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Axial-vector—vector amplitude and neutrino effective charge in a magnetized medium
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To one loop the effective neutrino photon interaction takes place through vector-vector-type and axial-
vector—vector—type amplitudes. In this work we explicitly write down the form of the axial-vector—vector
amplitude to all orders in the external magnetic field in a medium. We then infer its zero external momentum
limit which contributes to the effective charge of the neutrinos inside a magnetized medium. We further show
its gauge invariance properties.
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[. INTRODUCTION and this fact gives rise to an effective coupling of the neutri-
nos to the photons. Under these circumstances the neutrinos
Neutrino mediated processes are of great importance imay acquire an “effective electric charge” through which
cosmology and astrophysi€s,2]. Various interesting possi- they interact with the ambient plasma.
bilities involving neutrinos have been looked into in the con-  The effective charge of the neutrino in a medium has been
text of cosmology, e.g., large scale structure formation in thealculated previously by many authdi®-10. All of these
universe, to name on8]. In this note we consider the in- Works were concentrated on the vector-vector part of the
duced effect on the neutrinos by a magnetized medium, usingjteraction. In this paper we concentrate upon the effective
quantum field theoretic techniques. It is usually conjecturedNeutrino-photon interaction vertex coming from the axial-
taking into account the conservation of the surface magneti¥€ctor—vector partl®, of the interaction. Some work on the
field of a protoneutron star, that during a supernova collaps@Xial-vector—vector part in a time independent background
the magnetic field strength in some regions inside the nasceftectromagnetic field has been done previoysly] where
star can reach up t8~m?/e or more. Herem denotes the in some cases the authors were able to obtain a gauge invari-

mass of the electron. This conjecture makes it worthwhile tgnt expression for the axial-vector—vector contribution to the
investigate the role of the magnetic field in the e1;fectiveneutrmo—photon effective vertex. We are interested in the

. zero momentum limit of the axial-vector—vector amplitude,
neutrino-photon vertex. b

Neutrinos do not counle to photons at the tree level in theS it contributes to the effective charge of the neutrinos in-
P pho . . Side a magnetized plasma. We discuss the physical situations
standard model of particle physics, and this coupling ca

. C8Mhere the axial-vector—vector amplitude arises, and then
take place only at the loop level, mediated by the fermlon%how how it affects the physical processes

and gauge bosons. This coupling can giv<=T birth to sca_ttering The plan of the paper is as follows. We start with Sec. II
process such ayy—wv. The cross section of neutrino- \yhich deals with the formalism through which the physical
photon scattering is highly sgppressed in the staqdard mOdﬁhportance oﬂ‘[iv(k) is appreciated. In Sec. Ill the general
due to Yang's theorerfd], which makes the scattering cross o factor analysis of the second rank tensor on the basis of
section vanish to orders of the Fermi coupliGg . In the  symmetry arguments is provided. In Sect. IV we show the
presence of a magnetic field, neutrmo-photon scattering Cafarmion propagator in a magnetized medium, and using it
occur and to orders dBg the cross section has been Calcu'explicitly write down I15 (k) in the rest frame of the me-
nv

lated[5]. There can be neutrino processes in a medium or g, |n Sec. v we calculate the effective electric charge
magnetic field or bo@ which involve only one photon, SUChfrom the expression of the axial-vector—vector amplitude. In
as v—vy and y—wvv. In vacuum these reactions are re- Sec. VI we discuss our results and conclude by touching
strained kinematically. Only in the presence of a medium ofypon the physical relevance of our work. A formal proof of

a magnetic field or both can all the particles be on shell aghe gauge invariance di® , is attached in the Appendix.
there the dispersion relation of the photon changes, giving a

the much required phase space for the reactions. Intuitively,
when a neutrino moves inside a thermal medium composed
of electrons and positrons, they interact with these back-
ground particles. The background electrons and positrons In this work we consider the background temperature and
themselves have interactions with the electromagnetic fieldsieutrino momenta which are small compared to the masses
of the W and Z bosons. We can, therefore, neglect the mo-
mentum dependence in thd and Z propagators, which is
*Email address: kaushikb@theory.saha.ernet.in justified if we are performing a calculation to the leading
"Email address: avijit@imsc.ernet.in order in the Fermi constanGg. In this limit the four-
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While discussingﬂfw(k) it should be remembered that
q for the electromagnetic vertex we have the current conserva-
ko tion relation
— k"I (k) =0, (4)
p =p
which is the gauge invariance condition.

In order to calculate the effective charge of the neutrinos
inside a medium, we have to calculdﬂév(k). The formal-
ism so discussed is a general one, and we extend the calcu-
lations previously done based upon this formalism to the
case where we have a constant background magnetic field in
addition to a thermal medium.

FIG. 1. One-loop diagram for the effective electromagnetic ver-
tex of the neutrino in the limit of infinitely heavW andZ masses.

fermion interaction is given by the following effective La-

grangian:

1 _ _
Eeﬁ:_TGFVVM(l_VS)Vl Yu(Qvtgays)l, (D)
2 lll. GENERAL FORM OF T15,(K) IN VARIOUS CASES

where v and | are the neutrino and corresponding lepton A. The vacuum case
fields. For electron neutrinos, We start this section with a discussion of the possible
1 tensor structure and form factor analysisFéfw(k), based
gyv= 54_2 sirf Oy, on the symmetry of the interaction. To begin with we note

thatl'[fw(k) in vacuum should vanish. This follows from the
arguments below. In vacuum the available vectors and ten-
- E sors at hand are the following:
Oa= >
Ky Oy, and €,,,- (5)
where the first terms ig,, andg, are the contributions from
the W exchange diagram and the second one fromZhe  The two-point axial-vector—vector amplitud]aiv can be
exchange diagrant, is the Weinberg angle. For muon and expanded in a basis constructed out of the above tensors.
tau neutrinos Given the parity structure of the theory the only relevant
tensor at hand ig ) ,K\K,, which is zero.

1
gv=— = +2sirfby,

2 B. In medium

On the other hand, in a medium in the absence of any
magnetic field, we have an additional vectof, i.e., the
velocity of the center of mass of the medium. Therefore the
axial-vector—vector amplitude can be expanded in terms of

With this interaction Lagrangian the'wy vertex, as form factors along with the new tensors constructed out of
shown in Fig. 1, can be written in terms of two tensors, the~ gnd the ones we already had in the absence of a medium.
vector-vector amplitude and the axial-vector—vector ampli-n second rank tensor constructed out of them might be
tude. The vector-vector amplitude teiih, (k) is defined as . uek? 8], which would satisfy the current conservation

dp condition for the two-point function. In a medium an inter-

; (a2 ; ; , esting thing happens. In the tenddr, , (k) one of the tensor

(k)= (—1e) 1)f (277)4Tr[ Yul S(P) 7SR indices refers to a vector-type ver%ex and another one to an

(2)  axial-vector type. The electromagnetic current conservation
condition is supposed to hold for the vector-type vertex. But

Here and henceforwarl = p+k. The above equation I00ks e 5 the tensor structure BF°_ (k) in a medium, as dis-
exactly like the photon polarization tensor, but does not hav%ussed v

the same interpretation here. The Feynman diagram associ-

N| -

ga=

5
"

ated with the neutrino-photon interaction to one loop is de- k“Hiy(k)zozﬂiy(k)kV (6)
picted in Fig. 1. The axial-vector—vector amplitubi (k)
is defined as to all orders in the Fermi and electromagnetic coupling.
s . d*p . . L
7 (k)=(—ie)%(—1) (ZT)“Tr[7”75IS(p)yV|S(p,)]' C. In a background magnetic field

3 As in our case neithe€ or P but CP is a symmetry, first

we look at theCP transformation properties of the axial-
Both tensors are obtained by calculating the Feynman diavector—vector amplitude. Under @P transformation the
gram given in Fig. 1. various components of the tensor transform as
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CP: I3y—T13,, (7) kf=k5—K3,
CP: II}—TII7, (8) k2 =k3+ks3.
CP: II5——TI3.. (9) The set of four vectord!, i=1,2,3,4, are mutually or-

thogonal to each other and can serve as the basis vectors to
The above transformation properties are important becaudauild up the tensor basis (ﬂfw(k)-
the basis tensors must also satisfy the same transformation Next theCP transformation properties of these vectors are
properties. The functions that multiply the basis tensors teummarized:
build upHiv(k), called the form factors, must be even func-

tions of the magnetic field and so thé&lP transformations CP: bgﬁ b, (17
are trivial. This fact directly implies that the basis tensors : ,
must vanish in theB—0 limit, as I (k) vanishes in CP: by—b;. (18

vacuum. In genera[l,'[SV(k) will be an odd function of the
external field so that it vanishes when the external field goe
to the zero limit. As a result the basis tensors must also b
odd in the external fields.

ghe other three vectors have similar transformation proper-
s as

N RN
In a uniform background magnetic field, the vectors and CP: b12g=bizs (19
tensors at hand are i i
C P bll‘2’3—> - bll,2,3' (20)
Fuvs Fuw kﬁl' kf' (10 From Eq.(7), Eq. (8), and Eq.(9) we can see that a suitable

) o tensor basis can be built up from vectons where i
Here F,, is the electromagnetic field strength tensor and_; 3 4. TheCP transformation of the axial-vector—vector

Fi'=3et"P7F .. Here we stick to the fact that the mag- amplitude compels us to disregabéf as a basis vector.
netic field is in thez direction, and so Now we can list the possible candidates which can serve
as basis tensors (Bifw(k). There are nine of them. For later

Fi= =Fa=B, (1D usage we explicitly write them down as

with all other components df ,, zero. BAY = hihY

With these building blocks we can build four vectors, ! 272
bi=(Fk)*, (12 =(FK)*(Fk)", (21

~ KV _— W~ RY

bs=(Fk)*, (13 B2"=bsbs
=K'k, 22
by =k, (14) N 22

_ B4"=bybj

by =k. (15

~ =kHk”, (23
The expressionsHk),, and (Fk),, stand for s

(FK),=F K", B4"=bzb;

(Fk),=F k" (16) =(Fk)“kf, (24)
Here kf=(k°0,0k%) andk%=(0k%k?,0), so thatk*=Kk(" BS"=Db5b;
+ki". Also, in our convention -
= (Fk)"kf", (25)

6 — M2VM4

where
=(Fk)“k", (26)
gl,=(1,00-1), !
B"=bb}
g,,=(0,-1,-1,0. 4"=blb,
We also use =(|~:k)”kf, (27)
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B4"=bkb) similar to the previous case but contains more building
blocks. To start with we again emphasize @i transforma-
=kf'k?, (28)  tion properties of the axial-vector—vector amplitude. Unlike
the vacuum case now the theory may not@R invariant.
BY"=bj4b} This can arise if the background does not respgiet We
will discuss here only those cases where the background
= k””kf. (29 does not brealCP. Moreover, now the form factors can be

functions of odd powers of the magnetic field, as now new

This basis gives nine second rank mutually orthogonal tenscalars like Fk)u and Fk)u are also available. These sca-
sors. Any second rank tensor containing higher field depenlars change sign und€P transformation. Some of the form
dence can be represented by suitable linear combinations &édctors containing odd orders of the external fields may be

these tensors. accompanied by equal powers of the chemical potential of
Out of these nine basis tensors some are useless. To etke background charged fermions, and they will not change
plain the point we focus our attention o8B B4", BL”, sign. So in a magnetized medium there can be basis tensors

and B}”. None of these four vanish in thg—0 limit and so  with different CP transformation properties as the form fac-

they are redundant. Also’8 is even in the external fields, tors which multiply them can also have different transforma-

and as discussed previously is not a suitable candidate for tH&n Properties. _

basis of[1° (k) In the presence of a medium, we can have two sets of
AR

Only four basis tensors qualify successfully as the build-2rthogonal vectors. The first set is as supplied in &),
ing blocks of the axial-vector—vector amplitude. They areEd: (13, Ed.(14), and Eq.(15). They are all included now.
BL”, BL”, BL”, and B*. The result as given in the papers b7 is not excluded as in vacuum because @ietransforma-

by Hari Dass and Raffelt verifies this choifL,12]:L. tion property of the basis tensors has changed. The other set
’ of orthogonal vectors useful in a medium is

3
Hl‘r’w(k)=M:W[—Cﬁv(ﬁk)frci{ku(k'ﬁ)# b'#=(Fu)~, (32)
K, (KF),—ICF 1. (30) b’z =uf"- (33)

In listing the above vectors we have omitted two vectors,
lSFu)" andu’’. The reason they are omitted is that ultimately
We are interested in the rest frame of the medium. In the

In the results we findc#* which we have not listed in our
tensor basis, but that is not a fault because it can be made

from the basis supplied=*" can be written medium rest frame there is no electric field. Also in the me-
1 dium rest frame no contribution will come witl’ .
,E#V:_Z[(Izk)ﬂklr_(ﬁk)ykm_ (31) This_abov_e set of vectors has simil@P transformation
Ki properties with those ob4 and b4 . But the two sets of

_ _ . _ vectors are not linearly independent and as such cannot serve
So to bUIld Up the tenSOI‘Ial baS|S Of the aXIal-VeCtOI‘—VeCtOI’aS basis vectors to bu||d up the tensorial bas|E[§f/ Only
amplitude, the number of independent tensors required ig |inear combination of them can make an orthogonal vector
four. basis. Now we list the set of orthogonal basis vectors that

basis tensors of the axial-vector—vector amplitude. As all of

them are not transverse k#, which is a requirement from by*=(Fk)~, (34)
electromagnetic current conservation. Furthermore we have
to make linear combinations of these tensors which will ul- - -
timately give two tensors orthogonal to each other anki“to 2" = (Fu)*+(Fk)*, (35
which will serve as the right tensor basislafw(k).
bz“=k*, (36)
D. In a magnetized medium

In the presence of a magnetized medium the situation is bZ”:kﬁ‘ﬁL uf’. (37)

complicated. In this analysis we are not going into an in-

depth study of the tensorial basis as was done in the cade a magnetized medium we have these four basis vectors

where there is no medium. Here we outline the strategy byvhich serve as the building blocks of the axial-vector—vector

which we can build up the tensorial basis, which in reality isamplitude. The basis tensors in this case will be the direct
products of these basis vectors. There will be 16 of them but
all of them will not be useful.

However, the metric used by the authors in the references men- As was the case in vacuum, all the 16 basis tensors here
tioned is different from ours, and in their calculation thevertex is ~ are not useful because we have the electromagnetic current
the vector-type vertex. conservation condition. This constraint will reduce the num-
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ber of basis tensors. The axial-vector—vector amplitude is nowhere
orthogonal tok* in our case, as thg vertex is the axial-

vector vertex, but then still Si(p)=— np(p)[iS\B/(p) _ |§‘B{(p)] (46)

ATIS =
keI, =C, (39 and
for someC,, which depends on the mass of the looping
fermions. This condition also restrains the number of basis §‘é(p)zyos\§(p)yo (47)
tensors of the axial-vector—vector amplitude in a magnetized

medium. The exact calculation of the number of useful elefor a fermion propagator, such that

ments as basis now goes in the same way as in the absence of
a medium. o
Sip)=—ne(p) | dse®9G(ps). (49
IV. ONE-LOOP CALCULATION OF THE o

AXIAL-VECTOR —VECTOR AMPLITUDE . o . .
Here n:(p) contains the distribution function for the fermi-

Since we investigate the case with a uniform backgrounans and the antifermions:
magnetic field, without any loss of generality it can be taken
to be in thez direction. We denote the magnitude of this field 7 (p)=0(p-u)f(p,u,.B) +O(—p-Wfe(—p,—u,B).
by B, which can be incorporated in various gauges With (49
=0 and the other components Afbeing time independent.
First ignoring the presence of the medium, the electrorf. denotes the Fermi-Dirac distribution function
propagator in such a field can be written down following

Schwinger’s approachl3-16: 1

fF(p,M,ﬁ)Zm, (50

iSy(p)= fwdse¢(p'S)G(p,s), (39
0

and® is the step function given by
where® andG are as given below:

tar(eBs) o 1 forx>0,
anel3s X)=
d)(p,s)zis(plz——pf—mz)—e|s|, (40) (x) 0 forx<o0.
eBs
ieBsc, —ieBsa, Here the four-velocity of the medium is In the rest frame

= its components ara*=(1,0,0,0).
G(p.9) cogeBs) Py cogeBs) pom P ( )

={[1+ic tar(egs)](p”Jr m) A. The expression forHﬁ,,(k) in a thermal medium and in the

z presence of a background uniform magnetic field
+seé(eBs)p, !, (41)

The relevant Feynman diagram of the process appears in
where Fig. 1. Following that diagram the axial-vector—vector am-
plitude IT?, (k) is expressed as

o= 1Y1Y2= ~ Y0 Y3 Vs, (42) d*p
and we have used IS, (K= (= €)2(~1) [ 5 Pa T3, 75S(p) ,iS(P)].
e C (51
e'®"S72=cog eBs) +ia,sin(ess). (43

The vacuum part has already been calculated i and the
thermal part with two factors ofy¢ is related to pure absorp-
tion effects in the medium, which we are leaving out for the

To make the expressions transparent we specify our conve
tions in the following way:

b= yop®+ y3p°, time being. The remaining terms are
= v,pt 2 d*
SRC RS “ I3, (0=€? [ 52T, iSH( P
Of course, in the range of integration indicated in E2) s
is never negative and henfst equalss. In the presence of a +9,751S8(p) 7,S4(p")]. (52
background medium, the above propagator is now modified
to[17,18 Using the form of the fermion propagator in a magnetic
) v field in the presence of a thermal medium, as given by ex-
iS(p)=iSg(p)+SE(p), (45 pressiong39) and (48) we get
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s o dp (= 009 [* e ad(p’s) On the other hand, pieces proportional to odd powers in
I, (k=—e f (277)4f7wdse ' fo ds’e™ depend ony. (po), and are even in, and as a result sur-
vives in the limitx—0. This is a direct consequence of the
X{Try,vsG(p,s)y,G(p’,s") 1 7:(p) charge conjugation and parity symmetries of the underlying
. theory.
Ty, ysG(=p',8") 7,G(—p,9)]7e(—p)} From Eq.(54) we notice thall>,(k) to even orders in the
d4 % magnetic field satisfies the current conservation condition in
=— zf (277)4f dse?(®s) both the vertices. In E¢55) we see that all the terms in the

right hand side are symmetric in theand v indices except
o . the first term. This term differentiates between the two ver-
XJ ds'e®P )R, (p,p’,s,8") (53) ftices in this case, and d$;,,(k) to odd orders in magnetic
0 field is gauge invariant in the vertex we do not get the
same condition for the axial-vector vertex. If in E§5) we
putm=0 then all the terms on the right will be symmetric in
both the tensor indices, and as a result the current conserva-
tion condition will hold for both vertices. If the mass of the
We calculate B,(p,p’,s,s") to even and odd orders in looping fermion is not zero then from the above analysis we
the external magnetic field and call therﬁfj)fand F)‘403- The can say that only Eq4) will hold. If the looping fermion is
reason for doing this is that the two contributions have dif-massless then Ed6) will hold, something which is ex-
ferent properties as far as their dependence on the medium pected.

where RB,,(p,p’,s,s’) contains the traces.

B. R, to even and odd orders in the magnetic field

concerned, and the contributions are If we concentrate on the rest frame of the medium, then
_ p-u=py. Thus, the distribution function does not depend on
R =4i7_(p)e ap{p®p’PI[ 1+ tan(eBs)taneBs’)] the spatial components gf From the form of Eq(54) and

Eq. (55) we find that in Eq.(53) the integral over the trans-

ajn' B 4 a; B
+pp’Prsed(eBs’)+p*p'Plsed(eBs) verse components @ has the following generic structure:

+p*p'Prsed(eBs)seé(eBs’)} (54)
f d?p, e®(P9eP(P" ") (phL orp’AL). (58
and
R =4i 7. (p)(MPe 1 tan(eBs) + tar(eBs') | Notice now that
H{(GuePIPL, = GusP o P+ Gra PP, 7 [0.9gh0" 5]
_ _ IPp,
+(gWHp”‘Hp;i+gme“le’Ll)seé(eBS’)}tar(eBs) 9i
— — — = _pltan(eBs)p*: +tan(eBs')p’#1]1e®(P9eP s,
H{(GuaP P = GusPy P14 Gy P 1D,) ©
— — (59
+(GuaP' 1Py, GuaP' 1P, )SEC(EBS)} _ . . -
However, this expression, being a total derivative, should
Xtan(eBs')). (55 integrate to zero. Thus we obtain that
Here tan(eBs)pP: = —tan(eBs’)p' P+, (60)
7+(P)=7e(P)+ 7e(—p), (56)  where the symbol: means that the expressions on both
sides of it, although not necessarily equal algebraically, yield
7-(P)=7e(P) — 7e(—P), (57 the same integral. This gives
which contain the information about the distribution func- tan(eBBs’ )
tions. It should also be noted that, in our convention, phr=— kAL
B taneBs) +taneBs’)
a,b*i=agh3+azh®.
B o tan(eB3s) 8
As stated, we have split the contributionslig,(k) into odd . " tar(eBs) + tan(eBs) kP (61)

and even orders in the external constant magnetic field. The

main reason for doing so is the fact thBt(”(k) and  Similarly, we can derive some other relations which can be
Hfff)(k), the axial-vector—vector amplitude to odd and evenused under the momentum integral signs. To write them in a
powers ineB3, have different dependences on the backgroundiseful form, we turn to Eq(59) and take another derivative
matter. Pieces proportional to even powerdsimre propor-  with respect tqp®t. From the fact that this derivative should
tional to 7_(py), an odd function of the chemical potential. also vanish orp integration, we find
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R 1 ieB
pipy= N fﬁ
tan(eBs) +tan(eBs’)| 2
tarf(eBs’
(eBs’) koKP]. (62)
tan(eBs) +taneBs’)

In particular, then,

1
tan(eBs) +tan(eBs’)

o

p?

X

—ieB+

tarf(eBs’) 5
kT 1. (63
tan(eBs) +taneBs’)
It then simply follows that
1
tan(eBs) +taneBs’)

129
P =

X| —ieB+

tarf(e3s) 2]
ki|. (69
tan(eBs) +taneBs’)

And finally using the definition of the exponential factor in

Eq. (40) we can write
mzé(idis+[p|2—se8(eBs)pf]). (65)
Using the above relations we get
R() =4 7-(POH& v BHp“Hp’ﬁH[lJrtar’(eBs)tar(eBs’)]
+ a8, pelp’Prseé(eBs’)
+8 400, ﬁHp”‘L p'Pised(eBs)} (66)
and

seé(eBs)tart(eBs’) 2
tan(eBs) +taneBs’) *

Rﬁ?ﬁé 4i 77+(po){ - 8#1}12{

+ (k- p)j[tan(eBs) + tar(eBs’)]]
+2¢ 4100 [y, P Itan(eBs) +p, p’ “ltan(ess’) ]

+ gﬂchn[ p[tan(eBs)—tar(eBs')]

= seé(eBs)tarf(eBs’) B
taneBs) +tan(eBs’) 9P K

+ 010, P7IK, J[tan(eBs) ~tan(eBs')]

+ gVaHk‘Z"‘ Py, seé(eBs)taneBs’) |. (67)

PHYSICAL REVIEW D68, 053011 (2003

is that from the form of &) in Eq. (66) we note that the
axial-vector—vector amplitude in a magnetized medium to
even orders in the magnetic field is antisymmetric, as it was
in a medium without any magnetic field. Contrary to this,
R) does not have any well defined symmetry property.

Secondly, as the integrals are not done explicitly some-
thing must be said about the possible divergences that may
appear in evaluating them. In principle, we expect no diver-
gences here. The reasons are as follows. First, we are work-
ing in finite temperatures and so an automatic ultraviolet
cutoff, the temperatur@ of the medium, is already present.
Second, it must be noted that magnetic fields brings no new
divergences into the calculations. The divergence that could
have been present would have come from the vacuum con-
tribution of Hiy(k) when B=0, but in this case that part
does not exist at all, as we saw in Sec. lll. In this connection
it can be said that in the absence of the medium but in the
presence of the background magnetic field another divergent
structure could arise, that is, anomaly, due to the presence of
the axial-vector vertex. Anomaly is essentially an ultraviolet
phenomenon which shows up in nonconservation of some
currents, after making the quantum corrections, which were
conserved classically. But in the present case these need not
worry us because we are working in a thermal medium and
as discussed previously the ultraviolet regulators are already
present in our theory.

As a result, the integral expression Iﬂfw(k) in our case
does not have any singularities. So we can now write the full
expression of the axial-vector—vector amplitude as

4 o
iTr° (k)=—e2f lly f dseb(P9)
a4 (277)4 —

1 a®( S RO) 4 R(e)
xfo ds'e® P *[RY+ R (68)

where Fgfy) and Ffl are given by Eqs(67) and (66) in the
rest frame of the medium.

V. ZERO MOMENTUM LIMIT AND EFFECTIVE CHARGE

The off-shell electromagnetic vertex functidn, is de-
fined in such a way that, for on-shell neutrinos, they
amplitude is given by

M= —iu(q")I',u(q)A"(k), (69)

wherek is the photon momentum. Heng(q) is the neutrino
spinor andA” stands for the electromagnetic vector potential.
In generall’, will depend onk and the characteristics of the
medium. With our effective Lagrangian in EqL), I', is
given by

1
F,,Z——GF’}’M(]-_75)(gVH,uV+gAHiV)' (70

J2e

Before going into the next section we comment on the nature The effective charge of the neutrinos is defined in terms of

of the integral appearing in E¢53). The first point to make

the vertex function by the following relatioi8]:

053011-7



K. BHATTACHARYA AND A. K. GANGULY PHYSICAL REVIEW D 68, 053011 (2003

1 Effective charge to odd orders in external field

eer=5—U(q)'o(ko=0k—0)u(q). 71 .

" 2q0 (@Tolko —Oua) (79 DenotingI1® (ko=0k—0) by IT},, we obtain
For massless Weyl spinors this definition can be rendered in 5 . 2 d'p (= D(p.9)
the form [T,o=lim 4e 2n7 _wdse

ko=0k—0
1 5 *® ! ’
eeﬁ=2—qOTf[Fo(ko=0,k—>0)(1+>\7 )q] (72 xf ds' e®P" s )[tan(eBs)+taneBs’ )] 7. (Po)
0

wherex = *+1 is the helicity of the spinors. x[2p5— (k- Pl bo12; (74

We remarked earlier in Sec. Il that in a medium we have
an additional vectou”. The axial-vector—vector amplitudes the other terms turn out to be zero in this limit. The above

in this case, of the forne,, ,,,;uk”, do not contribute to the  gquation shows that, except for the exponential functions, the
effectivg electric charge of thg neutrinos since for Chargefntegrand is free of the perpendicular components of mo-

calculation we have to put the index=0. In the rest frame  menta. It is a peculiarity of this case that the perpendicular

only the time component of the four-vectorexists, which  excitations of the loop momenta are present only in the pha-
forces the totally antisymmetric tensor to vanish. But thesglike parts of the integrals and in effect decouple from the

polarization tensor can be expanded in terms of form factorgcene once they are integrated out. Its presence is felt only
along with the new tensors constructed outudf and the  through a linear dependence of the external figthen the

ones we already had in absence of a medium as perpendicular components kfvanish. Upon performing the
_ Gaussian integration over the perpendicular components and
m,,(k=14T,,+II, L 73 . S )
wlR =TTyt Ly 73 taking the limitk —0, we obtain
Here
~ o 4ie®B) [ dpy (= o 2
_ 5 _ s(pj—m%)—els|
T#y_guy_l—#yy H30 I”T] 4 (27T)2f_xd5é I
ko=0k—0
. u,u, . ,
= — ! Al ! 12_m2 —¢& !
= x [ “ase ®' Ty (o205 (k-
with (75
~ kK It is worth noting that thes integral gives
g/U/_g,uV k2 ’
S f dsds(l~m) ==l = 2 7 5( p?—m?) (76)
U,=g,,u’. -

The longitudinal projectol,, is not zero in the limitky, g4 thes’ integral gives

=0k—0, andII, is also not zero in the above mentioned

limit [3]. This fact is responsible for giving a nonzero con- "

tribution to the effective charge of a neutrino in a medium. f ds/eis’(p’f—mz)—sls’\zz—z__
From Eq.(30) we see that the axial-vector—vector ampli- 0 (p'f—m9)+ie

tude in a background magnetic field without any medium

does not survive when the momentum of the external photoysjng the above results in EZ5) and using the delta func-

vanishes, and as a result there cannot be any effective elegon constraint, we arrive at

tric charge of the neutrinos in a constant background mag-

netic field. Actually, this formal statement could have been

spoilt by the presence of possible infrared divergence in the H§o= lim —2(e3B)f

loop; i.e., inCj and C, [12]. Since the particle inside the

loop is massive, there is no scope of having infrared diver-

gence; hence it does not contribute to the neutrino effective

charge. X
Now we concentrate on the zero momentum limit of that

part of the axial polarization tensor which is going to con-

tribute to the neutrino effective charge in a magnetizedn deriving Eq.(78), pieces proportional thf in the numera-

plasma. From the outset it is to be made clear that we artor were neglected. Now if one makes the substitutign

calculating only the axial contribution to the effective charge.— (p+kj/2) and setk,=0, one arrives at

(77

d%p
22 9T~ M7 (po)

ko=0k—0

(78)

2p; _}}
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M= lim 2(e*B) f ol (Ep+n (€]

ko=0k—0
E’ 1 (79
x| —2 4+ —.
p3ks 2E,
Here n.(E;) are the functions fe(E,,—u,8) and

fF(E,’, &, B3), as given in Eq(50), which are nothing but the
Fermi-Dirac distribution functions of the particles and the

antiparticles in the medium with a modified enet@y. The
new termg is defined as follows:

Ep>=[(pa—ks/2)]?+m?,

PHYSICAL REVIEW D68, 053011 (2003

o

I13,= lim (4e°B)>, (—1)"cosh[n+1]B8u)
ko=0K—0 n=0
dps (n+1),BE[ Ep E
2m?® (paka) ®4

The first term vanishes by symmetry of the integral, but the
second term is finite and so we get

e’B)
Hirﬁ% > (—1)"cosh[n+1]14u)
2m“ n=0

xj dpse” (M DAEp, (85)

To perform the momentum integration, use of the follow-

and it can be expanded for small external momenta in thé,q integral transform turns out to be extremely convenient:

following way:

E{JZZ p3+m?—psks= Ep—psks,

whereE;=p3+m?. Noting that

E_E _ P3Ks

TN ——4+0(k3),

(80)

one can use this expansion in E@9) to arrive at

E,
Hgo lim Z(eslg)f (2 )2[n+(E )+n (Ep)]|: :|
ko= Ok 0
(81)

The expression forp, (E))=n (Ey)+n_(E;) when ex-
panded in powers of the external momentkigns given by

77+(E;,;) (82

1 Bpsks
l+§ E ) (Ep)

up to first order terms in the external momentlgn

1. Effective charge for p|€m

In the limit, whenu<m, one can use the following ex-

pansion:

77+(E{3):[n+(E;,3)+ n_(Ep)]

o

=220 (—1)"cosh[n+1]8x)

k
X e~ (N+1)BE| 1 4 %+O(k§)+ .
2E
(83

Now using Eq.(83) in Eqg. (81) we get

CUs— o2 _
—aVs_ f due us 01/4uu 3/2‘

2\Jm

Identifying v/s with E, and[ (n+1)3] with « one can easily
perform the Gaussiaps integration without any difficulty.
The result is

(e°B)
115)=
30= B o2

(86)

ngo (—1)"cosh[n+1]8u)(B(n+1)/2)

J due m2u— [(n+1)ﬁ/2]2/u -2 (87)
Performing theu integration the axial part of the effective
charge of neutrino in the limit ofn> . turns out to be

e?B
ela= - \/—gAmﬁGF ~(1- x)cos{f))E( 1"

xcosh(n+1)Bu]K_;[mB(n+1)]. (88

Here 6 is the angle between the neutrino three-momentum
and the background magnetic field. The superserjan ezg
denotes that we are calculating the axial contribution of the
effective chargeK_;[mB(n+1)] is the modified Bessel
function (of the second kindof order 1[for this function
K_1(xX)=K1(x)], which falls off sharply as we move away
from the origin in the positive direction. As temperature
tends to zero Eq88) seems to blow up because of the pres-
ence ofmp, butK _;[mgB(n+1)] would damp its growth as
e~ M2, hence the result remains finite.

2. Effective charge for >m

Here we would try to estimate neutrino effective charge
when u>m. Using Egs.(81) and(82) we would obtain

eB [ dp
Hgozﬁﬂj >, 1+(Ep). (89

Neglectingm in the expression i, we would obtain
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e3B is worth noting that in the low density high temperature
Hgoz—zIn[(1+ef”“)(1+e*ﬁ“)]. (90)  limit, the magnitude ok can become greater than the ef-

2m fective charge of the neutrino in the ordinary medium pro-

The same can also be written as vided eB is large enough. On the other hand, in the high

density limit egg can dominate the effective charge of the
neutrino as found in an unmagnetized medium, provided the
(9 temperature is low enough. However, in standard astrophysi-
cal objects, e.g., for the core of a type Il supernova the tem-

The expression for the effective charge then turns out to bderature is of the order of 30-60 MeV with Fermi momen-
tum around 300 MeV, for red giants the values same are 10
Bu keV and 400 keV, and for young white dwarves the tempera-

2 cosV( —) }(1—)\)005{ 0) ture is around 0.1-1 keV and the Fermi momentum 500 keV.
2 In these systems one can have a relatively large induced
(92 neutrino charge, provided the field strength is large enough.

s B
a

2 COSVE B%) .

2
, eB
ee?f: - \/EgAGF? In

where\ is the helicity of the neutrino spinors.
Before going to the next section some general discussion ACKNOWLEDGMENT
about the effective charge expression can be made. In a back-

ground magnetic field the field dependence of the form fac;c we VI;/OUIS like ttoh'tr':/?n.k P&Ofe?SOL F;a][aisz.B' Pa! and Pro-
tors, which are usually scalars, can be of the following form: essor Parthasara | Majumaar for helptul discussions, com-
ments, and suggestions.

k“FWF”}‘k)\ and F, F*" (93

or APPENDIX: GAUGE INVARIANCE

. _ Now we concentrate on Ed@4), which we discussed in
(Fu)*(Fu),. (94)  Sec. Il. The axial-vector—vector amplitude has an electro-

L magnetic vertex and as a result electromagnetic current must
These forms do not exhaust all the possibilities; other termg, ~nserved. From Eq30) we see thaﬂiv(k) is gauge

can also be constructed by the above forms. The thing thﬁ‘ﬁvarient in theu vertex, which is the electromagnetic vertex
must be noted is that whektends to zero only terms that .

e ) gn that case. In our case as discussed theertex is the
can survive in the form factors must be an even function Oelectromagnetic vertex, and we explicitly show the gauge
B. . . . invariance in that vertex below.

Of all possible tensorial structures for the axial-vector—
vector amplitude in a magnetized plasma, there exists one

term which is independent of the external momentyrand 1. Gauge invariance forIl}, (k) to even orders
is given by in the external field

~ I The axial-vector—vector amplitude even in the external
FLauus,. field is given by

It is worth noting that this term in E4A1), which is odd in 5(0) o d*p (= B(p.S)
the external field, survives in the zero external momentum I, (K)=—(—ie) (_1)f Wﬁwdse >
limit in the rest frame of the medium. We noted earlier that
the form factors which exist in the rest frame of the medium (s (©) , ,
and in the zero momentum limit are even in powers of the X fo ds’e®P *)R7(p,p’,s,8"). (A1)
external field. This tells us directly that the axial polarization
tensor must be odd in the external field in the zero external |
momentum limit, a result which we have verified in this Noting that
work.
qP.= qa”paHJr q“Pa,
VI. CONCLUSION

In this work we elucidated the physical significance of the’€ ¢an write E(66) as

axial-vector—vector amplitude in various neutrino mediated
processes in a magnetized medium. We analyzed its gauge Rﬁ:m ﬂ—(po){(swa;;p“p”g—eﬂmﬁLp“p'ﬁi
invariance properties. Its tensor structure was written down,

and we showed that the integral expression of the tensor is —sﬂmiﬂp“ip’ﬁ)[1+tar(eBs)tar(eBs’)]
ultraviolet finite. It has been shown that the partl'biv(k) et B ,
even inB does not contribute to the effective electric charge. + € uvap, PP P s€C(EBS')

However, it does contribute to physical processes, e.g., neu-

: o 4 ; > ain'B
trino Cherenkov radiation or neutrino decay in a medium. It t€uva, gPTP sec(eBs)}. (A2)
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Here throughout we have omitted terms such as 5(0) ., o
&va, g, PP'Pr, since by the application of Eq¢61) we I (k)=—(—ie) (—1)f 2t (P:9)
have
8;1,1/0&,8Lpaip,ﬁi:‘g,uvoziﬁipaLpﬁL-1-“"";x,voziﬁipalkﬁl XJ'O dsle(b(p,'S')R,(fg(Qp’7Sa5/) (A4)
o taneBs’)
~ taneBs')+taneBs’) where R°)(p,p’,s,s') is given by Eq.(67). The general
gauge invariance condition in this case,
XSMV%&k%kBL,
which is zero. 1500 (1) =
k"I1;5" (k) =0, (A5)

After rearranging the terms appearing in E42), and by
the application of Eq(61) we arrive at the expression

can always be written down in terms of the following two

R24i 7_(Po)| & e kP 1+ tan(eBs)tar(eBs')] equations:
+8 uap, KK tan(eBs) kTS (k) =0, (A6)
tan eBs) —taneBs’
Xtan(eBs') r(eBs) n( ,) . (A3)
tan(eBs) +tan(eBs’) kvnf}fg( k)=0, (A7)

Because of the presence of terms Iﬂggaﬂkﬁ andsﬂmﬂik“

if we contract R by k?, it vanishes.
. by wherel’[s(o)(k) is that part off15{(k) where the indexu

2. Gauge invariance forlI%, (k) to odd orders can take the values 0 and 3 only. Similady;)(k) stands
in the external field for the part of[13{” (k) Where,u can take the values 1 and 2
5 .
The axial-vector—vector amplitude odd in the externalonly- H,Lfﬂ)(k) contains ”,,(p p',s,s"), which from Eq.
field is given by (67) is as follows:

R 4
= H7+(Po)| = tan(eBs)+taneBs’) *

seC(eBs)tarf(eBs’)
& w12 + (k- p)|[tan(eBs) +tan(eBs’)]

+28M”12aH[pVHp tar(eBs)+pV”p tan(eBs )]+gM"(IH ” [tar(eBs)—tar(eBs )= tar(eBs)+tar(eBs )

+gﬂHV(p-AIZ)H[tar(eBs)—tar(eBs’)] (A8)
|
5(0)

andlII}”), contains Ifg’ J(p,p’,s,8"), which is o o )4f dseb®. S’J de P’ S)R(o) 0

(A10)
R, 24i 7, (po) ({g,,, o(p-K)|+ 0, Pk, J[tar(eBs) and
—taneBs’)]+ gWHk“\lpﬂlse@(eBs)tar(eBs’ )).
{P(p.s) 1a®(p’,s")R(0) —

(A9) f(Z I R )

(A11)

Equationg/A6), (A7) imply that one should have the follow- Of the two above equations, EGA10) can be verified easily
ing relations satisfied: since
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k'R, ,=0. (A12)

Now we look at Eq.(A1l). We explicitly consider the
casepu =3 (the u =0 case leads to a similar resultor

m=3,
K"RE)= —pof(p'f -

—Kk2[tan(eBs) —tar(eBs') T} 4i 7 (po) 1.
(A13)

p)[tan(eBs) +tan(eBs’) ]

Apart from the small convergence factors,
i
S5l P(P.9)+@(p',s")]=(pf*+ pf—2m?) ¢~ (p[*~ pf){

—p2tan(é— ) —p2tané+9),

(A14)
where we have defined the parameters
1
&= -eB(s+9s'),
2
1
(= EeB(s— s’). (A15)

From the last two equations we can write

d ’ ’
ieBd_§e¢(p's)+(I)(p ,S ):eq)(p s)+®(p’s )[pH — pH

pi2sed(é—¢)+pised(£+)],
(A16)

which implies

p'f—pf=ieB - d§+[p sec(eBs’)—p?sec(eBs)].
(A17)

The equation above is valid in the sense that both sides of it

actually act upore®PsP"s) where
d(p,p’,s,8)=D(p,s)+D(p',s'). (A18)

From Egs.(A13) and(A17), we have

K'Rs,e®< —4i 7. (po)po| [ p'2sed(eBs) — p? sed(eBs)]

X[tan(eBs) +tan(eBs’)]
—k?[tan(eBs) —tan(eBs’)]

+ieBpg[taneBs) + tan eBs’ )]d% e®.  (A19)

PHYSICAL REVIEW D 68, 053011 (2003

Now using the expressions f@® and p/? from Egs.(63)
and (64) we can write

k"Rs,e® < 4eB7. (po)pol [s€@(eBs) — sed(eBs’)]

+[tan(eBs) +tan eBs’ )]d% e® (A20)

The above equation can also be written as

k"Rs,e®< 4eB7. (po) pod%{e&’[tar(el%s) +taneBs’)]}.
(A21)

Transforming to¢,{ variables and using the above equation,
we can write the parametric integratiofistegrations oves
ands’) on the left hand side of EqA1l) as

f dsf ds'k’Rs,e®
— % 0

8.
e T R et s

where
F(&0)=e[taneBs) + tan(eBs')].

The integration over thé and{ variables in the above equa-
tion can be represented as

J_ dsf 420 (o) i

:f dgf dg[ [0(E-OFED)

F(€.0)

—5(6—5)7(&0}

| aemen. (n22)

Here the second step follows from the first one as the first
integrand containing th@® function vanishes at both limits
of the integration. The remaining integral is now a function
of £ only and is even inpy. But in Eq. (A22) we have
7+ (Po) Po, Which makes the integrand odd unggyrintegra-
tion in the left hand side of EQA11), as# ., (pg) is an even
function inp,. So thep, integral as it occurs in the left hand
side of Eq.(A1l) vanishes as expected, yielding the required
result shown in Eq(A6).
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