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Phenomenology of Lorentz-conserving noncommutative QED
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Recently a version of Lorentz-conserving noncommutative field thé@8GFT) has been suggested. The
underlying Lie algebra of the theory is the same as that of Doplicher, Fredenhagen, and Roberts. In Lorentz-
conserving NCFT the matrix parametét” which characterizes the canonical NCFT’s is promoted to an
operator 9*” that transforms as a Lorentz tensor. In this paper, we calculate the phenomenological conse-
guences of the QED version of this theory by looking at various collider processes. In particular we calculate
modifications to Mder scattering, Bhabha scatteringf e — " u~ ande™e” — yy. We obtain bounds on
the noncommutativity scale from the existing experiments at CERN LEP and make predictions for what may
be seen in future collider experiments.
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[. INTRODUCTION c-number. Theories involving noncommutative spacetime
structure based on algebras with c-numBér suffer from
It is interesting to consider the possibility that the struc-Lorentz-violating effects. Such effects are severely con-
ture of spacetime is nontrivial. In one of the most popularstrained 9—17] by a variety of low energy experimertas].
scenarios position four-vectors are promoted to operatorkorentz-violating effects appear in field theories as a conse-
that do not commute at short distance scéles25. There  quence of¢® and €6 defining preferred direction in a
has been a lot of work on field theories with an underlyinggiven Lorentz frame. In contrast with this the noncommuta-
noncommutative spacetime structure. duet al. [6] have tive QED (NCQED) formulated by CCZ based on Efl.1)
presented a formalism on how to construct non-Abelians free from Lorentz-violating effects.
gauge theories in noncommutative spaces from a consistency Carlson, Carone and Zobin have connected the DFR Lie
relation. Using a similar approach Carlson, Carone angjgebra Eq(1.1), and the antisymmetric tens@*” to ex-
Zobin (CC2) [22] have formulated noncommutative perimental observables, by showing how to formulate a
Lorentz-conserving QED based on a contracted Snj28r  quantum field theory on this noncommutative spacetime.
algebra, thus offering a general prescription as how to forsijmilar issues have been discussed by Mostal. [23].
mulate noncommutative Lorentz-conserving gauge theoriesthese theories make it possible to study phenomenological
In this algebra the self-adjoint spacetime coordinate operaconsequences of Lorentz-conserving noncommutative space-

tors satisfy the following commutation relation: time. As a beginning, CCZ have studied light-by-light elastic
scattering and obtained contributions that can be significant
[;(M’;(V]:i’élw. (1.2 with respect to the standard model background.

In this paper we calculate other phenomenological conse-
quences of Lorentz-conserving NCQED formulated by CCZ.

[ ——: T isi . - .
Here ¢ 9" transforms as a Lorentz tensor and is in theWe consider various collider processes such as Bhabha and

same algebra witt“. This algebra is Lorentz covariant. Mdller scatteringe*e —u*u~ ande*e”—yy. The ex-
The Lie algebra considered by CCZ is the same as the Ligeriments at planned colliders will provide a means of test-
algebra of Doplicher, Fredenhagen, and Rob@®R) [24].  ing the properties and the structure of spacetime at smaller

Interestingly enough DFR came to the formulation of theirgistance scales. We note that any property prescribed to
algebra by considering modifications of spacetime structurgpacetime, if confirmed experimentally, must affect all inter-
in theories that are designed to quantize gravity. The DFRy¢tions.
algebra places limitations on the precision of localization in  |n the following section we discuss the underlying formal-
spacetime. As noted if24], quantum spacetime can be re- jsm of noncommutative Lorentz-conserving gauge theories,
garded as a novel underlying geometry for a quantum fielgyith emphasis on NCQED. In Sec. Il we study the Lorentz-
theory of gravity. conserving NCQED by considering various collider pro-
Interest in noncommutative spacetime originated with thecesses. In Sec. IV we obtain bounds on the noncommutativ-
work of Connes and collaboratof6] and has gained more ity scale from Bhabha scattering’ e — "~ ande*e”
attention due to developments in string the¢®y], where  _, o experiments. We summarize our discussion in Sec. V
noncommutative spacetime has been shown to arise in a loith some concluding remarks.
energy limit. In string theorie®*” is just an antisymmetric

Il. ALGEBRA AND QED FORMULATION

*Electronic address: jconroy@camelot.physics.wm.edu The simplest construction of a Lorentz-conserving non-
"Electronic address: herry@camelot.physics.wm.edu commutative theory involves promoting the position four-
*Electronic address: vrnaza@wm.edu vector to an operator which satisfies the DFR Lie algebra
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[;(M,;(V]: i 'é,uv’ where
[6#"x\]=0, ~f(oz,B):f d*xd® e law* (B 0" 2]t (x 6). (2.6)
[0+, 6°F1=0, (2.)  Lorentz invariance requires thBttransform as a two index

Lorentz tensor.

where 6*” is antisymmetric and transforms as a Lorentz ten- o ~n
y To ensure that operator multiplication be preservigl,

sor. — _ . o
On the other hand, CCZ took as the starting point Sny-=f*d, one finds that the rule for ordinary multiplication
der’s algebra, must be modified:
S GV — i 2N 1Y i R
[ x]=1aM <f*g><x,o>=f<x,a>exr{§m”ay ax.0). @7

[MMV,;()\]Zi(;(MgV)\_;(VgM)\), . o . .

The 6 dependence of the functions distinguishes this result
from the x-product of the canonical noncommutative theory.
Equationq2.5) and(2.6) allow one to work solely with func-

— NI#agrB— NI vBgre). (2.2 tions of classical coordinatesand 6, provided that all mul-

tiplication be promoted to &-product.

Snyder’s algebrawhich is the same as the algebra of The introduction of a Lorentz invariant weighting func-
SQO(4,1)] describes a Lorentz-invariant noncommutative dis-tion W(#) allows for the following generalization of the op-
crete spacetime characterized by a fundamental length sca@ator trace:
a. By constructing an explicit representation foandM in
terms of differential operators, the Lorentz invariance of Eq. Tﬁzf d*xd®oW( 6)f(x, 0). (2.9
(2.2 was demonstratefR5]. CCZ then extracted the DFR
Lie algebra by performing a particular contraction on Eq.
(2.2). Specifically, by rescalingyl“*= #**/b and holding the
ratio a?/b=1 fixed, the limitb—0, a—0 yields the DFR

[Muvimaﬁ]:i(Muﬁgva+ Mvaguﬁ

In [22] CCZ took the normalization to be

Lie algebra. Thus, the Lorentz covariance of Snyder’s Lie f déow(9)=1. (2.9
algebra implies the Lorentz covariance of E2.1) [22]. The
commutator ofg*” andM*” is It is straightforward to demonstrate the cyclic property of Eq.

T S P (2.9, ie. Tr_?@zTréﬁ._ One requires that for large
[ME7, 097 ] =i (64 g™ + 679gH" — 6#g"" — 6"PgHe), |6#7], W(6) dies off sufficiently fast in order that all inte-
(2.3)  grals be well defined22]. Lorentz-invariance requires that
W be an even function o, which yields
as one would expect ¥~ is a Lorentz tensor. Note that the
contraction also implies that the eigenvalues of the position
operator of the DFR algebra are continuous.

To develop a field theory on a noncommutative spacetime,
one defines a one-to-one mappmg which associates functiofss will be seen, this restriction has interesting consequences
of the noncommuting coordinates with functions of the typi-on possible collider signatures of the theory.
cal c-number coordinates. In the canonical noncommutative Field theory interactions are extracted by performing the

j déew(6) e*7=0. (2.10

theory this is achieved via a Fourier transform d®¢ integral, resulting in the action
F(50 = 1 J dnke_ik;f s (). (2.4 S= Tr2:=f d*xd®OW(0) L(p,0¢),, (2.1
2"

In the Lorentz-conserving case the presence of the opera\F{)\—/”rggO;he notation iC(¢,d¢). indicates-product multi-
tor 6*” requires that the mapping involve a new c-number  Ag was mentioned, in the Lorentz-conserving noncommu-

coordinateg“” (no haj. Functions of the noncommuting co- tative theory the initial “fields” are generally functions af
ordinates are then related to functions of c-number coordiznqg g and must be related to ordinary quantum fields which

nates by are only functions ok. CCZ showed how this can be done
4 6 for NCQED using a nonlinear field redefinition and an ex-

tx.9 :f da d°B pansion inf. Since the phenomenology of NCQED is the

' (2m)* (2m)® topic of this paper, all developments will be directed toward

a U(1) gauge theory. For completeness the formalism pre-

x e~ ila X+ (B, 04 DTf (4 B), (2.5  sented in22] is reviewed.
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In Lorentz-conserving NCQED, one has a matter figld

and gauge fieldA. For a U1l) gauge transformation charac-

terized by a parameteX (X, 6), the fields transform as

P(X,0)—Ux (X, 0), (2.12

and
-1 I -1
A, (X,0)—UxA ,(X,8)*U +EU*(9NU , (2.13

where

U=(e),

:1+iA(X.t9)+%iA(x,G)*iA(x,e)Jr e

(2.19
A U(1) gauge invariant Lagrangian is
1 —
L= f déowW(e)| — 2P Py (iD —m)x g,
(2.15
where
D,=d,—ieA,, (2.1
and the field strength is
FL=d,A,—3d,A,—ie[AJA,] (2.17

In demonstrating the gauge invariance of Eg15 and the
cyclic property of Eq(2.8), the following identity is useful:

f d4xf*g=jd4xfg.

Equations(2.15, (2.16), and (2.17) are similar in form to

(2.18

PHYSICAL REVIEW B8, 054004 (2003

AL (X,0)=A,(x)+ 0" Al (x)

uvp

v gno p(2)
+orrg7AZ) (), (220
WX, 0) = x) + 04 g3+ 04 07 yl2) () + -
(2.21

The lowest order term in each expansion corresponds to the
ordinary QED term. Thus, ordinary QED can be extracted by
taking the commutative limitg*”—0.

Consider an infinitesimal transformation of a matter field
¥(X) in an ordinary W1) gauge theory:

Sath(X) =T a(X)h(X). (2.22

For a Lorentz-conserving noncommutative theory, this is
generalized to
S (X, 0)=1A (X, 0)x (X, 0). (2.23

In an Abelian gauge theory two successive gauge transfor-
mations must then satisfy the relation

(8,05 056,)W(X,0)=0. (2.249
For Eq.(2.24) to hold, A must satisfy
i18,Ag—16gA ,+[A, Ag]=0. (2.25

The parameteA can then be determined at each ordepin
Specifically, it can be shown that

Dy )= =
ALK a)= Z&Ma(x)Ay(x)

14

(2.2

and

2
A®

oo @) == a(X)A,(X)d,A(X)  (2.27)

2%

satisfy the condition of Eq(2.295. The gauge and matter
fields are treated in a similar manner.

those obtained in the canonical NCQED case, the difference 1he restriction of a gauge field transforming infinitesi-

again being thed dependence of the fieldg(x,#) and
A(X,0) in Eq.(2.15. One must have a way of relatingand
A to ordinary quantum fields which are only functionsxof

mally as

S A= oA Hi[A AL (2.28

This is accomplished by utilizing the behavior of the weight-5 satisfied by the following expressions faft) and A2):

ing function Eq.(2.8), which allows an expansion of the

fields and gauge parameter in powerséofA similar tech-

nigue involving field expansions was first used in construct-

ing a noncommutative SW) gauge theory irf6]. The co-
efficients of the power series are thus only functiong ahd

correspond to ordinary quantum fields. From requirements of
gauge invariance and noncommutativity, these coefficients

can be determined order by orderén

The gauge parameter, gauge field, and matter field of NC-

QED are expanded as

A (x,0)=a(x)+ 0" AL)(x; )

vano A (2) .
+0m AR (@)t

(2.19

D) ()= © 0

A/“/p(x) - EA/,L(O—'VAp—i_ pr)v (229

eZ
2 _ 0
AL ()= o (ALALDLFD, = 3,A,0,AA,
+AFF), (2.30
where
0 _

FO,=d,A,—d,A, (2.3)

is the ordinary QED field strength tensor.
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Likewise, one can show that for a matter field transform-

ing infinitesimally as Eq.2.23, the appropriate forms of p2
1) and @ are \
Dyy= — ©
P3
and //
P,

e
(2) — | — +
'/fﬂ”’l"(x) 8 10, A0 00+ €AAY0, 0y FIG. 1. 2-fermions-1-photon vertex.

0
+2eA,0,A 0,0+ eAF, . The lowest order correction to the ordinary QED vertex
comes from the following terms in Lagrangian density:

e
a2
— EaMAﬂavA,,erle AAGI A

J— J— e
)i ph— (0) O)i h— (2) 4 — (0) 4 A (0)y,/,(0)
(2.33 PETH—m) P+ (1 h—m) +2{(1// *A™)) s

Interactions are extracted by substituting E@s26), (2.27), + O Ay Oy (3.9
(2.29, (2.30, (2.32, (2.33 into the Lagrangian Eg2.15. ] _ o
We expand the Lagrangian through and evaluate the®¢9  Where we retain only the second order term in contributions

integral using the weighted average to the x-product shown in the last two terms. The first two
terms will go to zero if both fermion fields are on shell. And
(6?) the 2-fermion-2-photon vertex comes from
J d°OW(0) 07070 === (g""g"" — g**g""),

(2.3 $(i b= m) O+ O (i h—m) @+ g (i h— m) y

(2 A (0)1(0) 4 7 (0) 4(0),/(2) A0) 5 A(0)y /(1)
where the expectation value is defined as +el TR+ YERT I+ e{ (PR
+ YDA gO) + (PO AD) YO}, (3.2

2\ — 6 Y%
(69 fd OW(6) 0,0,6""- (2.39 where this time we retain only the first order in theproduct

shown.
It is natural to define\ yc= (124 #%))* which characterizes

the energy scale where noncommutative effects become rel-
evant. The restriction oW from Eq. (2.10 demands that ) ) _ _ )
only terms containing even powers éfwill result in inter- First we consider processes in which all fermions are on
action vertices. Thus, for example, the three-photon vertex o$hell, i.e. dilepton productioe”e™—171". For processes
canonical NCQED is not present. The next section focusedP to tree level Feynman diagram, only

on the phenomenology of a(l) theory whose spacetime e

coordinate operators obey the DFR Lie algebra. Possible col- _{(J(O)*A(O)) I)[,(O)_FE(O)(A(O)* O}

lider signatures are considered and bounds on the energy 2

scaleA ¢ are obtained.

A. Dilepton production, ete™—|*|~

will contribute to the vertex correction since all the fermions

are on shell. This Lagrangian term reduces to
Ill. COLLIDER SIGNATURES

. . . . 92> _ _
The Lagrangian for QED with Lorentz-invariant noncom- E< 9 MV HI" W)+ (I I D) (D 0 A
mutative spacetime E@2.15 can be written as an expansion 2 96 {9 (0u0,R)( v+ V)(0u AV}
in @ order by order using the nonlinear field redefinition (3.3

described above. The zeroth orderinvill give the ordinary ) ) )
QED Lagrangian. The first order is zero due to the evenness'©™ this we obtain the following Feynman rule for the

of the weighting functionW( ). The first nontrivial contri- 2-_fermion-1—photon vertex Wit.h al! fermions on shell and
butions come from the second order: they include the follow With momenta labeled as in Fig. 1:

ing.

02
(i)  The 4-photon vertex, which has been discussed exten- ey 1+ %(ps)‘l] 7", 3.4
sively in[22].
(i)  The correction to 2-fermion-1-photon verterdinary ~ where we have not made the assumption that the fermions
QED vertey. are massles&lthough we do sein=0 in the cross section
(iii) The 2-fermion-2-photon vertex. formula).
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FIG. 2. Bhabha scattering.

We will consider the following processes which are af-

fected by this vertex correction: Bhabha scatteriage™

—utu” and Mdler scattering. The matrix element with

vertex correction for Bhabha scatterifigig. 2) is

2

0 _Ig v
1+%q4)v(p4) £

g°+ie

iM=u(ps)(iey”)

02
1+—%§%q4)U(po

Xv(py)(iey*)

02
—v(py)(iey”) ) e

—i9,,
384

1+
q'’+ie

)U(P4)

(6%
1+ 3849 4)u(p1).

Xu(ps)(iey”) (3.5

Squaring the matrix element and summii@yeraging over
the final (initial) fermion spin states will give

. 4 o t2+u? u?fut+s?
| M|2= 264 F2 HFF R ||

2
(3.6

where we defind (={1+ ((62)/96)(s*/4)}? where s, t and u
are the Mandelstam variables. To first order #)/12 this
will give us the center of mas&CM) differential cross sec-
tion:

do B do
dcoséd |dcosé

)QED

96

3.7

t s
SP+t7+ 20+ u2(§+ —)

where 6 is the CM scattering angle.

The same results f@*e”— u " u~ can be obtained eas-
ily by just throwing away theé channel in the Bhabha scat-
tering calculation, assuming the muons are massless. The

spin average square matrix element is

%+ u?
3ol
|M|?=2e Fs( 7 )

(3.9

PHYSICAL REVIEW B8, 054004 (2003

And to first order in( #)/12 this will give us

do do (62 )
dcosé | dcosd 1+ 96 5°):
cos cos/ p,

(3.9

B. Mdller scattering

For Mdller scattering, the spin average square matrix el-
ement is obtained by using crossing symmetry from Bhabha
scattering,

(3.10

To first order in{#?)/12 this gives us the CM differential
cross section:

d0'_ dO’)
dcosf |\dcoseo QED
2 /02
Tt (0°) [ , , LU 't
— ——{t°t U+ 25+ s —+ —
96t u+2s st u

(3.1)

C. Diphoton production, ete™—yy

In order to calculate the cross section &re™ — vy, we
first need to calculate the full correction to ordinary QED
vertex, not just the case when all fermions are on shell. This
requirement comes from the fact that in diphoton production
we have fermion propagators in the Feynman diagrams. By
using the nonlinear field redefinition fg?), the Lagrangian
for the full correction can be written as

ie@
96

— (A (") (1 6= M) {9+ M)}y (940" 1))

(0, AR () (16— M) g+ {(i 9+ M)y} y*(524))

— S0, M () + (P P(3,0,M 0. (312

Then the Feynman rule for the 2-fermion-1-photon vertex
with all fermions and photons possibly off-shell(iBig. 1)

(6°)

e| Y+ “gg | (B1—m)pZp5 — (b2~ m)pips + (P2~ m)

1
X(P1-Pa)P = (B1=m)(p2-P3)P5 + 5{(P1-Pa)?

+(p2.p3)y*

]. (3.13

Next we need to calculate the contribution from the new
vertex, i.e., 2-fermion-2-photon vertex. The Lagrangian for
this vertex is

054004-5



CONROY, KWEE, AND NAZARYAN PHYSICAL REVIEW D 68, 054004 (2003

v 02
p2 r] i-A/ll:_ieze (p3)6 (p4)v(p2)|: qy <96> 2{ Vq H
P
/ + Py —pLy"}Hu(py) (3.1
. Lok “dw
iMy=—ie‘e;(ps)e; (P4)v(p2)
/ \ AU e v
%E{’Y G1y"+p5y’—pry*}|u(py),
P o Py
(3.17

FIG. 3. Two fermions—two photon vertex. (6% —
i Ma=ie?e} (ps) €} (Pa) gy v (PHPE Y —p5y*}

2
o G AL DA T )= () +u{pfy*=p§y')+2(8a— pa)(piP
—(aMAy){(a#aVE)Ad,_EA(aﬂ(;vd,)} —prp) Ju(pa). (3.18
TN @ v AV It is easy to show that if either one of the polarization vectors
+2A,F, (") y* (") — (3" ) y*(* )} ], is replaced with its momentum, the matrix element will be

(3.19 zero as we expect from gauge invariance. Next it is straight-
forward to show that the spin average square matrix element

and we put all the fermions and photons on shell to simplifyIS
the calculation. This simplification is possible since in the
calculation for diphoton production up to second ordegin W: 2ed —+
for the 2-fermion-2-photon vertex all fermions and photons u
are on shell. Labeling momenta as in Fig. 3, we obtain the
Feynman rule for the 2-fermion-2-photon vertex with all fer- |
mions and photons on shell:

(6%)
T 96 ¢

t>+u?)|.

(3.19

o first order in{ 6?)/12 this gives the following CM differ-
ential cross section:

do do ( 6?) s? 26|, (320
< 2> = —si .
[(pl PI{PSY"—PTY I+ (P1.P)IPI Y —PLY"} deos \dcos QED 192 2
+(P3—Pa){P2pZ—pIpoH]. (3.19 IV. BOUNDS ON Ay FROM COLLIDERS

Mdller scattering experiments do not provide data at high
Putting all these rules together, the cross section up to firsgnough energy to set a bound comparable to the one obtained
order in(6?)/12 for diphoton production can be calculated from Bhabha scattering. For Bhabha scattering the bound can
(Fig. 4). The matrix element for diphoton production can bebe extracted from a series of LEP experimd2@. The total
written as the sum of the three diagram$1=iM;+iM,  cross section integrated betweénand 180 6§, predicted
+iMas, with each matrix element defined below: by our calculation can be written as

FIG. 4. Feynman diagrams fe e™ — yy.
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TABLE I. Bhabha scattering: Data from L3 experiment at LEP  For diphoton production, the bound can be extracted from

and SM predictior{29]. a series of experiments at LEBO]. The total cross section
integrated betweed, and 180% 6, predicted by our calcu-

Vs (GeV) Texpt Astarr Asys (PD) osu (pb) lation can be written as

130.10 51.16:2.90£0.20 56.50

136.10 49.3@:2.90£0.20 50.90 Ta’s 3

161.30 34.06-1.90+ 1.00 35.10 T=0sy— 167[& g}, (4.9

172.30 30.86:1.90+0.90 30.30 NC

182.70 27.660.70£0.20 26.70

188.70 25.16:0.40+=0.10 24.90 with a=cosé,. This time the bound is obtained from an

analysis done by the experimenters themselves for the pur-
pose of bounding a generic contribution for “new physics.”
mals (25 7 , 1-a The bound set from diphoton production experiments at LEP,
o=osmut ——5— Za+ 1—2a +2 Inm , 4. as obta_mgd by the DELPHI C_ol_laboratlo_n and translated to
8ANc our definition of noncommutativity scale syc=160 GeV
[30]. A similar analysis by the L3 Collaboration yields a
with a=cos6,. This matches the cut introduced by the L3 similar bound[30].
experiment whered,=44° is the angle relevant to the L3 A next linear collider (NLC) with a luminosity 3.4
detector. Here we usesy instead ofoqep, to take into ac- X 10°* cm™? s™* and center of mass energy 1.5 TeV will set
count the weak interaction and radiative corrections. Wea better bound for . We calculated the number of events
have neglected the noncommutative correction to higher ompredicted by ordinary QED at 1.5 TeV and took the statistical
der QED and weak interactions. We use the numerical valuegncertainty from the square root of the number of events. By
of the data abovéTable )) [29], and for the theoretical pre- requiring the “new physics” effect to be significant only if it
diction we add the correction due to noncommutativity ob-can produce an effect at least 2 standard deviations away
tained in the previous section to the listed SM cross sectiorfrom this predicted value, a prediction for the bound that
The x? function is defined as follows: could be set for the noncommutative scale can be obtained.
Our calculation for Bhabha scattering predicts a reach for
2 Anc=2.0TeV, for ete  —u*u Ayc~1.7 Tev, for
) (4.2)  Mdller scatteringAyc~2.7 TeV and for diphoton produc-
tion Ayc~2.0 TeV. From this we can conclude that the
bound obtained from these experiments will be about
~2 TeV and is comparable to the energy scales where the
experiments are performed.

x=2

i i
( Texp~ Ttheor
i

Aexp
with AZ, =A%, +AZ andi sums over the energy range.

Performing they? analysis over the energy range shown in
Table I, we obtain the bound =137 GeV(95% C.L).

A similar analysis can be performed @e —upu” V. CONCLUSION
using the data from the same experiment at [E®]. The _
total cross section integrated betwegnand 180°- 6, is We have considered the phenomenology of a Lorentz-

conserving version of noncommutative QED. In this theory,
s 3 spacetime coordinates are promoted to operators satisfying
+ TaS a” (4.3 the DFR Lie algebra. As opposed to the Lorentz-violating
8A R 3’ canonical noncommutative theory, field theory variables
have an additional dependence on the oper@tohich char-
with a defined above andi,=44°. Fitting our theoretical acterizes the noncommutativity. This is handled by expand-

i : 260 ing the fields in powers of, and using gauge invariance and
Egidr:gtl%r;/txo LEZE? aGt(;'(;i(bglg;(l)) E:Z ﬁ])usmg)( fit will set the noncommutativity restrictions to determine the fields order
NC= L)

by order inf. Lorentz-invariance restricts interaction verti-
ces to contain only even powers éf which has distinct
consequences on the phenomenology of the theory. We con-

0=0sm

TABLE Il. e"e” —putu™: Data from L3 experiment and SM

prediction{29] sidered variouse®e™ and e e~ collider processes. The
cross section was calculated to second ordérfior Bhabha,
Vs (Gev) Texp™ Astar Asys (PD) osm (PD Mdller, and ete”—u*u~ scattering, as well age”
130.10 21.06-2.30+1.00 20.90 — v7v. Results were then compared to LEP data, and bounds
136.10 17.56:2.20+0.90 17.80 on the energy scale of noncommutativityyc, were ob-
161.30 12.56:1.40+0.50 10.90 tained. The tightest bound came from diphoton production
172.30 9.26-1.30+0.40 9.20 which yieldedA yc>160 GeV at the 95% confidence level.
182.70 7.340.59+0.27 7.90 We also determined that an NLC running at 1.5 TeV with a
188.70 728 0.29+0.19 729 luminosity of 3.4x 10** cm™2 s~ will be able to probeA ¢

up to~2 TeV.
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