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Pressure of QCD at finite temperatures and chemical potentials
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We compute the perturbative expansion of the pressure of hot QCD togftideg in the presence of finite
quark chemical potentials. In this process we evaluate all two- and three-loop vacuum diagrams of the theory
at arbitraryT and . and then use these results to analytically verify the outcome of an old gtamidculation
of Freedman and McLerran for the zero-temperature pressure. The results for the pressure and the different
quark number susceptibilities at highare compared with recent lattice simulations showing excellent agree-
ment especially for the chemical potential dependent part of the pressure.
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[. INTRODUCTION duction and evaluating all one-particle irreducible vacuum
diagrams of the theory up to three-loop order, we will derive
If either the temperature or the density of strongly inter-an analytic expression for the pressure valid at high tempera-
acting matter is increased enough, it undergoes a phase trantres and finite chemical potentials. Furthermore, we will
sition from the hadronic phase into deconfined quark-gluordetermine the different quark number susceptibilitiesuat
plasma (QGP at an energy density of approximately =0, which together with the pressure are compared with
1 GeV/fn?. As one then approaches even higher energiegecent lattice results of Gavai and Gugtad] showing im-
the value of the gauge coupling keeps decreasing making jiressive agreement in particular for the chemical potential
possible to start using the machinery of perturbation theorglependent part of the pressure. The diagrammatic computa-
in computing different observables. The problem of detertions performed here will also be used to tackle the problem
mining the perturbative expansion for the most fundamentabf determining the pressure at low temperatures. In particular
thermodynamic quantity, the grand potentia= —pV, has  we will verify the outcome of the well-knowii=0 compu-
been under attack already for more than two decades. It is a@ation of Freedman and McLerrdf] and provide a simple
especially hot topic today due to the fact that QGP is curanalytic value for a poorly known numerical coefficient ap-
rently under experimental study in the ongoing heavy-ionpearing in the result.
experiments at the BNL Relativistic Heavy lon Collider The paper is organized as follows. In Sec. Il the general
(RHIC). notation is explained, and the necessary special functions are
At vanishing chemical potentials, or zero net baryon denintroduced. Section Ill provides then an introduction to di-
sity, the perturbative series for the pressure has recently beenensional reduction, and the results for the pressure at high
driven to the last fully perturbative ordég®ing [1,2], fol- T and finite » are presented. These results are analyzed in
lowing the determination of the contributions of ordg/s  detail in Sec. IV, where we in particular investigate their
[3], g° [4], g*Ing [5], g* [6] andg® [7.8]. At zero tempera- agreement with lattice data. In Sec. V we address the difficult
ture and large chemical potentials the expansion is known tproblem of computing the pressure B0 and show how
0(g* [9], and at high temperatures but finite chemical po-the result off9] can be obtained from the computations per-
tentials toO(g*ing) [5]. The limit of large chemical poten- formed in this paper. Section VI is then devoted to address-
tials and small but nonzero temperatures is at present thag the important question of the compatibility of the two
least well known; there the only applicable result is of orderresults obtained for the pressure at higrand T=0, and
g® [3]. In addition to these computations, there have beemgonclusions are finally drawn in Sec. VII. We leave almost
numerous attempts to determine the pressure using fouall computational details to the Appendixes.
dimensional lattice simulationsee, e.g.[10-14) and the

hard thermal loogHTL) approximatiorf15—17. In the limit Il. SETUP AND NOTATION
of a large number of flavors the pressure has furthermore
recently been nonperturbatively determined bothuat 0 The theory we consider in this paper is the 8l Yang-

[18] and w0 [19], and these results have then been used tdills theory coupled tan; flavors of massless fermions. It is
extract the perturbative expansion of the quantity at laxge described by the Lagrangian density
even to ordeg® [19].

6The present paper provide; a generalizati_on of the order ﬁQCD:%FivFiv+ZD 0, (2.1
g°Ing computation[1] of Kajantie et al. to finite quark
chemical potentials. Using the framework of dimensional reyyhere, as usual,

F2 =9 ,A%—9,A%+gfaPcAPAC 2.2

*Email address: aleksi.vuorinen@helsinki.fi wr= O B AT wev (2.2
1At order g® one runs into infrared problems that can only be . A

solved by nonperturbative methof20]. D,=d,—19A,=3d,—1gA,T", 2.3
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and the symbol3? denote the generators of the fundamentalwhere A is the modified minimal subtraction scher(dS)
representation of the gauge group. All quark fields have beegcale, andp, and {p,} denote the bosonic and fermionic
combined into a multicomponent spingt and since flavor Matsubara frequencies, respectively. We have introduced the

is a conserved quantum number of the theory, we may assigf,.,nventional notation for theMS scale in order to avoid
an independent chemical potentja} for eachf. As is cus- confusion with the chemical potentials

tomary in finite temperature computations, we will work in We define some familiar group theory factors by
Euclidean metric.

In finite temperature field theory the partition function is Cpo°U=fabefabd= N _scd (2.12
represented by a functional integral of the exponential of the
Euclidean action, where the usual time integral has been re- NZ-1
placed by one over the compact imaginary timé=x, in CF5ijE(TaTa)ij=2—,\lc5ij : (213

Euclidean metrigranging from 0 to 1T,

Ny
T b_— aTb__" cab
Z(T,M)=eQ’T=J'D¢exp[—J' deddlx(E—,u/\/)]. TeS*P=TrT?T 5 &5 (2.14
0

(2.4  and denote an additional, slightly less well-known one by

The perturbative evaluation of this integral leads to the com- N2—4

putation of vacuum Feynman diagrams with Feynman rules D &%= dabcdabd_N—fst- (2.19
closely analogous to the zero-temperature ones. The most ¢

important modification is the replacement of thgloop in-  The dimensions of the adjoint and fermionic representations
tegrals by discrete sums over the so-called Matsubara fresf the gauge group are naturally

guencies a_ n2
i = 5%a=N2-1, (2.16
p*=2n=T, (2.5
° de=6,=d,Tr/Cr=Nn; . .17

ferm_ _
@n+D)aT—in, (2.6 For some frequently occurring combinations of special func-

wheren is an integer. In gauge field theories such as QCDtlons we will apply the following abbreviations:

the gauge invariance creates an additional problem, as one ¢/ (x,y)=4,(x,y), (2.18
needs to restrict the degrees of freedom contributing to the

functional integral to the physical ones. In the present paper N(n,w)={'(—n,w)+(—1)""1'(—n,w*), (2.19
this is implemented by working in the covariant Feynman

gauge throughout the computations. N(W)=W(w)+W¥(w*), (2.20

We end the section by introducing some new notation.

The chemical potentials will henceforth usually appear in theVheren is assumed to be a non-negative integer and
dimensionless combinations general complex number. Hetedenotes the Riemann zeta

function, and¥ is the digamma function

w=pul(27T), (2.7 I (w)
z=1/2—ipu, (2.8
These functions are analyzed in some detail in Appendix D.
and in the context of computing the zero temperature parti-

tion function the following abbreviation will be used: Ill. THE PRESSURE AT LARGE T/p
A. Dimensional reduction
E ,usz;LZ. (2.9 . .
T In order to compute the partition function of QCD, we
need a systematic way of taking into account the contribu-
In sums over a single flavor index the subscfipt ¢ will tions of the different momentum scales, as conventional per-
usually be suppressed. turbation theory fails already at three-loop order. At high
The momentum integration measure and the notation use@mperatures a physically intuitive solution is offered by di-
for sum-integrals from here onwards are mensional reduction, which is based on the observation that
o as the temperature is increased, all degrees of freedom except
f f E( eVAZ)Ef dp - for the ones associated with the zero Matsubara modes of
(277)" . (2m)d’ (2.10 bosonic fields get large effective masses proportional.to

They can thus be integrated out leaving us with a three-

dimensional effective theory describing the soft scales,

iP/{P} =T > J , (2.1  Wwhere only the bosonic zero modes remain intact. Details of
Po {Po} the procedure can be found frdi,21,23.
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The inclusion of the chemical potentials makes the prob- -
lem of determining the pressure even more complex, as wee) @ b) @ <) d)

now need to take into account the effects of these new scale

in addition to the usual thermal ones proportionalltoAs-

suming the magnitude of the chemical potentials to be neg- b,

ligible in comparison with 2T we may, however, certainly 2 d:i) f) Ci}r‘ 9) (i:i} h) Cg::}:}
continue using dimensional reduction as a framew@%.

This means that the expression for the pressure may be sepa-FIG. 1. The two- and three-loop fermionic diagrams of the full

rated into three parts theory contributing to the values afz, andag;. The solid, wiggly
and dotted lines stand respectively for the quark, gluon and ghost
Poco=Pet Pm Tt Pa, (3.1 propagators.
corresponding to the contributions of the momentum scales DT, 0)
2 . . . E ,M
27T, gT andg“T, respectively{1,8]. By definition o =T3| agy+ g apot O(€)]
T
Pe(T,u)=pPqco(T. 1) — v'nf DAFDAGEXR — Set g* .
+— + + .
(3.2 (47T)2[CVE3 O(e)]+0(g%) |, (3.9
whereS; is the action of a three-dimensional effective theory .
with the Lagrangian density23] m%: T2 9 apst agse+ O(?)]+ pye
o
1 2 2 2 2
Le= ETrFij +Tr[D;,Ap)“+ MgTrAg
X[aget O(e)]+0(g% |, (3.7
;3
i
+ iz wi TIAS+ 8L, (3.3
3772 f g4
9e=T| g+ ——[ag+ O(e)]+0(g%) |, (3.9
and where the traces are now taken only over the color indi- (4)
ces. Similarly,p,, andpg are defined by
pm(T,n) 1 1
T . Thz (4w damg 370(e)|+ 5dACagEMz
DM(T,,U«)EPQCD(T,,U«)—pE(T,,U«)—va DA?exp{ — Su} T )
=pPqco( T, u) = Pe(T, 1) = Pa(T), (3.9 X —i—§—lni+0(e) +
4e 4 " 2mg (4m)°3
1
Ly=STF: + 0Ly (3.5 89 1 11
2 X dpCagEme —Z—€W2+€In2+0(e)
The gauge coupling constants of the two effective theories, _
ge andgy,, appear in the covariant derivatives above, and N 1 4. C3b | A |43 491 ,
operators contributing to the partition function starting at (4m)* A“A9E n2mE 24 768"

0O(g®) or higher have been assembled to the tefifis and
6Ly . The question, at which values of the chemical poten-
tials we may trust results obtained using dimensional reduc- +0(e)
tion, is examined quantitatively ifi23] and is also briefly
discussed in Sec. VI of this paper.

At leading order the different parts contribute to the pres- %

+ ! dDT2g8I A
(47)4A FgEnH

16

2
w| +0(e)[+0(g%, (3.9

>

sure aspe~g°, pu~g® and pg~g®Ing. The first of these 3n?

functions can be obtained by computing the strict perturba-

tion expansion of the pressure in the full theory, i.e. by evalu- my=Cagy+0(g?), (3.10
ating all one-particle irreducibl€lPIl) vacuum diagrams of

four-dimensional QCD without applying any form of resum- 92 =g2+0(g® (3.11)
mation. The two other ones are then available by evaluating Mo YE '

the perturbative expansions of the partition functions of the 6 —

effective theoried?2], the parameters of which must, how- Pa(T) _ 39w In A 4_3_ E 240(e)
ever, be determined through the full the¢8s,24]. Follow- TA 2¢ A A(47-,)4 2my | 12 7687

ing the notation of 1] and using results from1,25], these

statements can be summarized by writing +0(g°), (3.12
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where g is the renormalized gauge coupling of quantuma considerably more laborious task, as it involves computing
chromodynamics and the matching coefficieatare left to  all three-loop vacuum diagrams of the theory. They have so
be determined. Apart from modifying the values of thesefar only been evaluated at vanishing chemical poteni@ils
coefficients, the effects of finitgz can only be seen in the and temperaturel®], and the generalization of these calcu-
appearance of the last term in E®.9). In particular, one lations to finitew andT is the topic of Appendixes A and B.
should notice thapg depends only o at the order consid- The relevant fermionic two- and three-loop diagrams are de-
ered here. picted in Fig. 1, and the results for fficients can be found
With the exception ofag; and ags, the results for the from below.
matching coefficients can be immediately extracted from In order to write the perturbation theory result for the
[1,3,23,25. To getags we furthermore merely need to evalu- pressure in the familiar form of a power series in the cou-
ate the one-loop gluon polarization tensor@qe) in the  pling constant, we simply need to add together H@),
limit of vanishing external momenta, which is a simple com-(3.9 and (3.12 and expand the result ig. Up to order
putation. The calculation afgsis, on the other hand, already g°In g the outcome reads

Poco(T, M) Pe(T,u) +pm(T,u)+pa(T)
T4A 2e T4A 2e

1
+ ZaES

— 4 —

+ P
e 2e " a In2gTaé’f

0 2 93 dA 32 94
=g1{ag}+g {CYE2}+(47T) 3 ¥E4 +w agz—daCa

|

AN R Y - | G PR (apst apaen)n[gal?]

(am)? | SAYE 2 e Cal 52T 5 7 B (4m)? | CATAL BT Qe

16 [« — 43 491

2 1/2- 2
+— Ef,,u, dADTEIN[gags]— 8dACA(32 6122™ )
43 157
112 B 12 6

XIn[gags]+ 28 30727 )In[gc { 0(g”), (3.13

where the pole ofxg; exactly cancels the &/term appearing in the ordey* contribution. As there is an unknow®(g®)
contribution missing from the result, there is an ambiguity in choosing the coefficients inside the logarithms of tigélpigler
terms? The current choice is, however, well motivated from the effective theory point of view; the logarithms now appear in
the same form they emerged from the three-dimensional Feynman diagrams.

B. The matching coefficients

Given in terms of the special functions and group theory factors defined in the previous section, the results for the matching
coefficientsa read

w1 LA —
“E1:4_5n_fg da+| 7 +30u%+60u* | de/, (3.14
dy 1 Te _ _
aE2=—mn—fZ Cat o (L+12u%)(5+12u%) (3.15
12 194 A 116 38¢'(—3) 220{'(-1) 1
es= 144< Ef[ (: T T T YT 3 (e T gy | TCaTe| AL L
169 600u2—528u” || — 8y+2(127+48 — 644u*+ 268L°(~3)
+| g 600w 528" [Ny + =+ By + 2(127+ 48y) u* - 644u+ 1o ot (310
4 ~ 2 g,(_l) N - y 2 e
+3(11+156u )g(—1) +24528(32)+ 144 u N(2.2) + (17— 92u?)R(1,2) + 4i u N(0.2) ]

2Vvarying the coefficients inside the logarithms amounts to varying the magnitude of the undeterminegf deden.
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3 2 w — (=D i 2
+CrTe| 7 (1+4u%)(35+332u%) —24(1-4u )g(—l) — 14412 1 R(2,2)—2(1+8u?)N(1,2)
- 4 - A1 —
—iu(1+4u?)N(02)] |+ T2 §(1+12,u,2)(5+12,u,2)|nm+§+4y+8(7+127),u,2
—, 6470'(-3) 32 '(—1) —
+112“4_1_5ﬂ__(1 +12° )g(—l) —968N(3,2)+12uN(22)

—2(1+2u2)R(1,2)—iuR(0,2)]

1
} +288T§F ng {21+ y) ufui—{N(3z:+2y)
f

+R(32i+25)+ 4w N(22i+29) + N(2,2i+25) ] — 42 N(120) — (i + pg) 2N (124 + 25)

— (= o) N(Lzi+2) — B g x<o,zf>}}),

11 _
aE4=§n—f2f {Ca+Te(1+12ud)}, (3.17)
L1 2C (I A ) Tel (1+12u?)| 21 A 1/+24X(1 3.1
Fes= 3 4 Al Ing—= W+F(+ ) S+l + (1.2) |1, (3.19
11 e’A e’A _
6= g o ci 22In—+5 +CaTe 2(7—|—132,u,2)|n +9+13m2+8y+4x(z)
ff
A
—18CTe(1+12u?)—4T (1+12M2)(2In— 1—X(2) ] (3.19
112C22|e7_1 AT 2|X N 3.2
=304 Al 22—+ 1] =4 Te| 2In—=—R(2) | /. (3.20
|
Combined with Eqg.(3.13, this is the main result of the A. The pressure
paper. It has been observed that at vanishing chemical potentials

the orderg®ln g perturbative result for the pressure is well

compatible with four-dimensional lattice simulations, but
IV. LATTICE TESTS that the eventual determination of the yet unknogénterm

may still change the situation dramatica|ly]. The perturba-

As there are unfortunately no experimental data availablgive result varies largely from order to order and even at
for the pressure in the QGP phase, the results derived for thid(g?) its behavior as a function of temperature still bears no
guantity in the previous section can only be compared tcresemblance to the lattice predictions, even though the order
other analytic computatioR®r to lattice simulations. In par- g? result gives a relatively good estimate for the quantity.
ticular, it is very interesting to investigate, to what accuracyFor the u dependent part of the pressure we will see a sig-
we can reproduce the results of the various lattice studies thaificant improvement in these convergence properties.
have been performed for the pressure and the different quark Extracting the quantity
number susceptibilities. In this section these comparisons
will be made, and it will furthermore be studied, how rapidly AP(T, 1) =pocol T, #) —Paco(T,0) 4.1
the perturbative series for the different quantities converge.

from Eq. (3.13, the u dependence of the pressure can be
directly compared with recent lattice studid<}], whereAP
3A recent largen; computation by Ipp and Rebhan provides an has been computed in quenched QCD assuming two light
accurate numerical check for some of the results of this paper. Fdtavors of quarksy andd, at equal chemical potentials. In
details, see Sec. Ill df19]. Fig. 2 (left) these lattice data are plotted along with the per-
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APIT

6,
————— gling
¢ Lattice

0.8 . 1 . 1 . 1 .
1 2 3 4 5

TIT,

FIG. 2. The perturbative and latti¢&4] results forAP plotted as functions of/T.. On the leftw has been given different values, and
on the right the different perturbative orders for flae=0.44T . case are shown normalized to the free theory result. The r7é§L|Jt|nf:o
=1.15[26] and theu=0 conventionA = 6.742T [24] have been applied here.

turbative result, which has been obtained by setting all extice oneg25]. One should, however, note that for the nondi-
plicit factors ofn; to zero in order to match the quenched agonal susceptibilities there is considerable disagreement be-
approximation. One observes that already at temperaflures tween the different lattice approachee the discussion in
~ 2T, the perturbative results lie well within the error bars of [30]).
the lattice datapoints and that the differences between subse- A similar behavior can be observed when studying the
qguent perturbative orders are very small. nonlinear quark number susceptibilities. In Fig. 3 we have
As we can see from Fig. @ight), the picture is qualita- plotted the susceptibilitieg,,,, and x,uqq at ny=0,* and
tively similar to thex=0 case in the sense that the leadingcomparing with the quenched QCD resultsd4] we again
correction to the free theory result already gives a good essee that the diagonal quantity is satisfactorily produced by
timate for the quantity in question. The next perturbativeperturbation theory but that the prediction for the nondiago-
orders then make the situation worse until@fg®) one nal one is too large by more than a factor of 1000. This
again starts approaching the lattice results. The main differapparent disagreement is, however, not unexpected, as even
ence between the two cases is simply tA® is a much the different lattice results for the nondiagonal susceptibili-
more strongly perturbative quantity: for it even the freeties differ from each other. Furthermore, the perturbative ex-
theory result falls within 10% of the lattice data and thepansions for the nonlinear susceptibilities start only at rela-
relative magnitudes of the perturbative corrections are contively high orderd O(g®In g) for x4, O(g®) for xyuad, and

siderably smaller than for the=0 pressure. it is therefore entirely possible that large cancellations will
occur as one drives perturbation theory even further. The
B. Quark number susceptibilities situation is completely different in the case of the diagonal

susceptibilities, for which the free theory result already gives

Apart from analyzingAP directly, there are other, more ne correct order of magnitude of the results. For example for
effective ways to investigate the chemical potential depen% one obtains from Eq3.14)
uuuu S h

dence of the results. To make full use of the large amount o
lattice data existing ait=0 (see e.g[14,28-30() we may
use Eq.3.13 and the results of Appendix D to compute the a*p

different quark number susceptibilities ququF = ? +0(g?)=0.61+0(g?),
u
a"p (4.3
= 4.2
Xijk ... 10 Ipt - - - (4.2

which is in good agreement with the lattice datee Fig.
in this limit. The linear(i.e. second ord¢rsusceptibilities  3(a)].
have already been considered both in the framework of ordi-
nary perturbation theorf27] and in the HTL approximation
[25,31,33 with the result that only the diagonal ones are 4n this context then;=0 limit of the perturbative result is under-
accurately predicted by perturbation theory. For the lineaktood to be taken only after the necessary differentiations of the
nondiagonal susceptibility the perturbative results werepressure with respect fa; have been carried out. The pressure at
found to be several orders of magnitude larger than the lata;=0 is defined in an analogous manner.
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0.6 " " " " 0.02

0.015 |

2 05¢ — A=2 ] ;o
3 3
,,,,,,,,,,,,,,, A=1
77777 A=0
el + ——— A=-1 ] 0.005
45 | —-—- A=-2
L ‘ | L o ‘ ‘ ‘
oal . : . . 1 2 3 4 5
E T,

FIG. 3. Perturbative results fof, ., and x,uqq at N;=0 plotted with lattice results frorfil4]. The curves corresponding to different
values of A show the expected effect of the yet undetermimdterm of the perturbative expansidifor details, sed27]). Again

Te/Aln—o=1.15[26] and A =6.742T [24].

For AP, and hence for the susceptibilities, the orgér A. IR convergent diagrams

term in the perturbative series contains no non-perturbative a; 71— QCD pressure gets contributions only from the
contributions and is therefore in principle straightforwardly o mionic graphs, i.e., from the diagrams of Fig. 1. Aside

obtainable, unlike the corresponding term in the expansion 0§ the IR divergent graph, we obtain using the results of
the u=0 pressurgl1]. This computation may already be Appendixes A—D

enough to improve the perturbative predictions for the non-

diagonal susceptibilities significantly, but will have practi- pls(aEl+|a+|b+|c+|d+|f+|g+|h)|T:0
cally no effect on the already good convergence properties of —

the chemical potential dependent part of the pressure. Ashas 1 4 Ne g(A)

been pointed out ifl4], the effects of the nonlinear suscep- _EZ ey ﬂjA(ﬁ)

tibilities on AP are negligible for small values of the chemi-

cal potentials, and the quantity is almost solely determined ng 2 A 171 1
i [ ibiliti —dpl 5—+ 3 + —+ — —+ —
by the linear diagonal susceptibilities. da 3c 3(11NC 4nf)lnlu 2N, 36
2 g 4
V. THE PRESSURE AT T=0 X (415-264In2)N .+ §(5—4 In 2)nf}(ﬂ) ] ,

The zero-temperature pressure of QCD was first com-
puted toO(g*) a long time agd9] in a lengthy calculation 6D
involving nume(ical integrat_ions._ Using the analytic res.ultswr1ere the renormalization of the gauge coupling has been
for three-loop diagrams derived in the present paper this réxken into account.
sult can be straightforwardly analytically reproduced. The
computation is divided into two distinct parts: the results for
the graphs that remain infrared convergenffat0 may be
immediately continued to this limit, but in addition an infi-  In order to obtain the correct expression for the zero-
nite set of IR divergent ring diagrams must be summed ovetemperature pressure up to ordgrwe need to add to Eq.
explicitly. Analogously to the use of the three-dimensional(5.1) the contributions of all ring diagrams of the typg.
effective theories in Sec. Ill, this resummation is necessaryndividually these graphs are infrared divergent but when
to ensure that the contributions of all momentum scales areummed together they give a finite contribution to the pres-
properly accounted for. Only the results of the computatiorsure starting aD(g*In g). Separating the fermionic part of
are given below, while the details are left to Appendix E. the one-loop gluon polarization tensor into its vacuuim (

FIG. 4. (a) The fermionic part of the one-loop

b) ) ; gluon polarization tensor divided into its vacuum
and matter partgb) The diagram  contributing
to the zero temperature pressuf®. The generic

form of the ring diagrams contributing {o;.

B. Ring diagrams
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=u©=0) and mattefvacuum subtractedgarts as in Fig. &) da 9 4 g 22 16
we observe that to orde* only the diagram , of Fig. 4(b) P3=— —Z(pz)z(—) |4 In———+—1In2(1-In2)
and the ring sum of Fig. (@) need to be computed. The 4m A 4m 3 3

reason for this is that starting at four-loop order the diagrams

2 4
With6 at Ieast. one vacuum insertion (?nly contribute _at +5+21+1_6|n 22 Mg +F(M) ’ 5.3
O(g®Ing) or higher, and the corresponding three-loop dia- 3 3 T (u?)? (u?)?
gram with two vacuum insertions naturally vanishesTat
=0. .
A straightforward computation performed in Appendix E Where we have defined
shows that the diagraij gives the following contribution to
the pressure 22 2= 2
f g
_ F(u)=—2u? 2In=+ = — o) In——
dan . T 5 4 (n © Z Wi 5+ 3 gg (=)=
Po=— No—+4In—+——4In2| —
472 T 3e mo 9 4 2
s o (it ug) 4 a4 M
(5.2 +4MfMg(Mf+Mg)|nf——( f— mg)ln—
g
The summation of the ring diagrams was, on the other hand, (5.4)

first performed in Ref[9] and is reproduced in Appendix E
following in most parts the treatment of the original paper.
The result of this computation reads The constanty possesses the integral representation
16 (/2 (1—xcotx)?> 1—xcotx 1( 1—xcotx)2 { 1—x cotx
— n —

o= — dx sirPx In - —_—
T Jo [ sirf'x sifx 2 si’x sin’x J
=—0.856383209326942806848310232915940358847279097111357608993090867267685508¢05)

which we have not been able to evaluate in closed form. Alln particular, we have here obtained an analytic vajuéor
attempts of expressing its numerical value in terms of thehe coefficient of the M. term, which was previously
most common natural constants using the PSLQ algorithnknown only numerically with considerable error bars. When
[33] have been unsuccessful. Finding the correct basis afomparing Eq(5.6) with the result of{9], one should notice
constants fors seems to be a very nontrivial task. that there the authors work in the momentum subtraction
scheme, in which the gauge coupling constant is related to
the one of thaS scheme through the equation

C. Theresult at T=0

Equations(5.1), (5.2) and (5.3) together verify the well-

2 2
known result off9 95 Ovis 151 5 Ovis
! o :4_[ 1+(mNC—1—8nf)4—M§] 52
Poco(T=0)=p1+po+ps+ O(g°Ing) ™ ™ m
1 N o] g N
= 2 ,U«4 _C_d | —dal 7= VI. COMPATIBILITY OF THE RESULTS AT LARGE /T
A2\ T 3 Aldrx Al 4 : H
) T 16 71 1 In Secs. lll and V of the present paper we have derived
< _ A 10 L4 perturbative results for the QCD pressure in the two limits of
x 3(1]N° 2nf)InM * 3 In2-+ 4 NC+36 high temperature and small chemical potentials dne0
and largeu. Determining the exact region of applicability

analytically, how the appearance of the additional scales

affects the validity of dimensional reduction. [&3] it has,

g )4[< g 22 16 however, been estimated based on numerical results for cor-
41n +§In2(1—ln2)

3\ 6

4/ 11 for the first one is a nontrivial task, as it has not been studied
X (415-264In2)N;.— =| ——In2|n¢

—dal 7— 5 relation lengths that the method applies as longuags 4T
4 47 3 . - .
for all flavors. This seems physically very reasonable, since
one certainly expects the framework of dimensional reduc-
+o(gﬁ|n g). (5.6 tion to be unaltered, if the values of the chemical potentials

are much smaller that the thermal scaleT2 Perhaps not

2

2
ot - (B2 +F(p)
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FIG. 5. On the left is a sketch of the-T plane, where F-McL stands for tle=0 result, Eq.(5.6). Next to it is the perturbative result
for the quantityu, plotted forn;=0 together with lattice data frofil4]. Once againTC/A|nf:0:l.15 [26] and A =6.742T [24].

surprisingly, roughly the same result was obtaineflld for  the difference of Eqs3.13 and(5.6) behaves as a function

the quantity of the chemical potentials, as it gives the magnitude of the
terms that have been neglected in deriving Bgl3 but are
Mo 12xuu necessary to obtain the corrélct=0 pressure. This quantity
T - T2, (6.1) has been plotted in Fig. @ight) for different temperatures
uuuu

along with the corresponding curves for the pressure. In this

describing the highest value of chemical potentials, forlgureé we assume two flavors of massless quarks at equal
which the linear susceptibilities accurately produce thechemical potentials, and the scale parameter has somewhat
u-dependent part of the pressuteP. In Fig. 5 (right) the ~ arbitrarily been chosen to be
perturbation theory and lattice results far, are plotted as 5
functions of temperature showing reasonable agreement. The A=2m /T2+ M 6.3
overall scale of the results is again given by the free theory 22 '
expression, which now reads

in analogy with the free theory pressure, E8.14).
Hx \/§w+0(gz)z4.4+ 0(g?). (6.2) The result shown in Fig. 6 is remar_ka_ble. It seems that as
T we approach the zero-temperature limit, the curves corre-
sponding to Eq(3.13 smoothly approach the one describing
There remains a region on the T plane between the lines Eq. (5.6), until only at very low temperature3<T, the
T=0 andT=pu/4, where the perturbative expansion of the |ogarithmic divergences start increasing the gap. This obser-
pressure is only available ©9(g). To obtain an ordeg®  vation suggests that the magnitudes of the terms not present
result valid throughout the deconfined phase, one would havig, Eq. (3.13 are small and one is able to use this result
to perform an explicit summation of all the bosonic and fer-throughout the deconfined phase with the exception of a nar-
mionic ring diagrams at an arbitrary temperature, as adding gow strip near theT=0 line. We in particular notice that a
mass term for the zero mode Af to the free Lagrangian of |arge value ofu/T does not itself appear to spoil the appli-
the theory would not lead to the expected result in the Iimitcabi“ty of Eqg. (3.13 and that the restrictiopu<4T may
T—0. Even though this procedure is enough to produce thenerefore perhaps be loosened.
correctO(g*) result for the pressure at high6], it does not Despite all the optimism, we must be very careful in in-
work at low temperatures due to the nontrivial structure Ofterpreting F|g 6 On|y one Specia| Configuration of chemical
the gluon polarization tensor at a vanishing temperature anﬁotentials has been analyzed so far, and the reasoning pre-
external momentuntsee Appendix E The separation of the sented above is merely of qualitative nature. It is furthermore
zeroth Matsubara mode of tig field is furthermore clearly  clear that dimensional reduction cannot be reliably applied in
inconsistent, ifu>T. the limit of small temperatures. The good compatibility of
The interesting limit of small but nonzero temperaturesEqs_(3_13 and (56) is most ||ke|y s|mp|y a consequence of

can in any case be formally taken also in £8.13, even  the fact that in both of them the numerically dominant part
though it is already beforehand understood that an unphystomes from the strict perturbation expansion of the pressure,
cal logarithmic divergence of the type Q) will appear  Egs. (3.14—(3.16. Another aspect to keep in mind is that
there. AsT approaches zero, it is natural to investigate, howperturbative computations such as the one presented in this
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FIG. 6. On the left the behavior of E¢R.13 as a function of the chemical potentials is portrayed for different temperatures along with
the T=0 result, Eq.{5.6). On the right the difference of these results is shown on a logarithmic scale appropriately normalized. The result

Tc/Aln-,=0.49[26] has been applied here.

paper can never produce the rich phase structure of the “corBourendu Gupta for the many enlightening discussions we

densed matter QCD[34] found in this region of theu-T

had on the topic. This work has been supported by the Mag-

plane. Thus the applicability of the present results is in anyhus Ehrnrooth Foundation, the i¢da Foundation and the

case very limited there. Academy of Finland, Contract no. 77744.

VII. CONCLUSIONS APPENDIX A: VACUUM DIAGRAMS

In this paper we have improved the perturbative expan-

In order to complete the calculations of Sec. Ill, we still

sion of the pressure of hot and dense QCD by three orders, aged to evaluate the two- and three-loop 1PI vacuum dia-
the g%, g° and g°Ing terms in the series have been deter-grams of QCD. Since the purely bosonic graphs are unaf-
mined. The crucial step in the computation was the analytigected by the finiteness of the chemical potentials and have
evaluation of all three-Ioop 1Pl vacuum diagrams of thebeen Computed a|ready previou$@]’ one may restrict the

theory at arbitraryl” and x, which were also used to derive treatment here to the fermionic diagrams of Fig. 1. The cal-
an orderg* result for the zero-temperature pressure. Finallyculations will be performed keeping both the temperature
it was argued based on a qualitative analysis of our resultgnd the chemical potentials arbitrary, which together with the
that the perturbative expansion of the pressure is now conrelations listed in Appendix D enables one to immediately

verging relatively well on almost the whole-T plane.

There is, however, a large amount of work left to be done.
At high temperatures and small chemical potentials one
clearly needs to determine the ne3{g®) term in the per-
turbative expansion, as this order contains the first nonper-
turbative contributions to the pressure and furthermore has a
potentially very significant impact on the behavior of the
result. Another challenge can be found in improving the
present embarrassing record in the limit of large chemical
potentials and small but nonzero temperatures; a generaliza-
tion of the orderg? result atT=0 to nonzero temperatures
would certainly be welcome, even if its numerical effect on
the present results turned out to be small.

(Po)™
(P2)n’

Inmfip
=3
1

R P2QAP-Q)?'

(Po)™
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1 spective fermionic momenta. The symmetry coefficients of
Nm,nzi{pQ}R Py 5 5 > the graphs have been taken into account here.
P Q%(RH)™(P-Q)*I"(P-R)*(Q—R) Using the formula
(A6)
where the notation is adopted frdi®]. Using the finite tem- ~ 11C,A—4Te 9°

perature Feynman rulésee e.g[35]) in the Feynman gauge 9 3 (41)2 € (AL5)

and taking advantage of the fact that the purely bosonic ver-

sion of 7 vanishes aD(¢°) [6], we may write the diagrams o the renormalization coefficient of the gauge coupling, the
of Fig. 1 in terms of the sum integrals of Eq#1)—(A6). |, nknown matching coefficientes is now available in terms
This computation is lengthy and requires the application ofyf the sum integrals of Eq§A1)—(A6). One simply needs to
numerous tricks such as linear changes of integration mosyq Eqs.(A7)—(A14) together with the bosonic part of the

menta but is nevertheless of straightforward nature and igtyict perturbation expansion of the pressure, which can be
therefore not reproduced here. The result of the procedurgy g e.g., from Eq(31) of [8]. We now turn to the actual

0
correct toO(e”), reads evaluation of the unknown sum integrals.

la,=—(1- f)dAQZZ {IY(Z-219)}, (A7) APPENDIX B: EVALUATION OF THE SUM-INTEGRALS

In this section all the sum integrals encountered in Appen-
dix A will be computed. To do this we need to generalize the
results of[6,7] to finite u, which includes determining the
values of some new integrals of hyperbolic functiqsse

1 o Appendix Q as well as generalizing certain summation rela-
le=(1— e)dA< Ce— ECA> g*> {4(79-27%7 tions derived inf6]. The second last section of this appendix
f deals exclusively with the problem of having different
chemical potentials entering a single sum integral, which is
the case we encounter when evaluating the diadganuntil
then it is assumed that al’s inside a sum integral are equal.

~o~ 1o
16=2(1- )daCag* 2 [(I&’—I&’) r+§Mo,o] . (A)

+(2+ €) Noog— 2e Moot 2N7 1}, (A9)

la=—2(1-€)’daCrg* > {(Z2-1)°T5
f 1. One-loop cases

- Zirir+ /'\710,0+ /T/ll‘_ e (A10) The bosonic one loop sum-integ@]l' has been evaluated
in [6] with the result
AZ)E

T2

1
- _ - 4 7 T 0 —
le= 2dAg % {4(1"'6)22[1“1‘]22[/’“9] I3+2(1-¢) ™M= pm=2n+ 1, m=2n+3/2pm—2n+4

X (T oY ) + Tl pg I 7l 11 ]) — B(Zil 17" [ g Fn-3/2s 0
T4 g7 L) — (1= 0 Nod s 2] T
= 2Ny il mrmgl—2No ol ps pgl} (Al1)

{(2n—m—3+2¢). (B1)

For the fermionic case we get after first performing a stan-
dard (3—2¢)-dimensional integral

1 - _ ~
lf=— ZdACAg4Z {8797373- ZI$+M0'O_ 2M 221,

(AlZ) imz 1 F(n—3/2+ €) A2e
" (4m¥2e  T(n)
1 _
lg=50aCag" 2 {4(6—5e>121212—<7—6e>zi’? Lo [@k+DaT—ig"
3 K== {[(2k+ 1) mT—ip]3pn 32 e
—<§—26)M0’0_(5—46)M_2’2 y (A13) A2 ér(n_3/2+6)

— 2m—2n7Tm—2n+3/2-|-m—2n+4

T2 I(n)

Ih="—(3-2€)(1- €)daCag* 2 (2771175117}, X[{(2n—m—3+2€1/2—ip)+(—1)"(2n—m—3

(Al4) +2€,1/2+ip)], (B2)

where the sum integrals/, _,, in Eq. (A11) depend on two
independent chemical potentigls and uq through the re-  where the definition of the generalized zeta function
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)

2 d3q eiq~r
z,q)= B3 f
{za) n=0 (g+n)? ©3) 22 P+[2n+ D) 7T—iu]?
e l2n+17T—iusgn(2n+1)]r
has been used. The results obtained for the relevant cases = . (B10)
after performing ane expansion are listed in Eq$B68)— 4mT

B73).

(879 The largeP behavior of the polarization functions has been

analyzed in6] for the =0 case. A straightforward gener-

alization of the computation to non zero chemical potentials
The computation of the two- and three-loop sum integralgroduces fodl;,

in this paper is closely analogous to the=0 calculations of

2. Two- and three-loop cases

[6] and to the two-loop work df36] at finite u. The general 6
scheme is to first separate the diverging vacuum parts fromi(P)=11(P)+I11{"(P)=1©(P)+ II{1),(P)+O| —
the integrals and then to evaluate the restl#3. This al- ' 6
lows a straightforward extraction of the singularities and also .
simplifies the determination of the finite parts considerably. § ~ 1 1 p?,
e . . T =B | T2 BT o (420
The sum-integral”’ is not considered here, as its contribu- P P P pe
tion will be observed to cancel between the different terms of .
Eqg. (Al1l). T e'P ' S — 1
a- (A1D) + zf d’r—-—| cog2ur)cschr — =
o (4) r r
a. Preliminaries
Let us start by deriving some results for the bosonic and —|= ;2 2;4 —3| o Ipyr
fermionic “polarization” functions, gt r-lzgeta 3 e
1 (B11
H(P)Ej]Q — (B4) . 6/p6
Q(P+Q) wheree has been set to zero in the 1&T°/ P°) term. Here
the coefficientsB read
1
Hf(P)Ei QA o (BS) 1 [(e)[%(1—e€)[ A%
{Q} QZ(P+Q)2 ﬂoz ( ) ( ){_) , (812)
(4m2—c T(2-2¢) |T

which will be frequently used in the following computations.

It is straightforward to verify that in the case of a bosonic

2e
2:225W3/2+5F(3_26)(A)

external momentun® they can atd=3 be written in the T(3E2—e)\ T
forms
X[Lig—2e(—€T)+Lig o (—€#T)] (B13)
ip-r o o
(P)= a )Zf d*r—-[|po| +cothr]e~ Pl (B6)  with Li denoting the polylogarithm function, and the relation
T r
L' X +L =X\ — 7774 172 2 1 4
I(P)= f o°r eip4r[|_|+coS{2_r)cschr_]e—|po|r TSI =T 560 T 12X 22"
f (4m)? (2 Po 1 ' (B14)
(B7) . -
has been employed in deriving the last term of Eg{L1).
where The first term of Eq(B11), denoted by1(®, is the vacuum
(T=w=0) part of the polarization function, and is the same
in the bosonic and fermionic cases. Following the notation of
E _ Po (B8) [6], the vacuum subtracted, or matter, part of the function is
24T denoted b)l'[%T) , even though here it should not be confused
with the finite temperature part dfi; obtained simply by
T2 Tr. (BY) subtracting theT =0 piece from the polarization function.

b.7
The latter formula, Eq(B7), is a generalization of Eq4.2) ) 7 ) )
of [6] and has been obtained using the Fourier transform of In terms of the functiordl; and its largeP expansion, the

the fermionic propagator, sum integralr can clearly be written as
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?:ip énf(P) ip H%T)(P)2=$p

[{D(P)1?—4(79)? )+4(z°)210

1 T2 € 1 T3 e*2|po|f _ _
- B —| 4270 = fde'r cog2ur)csch
ip P2 BO P2 1P2 (477_)4 pzo r4 i 'LL)
T e'Pr — = 1\ (1 )%, =
3 = 2| 72 240
+ (4w)2f d®r > cog2ur)csch r—) gtaws| s +4(19)°13

1. - T4 (= cothr 1)?
——+| =+2uP|r|e7lPdr b +O(e).  (B15) = J d cos{2,ur)csch——
r |6 3272
) - . 2
The first two terms are trivial to evaluate using E&1), —| ~0\2.-0
whereas the last one givesdit3, g+2ﬂ~ +4(Z9)°15, (B18)

T i 1 d3reip'r where the resulting one-dimensional integral is analytically
(4m)2 T p2 r2 calculable.
The third term of\; o can be divided into three parts

—Ipolr
#e ? 3. no@uee)

cog2ur)csch

1+2
6 M

T2 —2\p0|r
_ 3
@) J Pr2, — 5| cos2unesclr % (H(O)(P)— ( 477)26)[H§T>(P>—H§BV<P>]
1+(1+2_2 ﬂ !
T=t| g ek r + j: M (P)—TI{ (P
r 16 (4mie p [I1 7/ (P)— 11§ jy(P)]
cothr
(4 )zf dr cog2ur)cschr +$PH(°)(P)H§BV(P) (B19)
aa
1 _ =K;+Ky,+Kj. (B20)
-+ g r2ul (B16) v
HereK, andK4 are straightforward to obtain using the pre-

. . . vious results, but the first term requires careful consideration.
Here the final integral is UV convergent but has an IR diver “Taking into account that

gence due to the zero mode of the bosonic frequency sum.
Using the results of Appendix C it can, however, be evalu-

ated analytically and produces a finite result. This is due to j: p [II{D(P)—TI{\(P)]=0C(e) (B21)
the fact that the divergence in theintegral comes from a

term of the formfgdr r %, which vanishes under dimensional and using the result 6],

regularization. Adding up the different pieces and expanding

in e, we get the result, EqB73), for the whole sum integral. f dp oot r‘4TrA2 <|po| _) ool
c. Nppand Moo (27T)3 p2+p S : ( )
Y ’ B22
The application of Eq(B11) separates the evaluation of
N into three pieces we get
N, jﬂ [T{D(P)]2 Kym i} A
— = n -
0,0 p Lt 1 (4m)* P p2 Y
- 0)(p)12 (M(p)712 (0) (T) eiPr - 1 (1 —\—-
Fe () 2+ (P 1+ 2 1OP) I P}, O Al e N
r r
(B17)
. _ _ o _ 7 w? o2ut
of which the first one is again trivial. The second produces in - ﬁ)JF?JFT g~ [Palr
analogy with the above two-loop calculation
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_ 1 (1 (2Q+P),
3 _ - - 2 _
-~ cos2ur)eschr — = +| & +2p J,(P)= j: 0rPy PZ( -79), (B29)
7w o2ut ( d)
B el - L S om B23
(36°+ I 2qr 0 (P29 |55$p éJL(PN;(P), (B30)

The remaining integral is again of analytically solvable type,
and after adding together all the different pieces we get as
the result Eq(B74).
aBTe. o =L 3PP (831
The computation ofM, o proceeds in a similar fashion.
Equation(B17) is replaced by

we quickly verify that H and H; read
Moo= F ((NO(P) 2+ TO(P)IIV(P) + 1O P)

Hi= 215+ 2N 0. (B32
X[ (P)+ 1V (P) ]}, (B24)
where the first term is trivial and the last two cross terms are y,— _|3+ Mo oF (Il 79279 (I‘f—iof
available through Eq:B20) above and EqD20) of [6]. For 4
the remaining piece one obtains (B33)
j:P H(T)(P)H@(P) This leaves only the simpler sum integralsand k to be
evaluated.
Due to Lorentz invariance and the orthogonality]Q( P)
i H(T)(p)H(T)(p) 4Z°§° +4I°§°I to bosonicP andJ ,(P) to fermionicP it is evident that these
2 functions can be written in the forms
T fwd cothr[ " 1 P2 0
= r cothr — — , 0 -
3272Jo r2 [ r J,(P)= E( 00~ P2 Pu)lo(P). (B34
2pur)cschr — - 267
X| cog2ur)csc r—F + 1_8+T r p2 Po .
‘]M(P)zg 5,(1,,0_§P;L JO(P)u
0500
+4797979, (B25) (B35
whose straightforward evaluation leads to the final result, Eq.
(B75). which, when plugged into Eq$B30) and (B31), produce
o Mo and M 1 j: Liipy (B36)
It is easy to see that the sum integralg _; andf\‘/ll,,l ST4P pZJO( )"
can be written in the form
/\/’lflzzj‘ﬁ_zi PIOR) QR |3=${P} izjo(P)z- (B37)
, P2Q2R2(P+Q)2(P+ R)Z p
EZi‘ViT_ZHé, (B26) A crucial simplification in the evaluation of these sum inte-
grals occurs, as one notices that they both are actually finite.
~ 0% QR This is due to the fact that at Iarg%J (P) andJ,(P) be-
My =21 7~ Zi{P}QR P2Q?R?(P+ Q)2(P+R)? have likeO(1/P?), as can be stralghtforwardly verified. We
may therefore see=0 in the expressions fof, and jo,
=2707—2H,. (B27)  Which eventually yields

Following [6] and defining further

, (2Q+P)
J#(P)E$ 0 m, (B28)

) iT (= sinpr
JO( )__E o r o pr

X[2u—sin(2ur)cschr]e~IPolr, (B39)
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smpr o san(R — i i 1~
jo(P)=—=— g~ 211 san(Repo) cschr No—2= i1 {edt 3 M Seq= N1 -1~ No,0—8117’+(2+26)
— 1 —— X(19)%19, B4
—cothr+E[(1+4,u2)r+4iﬂsgr(Rep0)]} (2077 (B47)
v _ bf (0 07040
x e~ [IReGO) ~ix san(ReDo)Ir sgrRepy). (B39) M_p =73l qed+ Al lsqedt 2 Moo I9r+(2+2€)1973779,
(B49)
After substituting Eqs(B38) and (B39) to Egs.(B36) and where
(B37), doing thep, sums and performing the remainimg
integrals using the relation B-2ep B
Al TJ——ﬁ 0)I1 =0,p),
f d*p 1 sinprsinps_ 1 (1 1 saed™ " ] (pr)3-2¢ ph (O (Po=0p)
(2m3p? Pr ps Am P =S = gos=n (B49)
(B40) 3-2¢p . .
we finally get Albqed_Tf m E[HW(O)Hf,W(po:QP)
T4 (= cothr —
l3=— 32772fo dr > [2u—sin(2ur)cschr]?, +111,,(0)IL,,(Po=0,p)]. (B50)
(B41) The evaluation olfGled and ISqed is fairly easy, since an
— elementary calculation verifies the validity of Eq$:6)—
- T4 . Fdr e2inr cschr (e‘Z‘;’cschr (F10) of [6] also whenw#0. This gives at orde®(e),
*128n? | Jo r2
I i —(AH%( )?
—cothr+§[(1+4,u,2)r+4i,u] . (B42)
=i (I{V(P))?+4(d—2)(Z)*Z9
These integrals are clearly both UV and IR finite and are i"( i (P4 (17T,
readily evaluated. The final results for the sum integrals, ob- (B51)
tained after adding up all the different pieces, are given by
Egs.(B76) and(B77).
j: iAﬁ”)(P)Aﬁ(T) (P)
e../\/zv_z and M—Z,Z P P4 mr K
Let us define, once again in analogy w{ii{, the modified
gluon polarization tensors, =$p OP)I{"(P)+4(d—2)797°19,
_ 2Q+P),(2Q+P), B52
TP1=28,, 73 Fq BP0 ez
Q*(Q+P)?
B43 =
(849 $o SATDETP)
(2Q+P),(2Q+P),
Hf,uv P)= 25 i{Q} Qz((S‘I' P)2 : 1 M ©0)
(B44) :ﬁip I (PITP)
Using these we further define two new sum integrals b 2 d—2)-
g gra’s by ( )zojl —H(O)(P) (B53)
| =$ i[Aﬁ (P)72 (B45)
sqed P p4 f,uv ) L
ip — AT P)ITO(P)
P4 y7a 2%
1 — _
e ip T ATLL(PIATIL(P), (B40 1
=m$P nMeE)nwe)
WhereAf(P)Ef(P)—f(0)5p0'0. It is then straightforward
to verify that determinir!gkfzy_z andM_2,2 can be reduced + M gip iH(O)(p), (B54)
to computing a set of simpler sum integrals d-1 2
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1
17(0) —_
$o Samey= o Fe a2, @59

where the superscript (0) again signifies the vacuum part of

the function in question antfV=f— f(©),

The relations(B51)-(B55) clearly reducd [’ sqed and ISqed
to well-known sum integrals and leave onlyl{(,.4 and

Alséedto be evaluated. Noticing that f&?=(0,p),

= ~o_ 4P, QP-a_ P,
Pulltu(0)=2P T3~ 3—263::{@} Q* 3-2¢
X[(2—4€)13+472]=0, (B56)
and similarly

PHYSICAL REVIEW D 68, 054017 (2003

d3—26p 1

2m 2 o [(1-2€)Z)

f
Al qed—Tf 5 oe

+2Z5)p?IL(0p) +

2—2¢

a5
Q4 Q+p)?

x[—i‘{+2(3—2e)7§]im}

= —8(2—26)T§?${Q}

Xf o >p a%
(2m)% %€ p*Q3(Q+p)?’

e —8(2—2E)T(22${Q} +I‘§$Q )

Albf
y f o >p a0
(2m)% % p*Q*(Q+p)?

(B60)

(B61)

we may decompose the tensors into their transverse and lon-

gitudinal parts(see e.g[37]). This enables us to write Egs.

(B49) and (B50) in the form

@ 2p 1 [3—2

f _
Al qed_Tf (2m)% 2 p?|2-2 T 00(0) IT; 0o(0.p)

1 _ —
- E[Hf,oo(o)nf,M#(o’p)
+ﬁf’MM(o)ﬁf,00(olp)]

1 — _
* 2_—26Hf,w(0)ﬂf,w(0,p)}, (B58)

¢ *p 1[3-2
Albqed—Tj P —{ <

(27)372¢ pt[2—2€ [TT;,00(0) oo O.p)
+ Mg O)ﬁf,oo(o,p)]

l — R—
_E[Hf,oo(o)nw(o,p)

+11y ,,,,(0) T 0,p) + Mo 01T, ,(0,p)
+ﬁw(0)ﬁf'00(0,p)]

1 _ _
+ 2_—26[Hf,w(0)HW(O,P)
I,,(0)I ,,,(0p)]], (B59)

and the use of the identit§f5/79=75/7%=—1/2+ ¢ now
leads to

In Egs.(B60) and(B61) the p-integrals can be performed by
introducing Feynman parametetgandy to combine the dif-
ferent factors in the denominators. A straightforward calcu-
lation produces

16(1—e€)I'(5/2+¢)
Al ;fqed: (47T)3/2_ Ig 5/2+ ef( 6),

(B62)

16(1—€)I'(5/2+€)
(477.)3/2—6

Alsqed: - T(Ig§§/2+ e+§gzél2+ 5)

Xf(e), (B63)

where the function f is defined by

1 1
f( E)Ej dxf dyx—3/2—s(1_X)yl/2+s(1_xy)_3/2+€
0 0

3x
J’dxf dyX 3/2(1 X)y1/2<(1 Xy) 3/2_ 1— zy)
1 1 3x
+j dXJ dyx 32 €(1—x)y¥?*e 1+Ty +0(e)
0 0
v
=— E+O(e). (B64)

The use of this result in Eq$B62) and (B63) now gives at
orderO(e),

Allf.0, (B65)

4

bf T 2
Alsqedzjz(—(l+lzﬂ ),

pyr (B66)
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and together with the other parts &f, , and M_,, this ~ Sum integrals, which are functions of two independent
yields Eqgs.(B78) and (B79) as the results. ' chemical potentials. Due to cancellations between the differ-

ent terms ofl it is convenient not to deal with all of them
separately, but to treat the whole diagram as a single entity.

Equation(A11), the contribution of the diagrare to the Using trivial generalizations of Eq$B47) and (B51) we
strict perturbation expansion of the QCD pressure, containget for the diagram

f. The diagram e

:__dAg4E [4(1 LT ng T3 — O[T ) (o) + T2 pg) T(p) ]+ (1—€)

$ MO, (P g+ 55— 29

5o (L) +Tig))
_\2
xi —H“”(P) 22 2)}ZPH<°><P>[H<°><P>+H”’<Pm>+H( ’(Pngn]

1 ~ ~ ~ ~ ~ ~
== 70a0°2 [ 16(1- €)Z5( 1) T2 1g) T3~ 41— [ T3 a1) 7 pg) + L1 2g) 7(1a1)]

_ 4 h B B
(1(4 Eisz rCotZf{(coS(Z,ufr)cschr—%)(COS{Zugr)cschr—% — %+2;$ %+2;5 rzl
™ r
_ 2 ZO
*% ipH(‘”(P>[H<°><P)+H§T><P,m>+n$T’<P,Mg>]+ 1(’”)+ (Mg)i —H(O)(P) ]

(B67)

where every term is of an already familiar form with the exception of the one containingitfiegral. This integral can,
however, also be straightforwardly evaluated using the results of Appendix C, which eventually givesB8UEgs the final
outcome of the graph.

3. The results

The final results for the sum integrals introduced in Appendix A and evaluated above read

T2 LEEY A

Il 12 1+2€¢ (_1) +|nm , (B63)
- T2 A
=— {1+12,u2+26 (1+12u2) 1+Inm +12N(1,z)”, (B69)
o_ L (L. ., X)
IZ—MT)Z ;"- ‘y+ nm , (B?O)
s 1 (1 A )

2—(477)2 ;—N(z)+2lnm , (B71)
— T A
T2= 78 1+12u2+2¢€| (1+12u2)In T IN(12) ) (B72)
7 T Z+2 1+21 K) 2i uX(0 )} (B73)

= (471-)2 < ,u, n—- iuN(0,z
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173 24{'(=3)
I Y, 2 1,4
+ 20+21O,u +1284u 5 7(—3)

1 A
+6In—

1 (TZ)Z[a .
Noo= (4m2 12 (1+12u%)

—1442X(3,2) +R(3,2) +4i u[N(2.2) +N(2,22)]— (1 +8u?)N(1,2) — 4R (1,22)] ], (B74)

~ 1

2\ 2
MO,OZ - (47)( 12) [ (1+ 24/.L 48,LL )

179, {(-1) 24
o+ 111u% - 21004+ 48— +

1 A
+6In— 20 (=1

-

><C’(—3)
{(=3)

+72[6N(3,z)+12';&(2,2)+(1—BZZ)N(l,z)]}, (B75)

T2

1 2
1—2) [—(14'12#2)(1 4u?)

2(477)
{'(=1)
(=1

173 — . 12{'(-3)
I 2 4_
+ g F 4P 13- 5

1 A
+6In—

—96u2

— 144{ 2N(3.2) +2X(3,22) — 4i uN(2,2) +8i uN(2,22) — (1— 4u?)R(1,2) — 82X (1,22)

1 —
— Ziu(1+12u?)R(0,2)

3 (B76)

T2\ ?

12

361 8 {'(=3)
o 12— 10002 — —
+ 60+30,u 100w 5 2(=3)

~ 3

o _3 2\2
24m)? (1+4u7)"N(2)

(1+12%)(1-4u?)

+6In—T

—4g8R(32)+12 1 N(2,2) +(1—4u?)R(12)+ Liw(1— 12;2)x(o,z)]} (B77)

T2\? 1+6I A
12 4

35
|t 5t 2+ 4(29+ 12y) u2+8(71+ 36y) u*

e 1
Nz’_ZZ_SIiT,'Fm( (1+12,LL )(1+6/.L2)

_ 1_6@__ 1+48:U'2)

(=1
15 7(—3) 3

=1 — 248X (3,2) +68(3,22) — 12 uR (2,2) + 24 uN(2,22) — 4(1+2u?)
XN(1,2) — 24u2R(1,22) —i w(1+ 12;2)N(0,z)]} (B79

89 Ay+2(43+ 24y) 2 —68u” 873
+1—2+ ’y+( -+ ’y) M+§§( )

1A
PRy

1 (T2\71 _ _
. ,
M_p= (477)2(—12) [—12(29+288/u 1444%)

(-1
(-1

+24108(32)+ 18 uR(22)+2(2— 522N (12)+i w X(02)]], (B79

10/ 84,
3|1t 5H

2

31
+ — +4y+8(25+ 12y) u?+400u b f

A
+6In— 3

-

B dag* <T2
4(4r)?

TFE [ —(5+72u%+ 144u%)

647'(—3) 16 '(—1)

R y 2
153 3T

— 968N (3,2) +12 uN(2.2) — (3+8u?)N(1.2) — iﬁx(o,z)]]

+ (B5T81+y) uiul—96[3[N(32i+2y) + N(3zi+25) ]+ 128 u[ R(2.2i+29) +N(2,2:+2) ]
fg

—12ugN(120) = B( i+ pg) N(L2i+2g) =3 — o) N(1 24+ 25) — 12 s g (02)}) | (B80)
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Using the results of Appendix C we furthermore get in the

limit T=0
- 2 A
PP e 3+2m—]|,
! 8?2 2
7 ! +21 A
= — n— s
2 (4m)? 21
- 2 A
7%= 1+el1+2In—
(4m)? 21
~ 42 A
=— —+2|3+2In;—| |,
(4m)* 24
24u* (1 | A 91 16I )
0 gmple O 29 9 e)
~ 4ut A
0.0 ~+6In—+10/,
T (4m)® 2
4pt | A +13+ 32I )
1_1_(47)62 e 3 3"
- au’ 1 | K+39
_ L
YU amsle T 2u 4
- au* (1 | X+61
— n_ R—
22 3(4m)8\ € 2u 6

(B81)

(B82)

(B83)

(B84)

(B85)

(B86)

(B87)

(B88)

(B89

APPENDIX C: EVALUATION OF THE HYPERBOLIC

INTEGRALS

As a consequence of keepingfinite, many of the one-
dimensional integrals encountered in this paper differ from
the ones of6]. In addition to the ordinary hyperbolic cases

we need to evaluate integrals of the type

f dx x%e'P*cott'x cschx,
0

wheren and p are non-negative integers amzdand 3 real
numbers. This is accomplished by repeatedly applying th&(3,z+2z')=

relations

coth’x—cschx=1,

(CD

(C2
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J dx x%e'P*cotH'x cschPx
0

i Bx 2
n+p 1f dx x%e'P*cotH' ™ “x cschx

X|n—1+ tanhx |, (C3

z .
—+i
< 1B

and in the end performing the integrals using the results

f dx x%e'P*cothx
0

=T'(1+2)[—(—iB) Y 2+27%(1+z,—iBI2)],
(C4)

f dx x?e'Pcschx=2"T'(1+2){(1+2,1/2—iB/2), (C5)
0

which can be straightforwardly derived. As|ié], UV diver-
gences in the individual terms of converging integrals are
regulated by introducing a factoe’ in the integrand and in
the end taking the limip—0+.

APPENDIX D: PROPERTIES OF THE FUNCTIONS N

In Sec. Il the functionsX were defined by the formulas
{'(Xy)=axL(xy), (D)
N(nw)=¢' (—=n,w)+(=1)"" ' (—nw*), (D2

N(w)=W(w)+W¥(w*). (D3)

In order to analyze the behavior of the sum integrals of Ap-
pendix B at different values g and T, we need to expand

these functions in the limits of small and large The results

of such expansions, obtained straightforwardly using among
other things the integral representations of the zeta and di-
gamma functions, read

o o3
N(32)= InN2—7—-—-- (=3 5+61In2
(1)) —
—sg(_l) w? +15(11-6y— 12In2)u*
+0(ub), (D4)

1/7(-3 1 — _
£'(-3) (5 CED) o

60 {(—3) 12 {(—1)

1 L T4 %
+ p(1-6y(ut )0, (DY)
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{'(-1)
{(=1)
—41n2)i u3+0(ud), (D6)

1
1+2In2-2

N(2,2)= v

I,u+ (3 2y

)

(1)
Xi(u+u')3+0(u®), (D7)

- 1
i(ut+u')+ §(3—27)

1
N(2z+2')=— 6( 1-2

x(l,z)z—%z<|n2— i((__ll)))—(l—ZInZ—y);z
7 — .
~ 543 u*+0(u?), (D8)
1¢(-1 — 1
N(Lz+2)=- g S~ (- Mt a5 ()
X () +0(u), (D9

N(02)=2(2In2+y)ip—5${(3)iud+0(ud),

(D10)

—2y—41n2+14£(3) u?—62(5) u*+ O(u®)
(D11)

N(z)=

for small ; and

N(32)=5u*(Inu—5)+5u?(n w+3)+0(In w),
(D12)
N(2 2l | ] |_+1 +o|n“
( Z)—_M nM_§ Tkl Inpt 3 m
(D13)
1 In
N(12)=—u?Inu—= (|nM+1)+o T;)
2 )
(D14)
X(0,2)= —2i u(l 1) ! 1+o In;)
Z)=—2lu n,u - |,
12, PE
(D15)
N | 11 In
(z)=2 n,u—lz +0 ? (D16)
for large u.
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APPENDIX E: THE DIAGRAM |, AND THE PLASMON
TERM AT T=0

In Sec. IV, where the zero-temperature pressure of QCD
was computed t@®(g*), we only quoted the results for the
diagraml and the plasmon term. The corresponding calcu-
lations will be performed in this appendix.

1. The diagram|

The one-loop gluon polarization tensor depicted in Fig.
4(b) has in the Feynman gauge the expression

(IT,,)*(P) = = 2g°T¢6° b( 2135,,+(P,P,~P?5,,)

(2Q—P),(2Q—-P),
Q*(Q-P)?

XHf(P)_${Q}
(ED
Denoting its vacuum T=u=0) part here by

(Hiw)e‘b(P)l\,ac we obtain after a straightforward computa-
tion

A2
(IT, ,)2%(P) | yac= 292ATf5ab(§) (P.P,—P?5,,),
(E2)

where the coefficien can be shown to have theexpan-
sion

1
24

{ereman5roco)
~—y+In(4m)+ 3 +0(e) (E3

Using this expression we easily obtainTat 0,

|’=4(d—2)g4AdAT2A26J !
¢ P e (PY)Q%(P-Q)2

=4(d—2)g*AdaTEA7, (E4)

and only the integral”’ remains to be evaluated.
The most straightforward way to tackle the computation
of the new integral is to proceed as in the case of the sum

integralz, while from the beginning on neglecting terms that
vanish atT=0. Using Eq.(B11) we get
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~ 1

' |r=0= fp (P?Hf,ho(P)
A2\ €

f15) -

(79)2+ B,T* f .

:A72e

1 Hf,T=o(P)+LHf,T=o(P)]

A2\€
o -1

2

1 Po
|:§—(4—26)§ -

€T
(4m)?

—2€

| | cos2 T ! ;2 20t P10
f n—f COS 241 )CSC r—_+ 6+ w?|r— 360 3 +T r3le (€){lr=0,
(EH)
|
where the remainin integrals can be evaluated using pre- X 8,i 5Vj(p25”. —pip;) (E8)
vious results. The calculation of theéntegral then leads after
setting the temperature to zero to o p2 PP, Pib;
. =(Allp)*(P)—| 0,y————— 0,6, 6ij— —5
2 P2 2
- 4,(/4472E A p p
7= 7|1 1-2€3In2—-4-21In— +0(€?) |, 5
(4) g ~an, ey - = amtyeee)
(E6) (AL, )*(P) IO2( 00
and plugging this expression to E@E4) gives Eq.(5.2) as 0iD;
the result. X 6,0 ( Sii— J) (E9)
ui Ovj| Oij 2 |’

2. The plasmon term where P stands for four-vectors ang for three-vectors as

The evaluation of the plasmon contribution to theO0  before and the polarization tensor has been divided into two
pressure corresponds to summing over all the ring diagramsarts proportional to orthonormal projection operators. The
of Fig. 4(c) starting at three-loop order. These graphs contaitomponents of the tensor appearing explicitly in the result
as loop insertions the fermionic part of the vacuum sub-are available through an application of the residue theorem,
tracted one-loop gluon polarization tensor, which we denotevhich after a straightforward calculation leads to the results
by (AHLV)ab. The summation was originally performed in (see Appendix A of part Il if9])

[9] and will be reproduced here following to a large extent

the treatment 0f9,38]. The computation begins from the ab 9 caly
derivation of an integral representation for the polarization (ATI; 00 *7(P)=4g°5" Z 2 )3 q (r“ Q)
tensor and then proceeds to the evaluation of the actual plas-
mon sum. p2q2_ (pq)Z
Using Egs(E1) and(E2) it is easily seen that the vacuum 5 > , (E10
subtracted polarization tensor is orthogonal to the external (Q=P)MQ+P)7, _iq
momentum, i.e.
— f
PL(ATTL,)*(P)=P,[(IT},,)**(P) = (I1},,)**(P)| ,ad =0. (AIIf,)3(P)= 4gZ5abZ f 5 0(M q)
(E7) (2m)%q
Settinge=0 and applying this relation together with rota- (PQ)2 (E1D
tional invariance we may then write the tensor in the form (Q—P)2(Q+P)? i
(ATI},,)*(P) - .
" Defining an angular variable by
(AT (P)(P25,,~ P,P,) Po
p2 % proomny g~ arctand (E12
1 3P? , - o
4 (AH )ab(p) _(AHBO)ab(P) and performing the corresponding integrations in E§4.0)
2p? p? and(E11), we now obtain for the polarization tensor
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(Allgy)*°(P)
92620 [ 49°—P? P?+4q%+4qPsing
= quq 1+ —In :
272 Jo 8qPsing p2+4g2—4qPsing
4q°sin 2
—cot¢arctanq—¢
P2+ 4q2cos 2
9?02 , w(4u?-3P?)
272 |3 24P sin¢

f
(A,

whereP this time stands for the norm of the corresponding

P2+4u2+4uP sin ¢ P2sirt ¢

XIn
P2+4u2—4uPsing 24

w?P?cos 26+ 2t
P4

XIn| 1+8

1

2

e 1+2 sirfe b2
12

sin 2¢
X cot¢ arc tan (E13

cos 26+ P?/(4u?)

2P

25""7 P P2+4qg2+4qPsing
—In

™ dqa 1  8qsing p2+4q?—4qPsing

gayb

272

,  MP  P?+a4uP+4uPsing
- - n
# " 4sing P2+4u’—4uPsing

P2

w?P?cos 2p+2u*
— gln

P4
P2cot¢ sin 2¢ }
ar

an
4 cos 2¢+ P?/(4u?)

1+8

(E14
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928%° usirt ¢

7],2

1
xfd
-1

produce exactly Eqs(E13 and (E14), which suggests the
use of the Sommerfeld-Watson integral formula

1 fiwfe dz =
=— xZ.

(AIL},,)*(P) =~

' X(y+i cote)?
y1—4x,u2/stin2¢(y+ i cotep)?
(E16)

1+x —iw— 2 SinTz

(E17)

When applied to Egs(E15 and (E16), the Sommerfeld-
Watson formula gives

(ATT5)25(P)

Z;Lzéabfiwf dz =

1
Pyl dx
872 J-jx—e2mi smqrzfo

<[ a-y) | —P?
-1 y(y+i cotp)? axu2sitp(y+i cotep)?
(E18

(AITL, ,)*°(P)

QuloP fix—e dz @ (1
=— — — dx
472 J-ix—e2mi sinmz)g

1
xf dy
-1

where thex andy integrals can now be factorized and per-
formed separately. The result first derived[#] is that one
has obtained a compact integral representation for the polar-
ization tensor

—p?
Axpu’sirtp(y+i cotep)?

(E19

four-vector where flavor sums have been suppressed. The

last forms obtained here are, however, inconvenient to work
with. It is on the other hand easy to confirm by a direct

integration that the simple integral representations

(ATI

G250 usir?
Py =L LT
2
1 X(1-y?)
” fldy1—4x,u2/stin2¢(y+i cote)?’

(E15

angre=- 2003 w2 [ e
e\
4_,u,2 , (E20
(AL, ) (P)= - 2 f'l:zdzl I'o26)
o
) (E21)

where flavor sums have been reintroduced and the functions

n are defined by
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T c0g2z¢)—1/(2z)sin(2z¢)cot¢p Ai(0,9) 1
r == = 1a -=
120 S oo ~aen )J de sirp A 1<0¢)( ™ 2)
E2
) Ax0¢) 1
@ cog2z¢)—sin(2z¢)cote +2A2(O'd’)<'” 4p? 2)] (E29
T2(2.9)= gz (1-2)(1—22)
(E23

where theP? integral has been evaluated in the last stage.

We are now ready to evaluate the sum of the diagrams dffom Egs.(E13 and(E14) we furthermore have
Fig. 4(c), which we begin by first definin¢again in analogy

with [9]) G 1 b cotd
A41(0,0)= — (E30
1 27 sirtg
A(P)= ATI{)33(P), E24)
1(P) dAsin2¢( 00" (P) (E29)
9%u’ 1-¢cotd
A l f \aa 1 aa, A2(0’¢): 2 { 1- i )
2(P)= (AH W)3(P)— ——(Allp)24(P) |. 472\ Sirf ¢
Sirf¢ (E3D)
(E29
Using the orthonormality of the projection operators appearwhich gives
ing in Eq.(E9) and keeping in mind the symmetry factors for
the ring diagrams, this straightforwardly leads to the expres-
sion 2da(1?)?( g
p3=— 3 \4m J’ de sir¢g
__% P [ [ AP AP )
> 2m) P2 | P X[z 1—¢cot¢) ( g2 1- poote 1)
— n _ | — =
sir? 8m? sirf 2
1o 14 22 HRAP) (E26) ’ 2 ! ’
2 2 |’ 1— ¢ cot 2 1— ¢ cot
P ooty 6 [, g
Sirf ¢ 1672 Sirf ¢
which we now must examine.
The integrals over the three-dimensional angular variables 1
are trivially performed. This gives for the infrared sensitive o[ (E32

part of the plasmon contribution

a_ % d*P A1(0,0) o 14 A5(0,0) Performing the remaining integral produces now
s (2m)* p? p?
! A1(0,0)+2A5(0,0)]+ ! ! A?(0 a——dA(”z)z 2 In g —1+E)In2(1—ln2)+5
p2[A1(00) T 20208) 1+ 2 5 5 AL (09) Pi=-—, e 13
(E33
+A%<o,¢)]} (E27)
with the constan® defined in Eq(5.5 of Sec. IV.
The second part of the plasmon term is defined by
0,
— (2 sz de sm2¢{ In| 1 1L2¢)
i p5=ps—p3. (E34)
Ay(0,0)| 1
+21n 1+ | = —[A1(0,4) +245(0.¢)]
P P To orderg* it can be evaluated by simply expanding the
1 1 logarithms in Eq.(E26) in powers ofg?, since there obvi-
+ ——[A (0,)+A2(0,)] (E2g  ously will be no g*Ing contributions originating from its
2P? P2+ expression
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P2+ A4 (P) g2 i=—e dz p2\*
b 2p2 1 -2 2
p5=~— 277)3 f dP?p f d¢sm2¢{ SIWCY e ¢Z % f a2
Ao(P) 1 —e dz 2)\*
—— |~ —[A(P)+2A = —Af
" P2 Ay 09) 52l A1(P)+2A5(P) 2 5 Az a7 (E36)
1 1
—A1(0,¢)—2A2(0,¢)]—ﬁm |
e dz T'y(2,0)
Az(P)—__E Mff , ﬁ[rz(zyfﬁ) nzd) ]
X[AZ(0,6)+A5(0,6)] Si¢
P2
da “\ 2.2
2(27T)3f f dd>sm2¢{—[/\ (P)+2A5(P)] M .
ic—e (dz
1 =2 f 5 ANZB)| (E37)
oorga [A2(0,4)+2A5(0,¢)]  +0O(g®). T i 2 4uf
P2+4u
(E39
Plugging in the contour-integral representations of the and performing thé®? integral with an IR cutoff 4u?, we
functions, now obtain
|
d Dc 1 1 [ix—e dz
b_ A 2 2 2 . i
Ps 2(277)3f29 szdP jo d¢S|n2¢>[ (P2+4 2 p? [A1(0'¢)+2A2(0'¢)]+P2 —ioo— 2
jc—e' dz’ p2 z p2 I
Xf [A (z,0)AY(2',¢) +2h Yz, ) A%z . p)]| —5| | — (E38
—io—¢ 4/J’f 41u’g
_ 1 e G (e &7
ZZ(ZW)sg . d¢sm2¢| 5[A3(0,6) +2A5(0,¢)]In 7~ inezm I s
w2\ w?\”
X[AY(z,p)A(z', )+ 2A5(z,9)A%(Z . D)1 | | 5| |- (E39
My Mg

The ¢ integral in the first term is easy to perform, but is left in its present form for now. Instead, we deform the integration
contour of thez" integral in order to be able to proceed to the limit-0. Denoting Residues B and encircling the poles
atz'=0 andz’=—z to obtain a contour integral, which vanishes in this limit, we get

e roz+27 2\2[ 2\%
[* e T Rlaeiiz g+ 2Rk ol ] |4
—jo—¢ £ Mt lu“g
z 2 z
~— L[R2 $)WRUZ D)0 2R Y2 HRRLZ )0l 5 | ~[Ri(z 4R
f
P
><<—z,¢>+2K;<z,¢>K%<—z,¢>)](M—i +0(7°). (E40
f

The z integral of the first term is quickly evaluated by closing the contour on the right half-plane, where the only pole is
located at the origirz=0. The substitutiony?=1+zIn 7+0O(Z) then produces
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2 jo—e
2(217)3 % Jo d¢s'n2¢[ [ amtileor

2
X (—z,¢)+2ANz ¢)AY(~z, ¢)](;§
f

—[A (z,$)A) (2, )+ 2R %z, $)AYZ' , $)]

2 z
X ( ”—2> ] =pi+ph?, (E41)
K z=2'=0
where we have used the relation
E R (z,6) A2, )+ 275z, H)AUZ' . H)H -2 —0
= A3(0,¢) +2A5(0,6), (E42)

a trivial consequence of the definitions of Eq&36) and

(E37).

The evaluation of the plasmon term has now been reduced

to the computation of the two integrat§* andp52. Using
the relations

X ) g2u? T COSZd—sin2z¢ cotp/2z
z,)=— :
12,4 2m%si g SINTZ — (1—2)(1—422)
(E43)
~ _ @°w® m [cosZ¢p—sin2z¢cote
Az )=~ 472 sinwz( (1-2)(1-22)
C0S 2Z¢—sin 2z¢ cot p/2z
(1—2)(1—4Z%)sirf ¢ ) (E49
~ g2 2
RA1(Z,¢)]1=0=— o2 n2¢>(1 ¢cotd), (E49H
~ gz 2
RA(2,¢)]z=0=— e n2¢(5m2¢ 1+ ¢ cote)

(E46)

the double residue appearingpg'2 is rapidly evaluated, and

the computation of the subsequeftintegral produces

=

4
b2_ _ dA_'uz i 77_2 -1
P3 2 \ax| || 6

2
MZ—E > wlin— .
f M

(E47)
For p5*
diately performed. This gives
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T cotmz /,us ‘

xfm e dz
—ioo— 2 2(1—22)(1—422)\,uf2 ’

(E48

where the remaining contour integral is straightforward to
evaluate by applying the residue theorem. Assuming first
,uf2> ,u,s we may close the integration contour by a semicircle
on the right half-plane, where the integrand obviously has
poles located at=k, ¥ ke N. Denotingu}/uf=p we get

flw EE B% cotmz
—ie— 2 7(1—7%)(1—42%)
B[ 25 . B
—Inﬁ'f'g F—Inﬁ)—kEz k(kz—l)(4k2—1)
B B[ 25 7 258 1+68+ 32
=—hnptgls ! )_(E+ 36 68

2(1+/3)I 1+B

n
3B 1-B
7 6+p8 4(1+pB)
"6 8 PP 5
La 1-\B)*
68

XIn[1—B]—-

———In[1-73], (E49

where the infinite sum has been evaluated using standard
formulas. For,ufs,ugcv B=1 the computation proceeds in
an analogous fashion, the only difference being that the in-
tegration contour is now closed on the left half-plane. The
result of this calculation is simply

flm e dz B cotmz
—ie— 2 7(1—7%)(1—42%)

7 6+8 4(1+B)
R In,8+—3\/ﬁ In[1+ VB3]

_ 4
24 D —5 —In[p-1], (E50

the ¢ integration can, on the other hand, be imme-and the application of EqQSE49 and (E50) in Eq. (E48
gives now
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3 Mikg g 6ufus %
4
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|wf— s
o=t gl

—EE (=) b Appg(pi+pud)
3f>g 9 Mg ¢} ¢}

(ps+ pg)?
X In——29°

) . (E5D
Milg

e
—(pf— g In—
f g Mg

Adding Egs.(E33), (E48 and(E51) together we finally ob-
tain Eq.(5.3) as the result for the whole plasmon sum.
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