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Phenomenology of Lorentz-conserving noncommutative QED

Justin M. Conroy,* Herry J. Kwee,† and Vahagn Nazaryan‡

Nuclear and Particle Theory Group, Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, U
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Recently a version of Lorentz-conserving noncommutative field theory~NCFT! has been suggested. The
underlying Lie algebra of the theory is the same as that of Doplicher, Fredenhagen, and Roberts. In Lorentz-
conserving NCFT the matrix parameterumn which characterizes the canonical NCFT’s is promoted to an

operatorûmn that transforms as a Lorentz tensor. In this paper, we calculate the phenomenological conse-
quences of the QED version of this theory by looking at various collider processes. In particular we calculate
modifications to Mo” ller scattering, Bhabha scattering,e1e2→m1m2 ande1e2→gg. We obtain bounds on
the noncommutativity scale from the existing experiments at CERN LEP and make predictions for what may
be seen in future collider experiments.
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I. INTRODUCTION

It is interesting to consider the possibility that the stru
ture of spacetime is nontrivial. In one of the most popu
scenarios position four-vectors are promoted to opera
that do not commute at short distance scales@1–25#. There
has been a lot of work on field theories with an underlyi
noncommutative spacetime structure. Jurcˇo et al. @6# have
presented a formalism on how to construct non-Abel
gauge theories in noncommutative spaces from a consist
relation. Using a similar approach Carlson, Carone a
Zobin ~CCZ! @22# have formulated noncommutativ
Lorentz-conserving QED based on a contracted Snyder@25#
algebra, thus offering a general prescription as how to
mulate noncommutative Lorentz-conserving gauge theor
In this algebra the self-adjoint spacetime coordinate op
tors satisfy the following commutation relation:

@ x̂m,x̂n#5 i ûmn. ~1.1!

Hereûmn52 ûnm transforms as a Lorentz tensor and is in t
same algebra withx̂m. This algebra is Lorentz covariant.

The Lie algebra considered by CCZ is the same as the
algebra of Doplicher, Fredenhagen, and Roberts~DFR! @24#.
Interestingly enough DFR came to the formulation of th
algebra by considering modifications of spacetime struc
in theories that are designed to quantize gravity. The D
algebra places limitations on the precision of localization
spacetime. As noted in@24#, quantum spacetime can be r
garded as a novel underlying geometry for a quantum fi
theory of gravity.

Interest in noncommutative spacetime originated with
work of Connes and collaborators@26# and has gained mor
attention due to developments in string theory@27#, where
noncommutative spacetime has been shown to arise in a
energy limit. In string theoriesumn is just an antisymmetric
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c-number. Theories involving noncommutative spaceti
structure based on algebras with c-numberumn suffer from
Lorentz-violating effects. Such effects are severely co
strained@9–17# by a variety of low energy experiments@28#.
Lorentz-violating effects appear in field theories as a con
quence ofu0i and e i jku i j defining preferred direction in a
given Lorentz frame. In contrast with this the noncommu
tive QED ~NCQED! formulated by CCZ based on Eq.~1.1!
is free from Lorentz-violating effects.

Carlson, Carone and Zobin have connected the DFR
algebra Eq.~1.1!, and the antisymmetric tensorûmn to ex-
perimental observables, by showing how to formulate
quantum field theory on this noncommutative spacetim
Similar issues have been discussed by Moritaet al. @23#.
These theories make it possible to study phenomenolog
consequences of Lorentz-conserving noncommutative sp
time. As a beginning, CCZ have studied light-by-light elas
scattering and obtained contributions that can be signific
with respect to the standard model background.

In this paper we calculate other phenomenological con
quences of Lorentz-conserving NCQED formulated by CC
We consider various collider processes such as Bhabha
Mo” ller scattering,e1e2→m1m2 and e1e2→gg. The ex-
periments at planned colliders will provide a means of te
ing the properties and the structure of spacetime at sma
distance scales. We note that any property prescribed
spacetime, if confirmed experimentally, must affect all int
actions.

In the following section we discuss the underlying forma
ism of noncommutative Lorentz-conserving gauge theor
with emphasis on NCQED. In Sec. III we study the Loren
conserving NCQED by considering various collider pr
cesses. In Sec. IV we obtain bounds on the noncommuta
ity scale from Bhabha scattering,e1e2→m1m2 ande1e2

→gg experiments. We summarize our discussion in Sec
with some concluding remarks.

II. ALGEBRA AND QED FORMULATION

The simplest construction of a Lorentz-conserving no
commutative theory involves promoting the position fou
vector to an operator which satisfies the DFR Lie algebra
©2003 The American Physical Society04-1
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@ x̂m,x̂n#5 i ûmn,

@ ûmn,x̂l#50,

@ ûmn,ûab#50, ~2.1!

whereumn is antisymmetric and transforms as a Lorentz te
sor.

On the other hand, CCZ took as the starting point S
der’s algebra,

@ x̂m,x̂n#5 ia2M̂mn,

@M̂mn,x̂l#5 i ~ x̂mgnl2 x̂ngml!,

@M̂mn,M̂ab#5 i ~M̂mbgna1M̂ nagmb

2M̂magnb2M̂ nbgma!. ~2.2!

Snyder’s algebra@which is the same as the algebra
SO~4,1!# describes a Lorentz-invariant noncommutative d
crete spacetime characterized by a fundamental length s
a. By constructing an explicit representation forx̂ andM̂ in
terms of differential operators, the Lorentz invariance of E
~2.2! was demonstrated@25#. CCZ then extracted the DFR
Lie algebra by performing a particular contraction on E
~2.2!. Specifically, by rescalingMmn5 ûmn/b and holding the
ratio a2/b51 fixed, the limit b→0, a→0 yields the DFR
Lie algebra. Thus, the Lorentz covariance of Snyder’s
algebra implies the Lorentz covariance of Eq.~2.1! @22#. The
commutator ofûmn andM̂mn is

@M̂mn,ûab#5 i ~ ûmbgna1 ûnagmb2 ûmagnb2 ûnbgma!,

~2.3!

as one would expect ifûmn is a Lorentz tensor. Note that th
contraction also implies that the eigenvalues of the posi
operator of the DFR algebra are continuous.

To develop a field theory on a noncommutative spaceti
one defines a one-to-one mapping which associates func
of the noncommuting coordinates with functions of the ty
cal c-number coordinates. In the canonical noncommuta
theory this is achieved via a Fourier transform

f̂ ~ x̂!5
1

2pnE dnke2 ikx̂E dnxeikxf ~x!. ~2.4!

In the Lorentz-conserving case the presence of the op
tor ûmn requires that the mapping involve a new c-numb
coordinateumn ~no hat!. Functions of the noncommuting co
ordinates are then related to functions of c-number coo
nates by

f̂ ~ x̂,û !5E d4a

~2p!4

d6B

~2p!6

3e2 i [amx̂m1(Bmnûmn/2)] f̃ ~a,B!, ~2.5!
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where

f̃ ~a,B!5E d4xd6uei [amxm1(Bmnumn/2)] f ~x,u!. ~2.6!

Lorentz invariance requires thatB transform as a two index
Lorentz tensor.

To ensure that operator multiplication be preserved,f̂ ĝ

5 f !ĝ, one finds that the rule for ordinary multiplicatio
must be modified:

~ f !g!~x,u!5 f ~x,u!expF i

2
]Qmumn]W nGg~x,u!. ~2.7!

The u dependence of the functions distinguishes this re
from the!-product of the canonical noncommutative theo
Equations~2.5! and~2.6! allow one to work solely with func-
tions of classical coordinatesx andu, provided that all mul-
tiplication be promoted to a!-product.

The introduction of a Lorentz invariant weighting func
tion W(u) allows for the following generalization of the op
erator trace:

Tr f̂ 5E d4xd6uW~u! f ~x,u!. ~2.8!

In @22# CCZ took the normalization to be

E d6uW~u!51. ~2.9!

It is straightforward to demonstrate the cyclic property of E
~2.8!, i.e. Tr f̂ ĝ5Tr ĝ f̂ . One requires that for large
uumnu, W(u) dies off sufficiently fast in order that all inte
grals be well defined@22#. Lorentz-invariance requires tha
W be an even function ofu, which yields

E d6uW~u!umn50. ~2.10!

As will be seen, this restriction has interesting consequen
on possible collider signatures of the theory.

Field theory interactions are extracted by performing
d6u integral, resulting in the action

S5Tr L̂5E d4xd6uW~u!L~f,]f!! , ~2.11!

where the notation inL(f,]f)! indicates!-product multi-
plication.

As was mentioned, in the Lorentz-conserving noncomm
tative theory the initial ‘‘fields’’ are generally functions ofx
andu, and must be related to ordinary quantum fields wh
are only functions ofx. CCZ showed how this can be don
for NCQED using a nonlinear field redefinition and an e
pansion inu. Since the phenomenology of NCQED is th
topic of this paper, all developments will be directed towa
a U~1! gauge theory. For completeness the formalism p
sented in@22# is reviewed.
4-2
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In Lorentz-conserving NCQED, one has a matter fieldc
and gauge fieldA. For a U~1! gauge transformation charac
terized by a parameterL(x,u), the fields transform as

c~x,u!→U!c~x,u!, ~2.12!

and

Am~x,u!→U!Am~x,u!!U211
i

e
U!]mU21, ~2.13!

where

U5~eiL!!

511 iL~x,u!1
1

2!
iL~x,u!! iL~x,u!1•••.

~2.14!

A U~1! gauge invariant Lagrangian is

L5E d6uW~u!F2
1

4
Fmn!Fmn1c̄!~ iD” 2m!!c G ,

~2.15!

where

Dm5]m2 ieAm , ~2.16!

and the field strength is

Fmn5]mAn2]nAm2 ie@Am,!An#. ~2.17!

In demonstrating the gauge invariance of Eq.~2.15! and the
cyclic property of Eq.~2.8!, the following identity is useful:

E d4x f!g5E d4x f g. ~2.18!

Equations~2.15!, ~2.16!, and ~2.17! are similar in form to
those obtained in the canonical NCQED case, the differe
again being theu dependence of the fieldsc(x,u) and
A(x,u) in Eq. ~2.15!. One must have a way of relatingc and
A to ordinary quantum fields which are only functions ofx.
This is accomplished by utilizing the behavior of the weig
ing function Eq. ~2.8!, which allows an expansion of th
fields and gauge parameter in powers ofu. A similar tech-
nique involving field expansions was first used in constru
ing a noncommutative SU(N) gauge theory in@6#. The co-
efficients of the power series are thus only functions ofx and
correspond to ordinary quantum fields. From requirement
gauge invariance and noncommutativity, these coefficie
can be determined order by order inu.

The gauge parameter, gauge field, and matter field of N
QED are expanded as

La~x,u!5a~x!1umnLmn
(1)~x;a!

1umnuhsLmnhs
(2) ~x;a!1•••, ~2.19!
05400
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Ar~x,u!5Ar~x!1umnAmnr
(1) ~x!

1umnuhsAmnhsr
(2) ~x!1•••, ~2.20!

c~x,u!5c~x!1umncmn
(1)1umnuhscmnhs

(2) ~x!1•••.
~2.21!

The lowest order term in each expansion corresponds to
ordinary QED term. Thus, ordinary QED can be extracted
taking the commutative limit,umn→0.

Consider an infinitesimal transformation of a matter fie
c(x) in an ordinary U~1! gauge theory:

dac~x!5 ia~x!c~x!. ~2.22!

For a Lorentz-conserving noncommutative theory, this
generalized to

dac~x,u!5 iLa~x,u!!c~x,u!. ~2.23!

In an Abelian gauge theory two successive gauge trans
mations must then satisfy the relation

~dadb2dbda!c~x,u!50. ~2.24!

For Eq.~2.24! to hold,L must satisfy

idaLb2 idbLa1@La,!Lb#50. ~2.25!

The parameterL can then be determined at each order inu.
Specifically, it can be shown that

Lmn
(1)~x;a!5

e

2
]ma~x!An~x! ~2.26!

and

Lmnhs
(2) ~x;a!52

e2

2
]ma~x!Ah~x!]sAn~x! ~2.27!

satisfy the condition of Eq.~2.25!. The gauge and matte
fields are treated in a similar manner.

The restriction of a gauge field transforming infinites
mally as

daAs5]sLa1 i @La,!As#, ~2.28!

is satisfied by the following expressions forA(1) andA(2):

Amnr
(1) ~x!52

e

2
Am~]nAr1Fnr

0 !, ~2.29!

Amnhsr
(2) ~x!5

e2

2
~AmAh]sFnr

0 2]nAr]hAmAs

1AmFnh
0 Fsr

0 !, ~2.30!

where

Fmn
0 5]mAn2]nAm ~2.31!

is the ordinary QED field strength tensor.
4-3
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CONROY, KWEE, AND NAZARYAN PHYSICAL REVIEW D 68, 054004 ~2003!
Likewise, one can show that for a matter field transfor
ing infinitesimally as Eq.~2.23!, the appropriate forms o
c (1) andc (2) are

cmn
(1)~x!52

e

2
Am]nc ~2.32!

and

cmnhs
(2) ~x!5

e

8 S 2 i ]mAh]n]sc1eAmAh]n]sc

12eAm]nAh]sc1eAmFnh
0 ]sc

2
e

2
]mAh]nAsc1 ie2AmAs]hAnc D .

~2.33!

Interactions are extracted by substituting Eqs.~2.26!, ~2.27!,
~2.29!, ~2.30!, ~2.32!, ~2.33! into the Lagrangian Eq.~2.15!.
We expand the Lagrangian throughu2 and evaluate thed6u
integral using the weighted average

E d6uW~u!umnuhr5
^u2&
12

~gmhgnr2gmrghn!,

~2.34!

where the expectation value is defined as

^u2&[E d6uW~u!umnumn. ~2.35!

It is natural to defineLNC5(12/̂ u2&)1/4 which characterizes
the energy scale where noncommutative effects become
evant. The restriction onW from Eq. ~2.10! demands that
only terms containing even powers ofu will result in inter-
action vertices. Thus, for example, the three-photon verte
canonical NCQED is not present. The next section focu
on the phenomenology of a U~1! theory whose spacetim
coordinate operators obey the DFR Lie algebra. Possible
lider signatures are considered and bounds on the en
scaleLNC are obtained.

III. COLLIDER SIGNATURES

The Lagrangian for QED with Lorentz-invariant noncom
mutative spacetime Eq.~2.15! can be written as an expansio
in u order by order using the nonlinear field redefinitio
described above. The zeroth order inu will give the ordinary
QED Lagrangian. The first order is zero due to the evenn
of the weighting functionW(u). The first nontrivial contri-
butions come from the second order; they include the follo
ing.

~i! The 4-photon vertex, which has been discussed ex
sively in @22#.

~ii ! The correction to 2-fermion-1-photon vertex~ordinary
QED vertex!.

~iii ! The 2-fermion-2-photon vertex.
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The lowest order correction to the ordinary QED vert
comes from the following terms in Lagrangian density:

c̄ (2)~ i ]”2m!c (0)1c̄ (0)~ i ]”2m!c (2)1
e

2
$~ c̄ (0)!A” (0)!c (0)

1c̄ (0)~A” (0)!c (0)!%, ~3.1!

where we retain only the second order term in contributio
to the !-product shown in the last two terms. The first tw
terms will go to zero if both fermion fields are on shell. An
the 2-fermion-2-photon vertex comes from

c̄ (2)~ i ]”2m!c (0)1c̄ (0)~ i ]”2m!c (2)1c̄ (1)~ i ]”2m!c (1)

1e$c̄ (2)A” (0)c (0)1c̄ (0)A” (0)c (2)%1e$~ c̄ (0)!A” (0)!c (1)

1c̄ (1)~A” (0)!c (0)!1~ c̄ (0)!A” (1)!c (0)%, ~3.2!

where this time we retain only the first order in the!-product
shown.

A. Dilepton production, e¿eÀ\ l¿lÀ

First we consider processes in which all fermions are
shell, i.e. dilepton productione1e2→ l 1l 2. For processes
up to tree level Feynman diagram, only

e

2
$~ c̄ (0)!A” (0)!c (0)1c̄ (0)~A” (0)!c (0)!%

will contribute to the vertex correction since all the fermio
are on shell. This Lagrangian term reduces to

e

2

^u2&
96

$c̄~]m]nA” !~]m]nc!1~]m]nc̄ !~]m]nA” !c%.

~3.3!

From this we obtain the following Feynman rule for th
2-fermion-1-photon vertex with all fermions on shell an
with momenta labeled as in Fig. 1:

ieH 11
^u2&
384

~p3!4J gm, ~3.4!

where we have not made the assumption that the ferm
are massless~although we do setm50 in the cross section
formula!.

µ
p3

p
1

p
2

FIG. 1. 2-fermions-1-photon vertex.
4-4
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We will consider the following processes which are a
fected by this vertex correction: Bhabha scattering,e1e2

→m1m2 and Mo” ller scattering. The matrix element wit
vertex correction for Bhabha scattering~Fig. 2! is

iM5ū~p3!~ iegn!S 11
^u2&
384

q4D v~p4!
2 igmn

q21 i e

3 v̄~p2!~ iegm!S 11
^u2&
384

q4Du~p1!

2 v̄~p2!~ iegn!S 11
^u2&
384

q84D v~p4!
2 igmn

q821 i e

3ū~p3!~ iegm!S 11
^u2&
384

q84Du~p1!. ~3.5!

Squaring the matrix element and summing~averaging! over
the final ~initial! fermion spin states will give

uMu252e4H Fs
2S t21u2

s2 D 12FsFt

u2

st
1Ft

2S u21s2

t2 D J ,

~3.6!

where we defineFs5$11(^u2&/96)(s2/4)%2 where s, t and u
are the Mandelstam variables. To first order in^u2&/12 this
will give us the center of mass~CM! differential cross sec-
tion:

ds

d cosu
5S ds

d cosu D
QED

1
pa2

s

^u2&
96 H s21t212u21u2S t

s
1

s

t D J ,

~3.7!

whereu is the CM scattering angle.
The same results fore1e2→m1m2 can be obtained eas

ily by just throwing away thet channel in the Bhabha sca
tering calculation, assuming the muons are massless.
spin average square matrix element is

uMu252e4Fs
2S t21u2

s2 D . ~3.8!

+
νµ

µ

νp

p p

p

p p

p p

e

e

e

e
e

ee

q

q

1

2 4

3

2

3

4

1

e+
+

++

—

—

—

—

FIG. 2. Bhabha scattering.
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And to first order in^u2&/12 this will give us

ds

d cosu
5S ds

d cosu D
QED

S 11
^u2&
96

s2D . ~3.9!

B. Mo” ller scattering

For Mo” ller scattering, the spin average square matrix
ement is obtained by using crossing symmetry from Bha
scattering,

uMu252e4H Ft
2S u21s2

t2 D 12FtFu

s2

tu
1Fu

2S s21t2

u2 D J .

~3.10!

To first order in^u2&/12 this gives us the CM differentia
cross section:

ds

d cosu
5S ds

d cosu D
QED

1
pa2

s

^u2&
96 H t21u212s21s2S u

t
1

t

uD J .

~3.11!

C. Diphoton production, e¿eÀ\gg

In order to calculate the cross section fore1e2→gg, we
first need to calculate the full correction to ordinary QE
vertex, not just the case when all fermions are on shell. T
requirement comes from the fact that in diphoton product
we have fermion propagators in the Feynman diagrams.
using the nonlinear field redefinition forc (2), the Lagrangian
for the full correction can be written as

ie
^u2&
96 F ~]mAm!„~]2c̄ !~ i ]”2m!c1$~ i ]a1m!c̄%ga~]2c!…

2~]mAn!„~]m]nc̄ !~ i ]”2m!c1$~ i ]a1m!c̄%ga~]m]nc!…

2
i

2
$c̄~]m]nA” !~]m]nc!1~]m]nc̄ !~]m]nA” !c%G . ~3.12!

Then the Feynman rule for the 2-fermion-1-photon ver
with all fermions and photons possibly off-shell is~Fig. 1!

ieH gm1
^u2&
96 F ~p” 12m!p2

2p3
m2~p” 22m!p1

2p3
m1~p” 22m!

3~p1 .p3!p1
m2~p” 12m!~p2 .p3!p2

m1
1

2
$~p1 .p3!2

1~p2 .p3!2%gmG J . ~3.13!

Next we need to calculate the contribution from the n
vertex, i.e., 2-fermion-2-photon vertex. The Lagrangian
this vertex is
4-5
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ie2 ^u2&
96

@Am~]aAn!$~]mc̄!ga~]nc!2~]nc̄ !ga~]mc!%

2~]mAn!$~]m]nc̄ !A” c2c̄A” ~]m]nc!%

12AmFna$~]mc̄!ga~]nc!2~]nc̄ !ga~]mc!%#,

~3.14!

and we put all the fermions and photons on shell to simp
the calculation. This simplification is possible since in t
calculation for diphoton production up to second order inu
for the 2-fermion-2-photon vertex all fermions and photo
are on shell. Labeling momenta as in Fig. 3, we obtain
Feynman rule for the 2-fermion-2-photon vertex with all fe
mions and photons on shell:

ie2 ^u2&
96

@~p1 .p3!$p2
rgh2p1

hgr%1~p1 .p4!$p2
hgr2p1

rgh%

1~p” 32p” 4!$p1
rp2

h2p1
hp2

r%#. ~3.15!

Putting all these rules together, the cross section up to
order in ^u2&/12 for diphoton production can be calculate
~Fig. 4!. The matrix element for diphoton production can
written as the sum of the three diagrams:iM5 iM11 iM2
1 iM3, with each matrix element defined below:

p
p

pp1

2

3

4

η

ρ

FIG. 3. Two fermions–two photon vertex.
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iM152 ie2em* ~p3!en* ~p4!v̄~p2!Fgnq”gm

t
1

^u2&
96

t

2
$gnq”gm

1p2
ngm2p1

mgn%Gu~p1!, ~3.16!

iM252 ie2em* ~p3!en* ~p4!v̄~p2!Fgmq” 1gn

u

1
^u2&
96

u

2
$gmq” 1gn1p2

mgn2p1
ngm%Gu~p1!,

~3.17!

iM35 ie2em* ~p3!en* ~p4!
^u2&
192

v̄~p2!@ t$p1
mgn2p2

ngm%

1u$p1
ngm2p2

mgn%12~p” 32p” 4!~p1
np2

m

2p1
mp2

n!#u~p1!. ~3.18!

It is easy to show that if either one of the polarization vect
is replaced with its momentum, the matrix element will
zero as we expect from gauge invariance. Next it is straig
forward to show that the spin average square matrix elem
is

uMu252e4F t

u
1

u

t
2

^u2&
96

~ t21u2!G . ~3.19!

To first order in^u2&/12 this gives the following CM differ-
ential cross section:

ds

d cosu
5S ds

d cosu D
QED

F12
^u2&
192

s2

2
sin2uG . ~3.20!

IV. BOUNDS ON LNC FROM COLLIDERS

Mo” ller scattering experiments do not provide data at h
enough energy to set a bound comparable to the one obta
from Bhabha scattering. For Bhabha scattering the bound
be extracted from a series of LEP experiments@29#. The total
cross section integrated betweenu0 and 180°2u0 predicted
p1

p
2 p

3

p4

p

p

p1

1

2p

p4

p3

q q’

p4

p3

2

µ

ν

ν

µν

µ

+ +

FIG. 4. Feynman diagrams fore1e2→gg.
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s5sSM1
pa2s

8LNC
4 H 25

4
a1

7

12
a312 ln

12a

11aJ , ~4.1!

with a5cosu0. This matches the cut introduced by the L
experiment whereu0544° is the angle relevant to the L
detector. Here we usesSM instead ofsQED to take into ac-
count the weak interaction and radiative corrections.
have neglected the noncommutative correction to higher
der QED and weak interactions. We use the numerical va
of the data above~Table I! @29#, and for the theoretical pre
diction we add the correction due to noncommutativity o
tained in the previous section to the listed SM cross sect
The x2 function is defined as follows:

x25(
i

S sexp
i 2s theor

i

Dexp
i D 2

~4.2!

with Dexp
2 5Dstat

2 1Dsys
2 and i sums over the energy rang

Performing thex2 analysis over the energy range shown
Table I, we obtain the boundLNC>137 GeV~95% C.L.!.

A similar analysis can be performed one1e2→m1m2

using the data from the same experiment at LEP@29#. The
total cross section integrated betweenu0 and 180°2u0 is

s5sSM1
pa2s

8LNC
4

a3

3
, ~4.3!

with a defined above andu0544°. Fitting our theoretical
prediction to LEP data~Table II! @29# usingx2 fit will set the
bound forLNC>86 GeV ~95% C.L.!.

TABLE I. Bhabha scattering: Data from L3 experiment at LE
and SM prediction@29#.

As ~GeV! sexp6Dstat6Dsys ~pb! sSM ~pb!

130.10 51.1062.9060.20 56.50
136.10 49.3062.9060.20 50.90
161.30 34.0061.9061.00 35.10
172.30 30.8061.9060.90 30.30
182.70 27.6060.7060.20 26.70
188.70 25.1060.4060.10 24.90

TABLE II. e1e2→m1m2: Data from L3 experiment and SM
prediction@29#.

As ~GeV! sexp6Dstat6Dsys ~pb! sSM ~pb!

130.10 21.0062.3061.00 20.90
136.10 17.5062.2060.90 17.80
161.30 12.5061.4060.50 10.90
172.30 9.2061.3060.40 9.20
182.70 7.3460.5960.27 7.90
188.70 7.2860.2960.19 7.29
05400
e
r-
es

-
n.

For diphoton production, the bound can be extracted fr
a series of experiments at LEP@30#. The total cross section
integrated betweenu0 and 180°2u0 predicted by our calcu-
lation can be written as

s5sSM2
pa2s

16LNC
4 H a1

a3

3 J , ~4.4!

with a5cosu0. This time the bound is obtained from a
analysis done by the experimenters themselves for the
pose of bounding a generic contribution for ‘‘new physics
The bound set from diphoton production experiments at L
as obtained by the DELPHI Collaboration and translated
our definition of noncommutativity scale isLNC>160 GeV
@30#. A similar analysis by the L3 Collaboration yields
similar bound@30#.

A next linear collider ~NLC! with a luminosity 3.4
31034 cm22 s21 and center of mass energy 1.5 TeV will s
a better bound forLNC . We calculated the number of even
predicted by ordinary QED at 1.5 TeV and took the statisti
uncertainty from the square root of the number of events.
requiring the ‘‘new physics’’ effect to be significant only if i
can produce an effect at least 2 standard deviations a
from this predicted value, a prediction for the bound th
could be set for the noncommutative scale can be obtain
Our calculation for Bhabha scattering predicts a reach
LNC'2.0 TeV, for e1e2→m1m2LNC'1.7 TeV, for
Mo” ller scatteringLNC'2.7 TeV and for diphoton produc
tion LNC'2.0 TeV. From this we can conclude that th
bound obtained from these experiments will be ab
'2 TeV and is comparable to the energy scales where
experiments are performed.

V. CONCLUSION

We have considered the phenomenology of a Loren
conserving version of noncommutative QED. In this theo
spacetime coordinates are promoted to operators satisf
the DFR Lie algebra. As opposed to the Lorentz-violati
canonical noncommutative theory, field theory variab
have an additional dependence on the operatoru which char-
acterizes the noncommutativity. This is handled by expa
ing the fields in powers ofu, and using gauge invariance an
noncommutativity restrictions to determine the fields ord
by order inu. Lorentz-invariance restricts interaction vert
ces to contain only even powers ofu, which has distinct
consequences on the phenomenology of the theory. We
sidered variouse1e2 and e2e2 collider processes. The
cross section was calculated to second order inu for Bhabha,
Mo” ller, and e1e2→m1m2 scattering, as well ase1e2

→gg. Results were then compared to LEP data, and bou
on the energy scale of noncommutativity,LNC , were ob-
tained. The tightest bound came from diphoton product
which yieldedLNC.160 GeV at the 95% confidence leve
We also determined that an NLC running at 1.5 TeV with
luminosity of 3.431034 cm22 s21 will be able to probeLNC
up to ;2 TeV.
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