|l'*qql"Yq in nucleons for all basic Lorentz constituent quarks. In the proton the interference and the
structures and for compositions of the light quark flavors. constituent quark terms are of the same order of magnitude.
We employed previously derived results of the perturba- We can draw some conclusions on the chiral properties of
tive chiral quark mode(PCQM) which treats the nucleon as the expectation values which we study in the present paper.
a system of three valence quarks surrounded by a pion cloudhe contribution of the sea quarks has the same explicit de-
We approximate the averaging of the product of operatorpendence on the pion mass, as the contribution of the
over the valence quark by the matrix elements of the congea-quarks to the expectation validqg|N). The latter ex-
stituent quark operators over the PCQM constituent qgarkﬁ)ectation value, which is proportional quT times the pion-
We present the expectation va!ues of the operators acting Hlcleono term., is known to depend strongly &f._. On the
the sea quarks by the expectation values of QCD operators Ebntrary, our interference terms exhibit only a weak depen-

pions. The intensity of the pion field is determined by the ., o orM .. The valence quark contribution does not con-

PC‘I('DhM modelt rte_sult. I i ar and doscalar ot an explicit dependence dn,,.
€ expeclation vaiues ol thé scajar and pseudoscaar op- e tg the explicit dependence of the vertex interference

wo parametersav(f*'” and b D—Egs. (6),(7). For the gy i magnitude of this effect is numerically small with sev-
quark operators with the same flavor, eql;*qal™a, the  eraj units of the value IG& for our scales,. The effect is
scalar and pseudoscalar condensates, as we_II as the pargiich smaller if the quarks composing pions are assumed to
etersa’® 7 for the other structures are dominated by thenaye the constituertbut not current masse$23].

contribution of the sea quarks. The averaging of four |, the special case of the scalar condensate the expecta-
U-quark operators over the valence quarks in the neutrofon values are dominated by “disconnected terms” in which
provide zero values in the lowest order of PCQM. This 0c-gne of the quark operators acts “inside” the nucleon while
curs because the operatans should act on different quarks the other one acts on the QCD vacuum. This contribution
while there is only onéJ quark in the neutron. In the case of comes from the sea quarks, reflecting the pion strug¢tLBe

the proton both the constituent quark and the interference Note that a nucleon expectation value is the excess of the
terms provide minor corrections of the order of several perdensity of the quark operator products over the vacuum den-
cent to the main contribution of the sea quarks. In the consity, integrated over the volume of the nucleon

trary, the sea quarks do not contribute to the coefficients
bY(A D In the vector and tensor channels the valbé$ for - — — —
<N|qFquFXQIN>=<N|f d*x[q()T*q(x)a()T*q(x)
TABLE Il. The values of the parameters for the four-quark ex-

pectation values in the vector-vector, axial-axial, and tensor-tensor —<O|€FXqEFXq|O>]|N>. (147
channels.
X QXU Pl gXW AW gud pRud gXud prud Of course, the first term in the rhs of EQ.47) is_ positiv_e..

P P n n P P n n However, the whole rhs of Eq147) can be negative. This is
V —-05 01 -05 0O 0.4 0.3 0.4 0.3 Why some of the expectation values run negative.
A 05 0.1 05 0 -04 01 -04 01 In an earlier calculatiof6] the scalar expectation value
T -10 -01 -10 0 -02 -02 -02 -02 {(N|(uu+dd)?N) was determined in the framework of the

Nambu—Jona-Lasinio modgrf] under certain additional as-
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sumptions. Actually, the Expe_ctation values of the color- (Nl(Uu)zlN>=ZZ(¢>O|(UU)2|¢O>+2<¢0|(Uu)2|¢0>
singlet four-quark operatos®q2q°q® have been obtained in

[6]. Thus, to compare to the results[6] we must extend our X{ ol Hi| b0, 7)o, 7| H]| bo)
analysis to such operators as well. ] —
In Ref.[6] the expectation value is presented as the com- +{dolHil b0, m){ b0, 7| (UU)?[ g, )
osition of the contribution of the constituent qu and
P quankes X (o, Hil o). (A1)

of o and = mesons,A, and A,.. Our contribution of the

constituent quarks appears to be several times smaller th
the value ofAp. The large discrepancy is not surprising,
since the conception of the constituent quarks is quite differ

ent in the two models. The meson contributidp+ A . of In th h pair of th —
[6] could be compared with the internal sea-quark contribu- n the next step we present each pair of the operatars
as the sum of operators acting on the valence and the sea

tion of the present model, containing the expectation value K
which is presented by the second term of the rhs of(Et). ~ 4UarKs

The corresponding contributid® (with the “hat” sign label-
ing the color singlet operatprcan be obtained by using the

formula obtained in13]. The resultP=2(g3,/dM?2)(/ Thus
F2) should be compared to the suky+ A, of [6]. We find
P=1.5%3=2.3x102 Ge\® while  A,+A,=3.6 (do|(UU)d o) =0, (m|(uu),|m)=0
X102 Ge\e. The total values in the two models afe,

+A,+Ap in[6] and the sunU=P+C+J in our approach. and Eq.(A1) takes the form

We obtainC = 1C; J=2J where the additional term domi-

nates in the sunC+J. The NJL value isA,+A,+Ap (N|(uu)?IN)=
=6.4x10"2 Ge\® while we obtain U=253=37

Yerez=1+ g3/4E is the renormalization factor, whilE is
the sum of the self-energies of the constituent quarks with
energyE.

uu=(uu),+ (uu)s. (A2)

J3 — T
1+Za_E)<¢o|(UU)3|¢0>+2<¢0|(UU)Z|¢0>

X 10 2 Ge\R. The results provided by the two approaches X{ po|Hi| o, ) o, 7| H| o)
differ by a factor of about 1.7. One of the possible reasons .
for the discrepancy is that some of the contributions have not +{o|Hi| do. ) bol (UU)?| bo)

been accounted for in both approaches.

X(bo,mH| o)+ dolHil bo., )
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APPENDIX A the first term of the rhs of Eq(A3) only. We putZ?=1

+29219E.

Here we show how the contributions to the four-quark The rhs of Eq.(A3) can be simplified due to some can-
expectation values, obtained in the paper, manifest thentellations. The second term in the rhs describes the self-
selves with the help of the PCQM formalism. As an examplegnergy insertions. These contributions are canceled by the
we consider the operataruuu averaged over the proton. In counterterms of the PCQM Lagrangigt0]. Another cancel-
the framework of the PCQM the nucleon is a system of thredation occurs between the third term and the part of the first
constituent quarks, where the bare three-quark state is renderm
malized by«N interactions. Thus, the physical proton state
IN) is expressed as

9% — —
2= (ol (U)Z] o) +( ol Hil o, m){ ol ()] o)
|N)=Tex;<—i:fldtH{(t):)wo), X( o, m|H | o) =0. (A4)

This can be obtained in a straightforward way. The last equa-
where| ¢) is the state of three valence quarks af{dis the  tion is a rather standard cancellation of the radiative correc-
renormalized Hamiltonian of the interaction between thetion by the renormalization factor. Note that the two terms in
constituent quark and the pions, which includes the countetthe rhs of Eq.(A4) do not cancel totally for the operators

terms. . (uu)? averaged over the neutron—see Sec. II.
The expectation valugN|(uu)?|N) can then be written as Thus, Eq.(Al) takes the form
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NI (Qu)2INY = uu)2 + H , uu)? in the first terms of the rhs of Eq$A3) and (A5). The
(NIUWZINY = ol (uu),] o) + (ol il o, m) (| (uu)s] ) renormalizatior{ 10] means that the shape of the constituent

X{( o, m|H| Po) +2({ po|H|| g, 7) quark wave function is modified by the influence of the pion
_ _ cloud._ Also, we _approximate the matrix element
X( ol (U),| o) (| (uu)g| ) {o|(aq),| Po) = bo| QQ| o) in the third term of the rhs of
X( o, |Hil bo). (As)  EG-(AS).
Now we can identify the terms in the rhs of H&5). The APPENDIX B

first term corresponds to the contributions of the constituent ,
quarks. The second term describes the contribution of the sea EXCept for the scalar case, the matrix element between the
quarks shown in Fig. 2. The third term presents the interferftWO-auark states depends on the spin orientation, containing
ence effects with one of thau pairs coming from pions the factor @'o") with I and Il denoting the two quarks.
while another one comes from the constituent quark. TheNce the color wave function is asymmetric, the two quarks
latter can be the same as that in the matrix element of thE0MPOSe the spin-symmetric state when being at the same
interactionH, or the other one. These terms are shown inSPace point. Thus we must put
Figs. 3a)—3(d). A cancellation similar to Eq(A4) takes N

TX N2 : MM (e XM =1 (B1)
place for all the operatorau{’"u)~ in the proton, although in
the general case the operator depends on the spin variables, . =2
However, the spin dependence manifests itself through th f the value of the spin operatoo{s'') averaged over the

. Spin two-quark wave functiog''" of the quarkd andll.

operator ¢'o'") with | and Il denoting the two quarks. pFor theqscalar case we fir?{j immedia?ely
Since the color wave function is asymmetric, the two quarks
compose the spin-symmetric state being at the same space X2
point. Thus, the two-quark spin wave functigg'"'"') is the j-“(x):g(x)( 1-p2—
eigenfunction of the operatora{c'') with (o'a')|x"") R
=|x""). Hence, the four-quark expectation value can be _ _ o 2R2aia
separated as a factor and the cancellation takes place as wifith 7(x) defined by Eq.(19), while g(x)=e N™.
as in the scalar case. Similar analysis can be carried out fofiS provides
the operators of the general forgi Xqql"Yq. CSUU_ \r2(1_ 3524 15 g B3

In the special case of the axial and pseudoscalar operators, int (127458 B3

there can be the interference effects in the first order of th?or the proton, with\ defined by Eq(27). For the pseudo-
mQ interaction. This happens because the matrix elements.gjar case w'e get

(0|gqT'*q|7) have nonzero values in these cases. Thus, the

operators ql'*qql'*q determine a 7QQ vertex ('X)(a"X)
F(x)=—4B%g(X)————

2
(B2)

(B4)

(Q|aT*qal'*q|Q, 7). This causes the vertex interference R2
contributions
— X=X leading to
(NJaI*qalalNines
Cint "=~ 22, (B5)

=( ol H.I¢o,7><¢o,w|5FXqEFqu¢o>
For the vector and pseudovector structures we can find in

+(olaT*aal*al o, 7)( o, 7 H| o) the rest frame of the nucleon
(A6)
alM=-3CiWs; (B6)
with X labeling an axial or pseudoscalar. Such terms are
shown in Figs. &,1). with i andj being the space indices, corresponding to the
In the rhs of Eq(A6) we have four-dimensional indiceg. and v. A direct calculation pro-
o . o vides for the vector case
(o, T *qal*q| go) =(|ql*q|0)( polqT*q| po)
(A7)

2
- B B f”=4ﬁzg(x>%%(6”(&'&”>—o!o'-'>, (B7)
(¢olal™a al™al o, m) =(0laT*a| m)( bo|aT*al o).

We assume that the matrix elements of the QCD operatoﬂgad'ng to

(aq)f over ¢9 are approximate_d by the matrix elements of a\C’=N2(— 22), (B8)
the renormalized PCQM constituent quark operators, i.e.,

To determine the coefficieft, we calculate the time com-

(0l (A0)2] bo) = { b0l (Q"Q")?| o) (A8)  ponents
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2 2
For=9(X) 1+BZ%) (89)

and, sinceCoo=ag+by, we find

bE=N(1+ B+ R BY). (B10)

PHYSICAL REVIEW D 68, 054021 (2003

2

4 s 0, X
Foj k=359 (X)§5jk (B19

with the further procedure described in the main text.

APPENDIX C

For the pseudovector case notice that the time compo- |, order to calculate the valué‘Yintroduced by Eq(78),

nents turn to zero. We introduce the notation

X
(o)

R

K=

for the bispinor entering the wave function—E@.3). We
obtain

KYoysk=0. (B11)

Thus
ag+bg=0. (B12)

As to the value o&”, it can be calculated by using E@6).
In the pseudovector case we get
,(0X)0i(0X)

kY ysk= 0t B3 (B13)

By using the properties of the Pauli matrices one finds

(oX)oi(X) = 2% (oX) — X20; . (B14)
Thus
B | 22xi(5'§)—a:x2
fij(X)—g(X)<¢Ti+,3 T)
X ﬂ'u#%) (B15)
leading to
ag=N(—3+38°~ 8. (B16)

Finally, in the tensor case we find for the space compo-

nents

(B17)

2<&£>ok<&i>)

KUin:«?ijk(Uk—ﬁ R

and the functiorf can be obtained by using E(B14). For

the space-time components we have

_ Xi
KO'OjKZ—Z,Bﬁ] (B19)

and

we must calculate the functioR®(z)—Eq. (74). For theu
quark it takes the form

NZ
F.R

Fl(2)=—=——=8 f dxx* (aX) xS(X)D H(x—2)D2(x),
(CY

changing the sign for the quark. We present the pion propa-
gator(75) as

d3k eiﬁ(i—z')e—iié

(2m)°

D,T(x—z)=f , (a=0). (C2

k2+ ,uz

The factore™ *®(a=0) is introduced in order to simplify
the calculations by expressing

XD (x—2)=1V,D (X—2). (C3

We obtain, by doing the integral over

77_3/2 N2 R4
F(z)=— —

> X (oW x(ATL(2)+BT,(2))

(b=0) (C4

with A=M+ 3cR?, B=—3%cR* while c andR are deter-
mined by Eqgs(25), (77) and

d3k e—iE(Z—B)—(1/4)k2R2

=) oS aa . (©
d3k e—ilZ(i—B)—(l/A)szz
_ 2
T2(z)—f (2m)? Pt 12 ke, (Co)

We can evaluate the rhs of EqE5), (C6) by presenting

1 % o,
K+ u? fo dae”«orrs, (€
leading to
N d°k s 252 P
Tl(z):f daff gik(z=b) = (1/4) K°R*— a(k®+ )'
0 (2m)3
(CY
1 1 b

TZ(Z): —_e(Z b)“/R _,U«ZT]_(Z) (Cg)

77.3/ 2 RS
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Further calculations can be simplified by assuming the dko 92 1
chiral limit x>=0. The integral in the rhs of EqCS8) is =| 552 7 E—Kk—E i (DY)
dominated by the values af close to2R?. Thus, the inte- ™ g°=M7+ie Fom Ko EnTlE
gral overk? is determined b2~ $1/R?, while the integral - .
over « is dominated bya~ 2R2. Hence, the factoru? in ~ With q°=ki—k*. We can present=X;+ X, with
the power of the exponent in the rhs of HE8) is about
0.12. Sincd §Y provides a small correction only, this makes X, = 2J % 1 (D2)
the calculation of this value in the chiral limit>=0 reason- VU] 2mi g2—M2+4ie Eo—ko—Eptie’
able.

Calculation of the integrals ovek and overa [by the dkg 1
substitutiont = (R?+ «) ~ 9 leads to Eqs(79)—(83) of the X2= f 27 Eg—ko—Eq+ie’ (B3
text.

The integralX, can be expressed through the contribution of
APPENDIX D the pole in the upper half-plane of the complex varidhje

This corresponds to the negative-energy solutions of the
The integrals over the time compondaqtin the rhs of Eq.  Dirac equation. Such terms are neglected in the framework

(90) take the form of the PCQM. Hence, we pu{=X;, leading to Eq(109).
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