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Axial-vector–vector amplitude and neutrino effective charge in a magnetized medium
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To one loop the effective neutrino photon interaction takes place through vector-vector-type and axial-
vector–vector–type amplitudes. In this work we explicitly write down the form of the axial-vector–vector
amplitude to all orders in the external magnetic field in a medium. We then infer its zero external momentum
limit which contributes to the effective charge of the neutrinos inside a magnetized medium. We further show
its gauge invariance properties.
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I. INTRODUCTION

Neutrino mediated processes are of great importanc
cosmology and astrophysics@1,2#. Various interesting possi
bilities involving neutrinos have been looked into in the co
text of cosmology, e.g., large scale structure formation in
universe, to name one@3#. In this note we consider the in
duced effect on the neutrinos by a magnetized medium, u
quantum field theoretic techniques. It is usually conjectur
taking into account the conservation of the surface magn
field of a protoneutron star, that during a supernova colla
the magnetic field strength in some regions inside the nas
star can reach up toB;m2/e or more. Herem denotes the
mass of the electron. This conjecture makes it worthwhile
investigate the role of the magnetic field in the effecti
neutrino-photon vertex.

Neutrinos do not couple to photons at the tree level in
standard model of particle physics, and this coupling c
take place only at the loop level, mediated by the fermio
and gauge bosons. This coupling can give birth to scatte
process such asgg→nn. The cross section of neutrino
photon scattering is highly suppressed in the standard m
due to Yang’s theorem@4#, which makes the scattering cros
section vanish to orders of the Fermi couplingGF . In the
presence of a magnetic field, neutrino-photon scattering
occur and to orders ofGF the cross section has been calc
lated @5#. There can be neutrino processes in a medium o
magnetic field or both which involve only one photon, su
as n→ng and g→nn̄. In vacuum these reactions are r
strained kinematically. Only in the presence of a medium
a magnetic field or both can all the particles be on shel
there the dispersion relation of the photon changes, giv
the much required phase space for the reactions. Intuitiv
when a neutrino moves inside a thermal medium compo
of electrons and positrons, they interact with these ba
ground particles. The background electrons and positr
themselves have interactions with the electromagnetic fie
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and this fact gives rise to an effective coupling of the neu
nos to the photons. Under these circumstances the neut
may acquire an ‘‘effective electric charge’’ through whic
they interact with the ambient plasma.

The effective charge of the neutrino in a medium has b
calculated previously by many authors@8–10#. All of these
works were concentrated on the vector-vector part of
interaction. In this paper we concentrate upon the effec
neutrino-photon interaction vertex coming from the axi
vector–vector partPmn

5 of the interaction. Some work on th
axial-vector–vector part in a time independent backgrou
electromagnetic field has been done previously@6,7# where
in some cases the authors were able to obtain a gauge in
ant expression for the axial-vector–vector contribution to
neutrino-photon effective vertex. We are interested in
zero momentum limit of the axial-vector–vector amplitud
as it contributes to the effective charge of the neutrinos
side a magnetized plasma. We discuss the physical situa
where the axial-vector–vector amplitude arises, and t
show how it affects the physical processes.

The plan of the paper is as follows. We start with Sec
which deals with the formalism through which the physic
importance ofPmn

5 (k) is appreciated. In Sec. III the gener
form factor analysis of the second rank tensor on the basi
symmetry arguments is provided. In Sect. IV we show
fermion propagator in a magnetized medium, and using
explicitly write down Pmn

5 (k) in the rest frame of the me
dium. In Sec. V we calculate the effective electric char
from the expression of the axial-vector–vector amplitude.
Sec. VI we discuss our results and conclude by touch
upon the physical relevance of our work. A formal proof
the gauge invariance ofPmn

5 is attached in the Appendix.

II. FORMALISM

In this work we consider the background temperature a
neutrino momenta which are small compared to the mas
of the W and Z bosons. We can, therefore, neglect the m
mentum dependence in theW and Z propagators, which is
justified if we are performing a calculation to the leadin
order in the Fermi constantGF . In this limit the four-
©2003 The American Physical Society11-1
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fermion interaction is given by the following effective La
grangian:

Leff52
1

A2
GFn̄gm~12g5!n l̄ gm~gV1gAg5!l , ~1!

where n and l are the neutrino and corresponding lept
fields. For electron neutrinos,

gV5
1

2
12 sin2uW ,

gA52
1

2
,

where the first terms ingV andgA are the contributions from
the W exchange diagram and the second one from thZ
exchange diagram.uW is the Weinberg angle. For muon an
tau neutrinos

gV52
1

2
12 sin2uW ,

gA5
1

2
.

With this interaction Lagrangian thenng vertex, as
shown in Fig. 1, can be written in terms of two tensors,
vector-vector amplitude and the axial-vector–vector am
tude. The vector-vector amplitude termPmn(k) is defined as

iPmn~k!5~2 ie!2~21!E d4p

~2p!4 Tr@gmiS~p!gniS~p8!#.

~2!

Here and henceforwardp85p1k. The above equation look
exactly like the photon polarization tensor, but does not h
the same interpretation here. The Feynman diagram as
ated with the neutrino-photon interaction to one loop is
picted in Fig. 1. The axial-vector–vector amplitudePmn

5 (k)
is defined as

iPmn
5 ~k!5~2 ie!2~21!E d4p

~2p!4 Tr@gmg5iS~p!gniS~p8!#.

~3!

Both tensors are obtained by calculating the Feynman
gram given in Fig. 1.

FIG. 1. One-loop diagram for the effective electromagnetic v
tex of the neutrino in the limit of infinitely heavyW andZ masses.
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While discussingPmn
5 (k) it should be remembered tha

for the electromagnetic vertex we have the current conse
tion relation

knPmn
5 ~k!50, ~4!

which is the gauge invariance condition.
In order to calculate the effective charge of the neutrin

inside a medium, we have to calculatePmn
5 (k). The formal-

ism so discussed is a general one, and we extend the c
lations previously done based upon this formalism to
case where we have a constant background magnetic fie
addition to a thermal medium.

III. GENERAL FORM OF Pµn
5
„K… IN VARIOUS CASES

A. The vacuum case

We start this section with a discussion of the possi
tensor structure and form factor analysis ofPmn

5 (k), based
on the symmetry of the interaction. To begin with we no
thatPmn

5 (k) in vacuum should vanish. This follows from th
arguments below. In vacuum the available vectors and
sors at hand are the following:

km ,gmn , and emnls . ~5!

The two-point axial-vector–vector amplitudePmn
5 can be

expanded in a basis constructed out of the above tens
Given the parity structure of the theory the only releva
tensor at hand isemnlsklks , which is zero.

B. In medium

On the other hand, in a medium in the absence of a
magnetic field, we have an additional vectorum, i.e., the
velocity of the center of mass of the medium. Therefore
axial-vector–vector amplitude can be expanded in terms
form factors along with the new tensors constructed out
um and the ones we already had in the absence of a med
A second rank tensor constructed out of them might
«mnabuakb @8#, which would satisfy the current conservatio
condition for the two-point function. In a medium an inte
esting thing happens. In the tensorPmn

5 (k) one of the tensor
indices refers to a vector-type vertex and another one to
axial-vector type. The electromagnetic current conserva
condition is supposed to hold for the vector-type vertex. B
due to the tensor structure ofPmn

5 (k) in a medium, as dis-
cussed,

kmPmn
5 ~k!505Pmn

5 ~k!kn ~6!

to all orders in the Fermi and electromagnetic coupling.

C. In a background magnetic field

As in our case neitherC or P but CP is a symmetry, first
we look at theCP transformation properties of the axia
vector–vector amplitude. Under aCP transformation the
various components of the tensor transform as

-

1-2
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CP: P00
5 →P00

5 , ~7!

CP: P i j
5 →P i j

5 , ~8!

CP: P0i
5 →2P0i

5 . ~9!

The above transformation properties are important beca
the basis tensors must also satisfy the same transform
properties. The functions that multiply the basis tensors
build upPmn

5 (k), called the form factors, must be even fun
tions of the magnetic field and so theirCP transformations
are trivial. This fact directly implies that the basis tenso
must vanish in theB→0 limit, as Pmn

5 (k) vanishes in
vacuum. In general,Pmn

5 (k) will be an odd function of the
external field so that it vanishes when the external field g
to the zero limit. As a result the basis tensors must also
odd in the external fields.

In a uniform background magnetic field, the vectors a
tensors at hand are

Fmn , F̃mn , ki
m , k

'

m . ~10!

Here Fmn is the electromagnetic field strength tensor a
F̃mn5 1

2 «mnrsFrs . Here we stick to the fact that the mag
netic field is in thez direction, and so

F1252F215B, ~11!

with all other components ofFmn zero.
With these building blocks we can build four vectors,

b1
m5~Fk!m, ~12!

b2
m5~ F̃k!m, ~13!

b3
m5ki

m , ~14!

b4
m5k

'

m . ~15!

The expressions (Fk)m and (F̃k)m stand for

~Fk!m5Fmnkn,

~ F̃k!m5F̃mnkn. ~16!

Here ki
m5(k0,0,0,k3) and k'

m5(0,k1,k2,0), so thatkm5ki
m

1k'
m . Also, in our convention

gmn5gmn
i 1gmn

' ,

where

gmn
i 5~1,0,0,21!,

gmn
' 5~0,21,21,0!.

We also use
05301
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ki
25k0

22k3
2 ,

k'
2 5k1

21k2
2 .

The set of four vectorsbi
m , i 51,2,3,4, are mutually or-

thogonal to each other and can serve as the basis vecto
build up the tensor basis ofPmn

5 (k).
Next theCP transformation properties of these vectors a

summarized:

CP: b1
0→b1

0 , ~17!

CP: b1
i →b1

i . ~18!

The other three vectors have similar transformation prop
ties as

CP: b1,2,3
0 →b1,2,3

0 , ~19!

CP: b1,2,3
i →2b1,2,3

i . ~20!

From Eq.~7!, Eq. ~8!, and Eq.~9! we can see that a suitabl
tensor basis can be built up from vectorsbi

m where i
52,3,4. TheCP transformation of the axial-vector–vecto
amplitude compels us to disregardb1

m as a basis vector.
Now we can list the possible candidates which can se

as basis tensors ofPmn
5 (k). There are nine of them. For late

usage we explicitly write them down as

B1
mn5b2

mb2
n

5~ F̃k!m~ F̃k!n, ~21!

B2
mn5b3

mb3
n

5ki
mki

n , ~22!

B3
mn5b4

mb4
n

5k
'

mk
'

n , ~23!

B4
mn5b2

mb3
n

5~ F̃k!mki
n , ~24!

B5
mn5b3

mb2
n

5~ F̃k!nki
m , ~25!

B6
mn5b2

mb4
n

5~ F̃k!mk
'

n , ~26!

B7
mn5b4

mb2
n

5~ F̃k!nk
'

m , ~27!
1-3
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B8
mn5b3

mb4
n

5ki
mk

'

n , ~28!

B9
mn5b4

mb3
n

5ki
nk

'

m . ~29!

This basis gives nine second rank mutually orthogonal t
sors. Any second rank tensor containing higher field dep
dence can be represented by suitable linear combination
these tensors.

Out of these nine basis tensors some are useless. To
plain the point we focus our attention on B2

mn , B3
mn , B8

mn ,
and B9

mn . None of these four vanish in theB→0 limit and so
they are redundant. Also B1

mn is even in the external fields
and as discussed previously is not a suitable candidate fo
basis ofPmn

5 (k).
Only four basis tensors qualify successfully as the bu

ing blocks of the axial-vector–vector amplitude. They a
B4

mn , B5
mn , B6

mn , and B7
mn . The result as given in the pape

by Hari Dass and Raffelt verifies this choice@11,12#:1.

Pmn
5 ~k!5

e3

~4p!2m2
@2Cikn i

~ F̃k!m1C'$kn'
~kF̃!m

1km'
~kF̃!n2k'

2 F̃mn%#. ~30!

In the results we findF̃mn which we have not listed in ou
tensor basis, but that is not a fault because it can be mad
from the basis supplied.F̃mn can be written

F̃mn5
1

ki
2 @~ F̃k!mki

n2~ F̃k!nki
m#. ~31!

So to build up the tensorial basis of the axial-vector–vec
amplitude, the number of independent tensors require
four.

The four tensors at hand are still not suitable to be
basis tensors of the axial-vector–vector amplitude. As al
them are not transverse tokm, which is a requirement from
electromagnetic current conservation. Furthermore we h
to make linear combinations of these tensors which will
timately give two tensors orthogonal to each other and tokm,
which will serve as the right tensor basis ofPmn

5 (k).

D. In a magnetized medium

In the presence of a magnetized medium the situatio
complicated. In this analysis we are not going into an
depth study of the tensorial basis as was done in the
where there is no medium. Here we outline the strategy
which we can build up the tensorial basis, which in reality

1However, the metric used by the authors in the references m
tioned is different from ours, and in their calculation them vertex is
the vector-type vertex.
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similar to the previous case but contains more build
blocks. To start with we again emphasize theCP transforma-
tion properties of the axial-vector–vector amplitude. Unli
the vacuum case now the theory may not beCP invariant.
This can arise if the background does not respectCP. We
will discuss here only those cases where the backgro
does not breakCP. Moreover, now the form factors can b
functions of odd powers of the magnetic field, as now n
scalars like (Fk)u and (F̃k)u are also available. These sc
lars change sign underCP transformation. Some of the form
factors containing odd orders of the external fields may
accompanied by equal powers of the chemical potentia
the background charged fermions, and they will not chan
sign. So in a magnetized medium there can be basis ten
with different CP transformation properties as the form fa
tors which multiply them can also have different transform
tion properties.

In the presence of a medium, we can have two sets
orthogonal vectors. The first set is as supplied in Eq.~12!,
Eq. ~13!, Eq. ~14!, and Eq.~15!. They are all included now
b1

m is not excluded as in vacuum because theCP transforma-
tion property of the basis tensors has changed. The othe
of orthogonal vectors useful in a medium is

b81
m5~ F̃u!m, ~32!

b82
m5ui

m . ~33!

In listing the above vectors we have omitted two vecto
(Fu)m andu'

m . The reason they are omitted is that ultimate
we are interested in the rest frame of the medium. In
medium rest frame there is no electric field. Also in the m
dium rest frame no contribution will come withu'

m .
This above set of vectors has similarCP transformation

properties with those ofb2
m and b3

m . But the two sets of
vectors are not linearly independent and as such cannot s
as basis vectors to build up the tensorial basis ofPmn

5 . Only
a linear combination of them can make an orthogonal vec
basis. Now we list the set of orthogonal basis vectors t
can be made from the two sets of vectors, they are

b19
m5~Fk!m, ~34!

b29
m5~ F̃u!m1~ F̃k!m, ~35!

b39
m5k

'

m , ~36!

b49
m5ki

m1ui
m . ~37!

In a magnetized medium we have these four basis vec
which serve as the building blocks of the axial-vector–vec
amplitude. The basis tensors in this case will be the dir
products of these basis vectors. There will be 16 of them
all of them will not be useful.

As was the case in vacuum, all the 16 basis tensors h
are not useful because we have the electromagnetic cu
conservation condition. This constraint will reduce the nu

n-
1-4
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ber of basis tensors. The axial-vector–vector amplitude is
orthogonal tokm in our case, as them vertex is the axial-
vector vertex, but then still

kmPmn
5 5Cn ~38!

for someCn , which depends on the mass of the loopi
fermions. This condition also restrains the number of ba
tensors of the axial-vector–vector amplitude in a magneti
medium. The exact calculation of the number of useful e
ments as basis now goes in the same way as in the absen
a medium.

IV. ONE-LOOP CALCULATION OF THE
AXIAL-VECTOR –VECTOR AMPLITUDE

Since we investigate the case with a uniform backgrou
magnetic field, without any loss of generality it can be tak
to be in thez direction. We denote the magnitude of this fie
by B, which can be incorporated in various gauges withA0
50 and the other components ofA being time independent
First ignoring the presence of the medium, the elect
propagator in such a field can be written down followi
Schwinger’s approach@13–16#:

iSB
V~p!5E

0

`

dseF(p,s)G~p,s!, ~39!

whereF andG are as given below:

F~p,s![ isS pi
22

tan~eBs!

eBs
p'

2 2m2D2eusu, ~40!

G~p,s![
eieBssz

cos~eBs! S p” i1
e2 ieBssz

cos~eBs!
p”'1mD

5$@11 isztan~eBs!#~p” i1m!

1sec2~eBs!p”'%, ~41!

where

sz5 ig1g252g0g3g5 , ~42!

and we have used

eieBssz5cos~eBs!1 iszsin~eBs!. ~43!

To make the expressions transparent we specify our con
tions in the following way:

p” i5g0p01g3p3,

p”'5g1p11g2p2. ~44!

Of course, in the range of integration indicated in Eq.~39! s
is never negative and henceusu equalss. In the presence of a
background medium, the above propagator is now modi
to @17,18#

iS~p!5 iSB
V~p!1SB

h~p!, ~45!
05301
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where

SB
h~p![2hF~p!@ iSB

V~p!2 iS̄B
V~p!# ~46!

and

S̄B
V~p![g0SB

V†~p!g0 ~47!

for a fermion propagator, such that

SB
h~p!52hF~p!E

2`

`

dseF(p,s)G~p,s!. ~48!

HerehF(p) contains the distribution function for the ferm
ons and the antifermions:

hF~p!5Q~p•u! f F~p,m,b!1Q~2p•u! f F~2p,2m,b!.
~49!

f F denotes the Fermi-Dirac distribution function

f F~p,m,b!5
1

eb(p•u2m)11
, ~50!

andQ is the step function given by

Q~x!5H 1 for x.0,

0 for x,0.

Here the four-velocity of the medium isu. In the rest frame
its components areum5(1,0,0,0).

A. The expression forPµn
5
„k… in a thermal medium and in the

presence of a background uniform magnetic field

The relevant Feynman diagram of the process appea
Fig. 1. Following that diagram the axial-vector–vector a
plitude Pmn

5 (k) is expressed as

iPmn
5 ~k!5~2 ie!2~21!E d4p

~2p!4 Tr@gmg5iS~p!gniS~p8!#.

~51!

The vacuum part has already been calculated in@11# and the
thermal part with two factors ofhF is related to pure absorp
tion effects in the medium, which we are leaving out for t
time being. The remaining terms are

iPmn
5 ~k!5e2E d4p

~2p!4 Tr@gmg5SB
h~p!gniSB

V~p8!

1gmg5iSB
V~p!gnSB

h~p8!#. ~52!

Using the form of the fermion propagator in a magne
field in the presence of a thermal medium, as given by
pressions~39! and ~48! we get
1-5
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iPmn
5 ~k!52e2E d4p

~2p!4E
2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)

3$Tr@gmg5G~p,s!gnG~p8,s8!#hF~p!

1Tr@gmg5G~2p8,s8!gnG~2p,s!#hF~2p!%

52e2E d4p

~2p!4E
2`

`

dseF(p,s)

3E
0

`

ds8eF(p8,s8)Rmn~p,p8,s,s8! ~53!

where Rmn(p,p8,s,s8) contains the traces.

B. Rµn to even and odd orders in the magnetic field

We calculate Rmn(p,p8,s,s8) to even and odd orders i
the external magnetic field and call them Rmn

(e) and Rmn
(o) . The

reason for doing this is that the two contributions have d
ferent properties as far as their dependence on the mediu
concerned, and the contributions are

Rmn
(e)54ih2~p!«mnab$pa ip8b i@11tan~eBs!tan~eBs8!#

1pa ip8b'sec2~eBs8!1pa'p8b isec2~eBs!

1pa'p8b'sec2~eBs!sec2~eBs8!% ~54!

and

Rmn
(o)54ih1~p!~m2«mn12@ tan~eBs!1tan~eBs8!#

1$~gma i
pa i
˜

pn i
8 2gmnpa i

8 pa i
˜

1gna i
pa i
˜

pm i
8 !

1~gma i
pa i
˜

pn'
8 1gna i

pa i
˜

pm'
8 !sec2~eBs8!%tan~eBs!

1$~gma i
p8a i
˜

pn i
2gmnpa i

p8a i
˜

1gna i
p8a i
˜

pm i
!

1~gma i
p8a i
˜

pn'
1gna i

p8a i
˜

pm'
!sec2~eBs!%

3tan~eBs8!!. ~55!

Here

h1~p!5hF~p!1hF~2p!, ~56!

h2~p!5hF~p!2hF~2p!, ~57!

which contain the information about the distribution fun
tions. It should also be noted that, in our convention,

ambm̃ i5a0b31a3b0.

As stated, we have split the contributions toPmn
5 (k) into odd

and even orders in the external constant magnetic field.
main reason for doing so is the fact thatPmn

5(o)(k) and
Pmn

5(e)(k), the axial-vector–vector amplitude to odd and ev
powers ineB, have different dependences on the backgrou
matter. Pieces proportional to even powers inB are propor-
tional to h2(p0), an odd function of the chemical potentia
05301
-
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On the other hand, pieces proportional to odd powers inB
depend onh1(p0), and are even inm, and as a result sur
vives in the limitm→0. This is a direct consequence of th
charge conjugation and parity symmetries of the underly
theory.

From Eq.~54! we notice thatPmn
5 (k) to even orders in the

magnetic field satisfies the current conservation condition
both the vertices. In Eq.~55! we see that all the terms in th
right hand side are symmetric in them andn indices except
the first term. This term differentiates between the two v
tices in this case, and asPmn

5 (k) to odd orders in magnetic
field is gauge invariant in then vertex we do not get the
same condition for the axial-vector vertex. If in Eq.~55! we
put m50 then all the terms on the right will be symmetric
both the tensor indices, and as a result the current conse
tion condition will hold for both vertices. If the mass of th
looping fermion is not zero then from the above analysis
can say that only Eq.~4! will hold. If the looping fermion is
massless then Eq.~6! will hold, something which is ex-
pected.

If we concentrate on the rest frame of the medium, th
p•u5p0. Thus, the distribution function does not depend
the spatial components ofp. From the form of Eq.~54! and
Eq. ~55! we find that in Eq.~53! the integral over the trans
verse components ofp has the following generic structure:

E d2p'eF(p,s)eF(p8,s8)3~pb' or p8b'!. ~58!

Notice now that

]

]pb'

@eF(p,s)eF(p8,s8)#

5
2i

eB @ tan~eBs!pb'1tan~eBs8!p8b'#eF(p,s)eF(p8,s8).

~59!

However, this expression, being a total derivative, sho
integrate to zero. Thus we obtain that

tan~eBs!pb'5° 2tan~eBs8!p8b', ~60!

where the symbol5° means that the expressions on bo
sides of it, although not necessarily equal algebraically, yi
the same integral. This gives

pb'5° 2
tan~eBs8!

tan~eBs!1tan~eBs8!
kb',

p8b'5°
tan~eBs!

tan~eBs!1tan~eBs8!
kb'. ~61!

Similarly, we can derive some other relations which can
used under the momentum integral signs. To write them
useful form, we turn to Eq.~59! and take another derivativ
with respect topa'. From the fact that this derivative shoul
also vanish onp integration, we find
1-6



in

tu

to
as

is,

e-
may
er-
ork-
let
t.
ew
uld
on-
t
ion
the
ent
e of
let
me
ere
d not
nd
ady

full

al.
e

of

AXIAL-VECTOR–VECTOR AMPLITUDE AND NEUTRINO . . . PHYSICAL REVIEW D68, 053011 ~2003!
p'
a p'

b5°
1

tan~eBs!1tan~eBs8!
F ieB

2
g'

ab

1
tan2~eBs8!

tan~eBs!1tan~eBs8!
k'

ak'
b G . ~62!

In particular, then,

p'
2 5°

1

tan~eBs!1tan~eBs8!

3F2 ieB1
tan2~eBs8!

tan~eBs!1tan~eBs8!
k'

2 G . ~63!

It then simply follows that

p'8
25°

1

tan~eBs!1tan~eBs8!

3F2 ieB1
tan2~eBs!

tan~eBs!1tan~eBs8!
k'

2 G . ~64!

And finally using the definition of the exponential factor
Eq. ~40! we can write

m25° S i
d

ds
1@pi

22sec2~eBs!p'
2 # D . ~65!

Using the above relations we get

Rmn
(e)5° 4ih2~p0!$«mna ib i

pa ip8b i@11tan~eBs!tan~eBs8!#

1«mna ib'
pa ip8b'sec2~eBs8!

1«mna'b i
pa'p8b isec2~eBs!% ~66!

and

Rmn
(o)5° 4ih1~p0!F2«mn12H sec2~eBs!tan2~eBs8!

tan~eBs!1tan~eBs8!
k

'

2

1~k•p! i@ tan~eBs!1tan~eBs8!#J
12«m12a i

@pn i
8 pa itan~eBs!1pn i

p8a itan~eBs8!#

1gma i
kn'

H pa i
˜

@ tan~eBs!2tan~eBs8!#

2ka i
˜ sec2~eBs!tan2~eBs8!

tan~eBs!1tan~eBs8!J 1$gmn~p• k̃! i

1gna i
pa i
˜

km'
%@ tan~eBs!2tan~eBs8!#

1gna i
ka i
˜

pm'
sec2~eBs!tan~eBs8!G . ~67!

Before going into the next section we comment on the na
of the integral appearing in Eq.~53!. The first point to make
05301
re

is that from the form of Rmn
(e) in Eq. ~66! we note that the

axial-vector–vector amplitude in a magnetized medium
even orders in the magnetic field is antisymmetric, as it w
in a medium without any magnetic field. Contrary to th
Rmn

(o) does not have any well defined symmetry property.
Secondly, as the integrals are not done explicitly som

thing must be said about the possible divergences that
appear in evaluating them. In principle, we expect no div
gences here. The reasons are as follows. First, we are w
ing in finite temperatures and so an automatic ultravio
cutoff, the temperatureT of the medium, is already presen
Second, it must be noted that magnetic fields brings no n
divergences into the calculations. The divergence that co
have been present would have come from the vacuum c
tribution of Pmn

5 (k) when B50, but in this case that par
does not exist at all, as we saw in Sec. III. In this connect
it can be said that in the absence of the medium but in
presence of the background magnetic field another diverg
structure could arise, that is, anomaly, due to the presenc
the axial-vector vertex. Anomaly is essentially an ultravio
phenomenon which shows up in nonconservation of so
currents, after making the quantum corrections, which w
conserved classically. But in the present case these nee
worry us because we are working in a thermal medium a
as discussed previously the ultraviolet regulators are alre
present in our theory.

As a result, the integral expression forPmn
5 (k) in our case

does not have any singularities. So we can now write the
expression of the axial-vector–vector amplitude as

iPmn
5 ~k!52e2E d4p

~2p!4E
2`

`

dseF(p,s)

3E
0

`

ds8eF(p8,s8)@Rmn
(o)1Rmn

(e)# ~68!

where Rmn
(o) and Rmn

(e) are given by Eqs.~67! and ~66! in the
rest frame of the medium.

V. ZERO MOMENTUM LIMIT AND EFFECTIVE CHARGE

The off-shell electromagnetic vertex functionGn is de-
fined in such a way that, for on-shell neutrinos, thenng
amplitude is given by

M52 i ū~q8!Gnu~q!An~k!, ~69!

wherek is the photon momentum. Here,u(q) is the neutrino
spinor andAn stands for the electromagnetic vector potenti
In generalGn will depend onk and the characteristics of th
medium. With our effective Lagrangian in Eq.~1!, Gn is
given by

Gn52
1

A2e
GFgm~12g5!~gVPmn1gAPmn

5 !. ~70!

The effective charge of the neutrinos is defined in terms
the vertex function by the following relation@8#:
1-7
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eeff5
1

2q0
ū~q!G0~k050,k→0!u~q!. ~71!

For massless Weyl spinors this definition can be rendere
the form

eeff5
1

2q0
Tr@G0~k050,k→0!~11lg5!q” # ~72!

wherel561 is the helicity of the spinors.
We remarked earlier in Sec. III that in a medium we ha

an additional vectorum. The axial-vector–vector amplitude
in this case, of the form«mnabuakb, do not contribute to the
effective electric charge of the neutrinos since for cha
calculation we have to put the indexn50. In the rest frame
only the time component of the four-vectoru exists, which
forces the totally antisymmetric tensor to vanish. But t
polarization tensor can be expanded in terms of form fac
along with the new tensors constructed out ofum and the
ones we already had in absence of a medium as

Pmn~k!5PTTmn1PLLmn . ~73!

Here

Tmn5g̃mn2Lmn ,

Lmn5
ũmũn

ũ2

with

g̃mn5gmn2
kmkn

k2
,

ũm5g̃mrur.

The longitudinal projectorLmn is not zero in the limitk0

50,kW→0, andPL is also not zero in the above mentione
limit @3#. This fact is responsible for giving a nonzero co
tribution to the effective charge of a neutrino in a medium

From Eq.~30! we see that the axial-vector–vector amp
tude in a background magnetic field without any mediu
does not survive when the momentum of the external pho
vanishes, and as a result there cannot be any effective
tric charge of the neutrinos in a constant background m
netic field. Actually, this formal statement could have be
spoilt by the presence of possible infrared divergence in
loop; i.e., in Ci and C' @12#. Since the particle inside th
loop is massive, there is no scope of having infrared div
gence; hence it does not contribute to the neutrino effec
charge.

Now we concentrate on the zero momentum limit of th
part of the axial polarization tensor which is going to co
tribute to the neutrino effective charge in a magnetiz
plasma. From the outset it is to be made clear that we
calculating only the axial contribution to the effective charg
05301
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Effective charge to odd orders in external field

DenotingPmn
5 (k050,kW→0) by Pmn

5 , we obtain

Pm0
5 5 lim

k050kW→0

4e2E d4p

~2p!4E
2`

`

dseF(p,s)

3E
0

`

ds8eF(p8,s8)@ tan~eBs!1tan~eBs8!#h1~p0!

3@2p0
22~k•p! i#«m012; ~74!

the other terms turn out to be zero in this limit. The abo
equation shows that, except for the exponential functions,
integrand is free of the perpendicular components of m
menta. It is a peculiarity of this case that the perpendicu
excitations of the loop momenta are present only in the p
selike parts of the integrals and in effect decouple from
scene once they are integrated out. Its presence is felt
through a linear dependence of the external fieldB when the
perpendicular components ofk vanish. Upon performing the
Gaussian integration over the perpendicular components
taking the limitk

'
→0, we obtain

P30
5 5 lim

k050,kW→0

~4ie3B!

4p E d2pi

~2p!2E
2`

`

dseis(pi
2
2m2)2«usu

3E
0

`

ds8eis8(p8i
2
2m2)2«us8uh1~p0!@2p0

22~k•p! i#.

~75!

It is worth noting that thes integral gives

È`

dseis(pi
2
2m2)2«usu52pd~pi

22m2! ~76!

and thes8 integral gives

E
0

`

ds8eis8(p8i
2
2m2)2«us8u5

i

~p8i
22m2!1 i«

. ~77!

Using the above results in Eq.~75! and using the delta func
tion constraint, we arrive at

P30
5 5 lim

k050,kW→0

22~e3B!E d2pi

~2p!2 d~pi
22m2!h1~p0!

3F 2p0
2

~ki
212~p.k! i!

2
1

2G . ~78!

In deriving Eq.~78!, pieces proportional toki
2 in the numera-

tor were neglected. Now if one makes the substitutionpi8
→(pi1ki/2) and setsk050, one arrives at
1-8
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P30
5 5 lim

k050,kW→0

2~e3B!E dp3

~2p!2 @n1~Ep8!1n2~Ep8!#

3F Ep8

p3k3
1

1

2Ep8
G . ~79!

Here n6(Ep8) are the functions f F(Ep8 ,2m,b) and
f F(Ep8 ,m,b), as given in Eq.~50!, which are nothing but the
Fermi-Dirac distribution functions of the particles and t
antiparticles in the medium with a modified energyEp8 . The
new termEp8 is defined as follows:

Ep8
25@~p32k3/2!#21m2,

and it can be expanded for small external momenta in
following way:

Ep8
2.p3

21m22p3k35Ep
22p3k3 ,

whereEp
25p3

21m2. Noting that

Ep85Ep2
p3k3

2Ep
1O~k3

2!, ~80!

one can use this expansion in Eq.~79! to arrive at

P30
5 5 lim

k050,kW→0

2~e3B!E dp3

~2p!2 @n1~Ep8!1n2~Ep8!#F Ep

p3k3
G .

~81!

The expression forh1(Ep8)5n1(Ep8)1n2(Ep8) when ex-
panded in powers of the external momentumk3 is given by

h1~Ep8!5S 11
1

2

bp3k3

Ep
Dh1~Ep! ~82!

up to first order terms in the external momentumk3.

1. Effective charge for µ™m

In the limit, whenm!m, one can use the following ex
pansion:

h1~Ep8!5@n1~Ep8!1n2~EP8 !#

52(
n50

`

~21!ncosh~@n11#bm!

3e2(n11)bEpS 11
bp3k3

2Ep
1O~k3

2!1••• D
~83!

Now using Eq.~83! in Eq. ~81! we get
05301
e

P30
5 5 lim

k050,kW→0

~4e3B! (
n50

`

~21!ncosh~@n11#bm!

3E dp3

~2p!2 e2(n11)bEpF Ep

~p3k3!
1

b

2G . ~84!

The first term vanishes by symmetry of the integral, but
second term is finite and so we get

P30
5 5b

~e3B!

2p2 (
n50

`

~21!ncosh~@n11#bm!

3E dp3e2(n11)bEp. ~85!

To perform the momentum integration, use of the follo
ing integral transform turns out to be extremely convenie

e2aAs5
a

2Ap
E

0

`

due2us2a2/4uu23/2. ~86!

IdentifyingAs with Ep and@(n11)b# with a one can easily
perform the Gaussianp3 integration without any difficulty.
The result is

P30
5 5b

~e3B!

2p2 (
n50

`

~21!ncosh~@n11#bm!~b~n11!/2!

3E due2m2u2[(n11)b/2]2/uu22. ~87!

Performing theu integration the axial part of the effectiv
charge of neutrino in the limit ofm.m turns out to be

eeff
na52A2gAmbGF

e2B
p2

~12l!cos~u! (
n50

`

~21!n

3cosh@~n11!bm#K21@mb~n11!#. ~88!

Here u is the angle between the neutrino three-moment
and the background magnetic field. The superscriptna on eeff

na

denotes that we are calculating the axial contribution of
effective charge.K21@mb(n11)# is the modified Besse
function ~of the second kind! of order 1 @for this function
K21(x)5K1(x)], which falls off sharply as we move awa
from the origin in the positive direction. As temperatu
tends to zero Eq.~88! seems to blow up because of the pre
ence ofmb, butK21@mb(n11)# would damp its growth as
e2mb; hence the result remains finite.

2. Effective charge for µšm

Here we would try to estimate neutrino effective char
whenm@m. Using Eqs.~81! and ~82! we would obtain

P30
5 5

e3B
2p

bE dp

2p
h1~Ep!. ~89!

Neglectingm in the expression inEp we would obtain
1-9
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P30
5 5

e3B
2p2

ln@~11ebm!~11e2bm!#. ~90!

The same can also be written as

P30
5 5

e3B
p2

lnF2 coshS bm

2 D G . ~91!

The expression for the effective charge then turns out to

eeff
na52A2gAGF

e2B
p2

lnF2 coshS bm

2 D G~12l!cos~u!

~92!

wherel is the helicity of the neutrino spinors.
Before going to the next section some general discus

about the effective charge expression can be made. In a b
ground magnetic field the field dependence of the form f
tors, which are usually scalars, can be of the following for

kmFmnFnlkl and FmnFmn ~93!

or

~ F̃u!m~ F̃u!m . ~94!

These forms do not exhaust all the possibilities; other te
can also be constructed by the above forms. The thing
must be noted is that whenk tends to zero only terms tha
can survive in the form factors must be an even function
B.

Of all possible tensorial structures for the axial-vecto
vector amplitude in a magnetized plasma, there exists
term which is independent of the external momentumk, and
is given by

F̃mauaun
i .

It is worth noting that this term in Eq.~A1!, which is odd in
the external field, survives in the zero external moment
limit in the rest frame of the medium. We noted earlier th
the form factors which exist in the rest frame of the mediu
and in the zero momentum limit are even in powers of
external field. This tells us directly that the axial polarizati
tensor must be odd in the external field in the zero exte
momentum limit, a result which we have verified in th
work.

VI. CONCLUSION

In this work we elucidated the physical significance of t
axial-vector–vector amplitude in various neutrino media
processes in a magnetized medium. We analyzed its ga
invariance properties. Its tensor structure was written do
and we showed that the integral expression of the tenso
ultraviolet finite. It has been shown that the part ofPmn

5 (k)
even inB does not contribute to the effective electric charg
However, it does contribute to physical processes, e.g., n
trino Cherenkov radiation or neutrino decay in a medium
05301
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is worth noting that in the low density high temperatu
limit, the magnitude ofeeff

na can become greater than the e
fective charge of the neutrino in the ordinary medium p
vided eB is large enough. On the other hand, in the hi
density limit eeff

na can dominate the effective charge of th
neutrino as found in an unmagnetized medium, provided
temperature is low enough. However, in standard astroph
cal objects, e.g., for the core of a type II supernova the te
perature is of the order of 30–60 MeV with Fermi mome
tum around 300 MeV, for red giants the values same are
keV and 400 keV, and for young white dwarves the tempe
ture is around 0.1–1 keV and the Fermi momentum 500 k
In these systems one can have a relatively large indu
neutrino charge, provided the field strength is large enou
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APPENDIX: GAUGE INVARIANCE

Now we concentrate on Eq.~4!, which we discussed in
Sec. II. The axial-vector–vector amplitude has an elec
magnetic vertex and as a result electromagnetic current m
be conserved. From Eq.~30! we see thatPmn

5 (k) is gauge
invarient in them vertex, which is the electromagnetic verte
in that case. In our case as discussed then vertex is the
electromagnetic vertex, and we explicitly show the gau
invariance in that vertex below.

1. Gauge invariance forPµn
5
„k… to even orders

in the external field

The axial-vector–vector amplitude even in the exter
field is given by

Pmn
5(e)~k!52~2 ie!2~21!E d4p

~2p!4E
2`

`

dseF(p,s)

3E
0

`

ds8eF(p8,s8)Rmn
(e)~p,p8,s,s8!. ~A1!

Noting that

qapa5qa ipa i
1qa'pa'

,

we can write Eq.~66! as

Rmn
(e)5° 4ih2~p0!$~«mnabpap8b2«mnab'

pap8b'

2«mna'bpa'p8b!@11tan~eBs!tan~eBs8!#

1«mnab'
pap8b'sec2~eBs8!

1«mna'bpa'p8bsec2~eBs!%. ~A2!
1-10
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Here throughout we have omitted terms such
«mna'b'

pa'p8b', since by the application of Eq.~61! we
have

«mna'b'
pa'p8b'5«mna'b'

pa'pb'1«mna'b'
pa'kb'

5° 2
tan~eBs8!

tan~eBs8!1tan~eBs8!

3«mna'b'
ka'kb',

which is zero.
After rearranging the terms appearing in Eq.~A2!, and by

the application of Eq.~61! we arrive at the expression

Rmn
(e)5° 4ih2~p0!F«mnabpakb@11tan~eBs!tan~eBs8!#

1«mnab'
kakb'tan~eBs!

3tan~eBs8!
tan~eBs!2tan~eBs8!

tan~eBs!1tan~eBs8!
G . ~A3!

Because of the presence of terms like«mnabkb and«mnab'
ka

if we contract Rmn
(e) by kn, it vanishes.

2. Gauge invariance forPµn
5
„k… to odd orders

in the external field

The axial-vector–vector amplitude odd in the extern
field is given by
-

05301
s

l

Pmn
5(o)~k!52~2 ie!2~21!E d4p

~2p!4E
2`

`

dseF(p,s)

3E
0

`

ds8eF(p8,s8)Rmn
(o)~p,p8,s,s8! ~A4!

where Rmn
(o)(p,p8,s,s8) is given by Eq.~67!. The general

gauge invariance condition in this case,

knPmn
5(o)~k!50, ~A5!

can always be written down in terms of the following tw
equations:

knPm in
5(o)~k!50, ~A6!

knPm'n
5(o)~k!50, ~A7!

wherePm in
5(o)(k) is that part ofPmn

5(o)(k) where the indexm

can take the values 0 and 3 only. Similarly,Pm'n
5(o)(k) stands

for the part ofPmn
5(o)(k) wherem can take the values 1 and

only. Pm in
5(o)(k) contains Rm in

(o) (p,p8,s,s8), which from Eq.

~67! is as follows:
Rm in
(o) 5° 4ih1~p0!F2«m in12H sec2~eBs!tan2~eBs8!

tan~eBs!1tan~eBs8!
k

'

21~k•p! i@ tan~eBs!1tan~eBs8!#J
12«m i12a i

@pn i
8 pa itan~eBs!1pn i

p8a itan~eBs8!#1gm ia i
kn'

H pa i
˜

@ tan~eBs!2tan~eBs8!#2ka i
˜ sec2~eBs!tan2~eBs8!

tan~eBs!1tan~eBs8!J
1gm in

~p• k̃! i@ tan~eBs!2tan~eBs8!#G ~A8!
andPm'n
5(o) contains Rm'n

(o) (p,p8,s,s8), which is

Rm'n
(o) 5° 4ih1~p0!„$gm'n~p• k̃! i1gna i

pa i
˜

km'
%@ tan~eBs!

2tan~eBs8!#1gna i
ka i
˜

pm'
sec2~eBs!tan~eBs8!….

~A9!

Equations~A6!, ~A7! imply that one should have the follow
ing relations satisfied:
knE d4p

~2p!4E
2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)Rm'n
(o) 50

~A10!

and

knE d4p

~2p!4E
2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)Rm in
(o) 50.

~A11!

Of the two above equations, Eq.~A10! can be verified easily
since
1-11
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knRm'n50. ~A12!

Now we look at Eq.~A11!. We explicitly consider the
casem i53 ~the m i50 case leads to a similar result!. For
m i53,

knR3n
(o)5° 2p0$~p8i

22pi
2!@ tan~eBs!1tan~eBs8!#

2k'
2 @ tan~eBs!2tan~eBs8!#%@4ih1~p0!#.

~A13!

Apart from the small convergence factors,

i

eB @F~p,s!1F~p8,s8!#5~pi8
21pi

222m2!j2~pi8
22pi

2!z

2p'8
2tan~j2z!2p'

2 tan~j1z!,

~A14!

where we have defined the parameters

j5
1

2
eB~s1s8!,

z5
1

2
eB~s2s8!. ~A15!

From the last two equations we can write

ieB d

dz
eF(p,s)1F(p8,s8)5eF(p,s)1F(p8,s8)@pi8

22pi
2

2p'8
2sec2~j2z!1p'

2 sec2~j1z!#,

~A16!

which implies

p8i
22pi

25 ieB d

dj
1@p8'

2 sec2~eBs8!2p'
2 sec2~eBs!#.

~A17!

The equation above is valid in the sense that both sides
actually act uponeF̃(p,s,p8,s8), where

F̃~p,p8,s,s8!5F~p,s!1F~p8,s8!. ~A18!

From Eqs.~A13! and ~A17!, we have

knR3neF̃5° 24ih1~p0!p0F @p8'
2 sec2~eBs!2p'

2 sec2~eBs!#

3@ tan~eBs!1tan~eBs8!#

2k'
2 @ tan~eBs!2tan~eBs8!#

1 ieBp0@ tan~eBs!1tan~eBs8!#
d

djGeF̃. ~A19!
05301
it

Now using the expressions forp'
2 and p'8

2 from Eqs. ~63!
and ~64! we can write

knR3neF̃5° 4eBh1~p0!p0F @sec2~eBs!2sec2~eBs8!#

1@ tan~eBs!1tan~eBs8!#
d

djGeF̃. ~A20!

The above equation can also be written as

knR3neF̃5° 4eBh1~p0!p0

d

dj
$eF̃@ tan~eBs!1tan~eBs8!#%.

~A21!

Transforming toj,z variables and using the above equatio
we can write the parametric integrations~integrations overs
ands8) on the left hand side of Eq.~A11! as

E
2`

`

dsE
0

`

ds8knR3neF̃

5
8h1~p0!p0

eB E
2`

`

djE
2`

`

dzQ~j2z!
d

dj
F~j,z!

where

F~j,z!5eF̃@ tan~eBs!1tan~eBs8!#.

The integration over thej andz variables in the above equa
tion can be represented as

E
2`

`

djE
2`

`

dzQ~j2z!
d

dj
F~j,z!

5E
2`

`

djE
2`

`

dzF d

dj
$Q~j2z!F~j,z!%

2d~j2z!F~j,z!G
52E

2`

`

djF~j,j!. ~A22!

Here the second step follows from the first one as the fi
integrand containing theQ function vanishes at both limits
of the integration. The remaining integral is now a functi
of j only and is even inp0. But in Eq. ~A22! we have
h1(p0)p0, which makes the integrand odd underp0 integra-
tion in the left hand side of Eq.~A11!, ash1(p0) is an even
function inp0. So thep0 integral as it occurs in the left han
side of Eq.~A11! vanishes as expected, yielding the requir
result shown in Eq.~A6!.
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