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Pressure of QCD at finite temperatures and chemical potentials

A. Vuorinen*
Department of Physical Sciences, Theoretical Physics Division, P.O. Box 64, FIN-00014 University of Helsinki, Finland

~Received 4 June 2003; published 23 September 2003!

We compute the perturbative expansion of the pressure of hot QCD to orderg6ln g in the presence of finite
quark chemical potentials. In this process we evaluate all two- and three-loop vacuum diagrams of the theory
at arbitraryT andm and then use these results to analytically verify the outcome of an old orderg4 calculation
of Freedman and McLerran for the zero-temperature pressure. The results for the pressure and the different
quark number susceptibilities at highT are compared with recent lattice simulations showing excellent agree-
ment especially for the chemical potential dependent part of the pressure.
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I. INTRODUCTION

If either the temperature or the density of strongly int
acting matter is increased enough, it undergoes a phase
sition from the hadronic phase into deconfined quark-glu
plasma ~QGP! at an energy density of approximate
1 GeV/fm3. As one then approaches even higher energ
the value of the gauge coupling keeps decreasing makin
possible to start using the machinery of perturbation the
in computing different observables. The problem of det
mining the perturbative expansion for the most fundame
thermodynamic quantity, the grand potentialV52pV, has
been under attack already for more than two decades. It i
especially hot topic today due to the fact that QGP is c
rently under experimental study in the ongoing heavy-
experiments at the BNL Relativistic Heavy Ion Collid
~RHIC!.

At vanishing chemical potentials, or zero net baryon d
sity, the perturbative series for the pressure has recently b
driven to the last fully perturbative order,1 g6ln g @1,2#, fol-
lowing the determination of the contributions of ordersg2

@3#, g3 @4#, g4ln g @5#, g4 @6# andg5 @7,8#. At zero tempera-
ture and large chemical potentials the expansion is know
O(g4) @9#, and at high temperatures but finite chemical p
tentials toO(g4ln g) @5#. The limit of large chemical poten
tials and small but nonzero temperatures is at present
least well known; there the only applicable result is of ord
g2 @3#. In addition to these computations, there have b
numerous attempts to determine the pressure using f
dimensional lattice simulations~see, e.g.,@10–14#! and the
hard thermal loop~HTL! approximation@15–17#. In the limit
of a large number of flavors the pressure has furtherm
recently been nonperturbatively determined both atm50
@18# andmÞ0 @19#, and these results have then been use
extract the perturbative expansion of the quantity at largenf
even to orderg6 @19#.

The present paper provides a generalization of the o
g6ln g computation @1# of Kajantie et al. to finite quark
chemical potentials. Using the framework of dimensional

*Email address: aleksi.vuorinen@helsinki.fi
1At order g6 one runs into infrared problems that can only

solved by nonperturbative methods@20#.
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duction and evaluating all one-particle irreducible vacuu
diagrams of the theory up to three-loop order, we will deri
an analytic expression for the pressure valid at high temp
tures and finite chemical potentials. Furthermore, we w
determine the different quark number susceptibilities atm
50, which together with the pressure are compared w
recent lattice results of Gavai and Gupta@14# showing im-
pressive agreement in particular for the chemical poten
dependent part of the pressure. The diagrammatic comp
tions performed here will also be used to tackle the probl
of determining the pressure at low temperatures. In partic
we will verify the outcome of the well-knownT50 compu-
tation of Freedman and McLerran@9# and provide a simple
analytic value for a poorly known numerical coefficient a
pearing in the result.

The paper is organized as follows. In Sec. II the gene
notation is explained, and the necessary special functions
introduced. Section III provides then an introduction to d
mensional reduction, and the results for the pressure at
T and finitem are presented. These results are analyzed
detail in Sec. IV, where we in particular investigate the
agreement with lattice data. In Sec. V we address the diffi
problem of computing the pressure atT50 and show how
the result of@9# can be obtained from the computations pe
formed in this paper. Section VI is then devoted to addre
ing the important question of the compatibility of the tw
results obtained for the pressure at highT and T50, and
conclusions are finally drawn in Sec. VII. We leave almo
all computational details to the Appendixes.

II. SETUP AND NOTATION

The theory we consider in this paper is the SU(Nc) Yang-
Mills theory coupled tonf flavors of massless fermions. It i
described by the Lagrangian density

LQCD5 1
4 Fmn

a Fmn
a 1c̄D” c, ~2.1!

where, as usual,

Fmn
a 5]mAn

a2]nAm
a 1g fabcAm

b An
c , ~2.2!

Dm5]m2 igAm5]m2 igAm
a Ta, ~2.3!
©2003 The American Physical Society17-1
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and the symbolsTa denote the generators of the fundamen
representation of the gauge group. All quark fields have b
combined into a multicomponent spinorc, and since flavor
is a conserved quantum number of the theory, we may as
an independent chemical potentialm f for eachf. As is cus-
tomary in finite temperature computations, we will work
Euclidean metric.

In finite temperature field theory the partition function
represented by a functional integral of the exponential of
Euclidean action, where the usual time integral has been
placed by one over the compact imaginary timet (5x0 in
Euclidean metric! ranging from 0 to 1/T,

Z~T,m!5e2V/T5EDf expH 2E
0

1/T

dtE dd21x~L2mN!J .

~2.4!

The perturbative evaluation of this integral leads to the co
putation of vacuum Feynman diagrams with Feynman ru
closely analogous to the zero-temperature ones. The m
important modification is the replacement of thep0 loop in-
tegrals by discrete sums over the so-called Matsubara
quencies

p0
bos52npT, ~2.5!

p0
ferm5~2n11!pT2 im, ~2.6!

wheren is an integer. In gauge field theories such as Q
the gauge invariance creates an additional problem, as
needs to restrict the degrees of freedom contributing to
functional integral to the physical ones. In the present pa
this is implemented by working in the covariant Feynm
gauge throughout the computations.

We end the section by introducing some new notati
The chemical potentials will henceforth usually appear in
dimensionless combinations

m̄[m/~2pT!, ~2.7!

z[1/22 i m̄, ~2.8!

and in the context of computing the zero temperature pa
tion function the following abbreviation will be used:

(
f

m f
2[m2. ~2.9!

In sums over a single flavor index the subscriptf in m f will
usually be suppressed.

The momentum integration measure and the notation u
for sum-integrals from here onwards are

E
p
[E ddp

~2p!d
5L22eS egL̄2

4p
D eE ddp

~2p!d
, ~2.10!

X P/$P% [T (
p0 /$p0%

E
p
, ~2.11!
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whereL̄ is the modified minimal subtraction scheme~MS!
scale, andp0 and $p0% denote the bosonic and fermion
Matsubara frequencies, respectively. We have introduced
unconventional notationL̄ for theMS scale in order to avoid
confusion with the chemical potentials.

We define some familiar group theory factors by

CAdcd[ f abcf abd5Ncd
cd, ~2.12!

CFd i j [~TaTa! i j 5
Nc

221

2Nc
d i j , ~2.13!

TFdab[TrTaTb5
nf

2
dab ~2.14!

and denote an additional, slightly less well-known one by

Ddcd[dabcdabd5
Nc

224

Nc
dcd. ~2.15!

The dimensions of the adjoint and fermionic representati
of the gauge group are naturally

dA[daa5Nc
221, ~2.16!

dF[d i i 5dATF /CF5Ncnf . ~2.17!

For some frequently occurring combinations of special fu
tions we will apply the following abbreviations:

z8~x,y![]xz~x,y!, ~2.18!

:~n,w![z8~2n,w!1~21!n11z8~2n,w* !, ~2.19!

:~w![C~w!1C~w* !, ~2.20!

where n is assumed to be a non-negative integer andw a
general complex number. Herez denotes the Riemann zet
function, andC is the digamma function

C~w![
G8~w!

G~w!
. ~2.21!

These functions are analyzed in some detail in Appendix

III. THE PRESSURE AT LARGE TÕµ

A. Dimensional reduction

In order to compute the partition function of QCD, w
need a systematic way of taking into account the contri
tions of the different momentum scales, as conventional p
turbation theory fails already at three-loop order. At hi
temperatures a physically intuitive solution is offered by
mensional reduction, which is based on the observation
as the temperature is increased, all degrees of freedom ex
for the ones associated with the zero Matsubara mode
bosonic fields get large effective masses proportional toT.
They can thus be integrated out leaving us with a thr
dimensional effective theory describing the soft scal
where only the bosonic zero modes remain intact. Details
the procedure can be found from@8,21,22#.
7-2
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The inclusion of the chemical potentials makes the pr
lem of determining the pressure even more complex, as
now need to take into account the effects of these new sc
in addition to the usual thermal ones proportional toT. As-
suming the magnitude of the chemical potentials to be n
ligible in comparison with 2pT we may, however, certainly
continue using dimensional reduction as a framework@23#.
This means that the expression for the pressure may be s
rated into three parts

pQCD5pE1pM1pG, ~3.1!

corresponding to the contributions of the momentum sca
2pT, gT andg2T, respectively@1,8#. By definition

pE~T,m![pQCD~T,m!2
T

V
lnE DAi

aDA0
aexp$2SE%,

~3.2!

whereSE is the action of a three-dimensional effective theo
with the Lagrangian density@23#

LE5
1

2
TrFi j

2 1Tr@Di ,A0#21mE
2TrA0

2

1
ig3

3p2(f
m f TrA0

31dLE, ~3.3!

and where the traces are now taken only over the color i
ces. Similarly,pM andpG are defined by

pM~T,m![pQCD~T,m!2pE~T,m!2
T

V
lnE DAi

aexp$2SM%

[pQCD~T,m!2pE~T,m!2pG~T!, ~3.4!

LM5
1

2
TrFi j

2 1dLM . ~3.5!

The gauge coupling constants of the two effective theor
gE and gM , appear in the covariant derivatives above, a
operators contributing to the partition function starting
O(g6) or higher have been assembled to the termsdLE and
dLM . The question, at which values of the chemical pot
tials we may trust results obtained using dimensional red
tion, is examined quantitatively in@23# and is also briefly
discussed in Sec. VI of this paper.

At leading order the different parts contribute to the pr
sure aspE;g0, pM;g3 and pG;g6ln g. The first of these
functions can be obtained by computing the strict pertur
tion expansion of the pressure in the full theory, i.e. by eva
ating all one-particle irreducible~1PI! vacuum diagrams o
four-dimensional QCD without applying any form of resum
mation. The two other ones are then available by evalua
the perturbative expansions of the partition functions of
effective theories@2#, the parameters of which must, how
ever, be determined through the full theory@23,24#. Follow-
ing the notation of@1# and using results from@1,25#, these
statements can be summarized by writing
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pE~T,m!

TL22e
5T3FaE11g2@aE21O~e!#

1
g4

~4p!2
@aE31O~e!#1O~g6!G , ~3.6!

mE
25T2Fg2@aE41aE5e1O~e2!#1

g4

~4p!2

3@aE61O~e!#1O~g6!G , ~3.7!

gE
25TFg21

g4

~4p!2
@aE71O~e!#1O~g6!G , ~3.8!

pM~T,m!

TL22e
5

1

~4p!
dAmE

3F1

3
1O~e!G1

1

~4p!2
dACAgE

2mE
2

3F2
1

4e
2

3

4
2 ln

L̄

2mE
1O~e!G1

1

~4p!3

3dACA
2gE

4mEF2
89

24
2

1

6
p21

11

6
ln 21O~e!G

1
1

~4p!4
dACA

3gE
6 ln

L̄

2mE
F43

4
2

491

768
p2

1O~e!G1
1

~4p!4
dADTF

2gE
6 ln

L̄

2mE

3F2
16

3nf
2 S (f

m̄ D 2

1O~e!G1O~g6!, ~3.9!

mM5CAgM
2 1O~g3!, ~3.10!

gM
2 5gE

21O~g3!, ~3.11!

pG~T!

TL22e
5dACA

3
gM

6

~4p!4
ln

L̄

2mM
F43

12
2

157

768
p21O~e!G

1O~g6!, ~3.12!

FIG. 1. The two- and three-loop fermionic diagrams of the f
theory contributing to the values ofaE2 andaE3. The solid, wiggly
and dotted lines stand respectively for the quark, gluon and g
propagators.
7-3
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where g is the renormalized gauge coupling of quantu
chromodynamics and the matching coefficientsa are left to
be determined. Apart from modifying the values of the
coefficients, the effects of finitem can only be seen in the
appearance of the last term in Eq.~3.9!. In particular, one
should notice thatpG depends only onT at the order consid-
ered here.

With the exception ofaE3 and aE5, the results for the
matching coefficients can be immediately extracted fr
@1,3,23,25#. To getaE5 we furthermore merely need to evalu
ate the one-loop gluon polarization tensor toO(e) in the
limit of vanishing external momenta, which is a simple co
putation. The calculation ofaE3 is, on the other hand, alread
05401
e

-

a considerably more laborious task, as it involves comput
all three-loop vacuum diagrams of the theory. They have
far only been evaluated at vanishing chemical potentials@6#
and temperatures@9#, and the generalization of these calc
lations to finitem andT is the topic of Appendixes A and B
The relevant fermionic two- and three-loop diagrams are
picted in Fig. 1, and the results for fficients can be fou
from below.

In order to write the perturbation theory result for th
pressure in the familiar form of a power series in the co
pling constant, we simply need to add together Eqs.~3.6!,
~3.9! and ~3.12! and expand the result ing. Up to order
g6ln g the outcome reads
r
ear in

atching
pQCD~T,m!

T4L22e
5

pE~T,m!1pM~T,m!1pG~T!

T4L22e

5g0$aE1%1g2$aE2%1
g3

~4p! H dA

3
aE4

3/2J 1
g4

~4p!2 H aE32dACAFaE4S 1

4e
1

3

4
1 ln

L̄

2gTaE4
1/2D 1

1

4
aE5G J

1
g5

~4p!3 H dAaE4
1/2F1

2
aE62CA

2S 89

24
1

p2

6
2

11

6
ln 2D G J 1

g6

~4p!4 H dACA~aE61aE4aE7!ln@gaE4
1/2#

1
16

3nf
2 S (f

m̄ D 2

dADTF
2 ln@gaE4

1/2#28 dACA
3F S 43

32
2

491

6144
p2D

3 ln@gaE4
1/2#1S 43

48
2

157

3072
p2D ln@gCA

1/2#G J 1O~g6!, ~3.13!

where the pole ofaE3 exactly cancels the 1/e term appearing in the orderg4 contribution. As there is an unknownO(g6)
contribution missing from the result, there is an ambiguity in choosing the coefficients inside the logarithms of the ordeg6ln g
terms.2 The current choice is, however, well motivated from the effective theory point of view; the logarithms now app
the same form they emerged from the three-dimensional Feynman diagrams.

B. The matching coefficients

Given in terms of the special functions and group theory factors defined in the previous section, the results for the m
coefficientsa read

aE15
p2

45

1

nf
(

f
H dA1S 7

4
130m̄2160m̄4DdFJ , ~3.14!

aE252
dA

144

1

nf
(

f
H CA1

TF

2
~1112m̄2!~5112m̄2!J , ~3.15!

~3.16!

aE35
dA

144S 1

nf
(

f
H CA

2S 12

e
1

194

3
ln

L̄

4pT
1

116

5
14g2

38

3

z8~23!

z~23!
1

220

3

z8~21!

z~21! D 1CATFF12~1112m̄2!
1

e

1S 169

3
1600m̄22528m̄4D ln

L̄

4pT
1

1121

60
18g12~127148g!m̄22644m̄41

268

15

z8~23!

z~23!

1
4

3
~111156m̄2!

z8~21!

z~21!
124@52:~3,z!1144i m̄ :~2,z!1~17292m̄2!:~1,z!14i m̄ :~0,z!#G

2Varying the coefficients inside the logarithms amounts to varying the magnitude of the undetermined orderg6 term.
7-4
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1CFTFF3

4
~114m̄2!~351332m̄2!224~124m̄2!

z8~21!

z~21!
2144@12i m̄ :~2,z!22~118m̄2!:~1,z!

2 i m̄~114m̄2!:~0,z!#G1TF
2F4

3
~1112m̄2!~5112m̄2!ln

L̄

4pT
1

1

3
14g18~7112g!m̄2

1112m̄42
64

15

z8~23!

z~23!
2

32

3
~1112m̄2!

z8~21!

z~21!
296@8 :~3,z!112i m̄ :~2,z!

22~112m̄2!:~1,z!2 i m̄ :~0,z!#G J 1288TF
2 1

nf
2 (

f g
$2~11g!m̄ f

2m̄g
22$:~3,zf1zg!

1:~3,zf1zg* !14i m̄ f@:~2,zf1zg!1:~2,zf1zg* !#24m̄g
2 :~1,zf !2~m̄ f1m̄g!2:~1,zf1zg!

2~m̄ f2m̄g!2:~1,zf1zg* !24i m̄ fm̄g
2 :~0,zf !%% D ,

aE45
1

3

1

nf
(

f
$CA1TF~1112m̄2!%, ~3.17!

aE55
1

3

1

nf
(

f
H 2 CAS ln

L̄

4pT
1

z8~21!

z~21!
D 1TFF ~1112m̄2!S 2 ln

L̄

4pT
11D 124:~1,z!G J , ~3.18!

aE65
1

9

1

nf
(

f
H CA

2 S 22 ln
egL̄

4pT
15D 1CATFS 2~71132m̄2!ln

egL̄

4pT
191132m̄218g14 :~z! D

218CFTF~1112m̄2!24 TF
2~1112m̄2!S 2 ln

L̄

4pT
212:~z! D J , ~3.19!

aE75
1

3

1

nf
(

f
H CAS 22 ln

egL̄

4pT
11D 24 TFS 2 ln

L̄

4pT
2:~z! D J . ~3.20!
b
th
t

-
c
th
ua
on
ly
e

tials
ll
ut

at
no
rder
ity.
ig-

be

ight
n
er-

an
F

Combined with Eq.~3.13!, this is the main result of the
paper.

IV. LATTICE TESTS

As there are unfortunately no experimental data availa
for the pressure in the QGP phase, the results derived for
quantity in the previous section can only be compared
other analytic computations3 or to lattice simulations. In par
ticular, it is very interesting to investigate, to what accura
we can reproduce the results of the various lattice studies
have been performed for the pressure and the different q
number susceptibilities. In this section these comparis
will be made, and it will furthermore be studied, how rapid
the perturbative series for the different quantities converg

3A recent large-nf computation by Ipp and Rebhan provides
accurate numerical check for some of the results of this paper.
details, see Sec. III of@19#.
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A. The pressure

It has been observed that at vanishing chemical poten
the orderg6ln g perturbative result for the pressure is we
compatible with four-dimensional lattice simulations, b
that the eventual determination of the yet unknowng6 term
may still change the situation dramatically@1#. The perturba-
tive result varies largely from order to order and even
O(g4) its behavior as a function of temperature still bears
resemblance to the lattice predictions, even though the o
g2 result gives a relatively good estimate for the quant
For them dependent part of the pressure we will see a s
nificant improvement in these convergence properties.

Extracting the quantity

DP~T,m!5pQCD~T,m!2pQCD~T,0! ~4.1!

from Eq. ~3.13!, the m dependence of the pressure can
directly compared with recent lattice studies@14#, whereDP
has been computed in quenched QCD assuming two l
flavors of quarks,u and d, at equal chemical potentials. I
Fig. 2 ~left! these lattice data are plotted along with the p

or
7-5
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1 2 3 4 5
T/Tc

0

0.2

0.4

0.6

0.8

1
∆P

/T
4

µ = 1.03Tc

µ = 0.74Tc

µ = 0.44Tc

µ = 0.10Tc

1 2 3 4 5
T/Tc

0.8

0.9

1

∆P
/∆

P fr
ee

g
2

g
4

g
5

g
6
lng

Lattice

FIG. 2. The perturbative and lattice@14# results forDP plotted as functions ofT/Tc . On the leftm has been given different values, an

on the right the different perturbative orders for them50.44Tc case are shown normalized to the free theory result. The resultTc /L̄unf50

51.15 @26# and them50 conventionL̄56.742T @24# have been applied here.
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turbative result, which has been obtained by setting all
plicit factors of nf to zero in order to match the quenche
approximation. One observes that already at temperaturT
'2Tc the perturbative results lie well within the error bars
the lattice datapoints and that the differences between su
quent perturbative orders are very small.

As we can see from Fig. 2~right!, the picture is qualita-
tively similar to them50 case in the sense that the leadi
correction to the free theory result already gives a good
timate for the quantity in question. The next perturbat
orders then make the situation worse until atO(g5) one
again starts approaching the lattice results. The main dif
ence between the two cases is simply thatDP is a much
more strongly perturbative quantity: for it even the fr
theory result falls within 10% of the lattice data and t
relative magnitudes of the perturbative corrections are c
siderably smaller than for them50 pressure.

B. Quark number susceptibilities

Apart from analyzingDP directly, there are other, mor
effective ways to investigate the chemical potential dep
dence of the results. To make full use of the large amoun
lattice data existing atm50 ~see e.g.@14,28–30#! we may
use Eq.~3.13! and the results of Appendix D to compute th
different quark number susceptibilities

x i jk . . .[
]np

]m i]m j]mk . . .
~4.2!

in this limit. The linear~i.e. second order! susceptibilities
have already been considered both in the framework of o
nary perturbation theory@27# and in the HTL approximation
@25,31,32# with the result that only the diagonal ones a
accurately predicted by perturbation theory. For the lin
nondiagonal susceptibility the perturbative results w
found to be several orders of magnitude larger than the
05401
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tice ones@25#. One should, however, note that for the nond
agonal susceptibilities there is considerable disagreemen
tween the different lattice approaches~see the discussion in
@30#!.

A similar behavior can be observed when studying
nonlinear quark number susceptibilities. In Fig. 3 we ha
plotted the susceptibilitiesxuuuu and xuudd at nf50,4 and
comparing with the quenched QCD results of@14# we again
see that the diagonal quantity is satisfactorily produced
perturbation theory but that the prediction for the nondiag
nal one is too large by more than a factor of 1000. T
apparent disagreement is, however, not unexpected, as
the different lattice results for the nondiagonal susceptib
ties differ from each other. Furthermore, the perturbative
pansions for the nonlinear susceptibilities start only at re
tively high orders@O(g6ln g) for xud , O(g3) for xuudd], and
it is therefore entirely possible that large cancellations w
occur as one drives perturbation theory even further. T
situation is completely different in the case of the diago
susceptibilities, for which the free theory result already giv
the correct order of magnitude of the results. For example
xuuuu one obtains from Eq.~3.14!

xuuuu[
]4p

]mu
4

5
6

p2
1O~g2!.0.611O~g2!,

~4.3!

which is in good agreement with the lattice data@see Fig.
3~a!#.

4In this context thenf50 limit of the perturbative result is under
stood to be taken only after the necessary differentiations of
pressure with respect tom f have been carried out. The pressure
nf50 is defined in an analogous manner.
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uu  ∆ = 2
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 ∆ = −2

1 2 3 4 5
T/Tc

0

0.005

0.01

0.015

0.02

χ uu
dd

 ∆ = 2
 ∆ = 1
 ∆ = 0
 ∆ = −1
 ∆ = −2

FIG. 3. Perturbative results forxuuuu and xuudd at nf50 plotted with lattice results from@14#. The curves corresponding to differen
values of D show the expected effect of the yet undeterminedg6 term of the perturbative expansion~for details, see@27#!. Again

Tc /L̄unf5051.15 @26# andL̄56.742T @24#.
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For DP, and hence for the susceptibilities, the orderg6

term in the perturbative series contains no non-perturba
contributions and is therefore in principle straightforward
obtainable, unlike the corresponding term in the expansio
the m50 pressure@1#. This computation may already b
enough to improve the perturbative predictions for the n
diagonal susceptibilities significantly, but will have prac
cally no effect on the already good convergence propertie
the chemical potential dependent part of the pressure. As
been pointed out in@14#, the effects of the nonlinear susce
tibilities on DP are negligible for small values of the chem
cal potentials, and the quantity is almost solely determin
by the linear diagonal susceptibilities.

V. THE PRESSURE AT TÄ0

The zero-temperature pressure of QCD was first co
puted toO(g4) a long time ago@9# in a lengthy calculation
involving numerical integrations. Using the analytic resu
for three-loop diagrams derived in the present paper this
sult can be straightforwardly analytically reproduced. T
computation is divided into two distinct parts: the results
the graphs that remain infrared convergent atT50 may be
immediately continued to this limit, but in addition an infi
nite set of IR divergent ring diagrams must be summed o
explicitly. Analogously to the use of the three-dimension
effective theories in Sec. III, this resummation is necess
to ensure that the contributions of all momentum scales
properly accounted for. Only the results of the computat
are given below, while the details are left to Appendix E.
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A. IR convergent diagrams

At T50 QCD pressure gets contributions only from t
fermionic graphs, i.e., from the diagrams of Fig. 1. Asi
from the IR divergent graphI e we obtain using the results o
Appendixes A–D,

p1[~aE11I a1I b1I c1I d1I f1I g1I h!uT50

5
1

4p2(f
m4H Nc

3
2dAS g~L̄ !

4p
D 2

2dAF2nf

3e
1

2

3
~11Nc14nf !ln

L̄

m
1

17

4

1

Nc
1

1

36

3~4152264 ln 2!Nc1
2

3
~524 ln 2!nf G S g

4p
D 4J ,

~5.1!

where the renormalization of the gauge coupling has b
taken into account.

B. Ring diagrams

In order to obtain the correct expression for the ze
temperature pressure up to orderg4 we need to add to Eq
~5.1! the contributions of all ring diagrams of the typeI e .
Individually these graphs are infrared divergent but wh
summed together they give a finite contribution to the pr
sure starting atO(g4ln g). Separating the fermionic part o
the one-loop gluon polarization tensor into its vacuumT
m

FIG. 4. ~a! The fermionic part of the one-loop

gluon polarization tensor divided into its vacuu
and matter parts.~b! The diagramI e8 contributing
to the zero temperature pressure.~c! The generic
form of the ring diagrams contributing top3 .
7-7



e
m
a
ia

E

n

er

A. VUORINEN PHYSICAL REVIEW D 68, 054017 ~2003!
5m50) and matter~vacuum subtracted! parts as in Fig. 4~a!
we observe that to orderg4 only the diagramI e8 of Fig. 4~b!
and the ring sum of Fig. 4~c! need to be computed. Th
reason for this is that starting at four-loop order the diagra
with at least one vacuum insertion only contribute
O(g6ln g) or higher, and the corresponding three-loop d
gram with two vacuum insertions naturally vanishes atT
50.

A straightforward computation performed in Appendix
shows that the diagramI e8 gives the following contribution to
the pressure

p25
dAnf

4p2 (
f

m4H 2

3e
14 ln

L̄

m
1

52

9
24 ln 2J S g

4p
D 4

.

~5.2!

The summation of the ring diagrams was, on the other ha
first performed in Ref.@9# and is reproduced in Appendix E
following in most parts the treatment of the original pap
The result of this computation reads
A
th
th

05401
s
t
-

d,

.

p352
dA

4p2
~m2!2S g

4p D 4H 4 ln
g

4p
2

22

3
1

16

3
ln 2~12 ln 2!

1d1
2p2

3
1

16

3
ln 2(

f

m f
4

~m2!2
1

F~m!

~m2!2 J , ~5.3!

where we have defined

F~m!522m2(
f

m2 ln
m2

m2
1

2

3 (
f .g

H ~m f2mg!2ln
um f

22mg
2u

m fmg

14m fmg~m f
21mg

2!ln
~m f1mg!2

m fmg
2~m f

42mg
4!ln

m f

mg
J .

~5.4!

The constantd possesses the integral representation
d[
16

p E
0

p/2

dx sin2xH ~12x cotx!2

sin4x
ln

12x cotx

sin2x
1

1

2 S 12
12x cotx

sin2x
D 2

ln F12
12x cotx

sin2x
G J

.20.85638320932694280684831023291594035884727909711135760899309086726768550829,~5.5!
en

ion
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which we have not been able to evaluate in closed form.
attempts of expressing its numerical value in terms of
most common natural constants using the PSLQ algori
@33# have been unsuccessful. Finding the correct basis
constants ford seems to be a very nontrivial task.

C. The result at TÄ0

Equations~5.1!, ~5.2! and ~5.3! together verify the well-
known result of@9#

pQCD~T50!5p11p21p31O~g6ln g!

5
1

4p2 S (f
m4H Nc

3
2dAS g

4p D 2

2dAS g

4p D 4

3F2

3
~11Nc22nf !ln

L̄

m
1

16

3
ln 21

17

4

1

Nc
1

1

36

3~4152264 ln 2!Nc2
4

3S 11

6
2 ln 2D nf G J

2dAS g

4p D 4H S 4 ln
g

4p
2

22

3
1

16

3
ln 2~12 ln 2!

1d1
2p2

3 D ~m2!21F~m!J D 1O~g6ln g!. ~5.6!
ll
e
m
of

In particular, we have here obtained an analytic value17
4 for

the coefficient of the 1/Nc term, which was previously
known only numerically with considerable error bars. Wh
comparing Eq.~5.6! with the result of@9#, one should notice
that there the authors work in the momentum subtract
scheme, in which the gauge coupling constant is related
the one of theMS scheme through the equation

gMOM
2

4p2
5

gMS
2

4p2 H 11S 151

144
Nc2

5

18
nf D gMS

2

4p2 J . ~5.7!

VI. COMPATIBILITY OF THE RESULTS AT LARGE µÕT

In Secs. III and V of the present paper we have deriv
perturbative results for the QCD pressure in the two limits
high temperature and small chemical potentials andT50
and largem. Determining the exact region of applicabilit
for the first one is a nontrivial task, as it has not been stud
analytically, how the appearance of the additional scalesm f
affects the validity of dimensional reduction. In@23# it has,
however, been estimated based on numerical results for
relation lengths that the method applies as long asm f&4T
for all flavors. This seems physically very reasonable, si
one certainly expects the framework of dimensional red
tion to be unaltered, if the values of the chemical potenti
are much smaller that the thermal scale 2pT. Perhaps not
7-8
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5
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T

 ∆ = 2
 ∆ = 1
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 ∆ = −1
 ∆ = −2
Lattice

Τ

µ

Τc

µc

Dimensional
reduction OK

Confine-
ment

F-McL

?

FIG. 5. On the left is a sketch of them-T plane, where F-McL stands for theT50 result, Eq.~5.6!. Next to it is the perturbative resul

for the quantitym plotted fornf50 together with lattice data from@14#. Once againTc /L̄unf5051.15 @26# andL̄56.742T @24#.
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surprisingly, roughly the same result was obtained in@14# for
the quantity

m*
T

[A 12xuu

T2xuuuu

~6.1!

describing the highest value of chemical potentials,
which the linear susceptibilities accurately produce
m-dependent part of the pressure,DP. In Fig. 5 ~right! the
perturbation theory and lattice results form* are plotted as
functions of temperature showing reasonable agreement.
overall scale of the results is again given by the free the
expression, which now reads

m*
T

5A2p1O~g2!.4.41O~g2!. ~6.2!

There remains a region on them-T plane between the line
T50 andT5m/4, where the perturbative expansion of t
pressure is only available toO(g2). To obtain an orderg4

result valid throughout the deconfined phase, one would h
to perform an explicit summation of all the bosonic and f
mionic ring diagrams at an arbitrary temperature, as addin
mass term for the zero mode ofA0 to the free Lagrangian o
the theory would not lead to the expected result in the li
T→0. Even though this procedure is enough to produce
correctO(g4) result for the pressure at highT @6#, it does not
work at low temperatures due to the nontrivial structure
the gluon polarization tensor at a vanishing temperature
external momentum~see Appendix E!. The separation of the
zeroth Matsubara mode of theA0 field is furthermore clearly
inconsistent, ifm@pT.

The interesting limit of small but nonzero temperatur
can in any case be formally taken also in Eq.~3.13!, even
though it is already beforehand understood that an unph
cal logarithmic divergence of the type ln(T/L̄) will appear
there. AsT approaches zero, it is natural to investigate, h
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the difference of Eqs.~3.13! and~5.6! behaves as a function
of the chemical potentials, as it gives the magnitude of
terms that have been neglected in deriving Eq.~3.13! but are
necessary to obtain the correctT50 pressure. This quantity
has been plotted in Fig. 6~right! for different temperatures
along with the corresponding curves for the pressure. In
figure we assume two flavors of massless quarks at e
chemical potentials, and the scale parameter has some
arbitrarily been chosen to be

L̄52pAT21
m2

2p2
~6.3!

in analogy with the free theory pressure, Eq.~3.14!.
The result shown in Fig. 6 is remarkable. It seems tha

we approach the zero-temperature limit, the curves co
sponding to Eq.~3.13! smoothly approach the one describin
Eq. ~5.6!, until only at very low temperaturesT!Tc the
logarithmic divergences start increasing the gap. This ob
vation suggests that the magnitudes of the terms not pre
in Eq. ~3.13! are small and one is able to use this res
throughout the deconfined phase with the exception of a
row strip near theT50 line. We in particular notice that a
large value ofm/T does not itself appear to spoil the app
cability of Eq. ~3.13! and that the restrictionm&4T may
therefore perhaps be loosened.

Despite all the optimism, we must be very careful in i
terpreting Fig. 6: only one special configuration of chemic
potentials has been analyzed so far, and the reasoning
sented above is merely of qualitative nature. It is furtherm
clear that dimensional reduction cannot be reliably applied
the limit of small temperatures. The good compatibility
Eqs.~3.13! and~5.6! is most likely simply a consequence o
the fact that in both of them the numerically dominant p
comes from the strict perturbation expansion of the press
Eqs. ~3.14!–~3.16!. Another aspect to keep in mind is tha
perturbative computations such as the one presented in
7-9
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FIG. 6. On the left the behavior of Eq.~3.13! as a function of the chemical potentials is portrayed for different temperatures along
the T50 result, Eq.~5.6!. On the right the difference of these results is shown on a logarithmic scale appropriately normalized. Th

Tc /L̄unf5250.49 @26# has been applied here.
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paper can never produce the rich phase structure of the ‘‘c
densed matter QCD’’@34# found in this region of them-T
plane. Thus the applicability of the present results is in a
case very limited there.

VII. CONCLUSIONS

In this paper we have improved the perturbative exp
sion of the pressure of hot and dense QCD by three order
the g4, g5 and g6ln g terms in the series have been det
mined. The crucial step in the computation was the anal
evaluation of all three-loop 1PI vacuum diagrams of t
theory at arbitraryT andm, which were also used to deriv
an orderg4 result for the zero-temperature pressure. Fina
it was argued based on a qualitative analysis of our res
that the perturbative expansion of the pressure is now c
verging relatively well on almost the wholem-T plane.

There is, however, a large amount of work left to be do
At high temperatures and small chemical potentials o
clearly needs to determine the nextO(g6) term in the per-
turbative expansion, as this order contains the first non
turbative contributions to the pressure and furthermore h
potentially very significant impact on the behavior of t
result. Another challenge can be found in improving t
present embarrassing record in the limit of large chem
potentials and small but nonzero temperatures; a genera
tion of the orderg4 result atT50 to nonzero temperature
would certainly be welcome, even if its numerical effect
the present results turned out to be small.
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APPENDIX A: VACUUM DIAGRAMS

In order to complete the calculations of Sec. III, we s
need to evaluate the two- and three-loop 1PI vacuum
grams of QCD. Since the purely bosonic graphs are un
fected by the finiteness of the chemical potentials and h
been computed already previously@6#, one may restrict the
treatment here to the fermionic diagrams of Fig. 1. The c
culations will be performed keeping both the temperat
and the chemical potentials arbitrary, which together with
relations listed in Appendix D enables one to immediat
continue the results to the limits of smallT and smallm.

Let us start by defining a set of ‘‘master’’ sum integrals

I n
m[X P

~p0!m

~P2!n
, ~A1!

Ĩn
m[X $P%

~p0!m

~P2!n
, ~A2!

t̃[X $PQ%

1

P2Q2~P2Q!2
, ~A3!

t̃8[X $PQ%

p0

P2Q2~P2Q!4
, ~A4!

M̃m,n[X $PQR%

1

P2Q2~R2!m@~P2Q!2#n~P2R!2~Q2R!2
,

~A5!
7-10
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Nm,n[X $PQ%R

1

P2Q2~R2!m@~P2Q!2#n~P2R!2~Q2R!2
,

~A6!

where the notation is adopted from@8#. Using the finite tem-
perature Feynman rules~see e.g.@35#! in the Feynman gauge
and taking advantage of the fact that the purely bosonic
sion of t̃ vanishes atO(e0) @6#, we may write the diagrams
of Fig. 1 in terms of the sum integrals of Eqs.~A1!–~A6!.
This computation is lengthy and requires the application
numerous tricks such as linear changes of integration
menta but is nevertheless of straightforward nature an
therefore not reproduced here. The result of the proced
correct toO(e0), reads

I a52~12e!dAg2(
f

$Ĩ1
0~ Ĩ1

022I 1
0!%, ~A7!

I b52~12e!dACAg4(
f

H ~I 1
02Ĩ1

0!t̃1
1

2
M̃0,0J , ~A8!

I c5~12e!dAS CF2
1

2
CADg4(

f
$4~I 1

022Ĩ1
0!t̃

1~21e!N0,022eM̃0,012N1,21%, ~A9!

I d522~12e!2dACFg4(
f

$~I 1
02Ĩ1

0!2Ĩ2
0

22Ĩ1
0t̃1M̃0,01M̃1,21%, ~A10!

I e52
1

2
dAg4(

f g
$4~11e!Ĩ1

0@m f #Ĩ1
0@mg# I 2

012~12e!

3~ Ĩ1
0@m f #t̃@mg#1Ĩ1

0@mg#t̃@m f # !28~ Ĩ1
1@m f #t̃8@mg#

1Ĩ1
1@mg#t̃8@m f # !2~12e!N0,0@m f ,mg#

22N1,21@m f ,mg#22N2,22@m f ,mg#%, ~A11!

I f52
1

4
dACAg4(

f
$8I 1

0Ĩ1
0I 2

022I 1
0t̃1M̃0,022M̃22,2%,

~A12!

I g5
1

2
dACAg4(

f
H 4~625e!I 1

0Ĩ1
0I 2

02~726e!I 1
0t̃

2S 3

2
22e DM̃0,02~524e!M̃22,2J , ~A13!

I h52~322e!~12e!dACAg4(
f

$2I 1
0Ĩ1

0I 2
02I 1

0t̃%,

~A14!

where the sum integralsNn,2n in Eq. ~A11! depend on two
independent chemical potentialsm f and mg through the re-
05401
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spective fermionic momenta. The symmetry coefficients
the graphs have been taken into account here.

Using the formula

Zg
2512

11CA24TF

3

g2

~4p!2

1

e
~A15!

for the renormalization coefficient of the gauge coupling, t
unknown matching coefficientaE3 is now available in terms
of the sum integrals of Eqs.~A1!–~A6!. One simply needs to
add Eqs.~A7!–~A14! together with the bosonic part of th
strict perturbation expansion of the pressure, which can
found, e.g., from Eq.~31! of @8#. We now turn to the actua
evaluation of the unknown sum integrals.

APPENDIX B: EVALUATION OF THE SUM-INTEGRALS

In this section all the sum integrals encountered in App
dix A will be computed. To do this we need to generalize t
results of@6,7# to finite m, which includes determining the
values of some new integrals of hyperbolic functions~see
Appendix C! as well as generalizing certain summation re
tions derived in@6#. The second last section of this append
deals exclusively with the problem of having differe
chemical potentials entering a single sum integral, which
the case we encounter when evaluating the diagramI e . Until
then it is assumed that allm ’s inside a sum integral are equa

1. One-loop cases

The bosonic one loop sum-integralI n
m has been evaluate

in @6# with the result

I n
m52m22n11pm22n13/2Tm22n14S L2

pT2D e

3
G~n23/21e!

G~n!
z~2n2m2312e!. ~B1!

For the fermionic case we get after first performing a st
dard (322e)-dimensional integral

Ĩn
m5

1

~4p!3/22e

G~n23/21e!

G~n!
L2eT

3 (
k52`

`
@~2k11!pT2 im#m

$@~2k11!pT2 im#2%n23/21e

52m22npm22n13/2Tm22n14S L2

pT2D e
G~n23/21e!

G~n!

3@z~2n2m2312e,1/22 i m̄ !1~21!mz~2n2m23

12e,1/21 i m̄ !#, ~B2!

where the definition of the generalized zeta function
7-11
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z~z,q!5 (
n50

`
1

~q1n!z
~B3!

has been used. The results obtained for the relevant c
after performing ane expansion are listed in Eqs.~B68!–
~B73!.

2. Two- and three-loop cases

The computation of the two- and three-loop sum integr
in this paper is closely analogous to them50 calculations of
@6# and to the two-loop work of@36# at finitem. The general
scheme is to first separate the diverging vacuum parts f
the integrals and then to evaluate the rest ind53. This al-
lows a straightforward extraction of the singularities and a
simplifies the determination of the finite parts considerab
The sum-integralt̃8 is not considered here, as its contrib
tion will be observed to cancel between the different terms
Eq. ~A11!.

a. Preliminaries

Let us start by deriving some results for the bosonic a
fermionic ‘‘polarization’’ functions,

P~P![XQ

1

Q2~P1Q!2
, ~B4!

P f~P![X $Q%

1

Q2~P1Q!2
, ~B5!

which will be frequently used in the following computation
It is straightforward to verify that in the case of a boson
external momentumP they can atd53 be written in the
forms

P~P!5
T

~4p!2E d3r
eip•r

r 2
@ u p̄0u1cothr̄ #e2up0ur , ~B6!

P f~P!5
T

~4p!2E d3r
eip•r

r 2
@ u p̄0u1cos~2m̄ r̄ !cschr̄ #e2up0ur ,

~B7!

where

p̄0[
p0

2pT
, ~B8!

r̄[2pTr. ~B9!

The latter formula, Eq.~B7!, is a generalization of Eq.~4.2!
of @6# and has been obtained using the Fourier transform
the fermionic propagator,
05401
ses

s

m

o
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f

d

of

E d3q

~2p!3

eiq•r

q21@~2n11!pT2 im#2

5
e2[ u2n11upT2 imsgn(2n11)]r

4pT
. ~B10!

The large-P behavior of the polarization functions has be
analyzed in@6# for the m50 case. A straightforward gene
alization of the computation to non zero chemical potenti
produces forP f ,

P f~P![P (0)~P!1P f
(T)~P!5P (0)~P!1P f,UV

(T) ~P!1OS T6

P6D
5b0S T2

P2D e

12Ĩ1
0 1

P2
1b2T4S 1

P4
2~422e!

p0
2

P6D
1

T

~4p!2E d3r
eip•r

r 2 F cos~2m̄ r̄ !cschr̄ 2
1

r̄

1S 1

6
12m̄2D r̄ 2S 7

360
1

m̄2

3
1

2m̄4

3 D r̄ 3Ge2up0ur ,

~B11!

wheree has been set to zero in the lastO(T6/P6) term. Here
the coefficientsb read

b05
1

~4p!22e

G~e!G2~12e!

G~222e! S L

T D 2e

, ~B12!

b2522ep23/21e
G~322e!

G~3/22e!S L

T D 2e

3@Li422e~2em/T!1Li422e~2e2m/T!# ~B13!

with Li denoting the polylogarithm function, and the relatio

Li4~2ex!1Li4~2e2x!52
7p4

360
2

p2

12
x22

1

24
x4

~B14!

has been employed in deriving the last term of Eq.~B11!.
The first term of Eq.~B11!, denoted byP (0), is the vacuum
(T5m50) part of the polarization function, and is the sam
in the bosonic and fermionic cases. Following the notation
@6#, the vacuum subtracted, or matter, part of the function
denoted byP f

(T) , even though here it should not be confus
with the finite temperature part ofP f obtained simply by
subtracting theT50 piece from the polarization function.

b. t̃

In terms of the functionP f and its large-P expansion, the
sum integralt̃ can clearly be written as
7-12
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t̃5X P

1

P2
P f~P!

5X P

1

P2H b0S T2

P2D e

12Ĩ1
0 1

P2

1
T

~4p!2E d3r
eip•r

r 2 Fcos~2m̄ r̄ !cschr̄

2
1

r̄
1S 1

6
12m̄2D r̄ Ge2up0urJ 1O~e!. ~B15!

The first two terms are trivial to evaluate using Eq.~B1!,
whereas the last one gives atd53,

T

~4p!2X P

1

P2E d3r
eip•r

r 2 Fcos~2m̄ r̄ !cschr̄

2
1

r̄
1S 1

6
12m̄2D r̄ Ge2up0ur

5
T2

~4p!3E d3r(
p0

e22up0ur

r 3 Fcos~2m̄ r̄ !cschr̄

2
1

r̄
1S 1

6
12m̄2D r̄ G

5
T2

~4p!2E0

`

dr
cothr

r Fcos~2m̄r !cschr

2
1

r
1S 1

6
12m̄2D r G . ~B16!

Here the final integral is UV convergent but has an IR div
gence due to the zero mode of the bosonic frequency s
Using the results of Appendix C it can, however, be eva
ated analytically and produces a finite result. This is due
the fact that the divergence in ther integral comes from a
term of the form*0

`dr r a, which vanishes under dimension
regularization. Adding up the different pieces and expand
in e, we get the result, Eq.~B73!, for the whole sum integral

c. N0,0 and M̃0,0

The application of Eq.~B11! separates the evaluation o
N0,0 into three pieces

N0,05X P @P f
(T)~P!#2

5X P $@P (0)~P!#21@P f
(T)~P!#212 P (0)~P!P f

(T)~P!%,

~B17!

of which the first one is again trivial. The second produces
analogy with the above two-loop calculation
05401
-
m.
-
o

g

n

X P P f
(T)~P!25X P S @P f

(T)~P!#224~ Ĩ1
0!2

1

P4D 14~ Ĩ1
0!2I 2

0

5
T3

~4p!4E d3r(
p0

e22up0ur

r 4 F S cos~2m̄ r̄ !cschr̄

2
1

r̄
D 2

2S 1

6
12m̄2D 2

r̄ 2G14~ Ĩ1
0!2I 2

0

5
T4

32p2E0

`

dr
cothr

r 2 F S cos~2m̄r !cschr 2
1

r D 2

2S 1

6
12m̄2D 2

r 2G14~ Ĩ1
0!2I 2

0 , ~B18!

where the resulting one-dimensional integral is analytica
calculable.

The third term ofN0,0 can be divided into three parts

X P P (0)~P!P f
(T)~P!

5X P S P (0)~P!2
1

~4p!2e
D @P f

(T)~P!2P f,UV
(T) ~P!#

1
1

~4p!2e
X P @P f

(T)~P!2P f,UV
(T) ~P!#

1X P P (0)~P!P f,UV
(T) ~P! ~B19!

[K11K21K3 . ~B20!

HereK2 andK3 are straightforward to obtain using the pr
vious results, but the first term requires careful considerat
Taking into account that

X P @P f
(T)~P!2P f,UV

(T) ~P!#5O~e! ~B21!

and using the result of@6#,

E d3p

~2p!3
eip•r ln

4pL2

p21p0
2
5

1

2pr S up0u
r

1
1

r 2D e2up0ur ,

~B22!

we get

K15
T

~4p!4X P S ln
4pL2

P2
122g D

3E d3r
eip•r

r 2 Fcos~2m̄ r̄ !cschr̄ 2
1

r̄
1S 1

6
12m̄2D r̄

2S 7

360
1

m̄2

3
1

2m̄4

3 D r̄ 3Ge2up0ur
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5
T4

32p2E0

`

dr r 23Fcos~2m̄r !cschr 2
1

r
1S 1

6
12m̄2D r

2S 7

360
1

m̄2

3
1

2m̄4

3
D r 3G S 12

r

2

d

dr
D cothr . ~B23!

The remaining integral is again of analytically solvable typ
and after adding together all the different pieces we ge
the result Eq.~B74!.

The computation ofM̃0,0 proceeds in a similar fashion
Equation~B17! is replaced by

M̃0,05X P $@P (0)~P!#21P (T)~P!P f
(T)~P!1P (0)~P!

3@P (T)~P!1P f
(T)~P!#%, ~B24!

where the first term is trivial and the last two cross terms
available through Eq.~B20! above and Eq.~D20! of @6#. For
the remaining piece one obtains

X P P (T)~P!P f
(T)~P!

5X P S P (T)~P!P f
(T)~P!24I 1

0Ĩ1
0 1

P4D 14I 1
0Ĩ1

0I 2
0

5
T4

32p2E0

`

dr
cothr

r 2 F S cothr 2
1

r D
3S cos~2m̄r !cschr 2

1

r D 1S 1

18
1

2m̄2

3 D r 2G
14I 1

0Ĩ1
0I 2

0 , ~B25!

whose straightforward evaluation leads to the final result,
~B75!.

d. N1,À1 and M̃1,À1

It is easy to see that the sum integralsN1,21 andM̃1,21
can be written in the form

N1,2152Ĩ1
0t̃22X P$QR%

QR

P2Q2R2~P1Q!2~P1R!2

[2Ĩ1
0t̃22H38, ~B26!

M̃1,2152Ĩ1
0t̃22X $P%QR

QR

P2Q2R2~P1Q!2~P1R!2

[2Ĩ1
0t̃22H3. ~B27!

Following @6# and defining further

Jm8 ~P![X $Q%

~2Q1P!m

Q2~Q1P!2
, ~B28!
05401
,
s

e

q.

Jm~P![XQ

~2Q1P!m

Q2~Q1P!2
2

Pm

P2
~I 1

02Ĩ1
0!, ~B29!

I38[X P

1

P2
Jm8 ~P!Jm8 ~P!, ~B30!

I3[X $P%

1

P2
Jm~P!Jm~P!, ~B31!

we quickly verify that H38 and H3 read

H385 1
4 I381 1

4 N0,0, ~B32!

H35
1

4
I31

1

4
M̃0,01

1

4
~I 1

02Ĩ1
0!2Ĩ2

02
1

2
~I 1

02Ĩ1
0!t̃.

~B33!

This leaves only the simpler sum integrals I38 and I3 to be
evaluated.

Due to Lorentz invariance and the orthogonality ofJm8 (P)
to bosonicP andJm(P) to fermionicP it is evident that these
functions can be written in the forms

Jm8 ~P!5
P2

p2S dm,02
p0

P2
PmD j 08~P!, ~B34!

Jm~P!5
P2

p2S dm,02
p0

P2
PmD j 0~P!,

~B35!

which, when plugged into Eqs.~B30! and ~B31!, produce

I385X P

1

p2
j 08~P!2, ~B36!

I35X $P%

1

p2
j 0~P!2. ~B37!

A crucial simplification in the evaluation of these sum int
grals occurs, as one notices that they both are actually fin
This is due to the fact that at largePJm8 (P) and Jm(P) be-
have likeO(1/P2), as can be straightforwardly verified. W
may therefore sete50 in the expressions forj 08 and j 0,
which eventually yields

j 08~P!52
iT

4pE0

`

dr S ] r

sinpr

pr D
3@2m̄2sin~2m̄ r̄ !cschr̄ #e2up0ur , ~B38!
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j 0~P!52
T

8pE0

`

dr S ] r

sinpr

pr D Fe22i m̄ r̄ sgn(Rep0)cschr̄

2cothr̄ 1
1

2
@~114m̄2! r̄ 14i m̄ sgn~Rep0!#G

3e2[ uRe(p0)u2 im sgn(Rep0)] r sgn~Rep0!. ~B39!

After substituting Eqs.~B38! and ~B39! to Eqs.~B36! and
~B37!, doing thep0 sums and performing the remainingp
integrals using the relation

E d3p

~2p!3

1

p2

sinpr

pr

sinps

ps
5

1

4p S 1

r
u~r 2s!2

1

s
u~s2r ! D ,

~B40!

we finally get

I3852
T4

32p2E0

`

dr
cothr

r 2
@2m̄2sin~2m̄r !cschr #2,

~B41!

I35
T4

128p2
ReH E

0

`

dr
e2i m̄rcschr

r 2 S e22i m̄rcschr

2cothr 1
1

2
@~114m̄2!r 14i m̄# D 2J . ~B42!

These integrals are clearly both UV and IR finite and
readily evaluated. The final results for the sum integrals,
tained after adding up all the different pieces, are given
Eqs.~B76! and ~B77!.

e. N2,À2 and M̃À2,2

Let us define, once again in analogy with@6#, the modified
gluon polarization tensors,

P̄mn~P![2dmnI 1
02XQ

~2Q1P!m~2Q1P!n

Q2~Q1P!2
,

~B43!

P̄ f,mn~P![2dmnĨ1
02X $Q%

~2Q1P!m~2Q1P!n

Q2~Q1P!2
.

~B44!

Using these we further define two new sum integrals by

I sqed
f f [X P

1

P4
@DP̄ f,mn~P!#2, ~B45!

I sqed
b f [X P

1

P4
DP̄mn~P!DP̄ f,mn~P!, ~B46!

where D f (P)[ f (P)2 f (0)dp0,0 . It is then straightforward

to verify that determiningN2,22 andM̃22,2 can be reduced
to computing a set of simpler sum integrals
05401
e
-
y

N2,225 1
4 I sqed

f f 1 1
2 DI sqed

f f 2N1,212
1

4
N0,028Ĩ1

1t̃81~212e!

3~ Ĩ1
0!2I 2

0 , ~B47!

M̃22,25
1
4 I sqed

b f 1 1
4 DI sqed

b f 1 1
4 M̃0,02I 1

0t̃1~212e!I 1
0Ĩ1

0I 2
0 ,

~B48!

where

DI sqed
f f [TE d322ep

~2p!322e

1

p4
P̄ f,mn~0!P̄ f,mn~p050,p!,

~B49!

DI sqed
b f [TE d322ep

~2p!322e

1

p4
@P̄mn~0!P̄ f,mn~p050,p!

1P̄ f,mn~0!P̄mn~p050,p!#. ~B50!

The evaluation ofI sqed
f f and I sqed

b f is fairly easy, since an
elementary calculation verifies the validity of Eqs.~F6!–
~F10! of @6# also whenmÞ0. This gives at orderO(e),

X P

1

P4
~DP̄ f,mn

(T) ~P!!2

5X P ~P f
(T)~P!!214~d22!~ Ĩ1

0!2I 2
0 ,

~B51!

X P

1

P4
DP̄mn

(T)~P!DP̄ f,mn
(T) ~P!

5X P P (T)~P!P f
(T)~P!14~d22!I 1

0Ĩ1
0I 2

0 ,

~B52!

X P

1

P4
DP̄ f,mn

(T) ~P!P̄mn
(0)~P!

5
1

d21X P P f
(T)~P!P (0)~P!

1
2~d22!

d21
Ĩ1

0
X P

1

P2
P (0)~P!, ~B53!

X P

1

P4
DP̄mn

(T)~P!P̄mn
(0)~P!

5
1

d21X P P (T)~P!P (0)~P!

1
2~d22!

d21
I 1

0
X P

1

P2
P (0)~P!, ~B54!
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X P

1

P4
~P̄mn

(0)~P!!25
1

d21X P ~P (0)~P!!2, ~B55!

where the superscript (0) again signifies the vacuum par
the function in question andf (T)[ f 2 f (0).

The relations~B51!-~B55! clearly reduceI sqed
f f and I sqed

b f

to well-known sum integrals and leave onlyDI sqed
f f and

DI sqed
b f to be evaluated. Noticing that forP5(0,p),

PmP̄ f,mn~0!52PnĨ1
02

4Pn

322eX $Q%

Q22q0
2

Q4
5

Pn

322e

3@~224e!Ĩ1
014Ĩ2

2#50, ~B56!

and similarly

PmP̄mn~0!5PmP̄ f,mn~0,p!5PmP̄mn~0,p!50, ~B57!

we may decompose the tensors into their transverse and
gitudinal parts~see e.g.@37#!. This enables us to write Eqs
~B49! and ~B50! in the form

DI sqed
f f 5TE d322ep

~2p!322e

1

p4 F322e

222e
P̄ f,00~0!P̄ f,00~0,p!

2
1

222e
@P̄ f,00~0!P̄ f,mm~0,p!

1P̄ f,mm~0!P̄ f,00~0,p!#

1
1

222e
P̄ f,mm~0!P̄ f,mm~0,p!G , ~B58!

DI sqed
b f 5TE d322ep

~2p!322e

1

p4 F322e

222e
@P̄ f,00~0!P̄00~0,p!

1P̄00~0!P̄ f,00~0,p!#

2
1

222e
@P̄ f,00~0!P̄mm~0,p!

1P̄ f,mm~0!P̄00~0,p!1P̄00~0!P̄ f,mm~0,p!

1P̄mm~0!P̄ f,00~0,p!#

1
1

222e
@P̄ f,mm~0!P̄mm~0,p!

1P̄mm~0!P̄ f,mm~0,p!#G , ~B59!

and the use of the identityĨ2
2/Ĩ1

05I 2
2/I 1

0521/21e now
leads to
05401
of

n-

DI sqed
f f 5TE d322ep

~2p!322e

1

p4F 2

222e
@~122e!Ĩ1

0

12Ĩ2
2#p2P̄ f~0,p!1

8

222e

3@2Ĩ1
012~322e!Ĩ2

2#X $Q%
q0

2

Q2~Q1p!2G
528~222e!TĨ1

0
X $Q%

3E d322ep

~2p!322e

q0
2

p4Q2~Q1p!2
, ~B60!

DI sqed
b f 528~222e!TS Ĩ1

0
X $Q% 1I 1

0
XQ D

3E d322ep

~2p!322e

q0
2

p4Q2~Q1p!2
. ~B61!

In Eqs.~B60! and~B61! thep-integrals can be performed b
introducing Feynman parametersx andy to combine the dif-
ferent factors in the denominators. A straightforward calc
lation produces

DI sqed
f f 52

16~12e!G~5/21e!

~4p!3/22e
T Ĩ1

0Ĩ5/21e
2 f~e!, ~B62!

DI sqed
b f 52

16~12e!G~5/21e!

~4p!3/22e
T~I 1

0 Ĩ5/21e
2 1Ĩ1

0I5/21e
2 !

3f~e!, ~B63!

where the function f is defined by

f~e![E
0

1

dxE
0

1

dyx23/22e~12x!y1/21e~12xy!23/21e

5E
0

1

dxE
0

1

dyx23/2~12x!y1/2S ~12xy!23/2212
3xy

2 D
1E

0

1

dxE
0

1

dyx23/22e~12x!y1/21eS 11
3xy

2 D1O~e!

52
p

2
1O~e!. ~B64!

The use of this result in Eqs.~B62! and ~B63! now gives at
orderO(e),

DI sqed
f f 50, ~B65!

DI sqed
b f 5

T4

12~4p!2
~1112m̄2!, ~B66!
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and together with the other parts ofN2,22 and M̃22,2 this
yields Eqs.~B78! and ~B79! as the results.

f. The diagram e

Equation~A11!, the contribution of the diagrame to the
strict perturbation expansion of the QCD pressure, conta
05401
s

sum integrals, which are functions of two independe
chemical potentials. Due to cancellations between the dif
ent terms ofI e it is convenient not to deal with all of them
separately, but to treat the whole diagram as a single en

Using trivial generalizations of Eqs.~B47! and ~B51! we
get for the diagram
,

I e52
1

2
dAg4(

f g
H 4~12e!Ĩ1

0~m f !Ĩ1
0~mg!I 2

022~12e!@ Ĩ1
0~m f !t̃~mg!1Ĩ1

0~mg! t̃~m f !#1~12e!

3X P P f
(T)~P,m f !P f

(T)~P,mg!1
2~12e!

322e
~ Ĩ1

0~m f !1Ĩ1
0~mg!!

3X P

1

P2
P (0)~P!1

2~12e!2

322e X P P (0)~P!@P (0)~P!1P f
(T)~P,m f !1P f

(T)~P,mg!#J
52

1

4
dAg4(

f g
H 16~12e!Ĩ1

0~m f !Ĩ1
0~mg!I 2

024~12e!@ Ĩ1
0~m f ! t̃~mg!1Ĩ1

0~mg!t̃~m f !#

1
~12e!T4

~4p!2 E
0

`

dr
cothr

r 2 F S cos~2m̄ f r !cschr 2
1

r D S cos~2m̄gr !cschr 2
1

r D 2S 1

6
12m̄ f

2D S 1

6
12m̄g

2D r 2G
1

4~12e!2

322e FX P P (0)~P!@P (0)~P!1P f
(T)~P,m f !1P f

(T)~P,mg!#1
Ĩ1

0~m f !1Ĩ1
0~mg!

12e X P

1

P2
P (0)~P!G J ,

~B67!

where every term is of an already familiar form with the exception of the one containing ther integral. This integral can
however, also be straightforwardly evaluated using the results of Appendix C, which eventually gives us Eq.~B80! as the final
outcome of the graph.

3. The results

The final results for the sum integrals introduced in Appendix A and evaluated above read

I 1
05

T2

12
S 112eF11

z8~21!

z~21!
1 ln

L̄

4pT
G D , ~B68!

Ĩ1
052

T2

24H 1112m̄212eF ~1112m̄2!S 11 ln
L̄

4pT
D 112:~1,z!G J , ~B69!

I 2
05

1

~4p!2S 1

e
12g12 ln

L̄

4pT
D , ~B70!

Ĩ2
05

1

~4p!2 S 1

e
2:~z!12 ln

L̄

4pT
D , ~B71!

Ĩ2
25

T2

48
S 1112m̄212eF ~1112m̄2!ln

L̄

4pT
112:~1,z!G D , ~B72!

t̃52
T2

~4p!2F m̄2

e
12m̄2S 112 ln

L̄

4pT
D 22i m̄:~0,z!G , ~B73!
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N0,05
1

~4p!2S T2

12
D 2F3

2
~1112m̄2!2S 1

e
16 ln

L̄

4pT
D 1

173

20
1210m̄211284m̄42

24

5

z8~23!

z~23!

2144@2:~3,z!1:~3,2z!14i m̄@:~2,z!1:~2,2z!#2~118m̄2!:~1,z!24m̄2:~1,2z!#G , ~B74!

M̃0,052
1

~4p!2S T2

12
D 2F3

4
~1124m̄2248m̄4!S 1

e
16 ln

L̄

4pT
D 1

179

40
1111m̄22210m̄4148

z8~21!

z~21!
1

24

5

3
z8~23!

z~23!
172@6:~3,z!112i m̄:~2,z!1~128m̄2!:~1,z!#G , ~B75!

N1,2152
1

2~4p!2S T2

12
D 2F3

2
~1112m̄2!~124m̄2!S 1

e
16 ln

L̄

4pT
D 1

173

20
1114m̄21132m̄42

12

5

z8~23!

z~23!

296m̄2
z8~21!

z~21!
2144F2:~3,z!12:~3,2z!24i m̄:~2,z!18i m̄:~2,2z!2~124m̄2!:~1,z!28m̄2:~1,2z!

2
1

3
i m̄~1112m̄2!:~0,z!G G , ~B76!

M̃1,2152
3

4~4p!2S T2

12
D 2F ~1112m̄2!~124m̄2!S 1

e
16 ln

L̄

4pT
D 1

361

60
130m̄22100m̄42

8

5

z8~23!

z~23!
23~114m̄2!2:~z!

248@8:~3,z!112i m̄ :~2,z!1~124m̄2!:~1,z!1 1
3 i m̄~1212m̄2!:~0,z!#G , ~B77!

N2,22528Ĩ1
1t̃81

1

~4p!2S T2

12
D 2F4

3
~1112m̄2!~116m̄2!S 1

e
16 ln

L̄

4pT
D 1

35

6
12g14~29112g!m̄218~71136g!m̄4

2
16

15

z8~23!

z~23!
2

4

3
~1148m̄2!

z8~21!

z~21!
224@8:~3,z!16:~3,2z!212i m̄:~2,z!124i m̄:~2,2z!24~112m̄2!

3:~1,z!224m̄2:~1,2z!2 i m̄~1112m̄2!:~0,z!#G , ~B78!

M̃22,252
1

~4p!2S T2

12
D 2F 1

12
~291288m̄22144m̄4!S 1

e
16 ln

L̄

4pT
D 1

89

12
14g12~43124g!m̄2268m̄41

8

3

z8~23!

z~23!

1
10

3
S 11

84

5
m̄2D z8~21!

z~21!
124@10:~3,z!118i m̄:~2,z!12~225m̄2!:~1,z!1 i m̄ :~0,z!#G , ~B79!

I e52
dAg4

4~4p!2S T2

12D 2F2TF(
f

H 2

3
~5172m̄21144m̄4!S 1

e
16 ln

L̄

4pTD 1
31

3
14g18~25112g!m̄21400m̄4b f

2
64

15

z8~23!

z~23!
2

16

3
~1112m̄2!

z8~21!

z~21!
296@8:~3,z!112i m̄:~2,z!2~318m̄2!:~1,z!2 i m̄:~0,z!#J

1(
f g

„576~11g!m̄ f
2m̄g

2296$3@:~3,zf1zg!1:~3,zf1zg* !#112i m̄ f@:~2,zf1zg!1:~2,zf1zg* !#

212m̄g
2 :~1,zf !23~m̄ f1m̄g!2:~1,zf1zg!23~m̄ f2m̄g!2:~1,zf1zg* !212i m̄ fm̄g

2:~0,zf !%…G . ~B80!
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Using the results of Appendix C we furthermore get in t
limit T50

Ĩ1
052

m2

8p2F11eS 312 ln
L̄

2m
D G , ~B81!

Ĩ2
05

1

~4p!2 S 1

e
12 ln

L̄

2m
D , ~B82!

Ĩ2
25

m2

~4p!2 F11eS 112 ln
L̄

2m
D G , ~B83!

t̃52
4m2

~4p!4F1

e
12S 312 ln

L̄

2m
D G , ~B84!

N0,05
24m4

~4p!6S 1

e
16 ln

L̄

2m
1

91

9
2

16

9
ln 2D , ~B85!

M̃0,05
4m4

~4p!6S 1

e
16 ln

L̄

2m
110D , ~B86!

N1,215
4m4

~4p!6S 1

e
16 ln

L̄

2m
1

13

3
1

32

3
ln 2D , ~B87!

M̃1,215
4m4

~4p!6 S 1

e
16 ln

L̄

2m
1

39

4
D , ~B88!

M̃22,25
4m4

3~4p!6 S 1

e
16 ln

L̄

2m
1

61

6
D . ~B89!

APPENDIX C: EVALUATION OF THE HYPERBOLIC
INTEGRALS

As a consequence of keepingm finite, many of the one-
dimensional integrals encountered in this paper differ fr
the ones of@6#. In addition to the ordinary hyperbolic case
we need to evaluate integrals of the type

E
0

`

dx xzeibxcothnx cschpx, ~C1!

where n and p are non-negative integers andz and b real
numbers. This is accomplished by repeatedly applying
relations

coth2x2csch2x51, ~C2!
05401
e

E
0

`

dx xzeibxcothnx cschpx

5
1

n1p21E0

`

dx xzeibxcothn22x cschpx

3Fn211S z

x
1 ib D tanhxG , ~C3!

and in the end performing the integrals using the results

E
0

`

dx xzeibxcothx

5G~11z!@2~2 ib!212z122zz~11z,2 ib/2!#,

~C4!

E
0

`

dx xzeibxcschx522zG~11z!z~11z,1/22 ib/2!, ~C5!

which can be straightforwardly derived. As in@6#, UV diver-
gences in the individual terms of converging integrals
regulated by introducing a factorxd in the integrand and in
the end taking the limitd→01.

APPENDIX D: PROPERTIES OF THE FUNCTIONS :

In Sec. II the functions: were defined by the formulas

z8~x,y![]xz~x,y!, ~D1!

:~n,w![z8~2n,w!1~21!n11z8~2n,w* !, ~D2!

:~w![C~w!1C~w* !. ~D3!

In order to analyze the behavior of the sum integrals of A
pendix B at different values ofm andT, we need to expand
these functions in the limits of small and largem̄. The results
of such expansions, obtained straightforwardly using am
other things the integral representations of the zeta and
gamma functions, read

:~3,z!5
1

480S ln 227
z8~23!

z~23! D1
1

24S 516 ln 2

26
z8~21!

z~21! D m̄21
1

12
~1126g212 ln 2!m̄4

1O~m̄6!, ~D4!

:~3,z1z8!5
1

60

z8~23!

z~23!
2

1

12S 526
z8~21!

z~21! D ~m̄1m̄8!2

1
1

12
~1126g!~m̄1m̄8!41O~m̄6!, ~D5!
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:~2,z!5
1

12S 112 ln 222
z8~21!

z~21! D i m̄1
1

3
~322g

24 ln 2!i m̄31O~m̄5!, ~D6!

:~2,z1z8!52
1

6S 122
z8~21!

z~21! D i ~m̄1m̄8!1
1

3
~322g!

3 i ~m̄1m̄8!31O~m̄5!, ~D7!

:~1,z!52
1

12S ln 22
z8~21!

z~21! D2~122 ln 22g!m̄2

2
7

6
z~3! m̄41O~m̄6!, ~D8!

:~1,z1z8!52
1

6

z8~21!

z~21!
2~12g!~m̄1m̄8!22

1

6
z~3!

3~m̄1m̄8!41O~m̄6!, ~D9!

:~0,z!52~2 ln 21g!i m̄2 14
3 z~3! i m̄31O~m̄5!,

~D10!

:~z!522g24 ln 2114z~3!m̄2262z~5!m̄41O~m̄5!
~D11!

for small m̄ and

:~3,z!5 1
2 m̄4~ ln m̄2 1

4 !1 1
4 m̄2~ ln m̄1 1

3 !1O~ ln m̄ !,
~D12!

:~2,z!5
2i

3
m̄3S ln m̄2

1

3D 1
i

6
m̄S ln m̄1

1

2D 1OS ln m̄

m̄
D ,

~D13!

:~1,z!52m̄2S ln m̄2
1

2D 2
1

12
~ ln m̄11!1OS ln m̄

m̄2 D ,

~D14!

:~0,z!522i m̄~ ln m̄21!2
i

12

1

m̄
1OS ln m̄

m̄3 D ,

~D15!

:~z!52 ln m̄2
1

12

1

m̄2
1OS ln m̄

m̄4 D ~D16!

for large m̄.
05401
APPENDIX E: THE DIAGRAM I e8 AND THE PLASMON
TERM AT TÄ0

In Sec. IV, where the zero-temperature pressure of Q
was computed toO(g4), we only quoted the results for th
diagramI e8 and the plasmon term. The corresponding cal
lations will be performed in this appendix.

1. The diagram I e8

The one-loop gluon polarization tensor depicted in F
4~b! has in the Feynman gauge the expression

~Pmn
f !ab~P!522g2TFdabS 2Ĩ1

0dmn1~PmPn2P2dmn!

3P f~P!2X $Q%

~2Q2P!m~2Q2P!n

Q2~Q2P!2 D .

~E1!

Denoting its vacuum (T5m50) part here by
(Pmn

f )ab(P)uvac we obtain after a straightforward comput
tion

~Pmn
f !ab~P!uvac522g2ATfd

abS L2

P2D e

~PmPn2P2dmn!,

~E2!

where the coefficientA can be shown to have thee expan-
sion

A5
1

24p2 S 1

e
2g1 ln~4p!1

5

3
1O~e! D . ~E3!

Using this expression we easily obtain atT50,

I e854~d22!g4AdATF
2L2eE

P$Q%

1

~P2!eQ2~P2Q!2

[4~d22!g4AdATF
2L2et̃9, ~E4!

and only the integralt̃9 remains to be evaluated.
The most straightforward way to tackle the computati

of the new integral is to proceed as in the case of the s
integralt̃, while from the beginning on neglecting terms th
vanish atT50. Using Eq.~B11! we get
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t̃9uT505E
P

1

~P2!e
P f,T50~P!

5L22eH E
P
F S L2

P2D e

21GP f,T50~P!1E
P
P f,T50~P!J

5L22eH ~ Ĩ1
0!21b2T4E

P
F S L2

P2D e

21GF 1

P4
2~422e!

p0
2

P2G2
e T

~4p!2

3E
P
ln

P2

L2E d3r
eip•r

r 2 F cos~2m̄ r̄ !cschr̄ 2
1

r̄
1S 1

6
12m̄2D r̄ 2S 7

360
1

m̄2

3
1

2m̄4

3 D r̄ 3Ge2up0ur1O~e!J uT50 ,

~E5!
e-
r

am
a
ub
o
in
n
e
io
la

rn

a-

two
he
ult

em,
lts
where the remainingP integrals can be evaluated using pr
vious results. The calculation of ther integral then leads afte
setting the temperature to zero to

t̃95
4m422e

~4p!4 S 122eF3 ln 22422 ln
L̄

m
G1O~e2! D ,

~E6!

and plugging this expression to Eq.~E4! gives Eq.~5.2! as
the result.

2. The plasmon term

The evaluation of the plasmon contribution to theT50
pressure corresponds to summing over all the ring diagr
of Fig. 4~c! starting at three-loop order. These graphs cont
as loop insertions the fermionic part of the vacuum s
tracted one-loop gluon polarization tensor, which we den
by (DPmn

f )ab. The summation was originally performed
@9# and will be reproduced here following to a large exte
the treatment of@9,38#. The computation begins from th
derivation of an integral representation for the polarizat
tensor and then proceeds to the evaluation of the actual p
mon sum.

Using Eqs.~E1! and~E2! it is easily seen that the vacuum
subtracted polarization tensor is orthogonal to the exte
momentum, i.e.

Pm~DPmn
f !ab~P![Pm@~Pmn

f !ab~P!2~Pmn
f !ab~P!uvac#50.

~E7!

Setting e50 and applying this relation together with rot
tional invariance we may then write the tensor in the form

~DPmn
f !ab~P!

5
1

p2
~DP00

f !ab~P!~P2dmn2PmPn!

1
1

2p2 S ~DPmm
f !ab~P!2

3P2

p2
~DP00

f !ab~P!D

05401
s
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n
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al

3dm idn j~p2d i j 2pipj ! ~E8!

5~DP00
f !ab~P!

P2

p2 Fdmn2
PmPn

P2
2dm idn j S d i j 2

pipj

p2 D G
1

1

2 S ~DPmm
f !ab~P!2

P2

p2
~DP00

f !ab~P!D
3dm idn j S d i j 2

pipj

p2 D , ~E9!

where P stands for four-vectors andp for three-vectors as
before and the polarization tensor has been divided into
parts proportional to orthonormal projection operators. T
components of the tensor appearing explicitly in the res
are available through an application of the residue theor
which after a straightforward calculation leads to the resu
~see Appendix A of part II in@9#!

~DP00
f !ab~P!54g2dab(

f
E d3q

~2p!3

1

q
u~m2q!

3
p2q22~pq!2

~Q2P!2~Q1P!2U
q05 iq

, ~E10!

~DPmm
f !ab~P!54g2dab(

f
E d3q

~2p!3

1

q
u~m2q!

3
~PQ!2

~Q2P!2~Q1P!2U
q05 iq

. ~E11!

Defining an angular variablef by

p0

upu
5arctanf ~E12!

and performing the corresponding integrations in Eqs.~E10!
and ~E11!, we now obtain for the polarization tensor
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~DP00
f !ab~P!

5
g2dab

2p2 E0

m

dqqH 11
4q22P2

8qP sinf
ln

P214q214qP sinf

P214q224qP sinf

2cotf arc tan
4q2sin 2f

P214q2cos 2f
J

5
g2dab

2p2 H 2

3
m21

m~4m223P2!

24P sinf

3 ln
P214m214mP sinf

P214m224mP sinf
2

P2sin2f

24

3 lnF118
m2P2cos 2f12m4

P4 G
2

1

2 S m22
112 sin2f

12
P2D

3cotf arc tan
sin 2f

cos 2f1P2/~4m2!
J , ~E13!

~DPmm
f !ab~P!

5
g2dab

p2 E
0

m

dqqH 12
P

8q sinf
ln

P214q214qP sinf

P214q224qP sinf
J

5
g2dab

2p2 H m22
mP

4sinf
ln

P214m214mP sinf

P214m224mP sinf

2
P2

8
lnF118

m2P2cos 2f12m4

P4 G
1

P2cotf

4
arc tan

sin 2f

cos 2f1P2/~4m2!
J , ~E14!

whereP this time stands for the norm of the correspondi
four-vector where flavor sums have been suppressed.
last forms obtained here are, however, inconvenient to w
with. It is on the other hand easy to confirm by a dire
integration that the simple integral representations

~DP00
f !ab~P!5

g2dab

2p2

m4sin2f

P2 E
0

1

dx

3E
21

1

dy
x~12y2!

124xm2/P2sin2f~y1 i cotf!2
,

~E15!
05401
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rk
t

~DPmm
f !ab~P!52

g2dab

p2

m4sin2f

P2 E
0

1

dx

3E
21

1

dy
x~y1 i cotf!2

124xm2/P2sin2f~y1 i cotf!2

~E16!

produce exactly Eqs.~E13! and ~E14!, which suggests the
use of the Sommerfeld-Watson integral formula

1

11x
52E

2 i`2e

i`2e dz

2p i

p

sinpz
xz. ~E17!

When applied to Eqs.~E15! and ~E16!, the Sommerfeld-
Watson formula gives

~DP00
f !ab~P!

5
g2m2dab

8p2 E
2 i`2e

i`2e dz

2p i

p

sinpzE0

1

dx

3E
21

1

dy
~12y2!

~y1 i cotf!2F 2P2

4xm2sin2f~y1 i cotf!2G z

,

~E18!

~DPmm
f !ab~P!

52
g2m2dab

4p2 E
2 i`2e

i`2e dz

2p i

p

sinpzE0

1

dx

3E
21

1

dyF 2P2

4xm2sin2f~y1 i cotf!2G z

, ~E19!

where thex and y integrals can now be factorized and pe
formed separately. The result first derived in@9# is that one
has obtained a compact integral representation for the po
ization tensor

~DP00
f !ab~P!52

g2dab

2p2 (
f

m2E
2 i`2e

i`2e dz

2p i
G1~z,f!

3S P2

4m2D z

, ~E20!

~DPmm
f !ab~P!52

g2dab

2p2 (
f

m2E
2 i`2e

i`2e dz

2p i
G2~z,f!

3S P2

4m2D z

, ~E21!

where flavor sums have been reintroduced and the funct
Gn are defined by
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G1~z,f!5
p

sinpz

cos~2zf!21/~2z!sin~2zf!cotf

~12z!~124z2!
,

~E22!

G2~z,f!5
p

sinpz

cos~2zf!2sin~2zf!cotf

~12z!~122z!
.

~E23!

We are now ready to evaluate the sum of the diagrams
Fig. 4~c!, which we begin by first defining~again in analogy
with @9#!

L1~P!5
1

dAsin2f
~DP00

f !aa~P!, ~E24!

L2~P!5
1

2dA
S ~DPmm

f !aa~P!2
1

sin2f
~DP00

f !aa~P!D .

~E25!

Using the orthonormality of the projection operators appe
ing in Eq.~E9! and keeping in mind the symmetry factors f
the ring diagrams, this straightforwardly leads to the expr
sion

p352
dA

2 E d4P

~2p!4H lnF11
L1~P!

P2 G2
L1~P!

P2

12 lnF11
L2~P!

P2 G22
L2~P!

P2 J , ~E26!

which we now must examine.
The integrals over the three-dimensional angular variab

are trivially performed. This gives for the infrared sensiti
part of the plasmon contribution

p3
a[2

dA

2 E d4P

~2p!4 H lnF11
L1~0,f!

P2 G12 lnF11
L2~0,f!

P2 G
2

1

P2
@L1~0,f!12L2~0,f!#1

1

2P2

1

P214m2
@L1

2~0,f!

1L2
2~0,f!#J ~E27!

52
dA

~2p!3E0

`

dP2P2E
0

p/2

df sin2fH lnF11
L1~0,f!

P2 G
12 lnF11

L2~0,f!

P2 G2
1

P2
@L1~0,f!12L2~0,f!#

1
1

2P2

1

P214m2
@L1

2~0,f!1L2
2~0,f!#J ~E28!
05401
of

r-

s-

s

52
dA

2~2p!3E0

p/2

df sin2fH L1
2~0,f!S ln

L1~0,f!

4m2
2

1

2D
12L2

2~0,f!S ln
L2~0,f!

4m2
2

1

2D J , ~E29!

where theP2 integral has been evaluated in the last sta
From Eqs.~E13! and ~E14! we furthermore have

L1~0,f!5
g2m2

2p2

12f cotf

sin2f
, ~E30!

L2~0,f!5
g2m2

4p2 S 12
12f cotf

sin2f
D ,

~E31!

which gives

p3
a52

2dA~m2!2

p3 S g

4p D 4E
0

p/2

df sin2f

3H 2S 12f cotf

sin2f
D 2S lnF g2

8p2

12f cotf

sin2f
G2

1

2D
1S 12

12f cotf

sin2f
D 2H lnF g2

16p2 S 12
12f cotf

sin2f
D G

2
1

2 J J . ~E32!

Performing the remainingf integral produces now

p3
a52

dA~m2!2

4p2 S 2 ln
g2

16p2
211

16

3
ln 2~12 ln 2!1d D

~E33!

with the constantd defined in Eq.~5.5! of Sec. IV.
The second part of the plasmon term is defined by

p3
b[p32p3

a . ~E34!

To order g4 it can be evaluated by simply expanding th
logarithms in Eq.~E26! in powers ofg2, since there obvi-
ously will be no g4ln g contributions originating from its
expression
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p3
b[2

dA

~2p!3E0

`

dP2P2E
0

p/2

dfsin2fH lnF P21L1~P!

P21L1~0,f!
G

12 lnF P21L2~P!

P21L2~0,f!
G2

1

P2
@L1~P!12L2~P!

2L1~0,f!22L2~0,f!#2
1

2P2

1

P214m2

3@L1
2~0,f!1L2

2~0,f!#J
5

dA

2~2p!3E0

`

dP2E
0

p/2

df sin2fH 1

P2
@L1

2~P!12L2
2~P!#

1S 1

P214m2
2

1

P2D @L1
2~0,f!12L2

2~0,f!#J 1O~g5!.

~E35!

Plugging in the contour-integral representations of theL
functions,
05401
L1~P!52
g2

2p2sin2f
(

f
m f

2E
2 i`2e

i`2e dz

2p i
G1~z,f!S P2

4m f
2D z

[(
f
E

2 i`2e

i`2e dz

2p i
L̃1

f ~z,f!S P2

4m f
2D z

, ~E36!

L2~P!52
g2

4p2 (
f

m f
2E

2 i`2e

i`2e dz

2p i H G2~z,f!2
G1~z,f!

sin2f
J

3S P2

4m f
2D z

[(
f
E

2 i`2e

i`2e dz

2p i
L̃2

f ~z,f!S P2

4m f
2D z

, ~E37!

and performing theP2 integral with an IR cutoff 4hm2, we
now obtain
ration

ole is
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The f integral in the first term is easy to perform, but is left in its present form for now. Instead, we deform the integ
contour of thez8 integral in order to be able to proceed to the limith→0. Denoting Residues byR and encircling the poles
at z850 andz852z to obtain a contour integral, which vanishes in this limit, we get

E
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The z integral of the first term is quickly evaluated by closing the contour on the right half-plane, where the only p
located at the originz50. The substitutionhz511z ln h1O(z2) then produces
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where we have used the relation

(
f g
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a trivial consequence of the definitions of Eqs.~E36! and
~E37!.

The evaluation of the plasmon term has now been redu
to the computation of the two integralsp3

b,1 andp3
b,2 . Using

the relations
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g2m2

2p2sin2f
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the double residue appearing inp3
b,2 is rapidly evaluated, and

the computation of the subsequentf integral produces
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For p3
b,1 the f integration can, on the other hand, be imm

diately performed. This gives
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where the remaining contour integral is straightforward
evaluate by applying the residue theorem. Assuming fi
m f

2>mg
2 we may close the integration contour by a semicir

on the right half-plane, where the integrand obviously h
poles located atz5k, ; kPN. Denotingmg

2/m f
2[b we get
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where the infinite sum has been evaluated using stan
formulas. Form f

2<mg
2 ⇔ b>1 the computation proceeds i

an analogous fashion, the only difference being that the
tegration contour is now closed on the left half-plane. T
result of this calculation is simply

E
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and the application of Eqs.~E49! and ~E50! in Eq. ~E48!
gives now
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Adding Eqs.~E33!, ~E48! and ~E51! together we finally ob-
tain Eq.~5.3! as the result for the whole plasmon sum.
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