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Expectation values of four-quark operators in the nucleon
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We calculate the expectation values of QCD operators consisting of the products of the four operators of the

light quarksq̄GXqq̄GYq, with GX,Y corresponding to the scalar, pseudoscalar, vector, pseudovector~axial!, and
tensor Lorentz structures, in the nucleon. All combinations of the light flavors are considered. For the evalu-
ation we use elements of the perturbative chiral quark model~PCQM!, approximating the contribution of the
valence quarks by the contribution of the PCQM constituent quarks. The contribution of the sea quarks is
treated by averaging over the QCD pions with the distribution of the pion field being determined by the
PCQM. For quarks with the same flavor the expectation values are dominated by the contribution of the sea
quarks. In the scalar case the contribution of the sea quarks is dominated by the ‘‘disconnected terms’’ where

one of the pairs of theq̄q operators acts on the vacuum while the other one acts on the quarks of the pion. The

role of the interference terms with one of theq̄q pairs acting on the sea quarks and the other one acting on the
valence quarks increases for quarks with different flavors. The result for the scalar condensate is compared to
that obtained earlier in the framework of the Nambu–Jona-Lasinio model.

DOI: 10.1103/PhysRevD.68.054021 PACS number~s!: 12.39.Ki, 12.39.Fe, 14.20.Dh
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I. INTRODUCTION

It is known that the expectation values of the two-qua

QCD operatorsq̄q give the total number of quarks and a
tiquarks in a hadron under certain reasonable assump
@1,2#. The motivation for studies of the expectation values
the four-quark operators in hadrons is that they carry inf

mation about the correlation ofq̄q pairs. These expectatio
values in nucleons determine the coefficients of the next
leading order operators of deep inelastic scattering@3#. An-
other more reason is the manifestation of such operator
QCD sum rules in nuclear matter@4,5#. The lack of data on
the expectation values of these operators became one o
main obstacles for further development of this approach.

Unfortunately, the calculations of these expectation val
require some model assumptions on the quark structur
the nucleon. As it stands now, the only calculation of t
four-quark condensates in the nucleon is that carried ou
Celenzaet al. @6# for the scalar case in the framework of th
Nambu–Jona-Lasinio~NJL! model @7# under certain addi-
tional assumptions. Also, some constraints on the va
were obtained by Johnson and Kisslinger@8# by analyzing
QCD sum rules for nucleons and isobars.

In this paper we calculate the expectation values of
four-quark condensates in nucleons by using elements o
perturbative chiral quark model~PCQM!. The chiral quark
model, originally suggested in@9#, was fully set up in@10–
12#. In the PCQM the nucleon is treated as a system
relativistic valence quarks moving in an effective static fie
In addition, the valence quarks are supplemented by a
turbative cloud of pseudoscalar mesons as dictated by c
symmetry requirements. In this paper we restrict to the s
plest SU~2! version of the PCQM, which includes onl
pions. To facilitate the evaluation of the four-quark operat
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we resort to previously derived results@11#, such as nucleon
wave function renormalization and self-energy contributio
which are used as an input in the present derivation.
though we do not apply the full perturbative machinery
the PCQM, as laid out in@10#, the present evaluation serve
as a first indication for the values of the four-quark conde
sates.

We calculate the expectation values of the four-quark
erators as the matrix elements of the PCQM nucleon. In g
eral the QCD operatorsq act on the valence and the se
quarks. We approximate the averaging over the vale
quarks by averaging over the PCQM constituent quarks
also approximate the averaging over the sea quarks by a
aging over the pions. In the original formulation of th
PCQM the pions were treated as separate degrees of
dom, without taking into account their quark structure. A
tually, in @11# the sigma-term was calculated in the fram
work of PCQM, with the pions determining the sea-qua
contribution. We shall employ an additional extension of t
PCQM, considering the pions as physical particles with th
quark contents being determined by QCD. In this appro
we therefore obtain the excess of the four-quark opera
expectation value over that of the vacuum in the nucle
volume.

In the following we calculate the expectation values

UXY, f 1f 25^NuTXY, f 1f 2uN& ~1!

of the four-quark operators of light quarks

TXY, f 1f 25~ :q̄f 1aGXqf 1a8q̄f 2bGYqf 2b8: !~daa8dbb82dab8dba8!.

~2!

HereGX, GY are the matrices acting on the Lorentz indice
qf denote QCD quark operators withf standing for the flavor.
©2003 The American Physical Society21-1
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The dots denote the normal ordering of the operato
a,a8,b,b8 represent the color indices. We calculate the c
densates for the basic 434 matrices

GS5I , GPs5g5 , Gm
V5gm , Gm

A5gmg5 ,

Gmn
T 5

i

2
~gmgn2gngm! ~3!

with gm being the Dirac matrices, that is we consider t
scalar, pseudoscalar, vector, pseudovector~axial!, and tensor
cases. We also obtain the results for the mixed conden
USV,du which is important in applications.

These are three types of contributions toUXY, f 1f 2 in our
approach. All four operatorsq can act on the constituen
quarks, providing the termCXY, f 1f 2. Also, four operators can
act on the pions providing the termPXY, f 1f 2. There is also a
possibility that two of the operators act on the constitu
quarks while the other two act on the pions. Denoting the
term asJXY, f 1f 2, we present the expectation values as

UXY, f 1f 25CXY, f 1f 21PXY, f 1f 21JXY, f 1f 2. ~4!

In Appendix A we show how these contributions manife
themselves in the PCQM formalism.

To simplify the notations we introduce

UX, f 1f 25UXX, f 1f 2 ~5!

with a similar convention for the other functions (C,P,J,T)
involved.

While the four-quark condensates are Lorentz scalar
the scalar and pseudoscalar channels, they have a more
plicated structure in the case of the vector and axial chann

Umn
V(A)5aV(A)gmn1bV(A)

pmpn

m2
. ~6!

Here pm is the momentum of the nucleon, whilem denotes
the nucleon mass. Also, in the tensor channel we have

Umn,ab
T 5aTsmn,ab1bTtmn,ab ~7!

with

smn,ab5gmagnb2gmbgna , ~8!

tmn,ab5
1

m2
~pmpagnb1pnpbgma2pmpbgna2pnpagmb!.

We shall denote the values ofaV,A,T andbV,A,T correspond-
ing to the contributionsC, P, andJ by the lower indices, i.e.
aC,P,J

V , etc.

We approximate the averaging of the operatorq̄GXqq̄GYq
over the valence quarks by the expectation values of
products of the constituent quark operatorsQ averaged over
the renormalized constituent quark PCQM states. Due to
normal ordering of the operators they should act on two
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ferent quarks. The expectation value is proportional to
probability to find the two constituent quarks at the sa
space point

E uc~r !u4d3r;
1

4pR3

with R standing for the size of the system of the three co
stituent quarks~quark core radius!, while c is the constituent
quark wave function. The factor 1/4p comes from the four
angular wave functions 1/(4p)1/2 integrated over the solid
angle. Since the PCQM deals with a quark wave funct
c(r ) provided in explicit form, the contributionsCXY, f 1f 2 are
also evaluated explicitly. The effect of the wave functio
renormalization induced by the interaction of the constitu
quarks with the pion provides noticeable corrections in
case of scalar and vector structures only.

The averaging of the operatorsq̄GXqq̄GYq over the sea
quarks is treated as the expectation value of these oper
in pions. The distribution of the pion field is assumed to
that determined by the PCQM.

The pion expectation values where expressed in pa
@13# by using the current algebra technique through the fo
quark expectation values in vacuum. We obtain the exp
sions for PXY, f 1f 2 through these expectation values. How
ever, to obtain the specific numbers, we use the factoriza
approximation for the vacuum expectation values, sugge
first by Shifmanet al. @14#. In the factorization approxima
tion it is assumed that the vacuum states dominate in the
over the intermediate states. While there are indications
this approximation may be violated in some of the chann
@3#, the factorization was advocated recently in@15#. Under
this approximation the expectation valuesPXY, f 1f 2 are ex-
pressed by theq̄q vacuum expectation values which a
known to be@16#

^0uq̄qu0&52
Mp

2 Fp
2

mu1md
~9!

for each of the light flavors withMp andFp being the mass
and the decay constant of the pion, whilemu(d) are the cur-
rent quark masses. Here we adopt the notations accepte
chiral perturbation theory@17#. In Eq. ~9! q stands for theu
or d quark field, and isotopic invariance of the vacuum
assumed. The valuê0uq̄qu0& gives the characteristic size o
the contribution of the pion sea. Thus the contribution of t
constituent quarks is expected to be smaller than that of
sea quarks since (1/4p)u^0uq̄qu0&R3u. 1

5 .
In the ‘‘interference term’’ one of the operatorsq̄GXq acts

on the valence quarks while the otherq̄GYq acts on the sea
quarks. Following our strategy, we approximate the cor
sponding matrix elements by those averaged over the c
stituent quarks and over the PCQM pion field. There
several possibilities to insert this four-quark operator. T
operator can connect the pion with any of the constitu
quarks of the nucleon. This contribution~the ‘‘contact inter-
ference’’! is proportional to^puq̄GYqup& which does not
1-2
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vanish for the scalar case only. Thus, only the contributi
JSV5JVS and JSS have nonzero values which are propo
tional to the expectation value@17#

^puq̄qup&5
Mp

2

mu1md
52

^0uq̄qu0&

Fp
2

. ~10!

However, there is an additional small factor besides the c
acteristic parameter̂0uq̄qu0&. This factor reflects the sma
probability for the pion and the constituent quark to over
at the same space point for a nucleon Fock state describe
the valence quarks and a pion. The interference process
determine aQQp vertex as well, since the pseudovector a
pseudoscalar currents connect the pion and vacuum st
Thus, one can consider the self-energy diagram with on
the PCQM vertices being replaced by the four-quark ope
tor. That would be the first-order diagram in the PCQMpQ
interaction. This ‘‘vertex interference’’ leads to a numerica
larger contribution, except for the case of the scalar-vec
condensate. The neutral pions provide the contribution to
termsJA, f f andJPs, f f of the quarks with the same flavor. Th
charged pions contribute to the condensatesūGAdd̄GAu and
ūGPsdd̄GPsu. Thus, they provide the contributions to all th
structuresJX,ud with coefficients defined by the Fierz tran
form.

Following the general strategy of the PCQM we inclu
only the lowest-order contributions in thepQ interactions.
We also assume that only the ground states of the constit
quarks are included as intermediate states in the self-en
diagrams. This means that the nucleon and delta isobars
are included as intermediate states of the nucleon self-en
This is a standard assumption of PCQM calculations@10,11#.

It was shown in@13# that in the scalar case in the fou
quark pion expectation value a ‘‘disconnected term,’’
which one ofq̄q pairs acts on vacuum, can be singled out
a natural way. This is strongly pronounced in the case of
color-singlet four-quark operatorq̄aqaq̄bqb for which

^puq̄qq̄qup&52^0uq̄qu0&^puq̄qup&1^pu~ q̄qq̄q! intup&.
~11!

The ‘‘internal’’ contribution presented by the second term
the right hand side~rhs! of Eq. ~11! appeared to be about a
order of magnitude smaller than the ‘‘disconnected’’ on
presented by the first term. For the color asymmetric ope
tor determined by Eq.~2! the disconnected terms still pro
vide about34 of the total pion expectation value. This leads
the natural presentation.

PS, f 1f 25Pdis
S, f 1f 21Pint

S, f 1f 2 ~12!

with

Pdis
S,ud5 2

3 @2^0uq̄qu0&^Nu~ q̄q!seauN&# ~13!

for the different flavors, whereuN& represents the fully
dressed nucleon state. The factor2

3 ~it is 5
6 for identical fla-

vors! on the right hand side of Eq.~13! is the weight of the
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colorless combinationq̄aqa in the color asymmetric expec
tation value defined by Eq.~2!. In the case of the scala
condensate the sea quarks provide the main contributio
large part of it is determined by the disconnected term,
lated by Eq.~13! to the sea-quark contribution to thepN
sigma term. The internal contributions, coming mostly fro
the sea quarks, are several times smaller. The expecta
values of the operators with the same flavor (ūGu)2 in the
other channels are also determined mostly by the sea qu
For the mixed-flavor condensateūGud̄Gd the sea-quark
terms and the interference terms provide contributions of
same magnitude in most of the channels. The valence qu
provide a smaller correction. In the case of the scalar-ve
condensatePSV50, and for the neutron, the valence quar
provide the main contribution, while in the proton the inte
ference effects contribute to the same order.

In the calculations carried out below, we use the valu
Fp592.4 MeV for the pion decay constant and the val
mu1md511 MeV for the sum of the light quark masse
Latter value, given in@18#, leads to the conventional valu

^0uq̄qu0&5(2245 MeV)3 at the normalization scale of 1
GeV. This set of values was also used in paper@6#. Note that
in papers@10,11# another value for the sum of the qua
masses has been used, e.g.mu1md514 MeV. This value
was also given in@18# as one of the possible values. Bo
values formu1md are consistent with nowadays experime
tal data@19#.

We present the results for the condensates (ūGXu)2 both
for protons and neutrons. The values of the (d̄GXd)2 conden-
sates are determined by the isotopic invariance relations

^pu~ d̄GXd!2up&5^nu~ ūGXu!2un&,

^nu~ d̄GXd!2un&5^pu~ ūGXu!2up&

while for the mixed-flavor condensates we have

^puūGXud̄GXdup&5^nuūGXud̄GXdun&

except for the pseudoscalar caseGX5GY5g5. In the pseu-
doscalar case an explicit dependence of the interfere
terms on the current quark massesmu,d causes contributions
which break the isotopic invariance. These terms are num
cally small.

The results enable to obtain also values for the cond
satesūGXdd̄GXu. This can be done by using the Fierz tran
form.

We compare the value of the contribution̂Nu(ūu

1d̄d)2uN& with the value obtained in@6# in the framework
of the NJL model under certain additional assumptions. T
values appear to differ by about 70%.

For the sake of simplicity we shall use the wording ‘‘sc
lar,’’ ‘‘pseudoscalar,’’ etc. condensates for the expectat
values of the operators with the repeated Lorentz structu
q̄Gqq̄Gq. Thus the scalar expectation values are rat
scalar-scalar ones, etc.
1-3
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II. CONTRIBUTION OF THE VALENCE QUARKS

In this section we calculate the contribution to the fou
quark expectation values arising from averaging over
system of three valence quarks. Using the results of App
dix A we present this contribution by

CXY, f 1f 25^f0u E d3xqf 1~x!GXqf 1~x!q̄f 2~x!GYqf 2~x!uf0&

~14!

with f0 denoting the nucleon as a bound state of three
lence quarks. Our main assumption here is that the ma
element in the rhs of Eq.~14! is approximated by the matrix
element of the renormalized constituent quark operatorsQr ,
i.e.,

CXY, f 1f 25^f0u E d3xQ̄r , f 1~x!GXQr , f 1~x!Q̄r , f 2~x!GY

3Qr , f 2~x!uf0&. ~15!

The renormalization effects are expected to manif
themselves through small corrections only. As we shall
below, these corrections are of the order of several per
only, except for the scalar and vector structures. Thus,
start with the unrenormalized constituent quark operatorQ
in which the pion cloud is not included. The correspondi
contribution

C° XY, f 1f 25^f0u E d3xQ̄f 1~x!GXQf 1~x!Q̄f 2~x!

3GYQf 2~x!uf0& ~16!

is illustrated by Fig. 1. The constituent quark operators p
vide a nonzero value while acting on different quarks of
f0 system only. This is due to their normal ordering. Th
we find immediately

C° n
XY,uu50 ~17!

for the neutron. Using Eq.~16! we obtain expressions for th
contributions of the constituent quarks through the wa
functionsc i(x). Assuming that the constituent quarksU and
D are described by the same wave functionscu(x)5cd(x)
5c(x), we present the general expressions for the proto

C° p
X,uu5E d3xF~x! ~18!

FIG. 1. The contribution of the valence quarks to the expec
tion values of the four-quark operators. Solid lines denote the
lence quarks, the dark squares denote the four-quark operator.
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F~x!5 P̂c̄~x!GXc~x!c̄~x!GXc~x!. ~19!

Here P̂ stands for the projection on the symmetric spin st
of the two-quark system, while the total antisymmetrizati
is provided by the color variables. For the condens
ūGXud̄GXd we find both for the proton and neutron

C° X,ud52E d3xF~x! ~20!

since there are twoud pairs.
The invariant coefficients of the rhs of Eqs.~6! and ~7!

can be obtained in a specific reference frame. Assumingi and
j to be the three-dimensional indices, corresponding to
four-dimensional indicesm andn, we find in the rest frame
of the nucleon

ac52 1
3 Ci j

XX, f 1f 1d i j , bc5C00
XX, f 1f 12ac ~21!

for the coefficients of Eq.~6!, i.e., for the vector and
pseudovector cases. Denoting the three-dimensional ind
corresponding to the four-dimensional indicesa andb ask
and l, respectively, we obtain in the same frame

ac
T5 1

6 Ci jkl
T,uud ikd j l , bc

T52ac
T2 1

3 d j l C0 j ,0l
T,uu . ~22!

Above equations are true for any constituent quark mod
In the specific case of the PCQM the wave functions of b
U andD constituent quarks are@11#

c~xW !5Ne(2 xW2/2R2)S x

ib
~sW xW !

R
xD ~23!

with the normalization constant

N5@p3/2R3~11 3
2 b2!#21/2 ~24!

andx being the two-component spinor.
The model parameters

b50.39, R5~0.660.05! fm ~25!

are fitted to reproduce the value of the axial coupling co
stant and of the proton charge radius. We will present
numerical values for the mean value ofR50.6 fm.

A straightforward calculation provides for the expectati

valuesC° p
XY,uu in the proton

C° p
S,uu5~12 3

2 b21 15
16 b4!N 2 ~26!

with

N 25
N2

23/2~11 3
2 b2!

~27!

-
-

1-4
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while the value is zero for neutron. For theūud̄d condensate
we get

C° S,ud52~12 3
2 b21 15

16 b4!N 2. ~28!

The details of the calculations for the other structures
presented in Appendix B.

For the structures (ūGXu)2 in the proton we find for the
pseudoscalar case

C° p
Ps,uu52b2N 2, ~29!

while in the vector channel

a° C,p
V 52

2

3
b2N 2, b° C,p

V 5~11 13
6 b21 15

16 b4!N 2, ~30!

and for the pseudovector case

a° C,p
A 52 1

3 ~12 1
2 b21 15

16 b4!N 2, b° C,p
A 52a° C,p

A . ~31!

Note thatb° C
A52a° C

A since the matrix element of the tim
component of the pseudovector operator turns to zero. Th
true for the solution of the Dirac equation in any effecti
field. For the tensor case we get

a° C
T5 1

3 ~11 1
2 b21 15

16 b4!N 2, b° C
T52 1

3 ~11 7
2 b2

1 15
16 b4!N 2. ~32!

Following the previous analysis, these values turn to zero
the neutron.

Turning to the case of different flavors, we find the expe
tation values of the operatorsūGXud̄GXd in a nucleon to be
twice as large as the values of (ūGXu)2 in the proton

C° p
X,ud52C° p

X,uu . ~33!

We also present an example of the condensate for
mixed scalar-vector structureTm

SV,du5d̄dūgmu, which is
needed in applications. In the rest frame of the nucleon o
the time component of the vectorTm survives, providing

C° SV,du52~12 15
16 b4!N 2. ~34!

It is convenient to express the values in ‘‘units’’ of th
value«0

3, defined as

«0
352^0uq̄qu0&, «0.245 MeV. ~35!

To get a feeling for the relative size of the contribution
we present the numerical value

N 251.5031023 GeV3.0.10«0
3 ~36!

which is the result of the straightforward computation of t
rhs of Eq.~27!.

The pQ interactions provide the nonzero values of t
condensatesūGXuūGYu in the neutron. This happens sinc
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the four-quark operators connect the only valenceU quark
with the intermediateU quark of thep2U self-energy loop
of the valenceD quark. The value is

Cn
X,uu522

]S2

]E
C° p

X,uu ~37!

with S2 standing for the contribution ofp2 to the self-
energy of the valence quark with the energyE. The direct
calculation gives]S2/]E520.082.

Now we take into account the changedc of the shape of
the single quark wave functionc(x), caused by renormal
ization @10#

c r~x!5c~x!1dc~x!, dc~x!5L„h~x!1g0…c~x!
~38!

with

L5
dm

2

bR

11 3
2 b2

, h~x!5

1
2 1 21

4 b2

11 3
2 b2

2
x2

R2
.

Heredm,0 is the shift of the effective mass of the co
stituent quark caused by the pion cloud. The numerical v
ues areL522.531022, h(x)51.062x2/R2.

The term containing the functionh(x) provides correc-
tions which do not exceed 3%. This happens due to
strong cancellations of the two terms, composingh(x). We
shall neglect these corrections. The term containing the D
matrix g0 mixes the Lorentz structure of the condensates
provides nonvanishing contributions to the scalar, vector,
scalar-vector expectation values.

Thus, we obtain for renormalized values defined by E
~15!

Cp
S,uu5C° p

S,uu14LC° p
SV,uu1

g
,

CS,ud5C° S,ud12L~C° SV,du1C° SV,ud!
1

g
, ~39!

CSV,du' C° SV,du12LS C° S,udg1b° C
V 1

g D
with g5(12 3

2 b2)/(11 3
2 b2). Thus, the scalar-scalar con

densates are reduced by 16% due to the renormalization
fects. The scalar-vector condensate is reduced by 11%. A
in the vector case we have

aC
V5a° C

V , bC
V5b° C

V~114Lg! ~40!

reducing the value ofb° C
V by about 6%. For the pseudoscala

axial, and tensor structures the corrections are neglig
small and we put

Cp
X, f 1f 25C° p

X, f 1f 2 ~41!

in these cases.
1-5
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III. CONTRIBUTION OF THE SEA QUARKS

Now we calculate the contribution of the sea quarks.
the PCQM the excess of the sea quarks in nucleons ove
QCD vacuum sea inside the nucleon volume is containe
the mesons, coupling to the constituent quarks. In the SU~2!
version of the model, which we assume in this paper, o
the pions are included. In the framework of the PCQM t
contribution is contained in the next-to-leading order of t
model. In other words, it is sufficient to include pion e
change in the one-loop approximation.

The distribution of the pion fieldpa(x) is determined by
the PCQM quark-pion interaction

HI~x!5C̄~x!ig5

S~x!tapa~x!

Fp
C~x! ~42!

where C(x) represents the SU~2! doublet of light quarks,
while S(x) is the effective scalar field.

In the one-loop approximation of the PCQM the pions a
contained in the constituent quark self-energy diagrams
in the diagram describing the pion exchange between
constituent quarks~Fig. 2!. The contribution of the sea
quarks@see Eq.~4!# can be presented as

PXY, f 1f 25(
a

^pauTXY, f 1f 2upa&S ]Sa

]Mp
2

1
]La

]Mp
2 D ~43!

with Sa and La standing for the self-energy and exchan
contributions of the pionspa (a51,2,0). A similar pre-
sentation was actually used in@11# for the calculation of the
sigma term. In that caseT was the scalar quark operatorq̄q.

The rhs of Eq.~43! can be simplified by noticing that in
the PCQM the relation for the total energy shifts caused
the self-energy and exchange diagrams@20#

(
a

La5
10

9 (
a

Sa ~44!

holds also for each piona separately, when limiting single
quark lines to the ground state.

Using Eq.~44! we present the total pion contribution t
the nucleon mass as

S t5~11 10
9 !(

a
Sa.

FIG. 2. The contribution of the sea quarks to the expecta
values of the four-quark operators. The dashed lines represen
pions. Other notations are the same as in Fig. 1. The dark cir
denote the vertices of the pion-quark interaction.
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This leads to

PXY, f 1f 25
3b014b112b2

9

]S t

]Mp
2

~45!

for the proton with

ba5^pauTXY, f 1f 2upa&. ~46!

The coefficients multiplied by the expectation valuesba are
determined by the number of the quarks which can emit
pion pa and by the strength of thepQQ vertex. For ex-
ample, 4b1 means that there are two quarks~these areU
quarks! coupling to ap1, and each of thep1DU vertices
contributes the factorA2, etc.

For the neutron we get

PXY, f 1f 25
3b012b114b2

9

]S t

]Mp
2

. ~47!

The value]S t /]Mp
2 was evaluated earlier in the calculatio

of the sigma term@11#, providing

]S t

]Mp
2

'1.3 GeV21. ~48!

The pion expectation valuesba can be expressed by th
vacuum expectation values of the four-quark operators. T
was done in@13# by using the reduction formula obtained b
Lehmann, Symanzik, and Zimmermann@21#. Due to the par-
tial conservation of the axial current~PCAC! the pion state
vector can be expressed by the vacuum as~see, e.g., Ref.
@22#!

upa&5
1

A2FpMp
2

]mA m5
a ~x!u0&. ~49!

HereA m5
a (x) is the axial current of the light quarks,

A m5
2 ~x!5(

c
d̄c~x!gmg5uc~x! ~50!

with c being the color index.~We shall assume the summa
tion over the colors in all the equations presented belo!
This enables to present the expectation values defined in
~46! by the vacuum matrix elements@13#

ba5
1

Fp
2 ^0uBau0& ~51!

with

Ba5
1

2VE d3xdy0dz0d~x02y0!d~z02x0!

3†Q̄5
a~z0!,@Q5

a~y0!,TXY, f 1f 2~x!#‡. ~52!

n
the
es
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HereV is the normalization volume, and in the double co
mutator occur the axial chargesQ5

a , corresponding to the
axial currentA m5

a (x). For example, in the scalar channel
was found

B652~ ūaubūa8ub81ūaubd̄a8db81d̄ag5ubūa8g5db8!

3~dabda8b82dab8da8b! ~53!

for the operatorTS,uu, averaged over the charged pionsp6.
The total contribution of the pion cloud to theūuūu conden-
sate in theSSchannel—see Eqs.~45!, ~47!—takes the form

PS,uu52
2

3Fp
2 ^0u2ūaubūa8ub81ūaubd̄a8db8

1ūag5ubūb8g5ua81ūag5dbd̄b8g5ua8!u0&

3~daa8dbb82dab8dba8!
]S t

]Mp
2

. ~54!

In @13# the pion expectation values were expressed
those of the vacuum for all channels. Thus similar equati
can be presented for all structures. Since only the vacu
expectation values are involved, we find for the coefficie
in the rhs of Eqs.~6!, ~7!

bp,n
V,A,T50. ~55!

To avoid complicated formulas we shall present the fi
results in the framework of the factorization hypothesis
the vacuum expectation values.

It is convenient to present

daa8dbb82dab8dba85
2

3
daa8dbb82

1

2 (
r

laa8
r lbb8

r ~56!

with lr standing for the SU~3! Gell-Mann matrices normal
ized by the relation Splrlt52drt.

In the factorization approximation we find for quarks
the same flavor

^0uq̄G rqq̄Gsqu0&5 1
16 @SpG rSpGs2

1
3 Sp~G rGs!#~^0uq̄qu0&!2

~57!

for any 434 matricesGs,r acting on Lorentz indices. If the
quarks have different flavors, we come to

^0uq̄iG rqi q̄ jGsqj u0&5 1
16 SpG r SpGs^0uq̄iqi u0&^0uq̄ jqj u0&

~58!

and

^0uq̄iG rqj q̄ jGsqi u0&52 1
48 SpG rGs^0uq̄iqi u0&^0uq̄ jqj u0&.

~59!

For the matricesG̃ r ,s
r 5G r ,sl

r this approximation provides
05402
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^0u(
r

q̄i G̃ r
rqj q̄j G̃s

rqi u0&52
1

9
Sp~G rGs!^0uq̄iqi u0&

3^0uq̄ jqj u0& ~60!

which is true fori 5 j and iÞ j , while

^0u(
r

q̄i G̃ r
rqiq̄j G̃s

rqj u0&50 ~61!

for iÞ j .
In the factorization approximation the contribution of th

sea quarks contains the factor

~^0uūuu0&!2

Fp
2

52
Mp

2

mu1md
^0uūuu0&, ~62!

see Eq.~9!, and we can present

Pp,n
X, f 1f 25

Mp
2

mu1md

]S t

]Mp
2

«0
3Sp,n

X, f 1f 2 . ~63!

Here we denotedPp,n
XX, f 1f 25Pp,n

X, f 1f 2 and the rhs of Eq.~46!
turns to zero forXÞY. The subscript denotes proton or ne
tron.

Using the results of@13#, we find for the same flavors

Sp
S,uu5Sn

S,uu52 16
9 , Sp

Ps,uu5Sn
Ps,uu52 8

9 , ~64!

Sp
V,uu52Sp

A,uu52 2
9 gmn , Sn

V,uu52Sn
A,uu52 2

9 gmn ,

Sp
T,uu5Sn

T,uu52 4
9 smn,ab

with the tensorsmn,ab defined by Eq.~8!.
For the quarks of different flavors we obtain for the pr

ton and neutron

SS,ud52 14
9 , SPs,ud5 2

9 , SV,ud52SA,ud5 2
9 gmn ,

ST,ud52 2
9 smn,ab . ~65!

We now show that in the scalar channel the disconnec
terms are separated in a natural way. We have the resul

Sp,n
S,uu52 5

3 2 1
9 , Sp,n

S,ud52 4
3 2 2

9 . ~66!

As it was shown in@13# the expectation values of th
scalar four-quark operators are dominated by the disc
nected terms with one of theq̄q pairs coming from the
vacuum. This corresponds to the approximation

Sp,n
S,uu5Sdis

uu 52 5
3 , Sp,n

S,ud5Sdis
ud 52 4

3 . ~67!

On the other hand, the factorMp
2 /(mu1md) in the rhs of Eq.

~63! is just the expectation value of the operatorq̄q in the
pion—see Eq.~10!. Then we have
1-7
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Mp
2

mu1md

]S t

]Mp
2

5^puq̄qup&
]S t

]Mp
2

5
1

2
^Nuūu1d̄duN&sea.

~68!

Thus, in the scalar channel there is a contribution of disc
nected terms

Pdis;p,n
S,uu 5 5

6 ~2^0uūuu0&^NuūuuN&sea! ~69!

corresponding to the approximation, expressed by Eq.~67!.
Of course, there is a similar expression forPdis;p,n

S,ud

Pdis;p,n
S,ud 5 2

3 ~^0uūuu0&^Nud̄duN&sea1^0ud̄du0&^NuūuuN&sea!.

~70!
e
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IV. INTERFERENCE TERMS

We now turn to the situation when one ofq̄GXq operators
acts on the constituent quark while the other one acts on
pion. In the one-loop approximation of the PCQM this co
tribution corresponds to the Feynman diagrams illustrated
Fig. 3.

A. Contact interference

The four-quark condensate can connect the pions of
nucleon self-energy loop with the quarks composing
nucleon. The contribution can be presented as
^Nuq̄GXq q̄GYquN&5 (
Q,n,n8

E ^f0uHI ufn ,p&^fnuq̄GXqufn8&^puq̄GYqup&^fn8 ,puHI uf0&

~E02k102En1 i«!~E02k202En81 i«!
Dp~k1!Dp~k2!

d4k1

~2p!4i

d4k2

~2p!4i
~71!
e

e

he
where k1 ,k2 are the four-momenta of the pions,Dp(k)
51/(k22Mp

2 1 i«) is the pion propagator. Recall that w
include intermediate quark states withn5n850 only. The
state vectorsufn& compose the complete set of the qua
states with the energyEn , index 0 corresponds to the groun
state andHI denotes the quark-pion interaction~42!. The
summation is carried out over the quarksQ which compose
the nucleon.

In the quark language this means that the four-quark c
densate can connect the pions with the intermediate qua
the self-energy loop or with another quark. These contri
tions are shown in Figs. 3~a,b!. The corresponding exchang
diagrams are shown in Figs. 3~c,d!. These expectation value
contain the matrix elementŝpuq̄GXqup& and^Quq̄GYquQ&.
The former has a nonvanishing value in the scalar case o
The latter matrix element survives in the scalar and vec
cases only, for a unpolarized nucleon. Thus, only the exp
tation valuesJSS andJSV obtain nonzero values.

The connections of the pionpa with the intermediate
state quarkI a

XY @shown in Fig. 3~a!# and with another quark
Ka

XY @shown in Fig. 3~b!# are tied by the relation

Ka
XY522I a

XY ~72!

for a fixed quark flavor. This relation can be obtained
comparing the results of the integration over the pion ene
in the loops of the diagrams shown in Figs. 3~a,b!.

One can write

I a
XY52^pauq̄GXqupa&E d3zFa~z!c̄~z!GYc~z!F ā~z!

~73!
n-
of
-

ly.
r

c-

y

with

Fa~z!5
1

2Fp
E d3xC̄~x!ig5taC~x!S~x!Dp~x2z!,

~74!

whereC is the SU~2! doublet of the light quarks. In Eq.~74!

Dp~x!5
1

4p

e2mx

x
~75!

is the three-dimensional pion propagator withm5Mp , while

S~x!5M1cx2 ~76!

is the scalar field with the parameters@11#

M5
123b2

2bR
, c5

b

2R3
. ~77!

Parametersb andR already occurred in the definition of th
valence quark wave function of Eq.~23!. Only terms with
the scalar structureGX provide a nonzero value. Also th
integral in the rhs of Eq.~73! does not turn to zero for the
scalar and vector structuresGY only.

The total contribution of such interference terms to t
expectation values of the operatorsq̄qq̄GYq (Y5S,V) can
be expressed by the contributionI 0

SY of the p0U loop to the
self-energy diagram of theU quark—see Eq.~73!,

JSY52 2
3 ~11 10

9 !I 0
SYn ~78!
1-8
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with the factor (11 10
9 ) taking into account the exchang

diagram shown in Fig. 3~c!—Eq. ~44!, while the coefficient
2
3 is the weight of the color-asymmetric state. The facton
takes into account the charge dependence of thepQQ verti-
ces and the number of the corresponding diagrams. We
n520 for the (ūu)2 condensate in the proton, turning ton

57 for the neutron. It isn527 for theūud̄d condensate. Fo
the scalar-vector condensated̄dūgmu we haven520 for the
proton andn57 for the neutron.

Details of the calculation for the valueI 0
SY are given in

Appendix C. Here we present the result. By expressing
pion matrix element by the vacuum one—see Eq.~10!, we
obtain

I 0
SY5CJA

Y^0uq̄qu0& ~79!

with

AY5E
o

` dt

t2
f 2~ t !e2t2wY~ t !, ~80!

while

f ~ t !5
Ap

2
erf~ t !2te2t22

2b2t3

22b2
e2t2. ~81!

FIG. 3. The contribution of the interference term to the exp
tation values of the four-quark operators. The contact interferenc
illustrated by~a!–~d!. The vertex interference is shown in~e!–~f!.
The permutated diagrams are not shown. The notations are the
as in Figs. 1 and 2.
05402
nd

e

Here we use the standard notation erf(x)52/Ap*o
xe2y2

dy
and

wS~ t !512b2t2, wV~ t !511b2t2, ~82!

being caused by the matrix elementsc̄GSc5c̄c and
c̄GVc5c̄g0c. For the coefficientCJ we get

CJ5
Ap

~2pRFp!4

~12 1
2 b2!2

~11 3
2 b2!3

.8.431022. ~83!

The interference terms provide for the scalar condens

Jp
S,uu56.231022«0

3 , Jn
S,uu52.231022«0

3 ,

Jp
S,ud5Jn

S,ud58.431022«0
3 . ~84!

For the operatord̄dūgmu we finally obtain

Jp,m
SV,du59.631022

pm

m
«0

3 , Jn,m
SV,du53.431022

pm

m
«0

3

~85!

where the subscriptsp,n represent the proton and neutro
Jp(n)m

SV 5Jp(n)0
SV dm0 in the nucleon rest frame.

Note that the insertion of the four-quark operator can le
to a charge-exchange pion-quark interaction between
points of emission and absorption of the pion by the const
ent quark. This mechanism is also described by the diag
of Figs. 3~a!–3~d! and provides a contribution to the expe
tation valueūGXdd̄GYu. The charge-exchange matrix ele
ment ^p0ud̄gmuup1&, which is related to the vector part o
the weak decay amplitudep1→p0e1ne , has a nonzero
value. However, the contribution is suppressed by an a
tional small factormq /Mp when compared to the expecta
tion values^pauq̄qupa&. When calculated in the approac
described in Sec. III the matrix elements^p0ud̄gmuup1& and

^p0ud̄uup1& vanish. Nonvanishing values are provided
corrections of the relative orderMp to the PCAC relation
expressed by Eq.~49!.

B. Vertex interference

Another type of interference term, illustrated by Fig
3~e,f!, is due to the PCAC relation@22#

^0uq̄grg5taqupa~k!&5 iA2Fpkr , ~86!

where the pseudovector current connects the pion
vacuum states. The equations of motion lead to similar re
tions for the matrix elements of the pseudoscalar oper
between the pion and vacuum states. In particular

^0uūg5dup2&52
iA2Fpq2

mu1md
, ~87!

-
is
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whereq2 denotes the square of the four-momentum of
pion. If one of the matrices acting on Lorentz indices, i.
GY, has a pseudovector or a pseudoscalar structure, ther
nonvanishing matrix element

^f0uq̄GZtaqq̄GYtaquf0 ,pa&

5^f0uq̄GZtaquf0&^0uq̄GYtaqupa& ~88!
h
ce
s

th
be
e
y
y

h
gy

u-
te

to
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e
,
is a

for any matrixGZ and

^f0uq̄GZtaquf0&5E d3xC̄~x!GZtaC~x!. ~89!

The sum over color is carried out in both matrix elements
the rhs of Eq.~88!.

Replacing the PCQM vertex in the nucleon self-energy
the vertex defined by Eq.~88! we obtain@see Figs. 3~e,f!#
^Nuq̄GXtaqq̄GYtaquN&5(
Q,n

E S ^f0uHI ufn ;pa&^fnuq̄GXtaquf0&^p
auq̄GYtaqu0&

E02k02En1 i«

1
^0uq̄GXtaqupa&^f0uq̄GYtaqufn&^fn ;pauHI uf0&

E02k02En1 i«
DDp~k!

d4k

~2p!4i
. ~90!
he
n-
-

due
The rhs of Eq.~90! does not turn to zero only when bot
GX andGY are either pseudovector or pseudoscalar matri
These cases must be treated separately. We shall use the
dard PCQM approach@10,20# where the sum overn in Eq.
~90! is restricted to the quark ground state.

1. Pseudovector case

We start with the case where both matricesGX andGY in
Eq. ~90! are the pseudovector ones. The manifestation of
vertex interference in the self-energy diagrams is descri
by a certain tensorI rs with vanishing time components—se
Appendix B, Eq.~B11!. Thus the integration over the energ
k0 in the rhs of Eq.~90! can be carried out in the same wa
as for the self-energy PCQM diagrams@20#. We present the
contribution as

I rs5(
a

I rs
a , ~91!

I rs
a 5E d3z@Fa~z!C̄~z!gsg5taC~z!

3^0uq̄~z!grg5taq~z!upa&1Fa~z!C̄~z!gsg5taC~z!

3^pauq̄~z!grg5taq~z!u0&#.

The two terms correspond to the manifestation of the mec
nism in the two vertices of the one-loop self-ener
diagram—see Fig. 3~e!. The functionsFa(z) are determined
by Eq. ~74!.

Since the operatorq̄t0q does not change flavor, the ne
tral pions p0 contribute to the pseudovector condensa
(ūGAu)2 and ūGAud̄GAd only. The charged pionsp6 pro-
vide contributions to the expectation values of the opera
ūgrg5dd̄gsg5u. Thus the charged pions give contributio
to all the structuresūGXud̄GYd with the weights being de
termined by the Fierz transform.
s.
tan-

e
d

a-

s

rs

The tensor structure

I rs
a 5CI

aS grs2
prps

m2 D ~92!

is determined by setting the time components to zero. T
coefficientsCI

a5 1
3 I rs

a grs can be expressed through the co
tributions SQ

a @Fig. 3~e!# of each quark to the total self
energy of the nucleon.

We start with the interference in thep1UD vertex. Put-
ting GX5gsg5 , GY5grg5 in Eq. ~88! and projecting it on
the quark states treated in momentum space, we obtain

^0ud̄grg5uup1&^Uuūgsg5duD&grs

5A2FpE d3k8

~2p!3
c̄~kW8!grkrig5c~kW82kW !

52A2FpE d3k8

~2p!3
c̄~kW8!ig5S~k!c~kW82kW ! ~93!

with S(k) standing for the scalar effective field, whilekW8
denotes the momentum of the quark. The last equality is
to the PCQM equation of motion. The rhs of Eq.~93! is 2Fp

2

times the PCQM quark-pion vertex—Eq.~42!.
Being substituted to Eq.~91! for I 61, Eq. ~93! provides

the valueCI
65 4

3 Fp
2 SQ

6 with SQ
6 denoting the contributions

of the single quarks in the self-energiesS6. One can also
obtain thatCI

05 4
3 Fp

2 SQ
0 . To show this, note that

ūGu5 1
2 q̄G~t01I !q ~94!

~with I standing for the 232 unit matrix! for any 434 ma-
trix G acting on Lorentz indices. Sincê0uq̄GIqup0&50,
one finds
1-10
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1

A2
^0uūgrg5uup0&5

iA2Fpkr

2
~95!

with the further procedure as in the charged case.
All the contributions can be expressed by the value

CI
05

4

3
Fp

2 S0, ~96!

which can be presented as

CI
052

A2

6p2

1

~11 3
2 b2!2

1

R3E0

`

dy

y4F12
b2

2
~11y2!G2

y21
m2R2

2

e2y2
.

~97!

In the chiral limit m250 we obtain

CI
052

A2

24p3/2

12 5
2 b21 31

16 b4

~11 3
2 b2!2

1

R3
52

4.731023

R3

521.1431022«0
3 ~98!

while for m5Mp we have

CI
0521.031022«0

3 . ~99!

This provides

Jmn
A,uu5 2

3 nu~11 10
9 !dmndrsI rs

0 , ~100!

where the factor (11 10
9 ) also includes the exchange diagra

shown in Fig. 3~f!—Eq. ~44!—while the factor 2
3 is the

weight of the color asymmetric state. Thus we finally hav

Jmn
A,uu521.431022nu«0

3S gmn2
pmpn

m2 D . ~101!

Turning to condensates of quarks with different flavo
we set for the contribution of the neutral pions to t
pseudovector structure

J0mn
A,ud5~2nu2nd!~11 10

9 ! 2
3 dmrdnsI rs

0

54.231022«0
3S gmn2

pmpn

m2 D . ~102!

The charged pions provide a direct contribution to t
expectation values of the operatorsūgrg5dd̄gsg5u

5(c,gūcgrg5dcd̄ggsg5ug with c and g standing for the
color indices. Their contribution to the expectation values
the operatorsūaGXua8d̄bGYdb8(daa8dbb82dab8dba8), which
we are looking for, is determined by the Fierz transform

ua
a8d̄b

b52
1

12 (
A

Gab
A d̄GAuda8b2

1

64 (
Ak

Gab
A la8b

k d̄GAlku.

~103!
05402
,

f

In our case the pseudovector term with the diagonal co
structure contributes only to

ūGXud̄GYd52 1
4 3 2

3 d̄grg5uūGXgrg5GYd1•••.
~104!

Here the summation over colors is carried out, providing
factor 2 2

3 . The dots denote the terms which do not contr
ute.

Following the previous analysis we must separate
pseudovector componentgsg5 in the operatorGXgrg5GY in
the rhs of Eq.~104!. The interference terms can be express
by the tensor

I rs
C 52~11 10

9 !~nu1nd!I rs
0 . ~105!

The tensorI rs
C is obtained by the summation of the rhs

Eq. ~91! over the charged pion states and over the constitu
quarks of the nucleon and by inclusion of the exchan
terms. The coefficientCI

0 is given by Eq.~96!. The contribu-
tions are

JS,ud52 1
6 grsI rs

C , JPs,ud52JS,ud, ~106!

Jmn
V,ud5 1

3 dmrdnsI rs
C 2 1

6 gmngrsI rs
C ,

Jmn
A,ud5J0mn

A,ud1 1
3 dmrdnsI rs

C 2 1
6 gmngrsI rs

C ,

Jmn,ab
T,ud 52 1

24 Sp~smngrsabgs!I rs
C .

2. Pseudoscalar case

Now we consider the pseudoscalar case, i.e.,GX5GY

5g5 in Eq. ~90!. If the charged pions are exchanged, t
matrix elements of the quark operators between the vacu
and the pion states are given by Eq.~87! which respects the
isospin symmetry. However, the contribution of the neut
pion exchange contains the matrix elements

^0uūg5uup0&52
iF pq2

2mu
, ^0ud̄g5dup0&5

iF pq2

2md
~107!

which depend on the quark massesmu,d separately. This
breaks formuÞmd the isospin symmetry explicitly.

After the integration overk0 in the rhs of Eq.~90! ~see
Appendix D! we can present the contribution in a form sim
lar to the pseudovector case—Eq.~91!,

Ĩ 5(
a

Ĩ a ~108!

Ĩ a5E d3z@Fa~z!c̄~z!g5tac~z!^0uq̄~z!g5taq~z!upa&

1Fa~z!c̄~z!g5c~z!^pauq̄~z!g5taq~z!u0&#,
1-11
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where we must putq25mp
2 in the matrix elements deter

mined by Eqs.~87!, ~108!. The expectation values can b
expressed by the termĨ 1 of Eq. ~108! corresponding to the
p1 meson

Ĩ 15
2Mp

2

mu1md
E d3xd3yS~x!c̄~x!g5c~x!Dp~x2y!

3c̄~y!g5c~y! ~109!

with Dp and S defined by Eqs.~75!, ~76!. Numerically we
get

Ĩ 157.031022«0
3 . ~110!

Proceeding in the same way as in the pseudovector c
we find for the contributions of the interference terms co
taining the neutralp0 mesons to (ūg5u)2 and ūg5ud̄g5d
condensates

J0
Ps,uu5 2

3 ~11 10
9 !nuĨ u ~111!

and

J0
Ps,ud52 2

3 ~11 10
9 !~nuĨ d1ndĨ u! ~112!

with

Ĩ u,d5
Ĩ 1~mu1md!

4mu,d
. ~113!

Using mu54 MeV, md57 MeV we find

Ĩ u54.831022«0
3 , Ĩ d52.831022«0

3 .

The chargedp6 mesons contribute to the expectation valu
of the operatorsūg5dd̄g5u providing thus the contributions
to all basic structures defined by Eq.~3!. They contain the
factor

Ĩ C5~11 10
9 !~nu1nd! Ĩ 150.44«0

3 , ~114!

for

JS,ud5 1
6 Ĩ C , JPs,ud5JS,ud1J0

Ps,ud, ~115!

Jmn
V,ud52 1

6 gmn Ĩ C , Jmn
A,ud5 1

6 gmn Ĩ C ,

Jmn,ab
T,ud 5 2

3 smn,ab Ĩ C .

In more sophisticated models of the pions@23# the quarks
obtain large effective masses. Thus the termsI a will become
much smaller.

3. Mixed case

If one of the matrices in the rhs of Eq.~88! is a pseudo-
scalar (g5) while the other one describes the pseudovec
(grg5) we find contributions to the condensates with mix
Dirac structuresq̄GXqq̄GYq. If GX5grg5 ,GY5g5 the ex-
05402
se,
-

s

r

pectation value turns to zero when we neglect the poss
intermediate state excitations of the constituent quarks—
Eq. ~B11!. The terms withGY5grg5 ,GX5g5 provide non-
zero values. When we focus on the expectation va
d̄dūgmu ~which is d̄dūg0u in the rest frame of the nucleon!
among the mixed condensates, we must calculate the ex
tation value of the operators ūg5dd̄g0g5u and
ūg0g5dd̄g5u. Contrary to the pseudoscalar caseGX5GY

5g5, such terms do not contain the large factorMp /(mu
1md)'12—see Eq.~109!, providing thus a minor contribu-
tion ;1023«0

3.

C. Total contribution of the interference

Now we can present the total contribution of the interfe
ence terms. For the quarks of the same flavor they are
sented in Eqs.~84!, ~101!, ~111!, and

Jp
S,uu50.06«0

3 , Jn
S,uu50.02«0

3 , ~116!

JPs,uu50.07nu«0
3 , Jmn

A,uu520.014nuS gmn2
pmpn

m2 D «0
3

~117!

turning to zero for the other structures. Recall thatnu stands
for a number ofu valence quarks in a nucleon. For th
quarks of different flavors Eqs.~84!, ~106!, ~115! provide for
the proton

JS,ud50.22«0
3 , JPs,ud520.28«0

3 , ~118!

Jmn
V,ud5S 20.05gmn10.04

pmpn

m2 D «0
3 , Jmn

A,ud50.14gmn«0
3 ,

Jmn,ab
T,ud 5~0.25smn,ab20.08tmn,ab!«0

3 .

Of course, the values presented by Eq.~118! coincide for
the proton and neutron except for the pseudoscalar c
where

Jp
Ps,ud2Jn

Ps,ud50.03«0
3 . ~119!

Also the value for the (ūg5u)2 condensate for the proto
differs from the value (d̄g5d)2 for the neutron by

~J0
Ps,uu!p2~J0

Ps,dd!n50.06«0
3 . ~120!

These characteristics obtain nonzero values due to the
plicit dependence on the current quark masses. As we n
earlier, these effects would be much smaller if more soph
ticated models for the pions are used@23#.

Finally, for the scalar-vector condensates we obtain
using Eq.~85!

Jp,m
SV,du59.631022

pm

m
«0

3 , Jn,m
SV,du53.431022

pm

m
«0

3 .
1-12
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V. THE VALUES OF THE FOUR-QUARK CONDENSATES

Now we sum the partial contributions obtained in the p
vious sections. We present the results in units of the cha
teristic scale«0

352^0uq̄qu0& @see Eq.~35!#. The partial con-
tributions to the expectation values defined by Eq.~1! are
due to the constituent quarks~denoted byC and shown in
Fig. 1!, to the pion cloud~denoted byP and shown by Fig.
2!, and to the interference terms~denoted byJ and shown in
Fig. 3!. This is expressed by Eq.~4!. We do not present the
values of the parameters which are negligibly small in o
scale.

A. Scalar channel

Recall that in the scalar case there are specific disc
nected terms in which one of the productsq̄q acts on the
QCD vacuum. Such terms emerge from the contributions
the pion cloud. Thus in the scalar case the values of
four-quark condensates can be presented as the sum o
disconnected termsUdis and the internal termsUint ,

Up(n)5Udis;p(n)1Uint;p(n) ~121!

with the indicesp,n denoting the proton or neutron. For th
other structures the disconnected terms vanish.

We start by presenting the results for the disconnec
terms. Using Eqs.~63! and ~67! we obtain

Udis
S,uu5Pdis

S,uu523.83«0
3 ~122!

for both proton and neutron.
Consider now the internal contributions. For the sca

case they are expressed by Eqs.~26!, ~37!, ~39!, ~63!, ~64!,
~116!

Uint;p
S,uu5Cp

S,uu1Pint;p
S,uu1Jp

S,uu520.11«0
3 , ~123!

Uint;n
S,uu5Cn

S,uu1Pint;n
S,uu1Jn

S,uu520.23«0
3 ,

with the partial contribution

Cp
S,uu50.08«0

3 , Cn
S,uu50.01«0

3 ,

Pint;p
S,uu5Pint;n

S,uu520.25«0
3 , ~124!

Jp
S,uu50.06«0

3 , Jn
S,uu50.02«0

3 .

The total values ofUp,n
S,uu ~121! are the sums of Eq.~122! and

~123!

Up
S,uu523.94«0

3 , Un
S,uu524.05«0

3 . ~125!

In this case the sea quarks mainly contribute, the rest com
from the direct action of the four-quark operator on the co
stituent quarks and from the interference terms.

Considering the mixed-flavor condensatesūud̄d, we ob-
tain for the disconnected terms presented by Eq.~70!

Udis
S,ud5Pdis

S,ud523.06«0
3 ~126!
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for both proton and neutron. The internal terms are expres
by Eqs.~28!, ~39!, ~63!, ~66! and Eq.~118!:

CS,ud50.16«0
3 , Pint

S,ud520.51«0
3 , JS,ud50.22«0

3 ,
~127!

Uint
S,ud5CS,ud1Pint

S,ud1JS,ud520.13«0
3 ,

Up
S,ud5Un

S,ud5Udis
S,ud1Uint

S,ud523.19«0
3 . ~128!

There are no disconnected terms in the other channels,
U5Uint .

B. Scalar-vector channel

For this case there is no contribution if all the four quar
belong to the sea. They contribute through the interfere
determined by Eq.~85! while the constituent quark contribu
tion is given by Eqs.~34!, ~39!

CSV,du50.18«0
3 ~129!

for both proton and neutron. The interference terms are,
~85!,

Jp
SV,du50.10«0

3 , Jn
SV,du50.03«0

3 .

Thus Eqs.~34!, ~39!, and ~85! provide for the mixed
scalar-vector condensated̄dūg0u

Up
SV,du5CSV,du1Jp

SV,du50.28«0
3 , ~130!

Un
SV,du5CSV,du1Jn

SV,du50.21«0
3 .

C. Pseudoscalar channel

For the pseudoscalar case we find by using Eqs.~29!,
~41!, ~63!, ~64!, ~117!

Up
Ps,uu5CPs,uu1PPs,ud1Jp

Ps,uu521.91«0
3 , ~131!

Un
Ps,uu5CPs,uu1PPs,ud1Jn

Ps,uu521.96«0
3 .

The partial values are

Cp
Ps,uu520.02«0

3 , Pp
Ps,uu5Pn

Ps,uu522.03«0
3 ,

Jp
Ps,uu50.14«0

3 , Jn
Ps,uu50.07«0

3.

The numerical values are determined mostly by the con
butionPPs,uu of the sea quarks. In the case of the condens
ūg5ud̄g5d we obtain from Eqs.~29!, ~33!, ~41!, ~63!, ~65!,
and ~118!

CPs,ud520.03«0
3 , PPs,ud50.51«0

3 , ~132!

Jp
Ps,ud520.28«0

3 , Jn
Ps,ud520.31«0

3

composing, following Eq.~4!

Up
Ps,ud5Cp

Ps,ud1Pp
Ps,ud1Jp

Ps,ud50.20«0
3 , ~133!
1-13
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Un
Ps,ud5Cn

Ps,ud1Pn
Ps,ud1Jn

Ps,ud50.17«0
3 .

The difference in the valuesUp
Ps,ud andUn

Ps,ud is caused
by the explicit dependence on the current quark masses—
Eq. ~119!.

For the vector, axial, and tensor structures we present
values of the coefficientsaV(A,T) andbV(A,T). Recall that we
introduced a notation where the partial contributions of
valence and sea quarks and of the interference terms
denoted by the subscriptsC,P, andJ @see the text below Eq
~8!#. The second index labels the specific nucleon. Thus,aP,p

V

denotes the contribution of the sea quarks to the param
aV of the proton, etc. The notationsap(n)

X andbp(n)
X , labeling

the vectorV, axialA and tensorT cases, are kept for the tota
contributions to these parameters for the proton~neutron!.
We omit the subscript index if the values coincide for bo
nucleons. Note that in all the channels the sea quarks do
contribute to the parameterbp,n , i.e.,

bP,p(n)
X 50 ~134!

for all composition of flavors. Recall also that the interfe
ence does not contribute to the expectation values of
operator of the same flavors in the vector and tensor cas
see Sec. IV.

D. Vector channel

By using Eqs.~30!, ~40!, ~63!, ~64! we obtain

aC,p
V,uu520.01«0

3 , aP,p
V,uu5aP,n

V,uu520.51«0
3 , ~135!

ap
V,uu5aC,p

V,uu1aP,p
V,uu520.52«0

3 , an
V,uu5aP,n

V,uu520.51«0
3

while

bp
V,uu5bC,p

V,uu50.13«0
3 , bn

V,uu5bC,n
V,uu50.02«0

3 .
~136!

For the mixed-flavor condensate we find Eqs.~30!, ~33!,
~40!, ~63!, ~65!, ~118!,

aC
V,ud520.02«0

3 , aP
V,ud50.51«0

3 , aJ
V,ud520.05«0

3 ,
~137!

aV,ud5aC
V,ud1aP

V,ud1aJ
V,ud50.44«0

3 ,

which are the same for the proton and neutron, as well as
parameters

bC
V,ud50.25«0

3 , bJ
V,ud50.04«0

3 , ~138!

bV,ud5bC
V,ud1bJ

V,ud50.29«0
3 .

E. Pseudovector channel

Here we find by using Eqs.~31!, ~41!, ~63!, ~64!, ~117!

aC,p
A,uu520.03«0

3 , aP,p
A,uu5aP,n

A,uu50.51«0
3 , ~139!
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aJ,p
A,uu520.03«0

3 , aJ,n
A,uu520.01«0

3 ,

ap
A,uu5aC,p

A,uu1aP,p
A,uu1aJ,p

A,uu50.45«0
3 ,

an
A,uu5aC,n

A,uu1aP,n
A,uu1aJ,n

A,uu50.50«0
3

and

bC,p
A,uu50.03«0

3 , bJ,p
A,uu50.03«0

3 , bJ,n
A,uu50.01«0

3 ,
~140!

bp
A,uu5bC,p

A,uu1bJ,p
A,uu50.06«0

3 ,

bn
A,uu5bJ,n

A,uu50.01«0
3 .

For the expectation value of the operatorūGAud̄GAd we
get with Eqs.~31!, ~33!, ~41!, ~63!, ~64!, ~118!

aC
A,ud520.06«0

3 , aP
A,ud520.51«0

3 , aJ
A,ud50.14«0

3 ,
~141!

aA,ud5aC
A,ud1aP

A,ud1aJ
A,ud520.43«0

3

and

bA,ud5bC
A,ud50.06«0

3 . ~142!

F. Tensor channel

Using Eqs.~32!, ~41!, ~63!, ~64! we obtain

aC,p
T,uu50.04«0

3 , aP,p
T,uu5aP,n

T,uu521.02«0
3 , ~143!

ap
T,uu5aC,p

T,uu1aP,p
T,uu520.98«0

3 ,

an
T,uu5aC,n

T,uu1aP,n
T,uu521.02«0

3

while

bp
T,uu5bC,p

T,uu520.05«0
3 . ~144!

For the mixed-flavor operator, Eqs.~32!, ~33!, ~41!, ~63!,
~65!, ~118!

aC
T,ud50.07«0

3 , aP
T,ud520.51«0

3 , aJ
T,ud50.25«0

3 ,
~145!

aT,ud5aC
T,ud1aP

T,ud1aJ
T,ud520.19«0

3

while

bC
T,ud520.10«0

3 , bJ
T,ud520.08«0

3 , ~146!

bT,ud5bC
T,ud1bJ

T,ud520.18«0
3 .

The final results of this section are presented in a comp
form in Tables I and II~keeping the values larger than 0.1
modulus!. The numbers are given in units of«0

3

51.4731022 GeV3, see Eq.~35!. The valuesUX, f 1f 2 are
1-14
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UN
X, f 1f 25^Nu:q̄f 1aGXqf 1a8q̄f 2bGXqf 2b8:uN&

3~daa8dbb82dab8da8b!

with N5p,n—see Eqs.~1!,~2!,~6!,~7!.

VI. SUMMARY

We calculated the expectation values of the four-qu
QCD operatorsq̄GXqq̄GYq in nucleons for all basic Lorentz
structures and for compositions of the light quark flavors

We employed previously derived results of the pertur
tive chiral quark model~PCQM! which treats the nucleon a
a system of three valence quarks surrounded by a pion cl
We approximate the averaging of the product of opera
over the valence quark by the matrix elements of the c
stituent quark operators over the PCQM constituent qua
We present the expectation values of the operators actin
the sea quarks by the expectation values of QCD operato
pions. The intensity of the pion field is determined by t
PCQM model result.

The expectation values of the scalar and pseudoscala
erators are Lorentz scalars. In the other channels they ha
more complicated tensor structure being determined by
two parametersaV(A,T) and bV(A,T)—Eqs. ~6!,~7!. For the
quark operators with the same flavor, e.g.,q̄GXqq̄GXq, the
scalar and pseudoscalar condensates, as well as the p
etersaV(A,T) for the other structures are dominated by t
contribution of the sea quarks. The averaging of fo
U-quark operators over the valence quarks in the neu
provide zero values in the lowest order of PCQM. This o
curs because the operatorsūu should act on different quark
while there is only oneU quark in the neutron. In the case o
the proton both the constituent quark and the interfere
terms provide minor corrections of the order of several p
cent to the main contribution of the sea quarks. In the c
trary, the sea quarks do not contribute to the coefficie
bV(A,T). In the vector and tensor channels the valuesbV,T for

TABLE I. The nucleon expectation values of the four-qua
operators in the scalar-scalar, scalar-vector, and pseudosc
pseudoscalar channels.

X Up
X,uu Un

X,uu Up
X,ud Un

X,ud

S 23.9 24.1 23.2 23.2
SV 0.3 0.3
Ps 21.9 22.0 0.2 0.2

TABLE II. The values of the parameters for the four-quark e
pectation values in the vector-vector, axial-axial, and tensor-te
channels.

X ap
X,uu bp

X,uu an
X,uu bn

X,uu ap
X,ud bp

X,ud an
X,ud bn

X,ud

V 20.5 0.1 20.5 0 0.4 0.3 0.4 0.3
A 0.5 0.1 0.5 0 20.4 0.1 20.4 0.1
T 21.0 20.1 21.0 0 20.2 20.2 20.2 20.2
05402
k

-

d.
rs
-
s.
on
in

p-
e a
e

am-

r
n
-

e
r-
-

ts

the proton are determined by the contribution of the const
ent quarks.

In the case of the mixed-flavor condensateūGXud̄GXd the
role of the vertex interference increases due to the large c
binatorial factor. These terms become as important as
sea-quark terms in most of the channels. The parame
bV(A,T) are determined mostly by the contributions of t
constituent quarks.

The contributions of the sea quarks are expressed by
expectation values of the four-quark operators in pions. L
ter values are in turn expressed by the expectation value
the four-quark operators in vacuum@13#. The specific nu-
merical values are obtained by using the vacuum factor
tion approximations@14#. Thus the contribution of the se
quarks is expressed by the well known vacuum expecta
value ^0uq̄qu0&.

In the case of the scalar-vector condensated̄dūg0u there
is no contribution coming from the pions only. Averagin
over the neutron is dominated by the contribution of t
constituent quarks. In the proton the interference and
constituent quark terms are of the same order of magnitu

We can draw some conclusions on the chiral propertie
the expectation values which we study in the present pa
The contribution of the sea quarks has the same explicit
pendence on the pion massMp as the contribution of the
sea-quarks to the expectation value^Nuq̄quN&. The latter ex-
pectation value, which is proportional toMp

2 times the pion-
nucleons term, is known to depend strongly onMp . On the
contrary, our interference terms exhibit only a weak dep
dence onMp . The valence quark contribution does not co
tain an explicit dependence onMp .

Due to the explicit dependence of the vertex interferen
terms on the quark current masses, we have the isotopic s
metry breaking effects in the pseudoscalar channel. The
solute magnitude of this effect is numerically small with se
eral units of the value 1022«0

3 for our scale«0. The effect is
much smaller if the quarks composing pions are assume
have the constituent~but not current! masses@23#.

In the special case of the scalar condensate the expe
tion values are dominated by ‘‘disconnected terms’’ in whi
one of the quark operators acts ‘‘inside’’ the nucleon wh
the other one acts on the QCD vacuum. This contribut
comes from the sea quarks, reflecting the pion structure@13#.

Note that a nucleon expectation value is the excess of
density of the quark operator products over the vacuum d
sity, integrated over the volume of the nucleon

^Nuq̄GXqq̄GXquN&5^Nu E d3x@ q̄~x!GXq~x!q̄~x!GXq~x!

2^0uq̄GXqq̄GXqu0&#uN&. ~147!

Of course, the first term in the rhs of Eq.~147! is positive.
However, the whole rhs of Eq.~147! can be negative. This is
why some of the expectation values run negative.

In an earlier calculation@6# the scalar expectation valu

^Nu(ūu1d̄d)2uN& was determined in the framework of th
Nambu–Jona-Lasinio model@7# under certain additional as

lar-

or
1-15
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sumptions. Actually, the expectation values of the col
singlet four-quark operatorsq̄aqaq̄bqb have been obtained in
@6#. Thus, to compare to the results of@6# we must extend our
analysis to such operators as well.

In Ref. @6# the expectation value is presented as the co
position of the contribution of the constituent quarksAD and
of s and p mesons,As and Ap . Our contribution of the
constituent quarks appears to be several times smaller
the value ofAD . The large discrepancy is not surprisin
since the conception of the constituent quarks is quite dif
ent in the two models. The meson contributionAs1Ap of
@6# could be compared with the internal sea-quark contri
tion of the present model, containing the expectation va
which is presented by the second term of the rhs of Eq.~11!.
The corresponding contributionP̂ ~with the ‘‘hat’’ sign label-
ing the color singlet operator! can be obtained by using th
formula obtained in@13#. The resultP̂5 2

3 (]S t /]Mp
2 )(«0

6/
Fp

2 ) should be compared to the sumAs1Ap of @6#. We find

P̂51.53«0
352.331022 GeV3 while As1Ap53.6

31022 GeV3. The total values in the two models areAs

1Ap1AD in @6# and the sumÛ5 P̂1Ĉ1 Ĵ in our approach.
We obtainĈ5 1

2 C; Ĵ5 3
2 J where the additional termĴ domi-

nates in the sumĈ1 Ĵ. The NJL value isAs1Ap1AD

56.431022 GeV3 while we obtain Û52.5«0
353.7

31022 GeV3. The results provided by the two approach
differ by a factor of about 1.7. One of the possible reas
for the discrepancy is that some of the contributions have
been accounted for in both approaches.
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APPENDIX A

Here we show how the contributions to the four-qua
expectation values, obtained in the paper, manifest th
selves with the help of the PCQM formalism. As an exam
we consider the operatorūuūu averaged over the proton. I
the framework of the PCQM the nucleon is a system of th
constituent quarks, where the bare three-quark state is re
malized bypN interactions. Thus, the physical proton sta
uN& is expressed as

uN&5T expS 2 i :E
2`

o

dtHI
r~ t !: D uf0&,

whereuf0& is the state of three valence quarks andHI
r is the

renormalized Hamiltonian of the interaction between
constituent quark and the pions, which includes the coun
terms.

The expectation valuêNu(ūu)2uN& can then be written as
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^Nu~ ūu!2uN&5Z2^f0u~ ūu!2uf0&12^f0u~ ūu!2uf0&

3^f0uHI
r uf0 ,p&^f0 ,puHI

r uf0&

1^f0uHI
r uf0 ,p&^f0 ,pu~ ūu!2uf0 ,p&

3^f0 ,puHI
r uf0&. ~A1!

HereZ511]S/]E is the renormalization factor, whileS is
the sum of the self-energies of the constituent quarks w
energyE.

In the next step we present each pair of the operatorsūu
as the sum of operators acting on the valence and the
quarks

ūu5~ ūu!v1~ ūu!s . ~A2!

Thus

^f0u~ ūu!suf0&50, ^pu~ ūu!vup&50

and Eq.~A1! takes the form

^Nu~ ūu!2uN&5S 112
]S

]ED ^f0u~ ūu!v
2uf0&12^f0u~ ūu!2uf0&

3^f0uHI uf0 ,p&^f0 ,puHI uf0&

1^f0uHI uf0 ,p&^f0u~ ūu!v
2uf0&

3^f0 ,puHI uf0&1^f0uHI uf0 ,p&

3^pu~ ūu!s
2up&^f0 ,puHI uf0&

12^f0uHI uf0 ,p&^f0u~ ūu!vuf0&

3^pu~ ūu!sup&^f0 ,puHI uf0&. ~A3!

Since we include the quark-pion interactions to lowe
order, the renormalization effects are taken into accoun
the first term of the rhs of Eq.~A3! only. We put Z251
12]S/]E.

The rhs of Eq.~A3! can be simplified due to some can
cellations. The second term in the rhs describes the s
energy insertions. These contributions are canceled by
counterterms of the PCQM Lagrangian@10#. Another cancel-
lation occurs between the third term and the part of the fi
term

2
]S

]E
^f0u~ ūu!v

2uf0&1^f0uHI uf0 ,p&^f0u~ ūu!v
2uf0&

3^f0 ,puHI uf0 &50. ~A4!

This can be obtained in a straightforward way. The last eq
tion is a rather standard cancellation of the radiative corr
tion by the renormalization factor. Note that the two terms
the rhs of Eq.~A4! do not cancel totally for the operator
(ūu)2 averaged over the neutron—see Sec. II.

Thus, Eq.~A1! takes the form
1-16
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^Nu~ ūu!2uN&5^f0u~ ūu!v
2uf0&1^f0uHI uf0 ,p&^pu~ ūu!s

2up&

3^f0 ,puHI uf0&12^f0uHI uf0 ,p&

3^f0u~ ūu!vuf0&^pu~ ūu!sup&

3^f0 ,puHI uf0&. ~A5!

Now we can identify the terms in the rhs of Eq.~A5!. The
first term corresponds to the contributions of the constitu
quarks. The second term describes the contribution of the
quarks shown in Fig. 2. The third term presents the inter
ence effects with one of theūu pairs coming from pions
while another one comes from the constituent quark. T
latter can be the same as that in the matrix element of
interactionHI or the other one. These terms are shown
Figs. 3~a!–3~d!. A cancellation similar to Eq.~A4! takes
place for all the operators (ūGXu)2 in the proton, although in
the general case the operator depends on the spin varia
However, the spin dependence manifests itself through
operator (sW IsW II ) with I and II denoting the two quarks
Since the color wave function is asymmetric, the two qua
compose the spin-symmetric state being at the same s
point. Thus, the two-quark spin wave functionux I ,II & is the
eigenfunction of the operator (sW IsW II ) with (sW IsW II )ux I ,II &
5ux I ,II &. Hence, the four-quark expectation value can
separated as a factor and the cancellation takes place as
as in the scalar case. Similar analysis can be carried ou
the operators of the general formq̄GXqq̄GYq.

In the special case of the axial and pseudoscalar opera
there can be the interference effects in the first order of
pQ interaction. This happens because the matrix elem

^0uq̄GXqup& have nonzero values in these cases. Thus,
operators q̄GXqq̄GXq determine a pQQ vertex

^Quq̄GXqq̄GXquQ,p&. This causes the vertex interferen
contributions

^Nuq̄GXqq̄GXquN& intr f

5^f0uHI uf0 ,p&^f0 ,puq̄GXqq̄GXquf0&

1^f0uq̄GXqq̄GXquf0 ,p&^f0 ,puHI uf0&

~A6!

with X labeling an axial or pseudoscalar. Such terms
shown in Figs. 3~e,f!.

In the rhs of Eq.~A6! we have

^f0 ,puq̄GXqq̄GXquf0&5^puq̄GXqu0&^f0uq̄GXquf0&
~A7!

^f0uq̄GXq q̄GXquf0 ,p&5^0uq̄GXqup&^f0uq̄GXquf0&.

We assume that the matrix elements of the QCD opera
(q̄q)v

2 over f0 are approximated by the matrix elements
the renormalized PCQM constituent quark operators, i.e.

^f0u~ q̄q!v
2uf0&5^f0u~Q̄rQr !2uf0& ~A8!
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in the first terms of the rhs of Eqs.~A3! and ~A5!. The
renormalization@10# means that the shape of the constitue
quark wave function is modified by the influence of the pi
cloud. Also, we approximate the matrix eleme

^f0u(q̄q)vuf0&5^f0uQ̄Quf0& in the third term of the rhs of
Eq. ~A5!.

APPENDIX B

Except for the scalar case, the matrix element between
two-quark states depends on the spin orientation, contain
the factor (sW IsW II ) with I and II denoting the two quarks
Since the color wave function is asymmetric, the two qua
compose the spin-symmetric state when being at the s
space point. Thus we must put

^x I ,II u~sW IsW II !ux I ,II &51 ~B1!

for the value of the spin operator (sW IsW II ) averaged over the
spin two-quark wave functionx I ,II of the quarksI and II .

For the scalar case we find immediately

F~x!5g~x!S 12b2
x2

R2D 2

~B2!

with F(x) defined by Eq.~19!, while g(x)5e22x2/R2
N4.

This provides

Cint
S,uu5N 2~12 3

2 b21 15
16 b4! ~B3!

for the proton, withN defined by Eq.~27!. For the pseudo-
scalar case we get

F~x!524b2g~x!
~sW IxW !~sW II xW !

R2
~B4!

leading to

Cint
Ps,uu52N 2b2. ~B5!

For the vector and pseudovector structures we can fin
the rest frame of the nucleon

aC
V(A)52 1

3 Ci j
V(A)d i j ~B6!

with i and j being the space indices, corresponding to
four-dimensional indicesm andn. A direct calculation pro-
vides for the vector case

Fi j 54b2g~x!
x2

R2

1

3
~d i j ~sW IsW II !2s i

Is j
I I !, ~B7!

leading to

aC
V5N 2~2 2

3 b2!. ~B8!

To determine the coefficientbC
V , we calculate the time com

ponents
1-17
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F005g~x!S 11b2
x2

R2D 2

~B9!

and, sinceC005aC
V1bC

V , we find

bC
V5N 2~11 13

6 b21 15
16 b4!. ~B10!

For the pseudovector case notice that the time com
nents turn to zero. We introduce the notation

k5S x

ib
~sW xW !

R
xD

for the bispinor entering the wave function—Eq.~23!. We
obtain

k̄g0g5k50. ~B11!

Thus

aC
A1bC

A50. ~B12!

As to the value ofaA, it can be calculated by using Eq.~B6!.
In the pseudovector case we get

k̄g ig5k5s i1b2
~sW xW !s i~sW xW !

R2
. ~B13!

By using the properties of the Pauli matrices one finds

~sW xW !s i~sW xW !52xi~sW xW !2x2s i . ~B14!

Thus

Fi j ~x!5g~x!S s i
I1b2

2xi~sW IxW !2s i
Ix2

R2 D
3S s j

I I 1b2
2xj~sW II xW !2s j

I I x2

R2 D ~B15!

leading to

aC
A5N 2~2 1

3 1 1
6 b22 5

16 b4!. ~B16!

Finally, in the tensor case we find for the space com
nents

k̄s i j k5« i jkS sk2b2
~sW xW !sk~sW xW !

R2 D ~B17!

and the functionf can be obtained by using Eq.~B14!. For
the space-time components we have

k̄s0 jk522b
xj

R
~B18!

and
05402
o-

-

F0 j ,0k5
4

3
b2g2~x!

x2

R2
d jk ~B19!

with the further procedure described in the main text.

APPENDIX C

In order to calculate the valueI 0
SY introduced by Eq.~78!,

we must calculate the functionF0(z)—Eq. ~74!. For theu
quark it takes the form

F0~z!52
N2

FpR
bE d3xx* ~sW xW !xS~x!Dp~x2z!F2~x!,

~C1!

changing the sign for thed quark. We present the pion propa
gator ~75! as

Dp~x2z!5E d3k

~2p!3

eikW (xW2zW)e2 ixWaW

k21m2
, ~a50!. ~C2!

The factore2 i (xWaW )(a50) is introduced in order to simplify
the calculations by expressing

xWDp~x2z!5 i¹WaDp~x2z!. ~C3!

We obtain, by doing the integral overx,

F~z!52
p3/2

2

N2bR4

Fp
x* ~sW ¹Wb!x„AT1~z!1BT2~z!…

~b50! ~C4!

with A5M1 5
2 cR2, B52 1

4 cR4, while c and R are deter-
mined by Eqs.~25!, ~77! and

T1~z!5E d3k

~2p!3

e2 ikW (zW2bW )2(1/4)k2R2

k21m2
, ~C5!

T2~z!5E d3k

~2p!3

e2 ikW (zW2bW )2(1/4)k2R2

k21m2
k2. ~C6!

We can evaluate the rhs of Eqs.~C5!, ~C6! by presenting

1

k21m2
5E

o

`

dae2a(k21m2), ~C7!

leading to

T1~z!5E
o

`

daE d3k

~2p!3
eikW (zW2bW )2~1/4! k2R22a(k21m2),

~C8!

T2~z!5
1

p3/2

1

R3
e(zW2bW )2/R2

2m2T1~z!. ~C9!
1-18
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Further calculations can be simplified by assuming
chiral limit m250. The integral in the rhs of Eq.~C8! is
dominated by the values ofz2 close to2

3 R2. Thus, the inte-
gral overk2 is determined byk2; 3

2 1/R2, while the integral
over a is dominated bya; 2

3 R2. Hence, the factoram2 in
the power of the exponent in the rhs of Eq.~C8! is about
0.12. SinceI 0

SY provides a small correction only, this make
the calculation of this value in the chiral limitm250 reason-
able.

Calculation of the integrals overk and overa @by the

substitutiont5( 1
4 R21a)21/2] leads to Eqs.~79!–~83! of the

text.

APPENDIX D

The integrals over the time componentk0 in the rhs of Eq.
~90! take the form
s

g

hy

ys

.G

hn

05402
e
X5E dk0

2p i

q2

q22Mp
2 1 i«

1

E02k02En1 i«
~D1!

with q25k0
22kW2. We can presentX5X11X2 with

X15Mp
2 E dk0

2p i

1

q22Mp
2 1 i«

1

E02k02En1 i«
, ~D2!

X25E dk0

2p i

1

E02k02En1 i«
. ~D3!

The integralX2 can be expressed through the contribution
the pole in the upper half-plane of the complex variablek0.
This corresponds to the negative-energy solutions of
Dirac equation. Such terms are neglected in the framew
of the PCQM. Hence, we putX5X1, leading to Eq.~109!.
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