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Determining g using BÁ\DKÁ with multibody D decays
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We propose a method for determiningg usingB6→DK6 decays followed by a multibodyD decay, such as
D→KSp2p1, D→KSK2K1, andD→KSp2p1p0. The main advantages of the method are that it uses only
Cabibbo allowedD decays, and that large strong phases are expected due to the presence of resonances. Since
no knowledge about the resonance structure is needed,g can be extracted without any hadronic uncertainty.
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I. INTRODUCTION

Theoretically, the cleanest way of determining the ang

g5arg~2VudVub* /VcdVcb* ! ~1!

is to utilize the interference between theb→cūs and b

→uc̄s decay amplitudes@1–12#. Because these transition
involve only distinct quark flavors, there are no penguin co
tributions to these decays. In the original idea of Gronau
Wyler ~GW! @3# the B6→DCPK6 decay modes are used
whereDCP represents aD meson which decays into aCP
eigenstate. The dependence ong arises from the interferenc
between theB6→D0K6 andB6→D̄0K6 decay amplitudes
The main advantage of the GW method is that, in princip
the hadronic parameters can be cleanly extracted from d
by measuring theB6→D0K6 andB6→D̄0K6 decay rates.

In practice, however, measuringg in this way is not an
easy task. Because of the values of the Cabibbo-Kobaya
Maskawa~CKM! coefficients and color suppression, the r
tio between the two interfering amplitudesr B @see Eq.~4!# is
expected to be small, of order 10%–20%. This reduces
sensitivity tog, which is roughly proportional to the magn
tude of the smaller amplitude. In addition, if the stro
phases vanish, measuringg makes use of terms of orderr B

2 .
In contrast, if a large strong phase is involved in the interf
ence, there is a sensitivity tog at orderr B with most meth-
ods. Thus, in general, having large interfering amplitud
with large relative strong phases is a favorable situation.

Since the hadronic parameters are not yet known, it is
not clear which of the proposed methods is more sensitive
addition, all the methods are expected to be statistically l
ited. It is therefore important to make use of all modes a
methods, as well as to try to find new methods. Any n
method that is based on ‘‘unused’’ decay channels increa
the total statistics. Moreover, many of the analyses are
sitive to common hadronic parameters, for example,r B .
Combining them will increase the sensitivity of the measu
ment by more than just the increase in statistics.

Here we study the possibility to useB6→DK6, followed
by a multibodyD decay, in order to cleanly determineg.
While this idea was already discussed in@5#, most of our
results and applications are new. For the sake of concr
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ness, we concentrate on theD→KSp2p1 decay mode. The
advantage of using such decay chains is threefold. First,
expects large strong phases due to the presence of
nances. Second, only Cabibbo allowedD decay modes are
needed. Third, the final state involves only charged partic
which have a higher reconstruction efficiency and low
background than neutrals. The price one has to pay is th
Dalitz plot analysis of the data is needed. We describe how
do the Dalitz plot analysis in a model independent way, a
explore the advantages gained by introducing verifia
model dependence. The final balance between the advan
and disadvantages depends on yet-to-be-determined had
parameters and experimental considerations.

II. MODEL INDEPENDENT DETERMINATION OF g

As we shall show in this section, to perform a mod
independent determination of the angleg one needs to mea
sure the two CP-conjugate decay modesB6→DK6

→(KSp2p1)DK6 and to perform a Dalitz plot analysis o
the KSp2p1 final state originating from the intermediateD

meson.~In the following discussion we neglectD0-D̄0 mix-
ing, which is a good approximation in the context of th
standard model. See Appendix A for details.!

Let us first focus on the cascade decay

B2→DK2→~KSp2p1!DK2 ~2!

and define the amplitudes

A~B2→D0K2![AB, ~3!

A~B2→D̄0K2![ABr Bei (dB2g). ~4!

The same definitions apply to the amplitudes for theCP
conjugate cascadeB1→DK1→(KSp1p2)DK1, with the
change of weak phase signg→2g in Eq. ~4!. Since we have
set the strong phase ofAB to zero by convention,dB is the
difference of strong phases between the two amplitudes.
the CKM elements, the usual convention of the weak pha
has been used.~The deviation of the weak phase from2g
has been neglected, as it is suppressed by the factorl4;2
31023, with l being the sine of the Cabibbo angle.! The
value of uABu is known from the measurement of theB2
©2003 The American Physical Society18-1
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→D0K2 decay width using flavor specific decays ofD0 and
the precision of its determination is expected to further i
prove @13#. The amplitudeA(B2→D̄0K2) is color sup-
pressed and cannot be determined from experiment in
way @4#. The color suppression together with the experim
tal values of the ratio of the relevant CKM elements leads
the theoretical expectationr B;0.1–0.2~see the recent dis
cussion in@11#!.

For the three-bodyD meson decay we define

AD~s12,s13![A12,13e
id12,13

[A„D0→KS~p1!p2~p2!p1~p3!…

5A„D̄0→KS~p1!p1~p2!p2~p3!…, ~5!

wheresi j 5(pi1pj )
2, andp1 ,p2 ,p3 are the momenta of the

KS ,p2,p1, respectively. We also set the magnitudeA12,13
>0, such thatd12,13 can vary between 0 and 2p. In the last
equality theCP symmetry of the strong interaction togeth
with the fact that the final state is a spin zero state has b
used. With the above definitions, the amplitude for the c
cade decay is

A„B2→~KSp2p1!DK2
…

5ABPD„AD~s12,s13!1r Bei (dB2g)AD~s13,s12!…,

~6!

wherePD is theD meson propagator. Next, we write dow
the expression for the reduced partial decay width:

dĜ„B2→~KSp2p1!DK2
…5$A12,13

2 1r B
2A13,12

2

12r B Re@AD~s12,s13!AD* ~s13,s12!e
2 i (dB2g)#%dp,

~7!

wheredp denotes the phase space variables, and we use
extremely accurate narrow width approximation for theD
meson propagator.

In general, there is no symmetry between the t
arguments ofAD in Eq. ~6!, and thus in the rates over th
Dalitz plot. A symmetry would be present if, for instanc
the three-bodyD decay proceeded only throughr-like reso-
nances. We emphasize, however, that the prod
AD(s12,s13)AD* (s13,s12) in the interference term in Eq.~7! is
symmetric under the exchanges12↔s13 followed by com-
plex conjugation. This fact is used to simplify the analysi

The moduli of theD decay amplitudeA12,13 can be mea-
sured from the Dalitz plot of theD0→KSp2p1 decay. To
perform this measurement the flavor of the decaying neu
D meson has to be tagged. This can be best achieve
using the charge of the soft pion in the decayD* 1

→D0p1. However, the phased12,13 of the D meson decay
amplitude is not measurable without further model dep
dent assumptions. The cosine of the relevant phase differ
may be measured at a charm factory~see Sec. III!. If the
three-body decayD0→KSp2p1 is assumed to be resonan
dominated, the Dalitz plot can be fitted to a sum of Bre
Wigner functions, determining also the relative phases of
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resonant amplitudes. This is further discussed in Sec.
Here we assume that no charm factory data are available
develop the formalism without any model dependent
sumptions.

Using the trigonometric relation cos(a1b)5cosacosb
2sinasinb, the last term of Eq.~7! can be written as

Re@AD~s12,s13!AD* ~s13,s12!e
2 i (dB2g)#

5A12,13A13,12@cos~d12,132d13,12!cos~dB2g!

1sin~d12,132d13,12!sin~dB2g!#. ~8!

Obviously, to compare with the data, an integration over
least some part of the Dalitz plot has to be performed.
therefore partition the Dalitz plot inton bins and define

ci[E
i
dpA12,13A13,12cos~d12,132d13,12!, ~9a!

si[E
i
dpA12,13A13,12sin~d12,132d13,12!, ~9b!

Ti[E
i
dpA12,13

2 , ~9c!

where the integrals are done over the phase space of thi th
bin. The variablesci and si contain differences of strong
phases and are therefore unknowns in the analysis. The
ablesTi , on the other hand, can be measured from the fla
taggedD decays as discussed above, and are assumed
known inputs into the analysis.

Due to the symmetry of the interference term, it is conv
nient to use pairs of bins that are placed symmetrically ab
the 12↔13 line, as shown in Fig. 1. Consider an even,n
52k, number of bins. Thek bins lying below the symmetry
axis are denoted by the indexi, while the remaining bins are

0.5 1 1.5 2 2.5 3
s12

0.5

1

1.5

2

2.5

3
s13

FIG. 1. The partitions of the Dalitz plot as discussed in the te
The symmetry axis is the dashed line. On the axes we haves12

5mKsp
2

2 ands135mKsp
1

2 in GeV2.
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indexed with ī . The ī th bin is obtained by mirroring thei th
bin over the axis of symmetry. The variablesci ,si of the i th
bin are related to the variables of theī th bin by

c ī 5ci , s ī 52si , ~10!

while there is no relation betweenTi andTī . Note that had
one used 12↔13 symmetric bins centered on the symme
axis, one would have hadsi50.

Together with the information available from theB1 de-
cay, we arrive at a set of 4k equations:

Ĝ i
2[E

i
dĜ„B2→~KSp2p1!DK2

…

5Ti1r B
2Tī 12r B@cos~dB2g!ci1sin~dB2g!si #,

~11a!

Ĝ ī
2

[E
ī
dĜ„B2→~KSp2p1!DK2

…

5Tī 1r B
2Ti12r B@cos~dB2g!ci2sin~dB2g!si #,

~11b!

Ĝ i
1[E

i
dĜ„B1→~KSp2p1!DK1

…

5Tī 1r B
2Ti12r B@cos~dB1g!ci2sin~dB1g!si #,

~11c!

Ĝ ī
1

[E
ī
dĜ„B1→~KSp2p1!DK1

…

5Ti1r B
2Tī 12r B@cos~dB1g!ci1sin~dB1g!si #.

~11d!

These equations are related to each other through 12↔13
and/or g↔2g exchanges. All in all, there are 2k13 un-
knowns in Eq.~11!,

ci , si , r B , dB , g, ~12!

so that the 4k relations~11! are solvable fork>2. In other
words, a partition of theD meson Dalitz plot into four or
more bins allows for the determination ofg without hadronic
uncertainties. This is our main result.

Alternatively to this binning, one can use a partition of t
Dalitz plot into k bins which are symmetric under 12↔13.
For that case,si50 and the set of 4k equations~11! reduces
to 2k relations@the first two and the last two equations
~11! are the same in this case#. Then, there are justk13
unknowns to be solved for, which is possible fork>3.
While such binning may be needed due to low statistics
has several disadvantages, which are further discussed
low.

When ci50 or si50 for all i, some equations becom
degenerate andg cannot be extracted. However, due to res
nances, we do not expect this to be the case. Degeneracy
05401
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occurs ifdB50. In this case,g can still be extracted if some
of the ci and/orsi are independently measured, as discus
in the following section.

The optimal partition of the Dalitz plot as well as th
number of bins is to be determined once the analysis is do
Some of the considerations that enter this choice are as
lows. First, one would like to have as many small bins
possible, in order thatci andsi do not average out to sma
numbers. Second, the bins have to be large enough that
are significantly more events than bins. Otherwise there
be more unknowns than observables. There are also ex
mental considerations, such as optimal parametrization
backgrounds and reconstruction efficiency.

III. IMPROVED MEASUREMENT OF ci AND si

So far, we have used theB decay sample to obtain all th
unknowns, includingci andsi , which are parameters of th
charm system. We now discuss ways to make use of h
statistics charm decays to improve the measurement of t
parameters, or obtain them independently. Doing so will
duce the number of unknowns that need to be determi
from the relatively low-statisticsB sample, thereby reducing
the error in the measurement ofg.

The first improvement in the measurement is obtained
making use of the large sample of taggedD decays, identi-
fied in the decayD* 1→D0p1, at theB factories. So far we
have assumed only that we use these data to determineTi . In
fact, they can also be used to bound the unknownsci andsi
defined in Eq.~9!:

usi u,uci u<E
i
dpA12,13A13,12<ATiTī . ~13!

This bound will help decrease the error in the determinat
of g, with an especially significant effect when, due to lo
statistics in each bin,ci and si are determined with large
errors.

Next, we show that theci can be independently measure
at a charm factory@14–16#. This is done by running the
machine at thec(3770) resonance, which decays into aDD̄
pair. If one D meson is detected in aCP eigenstate decay
mode, it tags the otherD as an eigenstate of the oppositeCP
eigenvalue. The amplitude and partial decay width for t
state to decay into the final state of interest are

A„D6
0 →KS~p1!p2~p2!p1~p3!…

5
1

A2
@AD~s12,s13!6AD~s13,s12!#,

dG„D6
0 →KS~p1!p2~p2!p1~p3!…

5
1

2
~A12,13

2 1A13,12
2 !6A12,13A13,12

3cos~d12,132d13,12!dp, ~14!
8-3
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where we definedD6
0 [(D06D̄0)/A2. With these relations

one readily obtains

ci5
1

2 F E
i
dG„D1

0 →KS~p1!p2~p2!p1~p3!…

2E
i
dG„D2

0 →KS~p1!p2~p2!p1~p3!…G . ~15!

As stated above, obtaining this independent measuremen
duces the error in the measurement ofg by removingk of the
2k13 unknowns.

In addition, if one of theD mesons decays into a non-CP
eigenstate, we are sensitive to thesi variables as well. Con-
sider, for instance, ac(3770) decaying into aD,D̄ pair, of
which one decays intoKSp1p2 and the other decays int
some general stateg. The partial decay width correspondin
to the i th bin of theKSp1p2 Dalitz plot and thej th bin of
the g final state’s phase space is

G i , j}TiTj̄
g
1Tī Tj

g22~cicj
g1sisj

g!, ~16!

whereTj
g ,cj

g ,sj
g are defined as in Eq.~9!. In particular, if one

choosesg5KSp1p2 and j 5 i ~or j 5 ī ) one measuressi
2 .

If, on the other hand,g is a CP even ~odd! eigenstate,sj
g

50, Tj
g5Tj̄

g
56cj

g , and Eq.~16! reduces to Eq.~15!.
We can further improve the measurement by incorpo

ing more relations betweenci andsi . To do this, one takes
each bini and further divides it intoni sub-bins, such that the
quantitiesA12,13, cos(d12,132d13,12), and sin(d12,132d13,12)
do not change significantly within each sub-bini 8. Naively,
this statement appears to introduce model dependenc
practice, however, the high statistics in the taggedD sample
and the charm factoryc(3770) sample allow its verification
up to a statistical error, which can be measured and pro
gated to the final measurement ofg.

Given this condition, Eq.~9a! may be written as

ci5(
i 8

ci 85(
i 8

Ai 8Ai 8 cos~d i 82d i 8!Dpi 8

5(
i 8

ATi 8Ti 8 cos~d i 82d i 8!, ~17!

where thei 8th sub-bin is the 12↔13 mirror image of thei 8th
sub-bin,Ai 8 and d i 8 are the values ofA12,13 and d12,13 on
sub-bini 8, taken to be constant throughout the sub-bin, a
Dpi 8 is the area of sub-bini 8. Analogously to Eq.~9c!, we
have defined the quantitiesTi 85A12,13

2 Dpi 8 , which are mea-
sured using the taggedD sample. Theci 8’s are assumed to b
measured at the charm factory, applying Eq.~15! to the sub-
bin i 8. Similarly, Eq.~9b! becomes

si5(
i 8

ATi 8Ti 8 sin~d i 82d i 8!5(
i 8

6ATi 8Ti 82ci 8
2 .

~18!
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Equation ~18! removes thek unknownssi , and replaces
them with the twofold ambiguity associated with the sign
the square root. Thus, the best approach is to have the s
of si determined by the fit, while constraining their absolu
values to satisfy Eq.~18!. Doing so will reduce the ‘‘strain’’
on theB decay sample, reducing the error ong.

Another option for removing the dependence onsi is to
use bins centered symmetrically about the 12↔13 line, mak-
ing si vanish, as discussed after Eq.~10!. In this case, both
the number of unknowns and the number of observab
~bins! is reduced byk. By contrast, using Eqs.~16! and~18!
introduces new information from the independent taggedD
sample, and is therefore preferred. Doing so also prese
the sin(dB2g) terms in Eq.~11!, which help resolve discrete
ambiguities~see@7# and Sec. V!.

IV. ASSUMING BREIT-WIGNER DEPENDENCE

If the functional dependence of both the moduli and t
phases of theD0 meson decay amplitudesAD(s12,s13) were
known, then the analysis would be simplified. There wou
be only three variables,r B ,dB , andg, that need to be fitted
to the reduced partial decay widths in Eq.~7!. A plausible
assumption about their forms, which is also supported
experimental data@17–19#, is that a significant part of the
three-bodyD0→KSp2p1 decay proceeds via resonance
These include decay transitions of the formD0→KSr0

→KSp2p1 or D0→K* 2(892)p1→KSp2p1, as well as
decays through higher resonances, e.g.,f 0(980), f 2(1270),
or f 0(1370), inducing r-like transitions, or K0* (1430),
which induces aK* (892)-like transition.

It is important to stress that these assumptions can
tested. By making use of the high statistics taggedD sample,
one can test that the assumed shapes of the resonance
consistent with the data. While the error introduced by us
the Breit-Wigner shapes is theoretical, it is expected to
much smaller than the statistical error in the measuremen
g. It will become a problem only when theB sample is large
enough to provide a precision measurement ofg. By then
the taggedD sample will have increased as well, allowin
even more precise tests of these assumptions, as well a
proving the precision of the methods presented in Sec. I

The decay amplitude can then be fitted to a sum of Br
Wigner functions and a constant term. Following the no
tions of Ref.@20# we write

AD~s12,s13!5A„D0→KS~p1!p2~p2!p1~p3!…

5a0eid01(
r

are
idrAr~s12,s13!, ~19!

where the first term corresponds to the nonresonant term
the second to the resonant contributions. The Breit-Wig
function is defined as

Ar~s12,s13!5 JMr3FBW
r , ~20!

where r represent a specific resonance in either
KS(p1)p2(p2), KS(p1)p1(p3), or p2(p2)p1(p3), chan-
8-4
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nel. JMr is the term that accounts for the angular dep
dence. It depends on the spinJ of the resonance. For ex
ample, 0Mr51 and 1Mr522kW1•kW3. Here kW1 ,kW3 are,
respectively, the three-momenta of one of the particles or
nating from the resonance and of the remaining particle
measured in the rest frame of the two resonating parti
@20#. FBW

r corresponds to the relativistic Breit-Wigner fun
tion and is given by

FBW
r ~s!5

1

s2Mr
21 iM rG r~As!

, ~21!

whereMr is the mass of ther th resonance andG r(As) de-
notes the mass dependent width. The argument ofFBW

r is s12

@s13,s23# for a KS(p1)p2(p2) @KS(p1)p1(p3),
p2(p2)p1(p3)] resonance. One can find detailed expre
sions for all the functions mentioned above in Ref.@20#.

One of the strong phasesd i in the ansatz~19! can be put
to zero, while others are fitted to the experimental data
gether with the amplitudesai . The best option is to fit the
Dalitz plot of taggedD decays, as was done a decade ago
the ARGUS and E687 Collaborations@17,18# and recently by
the CLEO Collaboration@19#. The obtained functional form
of AD(s12,s13) can then be fed into Eq.~7!, which is then
fitted to the Dalitz plot of theB6→(KSp2p1)DK6 decay
with r B , dB , andg left as free parameters. In Appendix
we provide a formula for the latter case, where only th
resonances are included in the analysis.

V. DISCUSSION

The observablesĜ i
6 defined in Eq.~11! can be used to

look experimentally for directCP violation. Explicitly,

aCP
i [Ĝ i

22Ĝ ī
1

54r B sing@ci sindB2si cosdB#,

aCP
ī [Ĝ ī

2
2Ĝ i

154r B sing@ci sindB1si cosdB#. ~22!

It is manifest that finiteaCP requires nonvanishing stron
and weak phases. The first terms in the brackets, in Eq.~22!
depend on sindB . This is the same dependence as for tw
body D decays intoCP eigenstates. In the second term
which depend on cosdB , the required strong phase aris
from the D decay amplitudes. Due to the resonances,
expect this strong phase to be large. Therefore, it may be
direct CP violation can be established in this mode ev
before the full analysis to measureg is conducted. With
more data,g can be extracted assuming Breit-Wigner res
nances~cf. Sec. IV!. Eventually, a model independent extra
tion of g can be done~cf. Secs. II and III!.

The method proposed above for the model independ
measurement ofg involves a fourfold ambiguity in the ex
tracted value. The set of equations~11! are invariant under
each of the two discrete transformations:
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Pp[$dB→dB1p,g→g1p%,

P2[$dB→2dB ,g→2g,si→2si%. ~23!

We note that if all the bins used are symmetric und
12↔13, the absence of the sin(dB2g) terms in Eq.~11! in-
troduces a new ambiguity transformation,Pex[g→dB ,dB
→g. The discrete transformationPp is a symmetry of the
amplitude~6! and is thus an irreducible uncertainty of th
method. It can be lifted if the sign of either cosdB or sindB is
known. The ambiguity due toP2 can be resolved if the sign
of sindB is known or if the sign ofsi can be determined in a
least some part of the Dalitz plot. The latter can be done
fitting a part of the Dalitz plot to Breit-Wigner functions. W
emphasize that only the sign of the phase of the resona
amplitude is required, and thus we can safely use a Br
Wigner form for this purpose.

The r B suppression present in the scheme outlined ab
can be somewhat lifted if the cascade decayB2→DXs

2

→(KSp2p1)DXs
2 is used@6,11#. Here Xs

2 is a multibody
hadronic state with an odd number of kaons~examples of
such modes areK2p2p1, K2p0, and KSp2p0). Unlike
theB2→D̄0K2 decay, these modes have color-allowed co
tributions. This lifts the color suppression inr B , while the
mild suppression due to the CKM matrix elements remai
The major difference compared with the case of the tw
body B2 decay is that nowr B and dB are functions of the
B→DXs

2 decay phase space. Therefore, the experime
analysis has to deal with two Dalitz plots, one describingB
→DXs

2 and the other describing theD→KSp2p1 decay. In
Appendix C the necessary formalism that applies to this c
is outlined. Note that the above mentioned treatment
multibodyB decays also applies to quasi two-bodyB decays
involving a resonance, such asB→DK* .

In addition to using differentB modes, statistics may b
increased by employing variousD decay modes as well. An
interesting possibility is the Cabibbo allowedD
→KSp2p1p0 decay. It comes with an even larger branc
ing ratio than theD→KSp2p1 decay. In addition, it has
many intermediate resonances contributing to the gre
varying decay amplitude, which is what is needed for t
extraction ofg. The disadvantages of this mode are the lo
reconstruction efficiency of thep0, as well as the binning
difficulties introduced by the higher dimensionality of th
four-body phase space. The formalism of Sec. II applies
this mode as well, but now the partition of the four-bod
phase space is meant in Eq.~11!. In the equivalent of Eq.~5!,
this mode has an extra minus sign, since we have introdu
a newCP-odd state, thep0. The final set of equations is the
obtained from Eq.~11! by replacingr B→2r B . The Cabibbo
allowed modeD→K2K1KS may also be used for the ex
traction of g, as can the Cabibbo suppressed decays
K2K1p0, p2p1p0, andKSK1p2.

We note that use of our formalism is needed in order
measureg with ~almost! flavor eigenstate multibody decay
such asD→K2p1p0 and D→K2p1p2p1, using the
method of @4#, if one does not wish to make assumptio
8-5
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about specific resonances in the decay, as was done in@5#.
Here, the important interference is between the Cabibbo

lowedD decay and the doubly Cabibbo suppressedD̄ decay.
Due to a strong phase different between these two am
tudes, every multibodyD decay mode~or bin in the phase
space of the mode! of this type introduces two unknownsci
andsi . As a result, these modes are not sufficient to meas
g without assuming resonances in the decays. However,
can be used in combination with additionalD decay modes,
such as the ones proposed here orCP eigenstate modes. In
that case, one has enough observables to determine a
unknowns, and the flavor eigenstate modes contribute to
total measurement ofg.

While we concentrated on chargedB decays, the Dalitz
plot analysis presented here can also be applied to
tagging decays of neutralB mesons@8#. It is also straightfor-
ward to apply it to cases where time dependentCP asymme-
tries are measured@2#.

The sensitivity tog is roughly proportional to the smalle
of the two interfering amplitudes. Assuming that the on
two small parameters arer B andl, our method is sensitive
to g at O(r B). However, the method is sensitive tog only in
parts of the Dalitz plot. The highest sensitivity is in regio
with two or more overlapping resonances. The sensitivity
the proposed method is therefore of orderO(r Bj), wherej2

is the fraction of events that are in the interesting region
the Dalitz plot. This is to be compared with the sensitivity
the GW method, which isO(r Bl) @10#. One can see that th
sensitivity of our method is comparable to that of the G
method even ifj2 is as small as 0.05. While a precise me
surement ofj has not been conducted yet, a rough estim
gives j2;0.1. We also note that the Cabibbo allow
branching fraction will result in a relatively easier expe
mental analysis, due to the large signal-to-background ra

A crucial point of our method is that it uses interferen
between two Cabibbo allowedD decay amplitudes. This is
against the common intuition, which suggests that we m
have al2 suppression for such interference to take place
we need a final state that is common to bothD and D̄.
Specifically, one typically requires one Cabibbo allowed d
cay and another that is doubly Cabibbo suppressed, or
decays that are singly Cabibbo suppressed. To overcome
preconception, our method makes use ofK0-K̄0 mixing
~which is also the case for the two-bodyD→KSp0 decay!,
plus the existence of overlapping resonances, which are
tained by Cabibbo allowedD0 andD̄0 decays. In addition, it
is important that the hadronic three-bodyD meson decays
have a widely changing amplitude over the Dalitz pl
which is ensured by the presence of resonances in this en
region. If the strong phasesd12,13 and the moduliA12,13 in
Eq. ~9! were ~almost! constant across the available pha
space, the extraction ofg from Eqs.~11! would not be pos-
sible.

Before concluding, we mention that quasi two-bodyD
decays where one of the particles is a resonance, suchD
→K* 1p2 and D→K1r2 @4#, were proposed for use in
measuringg. But, in fact, using such decays requires a D
itz plot analysis~see, e.g.,@10,12#!. What we showed here i
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that one can actually use the whole Dalitz plot to carry o
the analysis and does not need to single out contribution
one particular resonance. Moreover, we showed that the
sumption about the shapes of the resonances can be avo
essentially with currently available data sets.

In conclusion, we have shown that the angleg can be
determined from the cascade decays B6

→K6(KSp2p1)D . The reason for the applicability of th
proposed method lies in the presence of resonances in
three-bodyD meson decays which provide a necessary va
tion of both the phase and the magnitude of the decay
plitude across the phase space. The fact that no Cab
suppressedD decay amplitudes are used in the analysis
another advantage of the method. However, it does involv
Dalitz plot analysis with possibly only parts of the Dali
plot being practically useful for the extraction ofg. In real-
ity, many methods have to be combined in order to achi
the required statistics for a precise determination ofg @7#.
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APPENDIX A: THE EFFECT OF D-D̄ MIXING

In this section we focus on the contributions introduc
by the fact that the flavor statesuD0&,uD̄0& and the mass
eigenstatesuDH,L&5pDuD0&6qDuD̄0& do not coincide. This
effect was studied in the general case in Ref.@21#. Here we
apply their formalism to our case.

Following Ref.@21# we introduce the rephasing-invarian
parameterx1,

x15
lD→ f1jB2→D

11lD→ fjB2→D

, ~A1!

where

lD→ f5
qD

pD

AD̄0→ f

AD0→ f

,

jB2→D5
AB2→D̄0K2

AB2→D0K2

pD

qD
5r Be2 i (2uD2dB1g), ~A2!
8-6
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and we use the definitions of Eqs.~3! and ~4! and allow for
new physics effects inqD /pD5ei2uD. ~In the phase conven
tion where theD decay amplitudes are real, the phaseuD is
negligible in the standard model.! In our case, the final stat
f equalsKSp2p1, which leads to

lD→KS(p1)p2(p2)p1(p3)5ei2uD
AD~s13,s12!

AD~s12,s13!

5RD~s12,,s13!e
i (2uD1d13,122d12,13).

~A3!

OnceD-D̄ mixing is taken into account in the analysis, th
expression for the partial decay width~7! is multiplied by the
correction term@21#

12Re~x1!yD1Im~x1!xD , ~A4!

where we have expanded the correction term to first orde
the small parameters

xD5
Dm

G
, yD5

DG

2G
, ~A5!

whereDm andDG are the mass and decay width differenc
in theD-D̄ system, andG is theD0 decay width. The values
of xD andyD are constrained by present measurements to
in the percent range,yD5(1.060.7)% @22# and uxu,2.8%
@23# ~assuming small strong phases!.

The ratio of magnitudesRD(s12,,s13) depends on the po
sition in the Dalitz plot and can vary widely. Our method
useful for the model independent extraction ofg only in the
region whereRD is of order 1. We therefore distinguish thre
limiting cases.

~1! RD@1@r B , for which Re(x1),Im(x1);O(1/r B) and
therefore the corrections in Eq.~A4! can be of order 10%
However, this is the region of the Dalitz plot where o
method is mostly not sensitive tog and therefore the induce
corrections due toD-D̄ mixing do not translate into an erro
on the extractedg.

~2! RD;1@r B , for which Re(x1),Im(x1);O(1) and
therefore the corrections in Eq.~A4! are at the percent leve
This is the value ofRD for which our method is most sens
tive to g.

~3! 1@r B;RD , for which Re(x1),Im(x1);O(r B ,RD)
and therefore the corrections in Eq.~A4! are very small.

In conclusion, we expect errors of at most a few perc
due to neglectingD-D̄ mixing in our method. In principle,
even these errors can be taken into account@16,21,24#.

APPENDIX B: A FIT TO BREIT-WIGNER FUNCTIONS:
AN ILLUSTRATION FOR THREE RESONANCES

In this appendix we provide the formulas for the fit of th
D meson decay amplitude to a sum of three Breit-Wig
05401
in

s

e

t

r

functions describingK* 6(892) andr0 resonances. We write
Eq. ~19! explicitly as

AD~s12,s13!5A„D0→KS~p1!p2~p2!p1~p3!…

5arA r0~s23!1aK* eidFAK* ~s12!

1aK* r DeidDAK* ~s13!, ~B1!

wheredF (dD) is the strong phase of the Cabibbo favor
~doubly Cabibbo suppressed! D0→K* 2p1 (D0

→K* 1p2) decay with respect to the decayD0→KSr0. We
further introduced

ar}A~D0→r0KS!5A~D̄0→r0KS!,

aK* eidF}A~D0→K* 2p1!5A~D̄0→K* 1p2!,

aK* r DeidD}A~D0→K* 1p2!5A~D̄0→K* 2p1!.
~B2!

The Breit-Wigner functionsAr are defined in Eq.~20!,
where we write in Eq.~B1! only thesab dependence of the
FBW

r part, given in Eq.~21!. The first index ofsab is under-
stood to denote also the particle appearing in the expres
for 1Mr @Eq. ~20!#. Exchanging a↔b corresponds to
1Mr↔21Mr , in particular,A r0(s23)52A r0(s32). In the
above we assumed that there is noCP violation in the D
decay amplitudes. Note that there are two small parame

r B;0.120.2, r D;l2;0.05. ~B3!

We then obtain@cf. Eq. ~6!#

A~B2→„KS~p1!p2~p2!p1~p3!…DK2!

5ABPD3„~arA r0~s23!1aK* @eidFAK* ~s12!

1r DeidDAK* ~s13!# !1r Bei (dB2g)$arA r0~s32!

1aK* @eidFAK* ~s13!1r DeidDAK* ~s12!#%…. ~B4!

The corresponding expressions forB1 decays are obtained
by changing g→2g and p2(p2)p1(p3)
→p1(p2)p2(p3).

We further define

d25arg@AK* ~s12!#, d15arg@AK* ~s13!#,

d05arg@A r0~s23!#, ~B5!

where the dependence ofd6,0 on the position in the Dalitz
plot is implicitly assumed. The reduced differential dec
rate is then
8-7
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dĜ„B2→~KSp2p1!DK2
…}ar

2uA r0~s23!u2@122r B cos~dB2g!1r B
2 #1aK*

2 uAK* ~s12!u2

3@112r Br D cos~dBD
F 2g!1~r Br D!2#1aK*

2 uAK* ~s13!u2@r D
2 12r Br D cos~dBF

D 2g!1r B
2 #

12araK* uA r0~s23!AK* ~s13!u$r D cosd0
D12r B

2 cosd0
F12r Br D cos~dB0

D12g!

1r B cos~d0
BF11g!%12araK* uA r0~s23!AK* ~s12!u$cosd0

F22r B cos~dB0
F22g!1r Br D cos~d0

BD2

1g!2r B
2r D cosd0

D2%12aK*
2 uAK* ~s12!AK* ~s13!u$r D cosdF2

D1

1r B cos~d2
B11g!1r Br D

2 cos~dB2
1 2g!1r B

2r D cosdD2
F1 %, ~B6!
w

ar

n
rm

ca

d

o

he

un-
t

d to
where the notation of the strong phases is such that the lo
~upper! indices indicate phases appearing with a plus~minus!
sign. For example,

dD2
F1 5dD1d22dF2d1 . ~B7!

ar , aK* , andr D are assumed to be known and thus there
five unknowns to fit, namely,

r B , dD , dF , dB , g. ~B8!

Using bothB2 andB1 decays, there is enough informatio
to determine them all. This is true even if one neglects te
that scale asr B

2 and even ifr D50. This indicates that the
method does not rely on doubly Cabibbo suppressed de
of the D, and that it is sensitive tog in terms of orderr B ,
rather thanr B

2 . ~See the discussion in@10#.! Moreover, even
if some or all of the strong phases that arise from two-bo
decays, namely,dB , dD , and dF , vanish, there is still
enough information to determineg.

APPENDIX C: MULTIBODY B DECAY

We consider the cascade decayB2→DXs
2

→(KSp2p1)DXs
2 . Let us assume that the phase space

the first decay,B2→DXs
2 , is partitioned intom bins that we

label by the indexj, and the phase space of theD meson
decay is partitioned inton52k bins labeled byi and ī as in
Sec. II. Instead of Eqs.~11! we now have the set of 4k3m
equations

Ĝ i , j
2 [E

i , j
dG„B2→~KSp2p1!DXs

2
…

5Ti1Rj
BTī 1cosg~cicj

B1sisj
B!

1sing~cisj
B2sicj

B!, ~C1a!

Ĝ ī , j
2

[E
ī , j

dG„B2→~KSp2p1!DXs
2
…

5Tī 1Rj
BTi1cosg~cicj

B2sisj
B!

1sing~cisj
B1sicj

B!, ~C1b!
05401
er

e

s

ys

y

f

Ĝ i , j
1 [E

i , j
dG„B1→~KSp2p1!DXs

1
…

5Tī 1Rj
BTi1cosg~cicj

B2sisj
B!

2sing~cisj
B1sicj

B!, ~C1c!

Ĝ ī , j
1

[E
ī , j

dG„B1→~KSp2p1!DXs
1
…

5Ti1Rj
BTī 1cosg~cicj

B1sisj
B!

2sing~cisj
B2sicj

B!, ~C1d!

where the integration is over the phase space of thej th bin in
theB decay and the phase space of thei th bin in theD decay.
The j th bin of theB1 decay phase space is obtained from t
j th bin of theB2 decay byCP conjugation. We also used

sj
B5E

j
2r B sindB ,

cj
B5E

j
2r B cosdB ,

Rj
B5E

j
r B

2 , ~C2!

wherer B anddB are functions of the position in theB decay
phase space. From the set of 4k3m equations~C1!, one has
to determine 2k13m11 unknownsci , si , cj

B , sj
B , Rj

B , and
g. With a partition of theD decay phase space into 2k>4
bins and with a partition of theB decay phase space intom
>1 bins, one has enough relations to determine all the
knowns, including the angleg. This is true even for constan
dB and r B , in which case the above equations fall into 4k
sets ofm equivalent relations, i.e., the set of 4k3m equa-
tions is reduced to the set of 4k independent relations~11!.

Finally, we note that the above equations can be use
determineg also for two-bodyD decays@6#.
8-8
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