PHYSICAL REVIEW D 68, 053004 (2003

Bosonic corrections toAr at the two-loop level
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The details of two recent calculations of the two-loop bosonic corrections to the muon lifetime in the
standard model are presented. The matching to the Fermi theory is discussed. Renormalization in the on-shell
and the modified minimal subtraction schemes is studied and the transition between the schemes is shown to
lead to identical results. High precision numerical methods are compared with the mass difference and large
mass expansions.

DOI: 10.1103/PhysRevD.68.053004 PACS nuniber12.15.Lk, 13.35.Bv, 14.60.Ef

[. INTRODUCTION tween the schemes contains comparisons of the methods and
the final results. A description of the computational methods
The muon decay lifetime(,) has been used for a long and conclusions close the main part of the work. In the Ap-
time as an input parameter for high precision predictions opendixes, a derivation of the electric charge counterterm
the standard modéSM). It allows for an indirect determi- through theU(1) Ward identity can be found, followed by
nation of the mass of th&/ boson M,,), which suffers the explicit analytic results for the expansions of the on-shell
currently from a large experimental error of 39 MM, one  andMS quantities.
order of magnitude worse than that of t@eboson mass
(M3). A reduction of this error by the CERN Large Hadron Il. MATCHING
Collider (LHC) to 15 MeV[2] and by a future linear collider
to 6 MeV [3] would provide a stringent test of the SM by
confronting the theoretical prediction with the experimental
value. G
The extraction oMy, with an accuracy matching that of eff _ ) , °F ; ; ;
the next experiments, i.e., at the level of a few MeV, neces-£ = LoenT Loco™ \/EOF+h|gher dimension operators,
sitates radiative corrections beyond one-loop order. Large (h)
two-loop contributions from fermionic loops have been cal-
culated in[4]. The current prediction is affected by two types whereOg is the four-fermion Fermi operator of dimension 6:
of uncertainties. First, apart from the still unknown Higgs
boson mass, two input parameters introduce large errors. The Op= [jﬂya(l— 75)#][€7a(1— ¥s) vel, 2)
current knowledge of the top quark mass results in an error
of about 30 MeV[5], which should be reduced by the LHC andGg. is the Fermi constant. Note that Ed) is a definition
to 10 MeV and by a linear collider even down to 1.2 MeV. of Gg. This Lagrangian can be used to describe low energy
The inaccuracy of the knowledge of the running of the fineprocessegsuch that energies ar&M,,) mediated by the
structure constant up to thé, scale, Aa(M;), introduces a weak charged current. Since the theory of ER. is non-
further 6.5 MeV error. Second, several higher order correcrenormalizable, an ultraviolet cutoff should be introduced.
tions are unknown. In fact the last unknown correction at the |n particular, for the muon decay process we have
O(a?) order has been calculated only recently6hand[7].

The muon lifetimer,, can be computed from the effective
Fermi theory given by the Lagrangian

This contribution comes from diagrams with no closed fer- 1 205 2
mion loops. — == ‘;(1—8—5 (1+Aq), (©)]
It is the purpose of the present work to give a detailed Tw 192 m,

description of the methods used in the calculations presented

in [6] and[7]. Since one of the groups used high precisionwith m, and m, being the masses of the electron and the

numeric methods and the other deep expansions both in magsuon, respectively. The quantityq describes all QED cor-

differences and in large masses, a comparison can be givergctions in the Fermi theory and has been calculated at the
In the next section we discuss the question of matching obne-loop[8] and the two-loogd9] order.

the Fermi theory onto the standard model at low energy By its natureGg is the Wilson coefficient function of the

scales. Then we move to a discussion of renormalization i@peratorOr and can be evaluated from the SM. Tradition-

the on-shell scheme and continue with the modified minimakilly, the matching relation betwedy and the parameters of

subtraction MS) scheme. A section on the transition be-the SM is parametrized as follows:
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V2 8(1-M2/M2EHM2,

(1+Ar). (4)

The quantityAr=ArM+Ar®)+ ... absorbs the effects of
all loop diagrams.
It is the purpose of the following subsection to establish

the framework for the calculation afr. SJ.\/\/é

A. Factorization theorem

In principle, the muon decay amplitude can be evaluated —
directly in the SM, but this is not feasible in practice. There
are many scales involved which vary from less than 1 MeV
to 100 GeV, i.e., by more than five orders of magnitude. On
the other hand, the number of Feynman diagrams grows very
fast with the number of loops. A way to keep the problem
manageable is to switch on the machinery of effective
Lagrangiangsee Eq.(1)]. This allows one to simplify the —
calculation enormously and to separate consistently the low

energy (“soft” ) dynamics from the high energfhard”) m

A

static characteristics.

Suppose that we can compute the muon decay amplitude
A®Min the SM. Then the Fermi constaBt defined through FIG. 1. One-loop factorization with Pauli-Villars regularization.
Eqg. (1) can be predicted fromASM. Indeed, we should re-
quire that both evaluations in the SM and the Fermi theory(6). This requires, however, much extra effort to evaluate the
give the same result. At the tree level the correspondingsoft” pieces (or, at least, to separate them the amplitudes

matching equation reads and theZ’s. Historically, for this purpose the Pauli-Villars
. regularization was used ifiL0] and then extended to two-
Ge — m loop order in[11]. The same approach has also been applied
ASM=E<M|OF|eVMVe>+o —ﬁ) B in[5].
W

How it works at the one-loop level is demonstrated in Fig.

This equation just states that the amplitude of the proces%‘ There are only three infrared divergent diagrams with a

L is th both in the full SM and in the effecti photon. From each diagram its counterpart in the Fermi
p—evv is the same both in the fu and in the effective 1,051y should be subtracted. The left diagram in each line of
Fermi theory up to operators of higher dimension.

. . Fig. 1 corresponds to the result in the full model and there-
When loop effects are taken into account, matrix element%re contains both the “soft” and the “hard” parts. The right
in both sides of Eq(5) get quantum corrections. Sinée’

i one contains only the “soft” part, which means that the dif-
and(u|Oglev, ve) are amputated matrix elements one has toference is the requested “hard” correction. In addition, for
renormalize the external wave functions also. Therefore thﬁ’]e diagrams in the frame the Pauli-Villars regu|arizati0n is

final form of the matching equation reads introduced to regularize the ultraviolet divergences. At the
PoSTSSTSST two—Iqop Ievgl we have a very similar situation. The differ-
VZ2el2ulonlon, A ence is that instead of “hard” and “soft” terms there are now
“hard-hard,” “hard-soft,” “soft-hard,” and “soft-soft” con-
s —of—of—— 1 CF — tributions. Of these, only the “hard-hard” piece contributes
= \/ZZ,EZZ,,U,ZZ,VEZZ,V#ZOF E<M|OF|GV,LVe> to Gg.

Accidentally, it happens that the sum of the three “soft”

4 diagrams inside the frame in Fig. 1 is an ultraviolet finite
+0 —Z , (6)  quantity(let us call it ¢y). It is easy to prove that this holds
w true also to all orders. This is a consequence of the Ward-

- off ) .. Takahashi identity for QED. This fact, however, is a pure
whereZ;¢ and Z, are the wave function renormalization coincidence rather than something fundamental. If such a
constants of the fermions evaluated in the SM and in thgancellation had not occurred, renormalization of the opera-
effective theory, respectively, an‘tbF is the renormalization o O would be required, as is taken into account in .
constant of the Fermi operator in the effective theory. The scheme given in Fig. 1 is consistent but the disadvan-

There are two ways to comput@s from the SM: (1) a  tage of it is that there arises the problem of bookkeeping of
standard matching calculation, &) automatic matching via “soft” and “hard” parts, and the problem is already very
the factorization theorem. complicated at the two-loop level. Indeed, at the two-loop

The former approach works always by simply computinglevel one has to subtract from each diagram the “hard-soft,”
all ingredientgapart fromGg) in the matching equation Eq. “soft-hard,” and “soft-soft” pieces.
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Therefore it would be very helpful to find some other way  Finally we get
to obtain the “hard” part. Thus we come to the second way
to computeGg—automatic matching. This procedure is the B NSSMSSMSSHE A SM
most straightforward and the most economi@ainimal in E_[ Zzyezmzzvezzm A hards 8
cosbh way to compute. It is based on the factorization theo-
rem, proven, e.g., ifl2]. It allows one to extract the *hard” \yhere the subscript “hard” means that all “soft” scales are
part directly without any reference to “soft” pieces. As a pyt to zero.
well known example of such a procedure we can mention the  Thys the problem is reduced completely to the vacuum
evaluation of Wilson coefficient functions in deep inelastic Feynman diagrams of one- and two-loop order and the book-
scattering processes. ___ keeping problem does not arise at all. The wave function
Returning to the sum of the three “soft” graphs in Fig. 1 renormalization constants are to be computed in the on-shell
(Xs0r) We notice that irG all “soft” modes are eliminated.  scheme. Again, for massless leptons, the wave function
This means that all subgraphs in Fig. 1 should be computegenormalization constants are defined through vacuum dia-
at vanishing masses of the leptons. In this case the Wargyrams only. Such diagrams can be evaluated analytically us-

Takahashi identity not only makess. ultraviolet finite but  jng the reduction formulas dfL5] based on Integration by
also nullifies it. Thus all “soft” parts add up to zero. This is parts identitie$16].

also true to all orders of perturbation theory. In other words,
one can from the very beginning nullify all external mo-
menta and masses and evaluate the bubble diagrams ob- . o )
tained. Of course, new infrared divergences are generated, An important problem in the calculation is the reduction
They cancel, however, in the expression &¢. To regular- of the amplitudes to scalar integrals. It is not only of practi-
ize these infrared divergences we use the dimensional regGal importance. In fact, it is connected to the correct defini-
larization. tion of the matrix elements in the model, since dimensional
To prove rigorously that infrared singularities indeed dropregU'"ﬂ‘r'z‘?‘t'on_IS used. _ o
out from the result one can turn to the framework for con- The matching to the Fermi theory with its doubleA
struction of effective low energy Lagrangians given ir2]. chiral structure is made possmlg because of the left-
At the level of individual Feynman diagrams one can Sepahandedness of the charged current in the standard model. The
rate “soft” and “hard” scales with the help of the asymptotic ‘hard” components of the diagrams contain only massless
expansion procedu[[dB]_ Let F denote a Feynman diagram_ fermions and therefore fOI’ma"y the structure of the two

B. Projection

Then spinor lines can be mapped onto the operator
YPL@y,PL. 9
F~ 3 ST(H), (@) i
HCF In four dimensions, every string of an odd number of gamma

matrices and a left-handed projector can be reduced to the

where the sum runs over all “hard” subgrapHsof the dia- structurey“P, due to the Chisholm identity

gramF; Sis a “soft” subgraph obtained frorr by shrinking
H to a point andT stands for the Taylor expansidbefore
integration of H with respect to all “soft” parameters. The
exact rules for construction of hard subgraphs are discussethe reduction leads to the operator
in detail in[13].
The important property of the operation E{) is that it T Y'PLOY'PL, (11)

has the combinatorial structure of tReoperation[14]. This
allows one to promote the operation on a single FeynmaﬁvhereTW is some tensor made of the integration momenta.
diagram to an Operation on the whole Feynman amp"tud&iﬂCG there are no nonvaniShing external momenta, this ten-
(the factorization theorem By this procedure all infrared SOr must be proportional tg,, and the result Eq(9) fol-
divergencies are absorbed either by the “soft” matrix ele-lows. A suitable way to obtain the right value directly is to
ment or by the renormalization constaty, of the operator. Use a projector made of trace operators. Let the original
The detailed discussion can be found[i2]. At this point, ~ Product of strings of gamma matrices be denoted by
we should stress once more that although in general the sepa-
ration into “soft” and “hard” parts is arbitrary, in this case it Ihel,. (12)
E flxgd by the existing result for the QED corrections in th.eWe wish to obtain the proportionality coefficiedt in the

ermi model[8,9], and the procedure described above satlsic lowi tion:
fies the appropriate matching equation, Eg). oflowing equation.

pprop geq
In the case ofsg we have further simplifications:

YuYvYp— gMV’Yp+ gvp’)/;ld_ g;x,p’)/v_ [ E,qua"yU'YS . (10)

(1) The anomalous dimension of the Fermi oper&eris f [@T=AX(y*PL@y,P). (13
Zero; thereforioF in the matching equation E¢6) is equal
to 1. Two possibilities of closing the spinor strings with trace
(2) At zero lepton masses and external momentaZgll  operators are depicted in Fig. 2. The left one has been used in
and the “soft” matrix element in Eq(6) are equal to 1. [5] and is given by the equation
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Iy=T1y"Py, 17
FZZYMPLFéY (18)
3@ L _ 9{ then the projector will give the same result for
Iiy*PLey,PLI (19)
and
FIG. 2. Two of the possible projectors far. The dashed lines Liy*P '@ y,P, (20
represent the strings of Dirac matrices, and the crosses the projec-

tion operators. which can be proved by inserting both expressions into Eq.

(15) and performing the trivial index contraction.

1
= — M
A 4df Ty PRITHT27,Pe), (14 ll. ON-SHELL RENORMALIZATION
where the dimension of space-tirdénas been kept arbitrary ~ Two-loop calculations within the on-shell renormalization
and the trace of the unit matrix has been put to 4, as usual. Acheéme require the knowledge of several counterterms. At

second possibility which we used to perform the calculationghe very least, charge and mass counterterms are needed. In
presented in this work is given by this section we first discuss the problem of gauge invariance

in connection with tadpole diagrams. We then give specific
1 expressions for the required counterterms.
A=— mJ Tr(I'yy,Pr2v*PRr), (15

A. Tadpoles and gauge invariance of counterterms
and corresponds to the right picture in Fig. 2.

Both projectors are obviously equivalent in four dimen- It has been known for a long time that the inclusion of

sions due to the Chisholm identity as explained above. Th adpoles is necessary to obtain gauge invariant counterterms.

difference starts to be important for divergent integrals. IntE fact, tfh'sf propertyl'waslftlrst ant'Ce[dZHla 'shortly dafterl. it
fact the problem only occurs for one-particle-irreducible '€ Proot of renormaiizability of gauge theories, and explici

four-point diagrams, where the divergence can come fronﬁ:alculations have shown how this works up to the t_wo_-loop

two sources: first from the external wave function renormal—lexelglhg]' A general proof of ttt;]e quantum action pnrfmple,h I
ization, which is incomplete due to infrared divergences, and'Nich has asa consequence the gauge invariance ot on-she
second due to infrared divergences of the diagrams thenrocesses in the bare Lagrangian, requires the inclusion of
selves. As noticed if5] the first projector Eq(14) needs to even those tadpoles that would be cancelled by normal or-

be corrected, as it does not satisfy several requirements, ”kg’ermg(one-loop tadpoleg 20]. There are, however, two dis-

for example, the vanishing of diagrams with propagator in_advantages of having tadpoles in actual calculations. First,

sertion in the photon lines. Moreover, one can explicitlyt.hiS requires the inclgsion of diagrams that_ dropout in the
check that without corrections the subtracted diagrams in th naltresudlt. Set(riond, |nblargt;: dspale calculatlonf] one Wogli?
Pauli-Villars approach do not cancel and the dependence elo :e Fce el nf["r:n ero 'i‘.gTamS 35 mbhjgpl)as possible
the A scale remains. In the automatic factorization approac y evaiuating only the one-particie-irreduct ones,

this shows up through an incomplete cancellation of diver-ar.]d these cannot have tadpole parts. Therefore, as _Iong as we
gences. Notice, however, that the result is gauge indeper‘f\—'Ish to obtain rgsglts at the_ least cost_and by using auto-
dent; thus it is only the finiteness of the result that shows tha'inated software, it is interesting to consider alternative pos-

: L ibilities.
the projector is incorrect. S| - .
On the contrary, the projector E¢L5) does not require It turns out that it is possible to prepare the bare Lagrang-

any corrections. It does satisfy all the algebraic requirement?g I|Tj SbueCThZ Wzy';r}a;g}iﬂgngﬁg? g?gﬁngggétgﬁingﬁs
and also yields a finite result as well as the exact cancellatio u wave tunctl lzation
of the subtraction diagrams of Fig. 1 éhdimensions and in e vacuum renormalization constant, and still all of the tad-

all orders of perturbation theory. This useful property foIIowspOIes would be canceled7]. Let us start by considering a

from the fact that this projector respects the Fierz Symmetr*agranglan n Wh'(.:h the bare coupling and masses are d_e-
in d dimensions with respect to the last vector boson lin ined through physical processes. The masses can be equiva-

connecting the two gamma matrix strings. One can chec ntly defined through the position of the poles of the physi-
explicitly that, for example, cal Smatrix in the complex plane as recently projéd]. In

such a case all of the bare parameters would be gauge invari-
ant, because they would satisfy equations that have this same
(16) property (as long as they are given in an invariant regular-
ization, of coursg It is important to supply a condition on
where~ means equality after projection. In fact, if the fer- the vacuum expectation value of the bare Higgs figJdhat
mion strings of Eq(12) are rewritten as would resum terms of orde®(a®). A choice that is still

Yu Yo Yo PLO Y Y Y PL~ vy, v, v V' PLOYPL,
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FIG. 3. Vacuum expectation

X value counterterm insertion into
O the W boson self-energya), re-
! ! producing tadpole insertiongb)
W I : and (o)
ANNANNANNANNNC ANNANNANNANNNC
a) b) c)
consistent with gauge invariance is e 1
1 i1 5z§2>=,—211§,2)—55251> 6z + sz
o2, ,2l—0 21) sin MM
200 200 0~ Mo =Y
SMED  smEY  ssinely o
where\y and uq are defined through the Higgs Lagrangian +2 M2 + M2 +2 sin 6y, — L7 .
H w
1 1 29
Lrigo=5 3PI00— Pho(@f0)%, (22 29

The insertion of this counterterm reproduces all of the tad-
and®, is the Higgs doublet. Equatiaf21) implies the van-  pole diagrams that would be included in the usual approach.
ishing of the linear term in the Lagrangian. Although this An example is depicted in Fig. 3. &, in the W boson
term will be subsequently altered, the tree-level contributiorself-energy(a) leads effectively through the first term in Eq.

will always vanish. (29) to insertion of a one-loop tadpole with a vertex counter-
We now introduce an additional renormalization of theterm (b). This counterterm also contains a correction to the
bare vacuum expectation value vacuum expectation value of the Higgs field, which repro-

duces the tadpole diagrafo).
vo—>v023/2. (23
o B. On-shell scheme counterterms
The renormalization constai, can be used to cancel the o ) _
tadpoles recursively, which implies together with Eg1) The on-shell renormalization scheme is defined by the
that the first nonvanishing term in its perturbative expansiorfequirement that the masses be identified through the poles

starts at ordeO(a). The linear term in the Higgs field can Of the physicalS matrix (as the real part of the polewhile
now be written as the electric charge coincides with the value measured in the

Thompson scattering process, as for example in the quantum

o Misindy, o, o Hall effect. These conditions are enough to fix all of the free
—ToH == ————(My)°Z,;MZ,~DH", (24  parameters of the SM with minimal Higgs secfoeglecting
the Cabibbo-Kobayashi-Maskaw@KM) matrix and the
where the following relations have been used: strong coupling constahtThe counterterms have been given
by many authorsalthough here we need also to supply ¢he
B ZsinGS\,MS\, order parts at the one-loop leyelThe peculiarity of the
Vo~ o ' (25) present work is the specific definition of the bare masses,
which are gauge invariant without including tadpole dia-
wi=(M?%)?, (26) ~ grams. This, however, implies that the formulas defining the
counterterms will be slightly different.
eoM? 2 At the one-loop level, the mass counterterms are related to
No= o0 (270  the on-shell self-energies through
sin My,
N . . 2(1)_ L)/ np2y 3 2 o>(1)
At the tree level the contribution is zero, since the{? My =Rellp(My) — 5 My oz, (30
=1, as noticed above. To one-loop order, the relation be-
tween_tht_a tadpole diagrams and the vacuum expectation 5M\2A§1)=_H%\)N,T(M\2N)_M\2N521(Jl)' (31)
value is simple:
. M= —11G) (M3)—MZaZ(Y, (32
sZN=—-—>o TP, (28 _ _ _
sinwMuwM§ whereill;; denotes the self-energy diagrams of the boison

and the subscripl stands for the transverse part. For bosonic
whereil‘[f}) is the sum of 1P| one-loop tadpole diagrams of corrections to the Higgs boson mass counterterm the real part
the Higgs field. The situation gets much more complicated ahas to be taken due to the possible decay infé@ Z boson
the two-loop level: pair. To one-loop order this still yields a gauge invariant
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result for the renormalized amplitude. Th¢ and Z bosons  tion constants of the photon and tAeboson was proved in

do not require such a treatment either at one- or at two-loop22,23 using the BRS symmetry. A simpler proof is given in

order. Appendix A. The one- and two-loop counterterms in the on-
At the two-loop order, onlyW andZ boson mass counter- shell scheme are given by

terms are needed, and they assume the form
1 sinfy

1
SMED= 11, +(M3) — 62 sMED—M2,52? 828)= = 50230~ 5 Gosty, 9247 (41)
— 6ZM(M3,62{H+ sm3M), (33 L 1 sinéug
@) _ =572 = 20w () (1)2
57§ 50205 o » 678+ (5z8M)

SMZP=—T1) (M%) — 628D sMZ M~ M5 627
1 1 1 6siné
_57W(M2s57D 2y 1 ZM2(s7W)2 +(s7Wy2_ = T2 W oo(1)
02, (M28Z57+ oM7) + 7 M3(6Z57)*. 5(023)°~ 5 0%, 6Zy). (42

(34) The two-loop wave function renormalization of the photon is

The last term in th& boson mass counterterm, which doesdiven by the short formula

not occur in theW boson mass counterterm, has its origin in

the mixing betweerZ andvy. If_t_he self-energies have imagi- 5Z(YZJ=HEYZY)’T(0) _ 1(52(213)2, (43)

nary parts, then suitable additional terms have to be included ’ 4

as described if5]. The above formulas are valid only if the ) o _

subdivergencies in the two-loop self-energies are renormalvhereas in the mixing counterterm the vacuum expectation

ized. They also require the wave function renormalizationvalué correction again makes its appearance:

constants of the bosorithe prime denotes a derivative with ) L L

respect to the momentum squared 2 2 1) s (1 1) spp2(1
P q 573 =— angm) ~ 50289578~ Wazgy)alvl 20

z z

SZ(=T1{+(M3), (35 57 57 4
- v Zy
5Z$1=115)7(M3) 39

In the on-shell calculation the ghost sector was also renor-
and the mixing renormalization malized. The corresponding constants are d&]jrup to an
unimportant renormalization of the ghost wave functions, the
difference being dictated by simplicity. The wave function
5Z(ylz)=—2H(ylz),T(M§)- (37)  renormalization constants of the ghosts and Goldstone
Mz bosons have been left unspecified. For the ghosts, these con-
stants cancel trivially within every closed loop. With the
Goldstone bosons, the situation is more complicated, since
the fact that the gauge fixing term should not be renormal-

The last two constants form part of thex2 renormalization
matrix of the neutral bosons

1 ized induces Goldstone wave function renormalization con-
20 72 522\ /a stants in the ghost sector. These can cancel only in gauge
ml_ u (38) invariant quantities. This indeed happened for all the mass
Zz 1Z 112 z,) and coupling counterterms and for the complete result.
252y Yy

IV. MS RENORMALIZATION
The remaining two renormalization constants define the pho-
ton field and can be obtained at zero momentum transfer In thlSﬂ:tlon we describe in detail the renormalization of
from the following formulas: Ar intheMS schemeAr is computed through the matching
procedure described before in Sec. Il and defined by(&q.
with all parametergmasses and couplingjiven also in the

5z(zly): - WH(YQT(O), (39 MS scheme. Here we choose the strategy of multiplicative
z renormalization. After multiplication by the on-shell wave
570 0) (40) function renormalization constants of external fermion fields,
vy~ yyn TV the result is expressed in terms of bare masses and bare elec-

Jric charge. In order to get thi1S renormalized result for

The electric charge counterterm can be obtained in tw _ .
g one needs to substitute all bare parameters in the form

ways. The first consists in simply calculating the scatteringG
of fermions off real photons, i.e., at zero momentum transfer.

This, however, unnecessarily introduces three-point func-

tions. A second possibility is to use thi1) Ward identity.

A suitable relation between the wave function renormaliza-

€= Zee(1),

(M{)?=Zpn mi(u), (45)
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wheree(x) andm;(u) are theMS charge and masses, re-

. . (2)_ _ 2 (2) 1 W)
spectively, and u is the MS parameter. The 0Z;,= IV I57+(0)+ 5 62%,1172+(0)
MS renormalization constants will be specified in the next z
two subsections. 1 1 e

Let us stress that in Eq45) we renormalize only the + 552(717)H(712),T(0)+ §5Z(zz)H(yz),T(0)

physical parameters and no renormalization of the unphysi-
cal sector(ghost sector and gauge fixing parametéssre- 1 (1) o (1)
quired. The renormalization of the boson particle wave func- — 50252027y, (48)
tions is also unnecessary, apart from the on-shell wave
function renormalization constants in the neutral gauge seavhere this time all of the self-energies are unrenormalized.
tor, which are needed to define the electric charge counteRll other one-loop field renormalization constants were de-
termin Sec. IV A. TheMS wave function counterterms can- fined before in Sec. Ill B. At the end we have an expression
cel anyway in the final expression. for the on-shell charge renormalization constant expressed
As already mentioned earlier, in order to have explicitlyvia the bare charge, Weinberg angle, and masses. Now, re-
gauge invariant counterterms, one should take the tadpolgriting the bare quantities in terms oS ones with yet
diagrams into account properly. There are two ways to dainknown coefficients in Eq46) and requiring that the tran-
this: either just include all possible Higgs boson tadpole diasition between on-shell andlS charges should not contain
grams in the calculation, which is done here in theyjergencies, we easily extract thdS charge renormaliza-
MS scheme or, alternatively, using the technique describeglgn constants.

new countertermsZ, . In both cases we obtained the samegpplied. In order to findZ, we differentiate Eq(46) with

Below we present the analytical expressions for charge
and masMS renormalization constants, needed in order to de €
obtain a finite expression fakr in the MS scheme. dlog 2 =T 5et Be, (49)
A. Coupling and mass renormalization where
The bare charge, and theMS chargee are related via e3 e°
Be= Pyt (50

b+
2 2)2
() e e*(w) S 167 (167°)

e=pu’e| 1+ o 3
16m°e (167%)%e is the 8 function. Since @/dlogu?)ey,=0, the left-hand side
4 (LHS) of Eq. (46) becomes zero after the differentiation,
e*(u) (2.2) (46) while the RHS relates the coefficierits and the unknown
(167222 ¢ )’ constants in Eq(46):

z{M= bo,
where the constanig's, as we shall see in the following, can ¢
depend on si,. L 22 3,
There are two ways to determine thtS renormalization L= Eb ,
constant in this expression. One is to proceed exactly as for
its on-shell counterpart in Sec. Il B, i.e., from the Ward

1
identity z&Y= b1 (52)
1 sin6Y, The functiong, can be extracted from the existing calcu-
1=27, \/Zw+§—0522y . (47)  lation in the unbroken theory; namely, for ti8J(2) and
CoSty U(1) chargeg andg’, respectively, thes functions read
The one- and two-loop counterterms are given by E4g) 197 N 1 g° 3 g°%°
and (42), respectively, with the only difference that without By = 12 1672 4 (1672)2 4 (1672)2’

renormalization of the subdivergencies the wave function

renormalization constants read 43 g3 259 gs 1 gsgfz

Po " iem 12 (1672)2 4 (16m2)2°

6Z5)=115)7(0)+ 6ZHME)H(0) (52
W) 1oy = s7(1) The one-loop result is given if24], while the two-loop co-
+6Z25152:1(0) 4(5227 ’ efficients have been evaluated[25].
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From the relation

1 1 1
_:_+_,
e2 2 12

g g

(53
it is easy to deduce that

Py + ﬁ—g) : (54

g3 913
Using now Egs(52), (53), and(54) we obtain

Be:eg<

7 € e° 125 1
Be= )

-5 + - +
2167% (16m%)2\ 6sifhy 2cosby
(55)

and, finally, from Eq.(51) we have

7
Zél,l): -3

147
2,2)__
Z(e )— —

8 1

ep__15_ 1 1 _
¢ 12 sirfh,, 4 cog6y,

(56)

The explicit calculation confirms the above result.

Similarly to the charge renormalization we write for the

masses of th&, W, and Higgs bosons

2 4
g°(u) g ()
m)2=m(p)| 1+ —-z{HV+ = 7D
( V) V(/*L) 16’]728 V (16’7T2)28 V
4
g ()
—ZW)). 5
(1672)%e2 v =7

For m; and my, the renormalization constants up to two m,,
loops are required while for the Higgs boson we need onlyy,
the one-loop expression. The analysis, similar to that de

scribed above for the charge, has been done in detflldh
There the explicit expressions fafY, z#?, andz{? are
given.

B. MS results for Ar

In Fig. 4 we pIotArE,%)S'\"_S as a function of theViS Higgs

boson mass in different scales. As input parameters we used
the on-shell values given in Table I.

The solid curve represents the exact result. Two other
curves represent expansions in different regimes:mas
—mz and aany—o0. They cover almost the whole region of
my under consideration. In order to extend the range of the
expansion arounth, the Padeapproximant was constructed.

It sufficiently improves the situation for the intermediate
Higgs boson masses. Thus the expansions completely cover
the region of interest. The details of the expansions are dis-
cussed more precisely in Sec. VI B.

V. TRANSITION BETWEEN THE SCHEMES

Once we have the result in tihdS scheme it is necessary
to translate it into the on-shell parameters, which are known
with high precision for the electroweak sector, contrary to
the strong interacting sector of the standard model. To this
end one has to consider the proper scheme independent
quantity, which is

(1+Ar) Gr
r=-—.
V2
This should be contrasted with the naive approach of taking

simply Ar and substitutingS parameters.
Using the methods described in Sec. IV, we obtain the

aT
P (58)
2Mgsirt oy,

following series expansions connecting on-shell and

MS parameters:

TABLE |. Parameter values used in the calculatiGh

at 137.035999760)
80.42339) GeV
91.187621) GeV
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FIG. 5. One-loop corrections to the relations between the on-sheNi&nanasses for they, Z, and Higgs bosor[sAil= a/(47T)Xil]. The
long dashed ling1) represents the large Higgs boson mass expansion, and the dotté®) lispresents the mass difference expansion. The

short dashed ling3) gives the[4/4] Padeapproximant, which coincides for this range with the exact result foMhend Z boson mass
corrections.

aNS o

A _ A
1+ —Xyus (59) Xio0s=[ _Xlr_MS]Mi,W_’Mi,OS' (64)
4o b

aps= AMS

The coefficients for the three bosons are depicted in Fig. 5
avs w ags) 2 w with parameters valueg as given in Tablell, in a comparison
A X1S (E) XoNs| of the different evaluation methods. For Higgs boson masses

(60) greater than 200 GeV the large mass expansion with six co-
efficients is indiscernible from the numerical result. The

1+

2 g2
Mw,os— MW,M_S

- o) 2 mass (_jifference expansion always fails around 120 G_eV. In
M2 os= Mém_s 1+ 4_MSXfM_S+ _’V'S) Xgm , the visible range from 80 GeV to 200 GeV, the .Papproxr
’ ’ T Am ’ mation based on the mass difference expansion turns out to
(61) practically coincide with the exact result for vector bosons.
For the Higgs boson this cannot happen due to the occur-
M2 =M2 1+ a_M_SXH_ 62) rence of the two-particle production thresholds, and indeed
H.05" 'H.MS 4 TIMS) there is a region between the thresholds which cannot be

reproduced with either the mass difference or the large mass
where theMS renormalization scale dependence has beefXpansion. Obviously, if it was needed this region could be
neglected. The series for the Higgs boson mass relation f&overed by threshold expansions.
needed only to first order, since the Higgs field starts to con- The two-loop correction contains terms coming also from
tribute to the decay only at the one-loop level. the one-loop terms and the proper expression reads
__The above relations have to be inverted to yield the
MS parameters in terms of the on-shell ones. For any pa-

A | _ A_ a_ A_
rameterA the relation will be written as follows: X205~ | ~Xomst X msXims
¥os,, A aos|® A afo—S .
Aws=Aog 1+ EX1,08+ . X2,05|- (63) +E Miz'_—MSaMé XIl,M_S . (69
i,MS

. . ) , ) Mi ms—Mi os
The expansion coefficients are obtained by inverting the

original series up to the required order. At one loop this leadS he corrections for the vector bosons are depicted similarly
trivially to to the one-loop case in Fig. 6. The expansions themselves are
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1x10—35‘mummmmmmHmmmHmHm\mumumumm‘; 1x10—35mmmmmmmmHmHm\HmHm\mumumumm‘z
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FIG. 6. Two-loop corrections to the relation between the on-shelM@dmasses for thé/ andZ bosons ofz[a/(4w)]2xi2). The long
dashed ling1) represents the large Higgs boson mass expansion and the dott€?) liepresents the mass difference expansion. The short
dashed ling?3) gives the[4/4] Padeapproximant.

less precise. It is, however, interesting to note that the Padexpansion is also lost. As a result, if the expansiong16f
approximation together with the large mass expansion coveare taken, the final result can be given with five coefficients
the whole range with high precision. Even the threshold rein both expansions in the large mass case. The formulas can
gion is reproduced with a relatively small error, although thisbe found in Appendix B. The mass difference expansion re-
is due to the fact that the peaks are not very pronounced. quires an independent calculation of the on-shell propagator
We can now combine all the perturbative expansions andiagrams and the result can be found in Appendix C. The
translate theMS result into the on-shell one. We shall not numerical results can be found in Fig. 7. It should be stressed
reproduce the formula since it can easily be obtained fronthat it was checked that the exact analytic result without
the previous equations. It is important, however, to note twgxpansions obtained by the translation procedure described
things. First, in the expression for the two-loAp there are above and by an explicit renormalization in the on-shell
the following terms: scheme are the same.
It is interesting to consider the transition between the
X\z/vOS Xgos schemes performed purely numericall_y. In Fig. 8, the solid
I R e (66)  curve represents the one-loop correction as well as the sum
SinfOy  sin 6y of the one- and two-loop corrections. The fact that they are
indiscernible on this scale is due to their relative smallness.
”:_thIS is combined with the fact that the results in both The most reliable way of Obtaining the Correct(@mart from
MS and on-shell schemes behave as 1#jnit is obvious  the exact methods to take the one-loop result and substitute
that one term in th&V andZ boson mass difference expan- the MS parameters only in the normalization in E&S8),
sion is lost. Second, the result in tMS scheme behaves as whereas the masses A1) MS should be left in the on-
M}, whereas the one in the on-shell scheme behaves aell scheme. This is shown in the curt®. If one simply
M. Therefore, one term in the large Higgs boson massakes the whole invariant, however, and substitutes all of the

(Ar@Hos=... 4

110" I

Loy

FIG. 7. On-shellAr{2). The
long dashed lin€l) represents the
large Higgs boson mass expansion
and the dotted liné2) represents
mass difference expansion. The
short dashed ling3) gives the
[3/3] Pade approximant. The
dash-dotted line$4) and (5) cor-
respond to lower terms in the
large Higgs boson mass expan-
sion, whereag6) is the leading
term.
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0.02 ; precision numerical evaluation of these is currently possible
: ] with one-dimensional integral representatiq29]. To this
end c++ programs were used based on the librapyse

0'0155 3 ] [30]. For large scale differences, which occur when the

g : Higgs mass is much above the masses of\thand thez
5 00% 3 boson, double precision turns out to be insufficient. An easy
: ] way to see it is to remark that the individual terms in the
0.005 result can behave d\ﬂﬁ whereas due to the screening theo-

rem [31] the whole result behaves at most Msi, For a
T Higgs boson mass of the order of 1 TeV, this means that
foo 200 300 400 500 cancellations of the order of @will have to occur. If we
M, [GeV] combine this with the fact that in double precision some of
the integrals can be evaluated only to five digits, the numeri-
cal instability becomes apparent. A way out of this problem
on 32-bit machines is to use software emulated quadruple
precision. Of course, this signifies an important drop in ef-

. fectiveness. In practice, the software runs about 20 times
strongly for Higgs boson masses larger than about 250 Ge lower. Ten times are due to the use of software emulation

It tums out that the sum of the one- and two-loop corre_ctlon%r arithmetical operations and two to more integration
does not reduce the scheme dependence substantially, as. . . -

. points, which are needed for higher precision. On present
shown by curve(3), where the correction up to two-loop

. . gigahertz processors, the evaluation of a single point of the
order in theMS scheme has been_glven IS parameters final result requires around 20 s and a conservative estimate
translated from on-shell values using E(9)—(62). .

of the error over the whole range of Higgs boson mass from
100 GeV to 1 TeV is four digits.
VI. COMPUTATIONAL METHODS Alternatively to the numerical method, we used also a

The calculation of the bosonic corrections to the muonSeémianalytic method of expansio(gee next subsectipnin
lifetime is a relatively complex task. The number of Feyn-this case the huge cancellations mentioned above do not
man diagrams to be calculated is around 5000 in Rpe ~Cause any problem.

gauge. This makes it necessary to use automated software. The size of the programs written @+ and inForRm[32]
requires stringent checks. A helpful property of the bosonic

corrections to the propagators is that the value of every
single diagram can be obtained rather easily through low
The first step of the calculation is the generation of dia-momentum or large mass expansions. In fact, foizt@son
grams. Several systems are presently available. Obviouslyropagators a low momentum expansion up to tenth order
each differs in its ease of use, speed, and design conceptsprovided a five-digit agreement with the integral representa-
The on-shell calculation was based on the+ library  tions for each diagram independently and for the whole sum.
DIAGEN [26]. It generates all diagrams together with all nec- Additionally, we also made an expansion around the point
essary counterterms. The main advantage of this software ig,,=M, (see the next subsectipand got excellent agree-
the speed, since all of the diagrams were generated in a femient between the numerical and expanded results. In the
seconds, thus making the generation phase a negligible paghse of thew boson propagators not all of the diagrams are
of the calculation. below threshold. It turns out that 345 contain a photon or a
Alternatively, for the calculation with the tadpoles the in- massless ghost line, which causes as many as around 160 of
put generatomIANA [27] has been applied. We note that them to be either on threshold or infrared divergent. In this
according to the rules given in Sec. IV no counterterm diacase the low momentum expansion either fails to converge or
grams should be generated. They are all taken into accougbnverges very slowly. A way out of this is given by large
by the multiplicative renormalization. mass expansions. If the lines which are to be considered as
The diagrams to be evaluated can be divided into twcheavy are chosen in a specific way, then the large mass ex-
broad classes. First are those which can be reduced fsansion leads only to vacuum bubbles and one-loop propa-
vacuum bubbles. Here, partial integration identifie§] sup-  gator diagrams and the convergence is comparable to the
plied with analytical formulag15] can be used. case of theZ boson propagators. An example choice of the
The second more complicated problem is the evaluatiomeavy lines for two different topologies is given in Fig. 9.
of the two-loop two-point functions at nonvanishing external This procedure fails only for graphs that represent pure QED
momentum(at the valueg)?=M32 andgq?=M3, in our cas¢  corrections to aW boson line. In this case, however, the
From the several possibilities two different algorithms haveresult is known analytically33].
been used to deal with these diagrams. Another way of testing the analytical reduction and the
The algorithm described if28] has been chosen because diagram generation software is to check the Ward-Takahashi
of its simplicity. As a final result of the tensor reduction identities for the propagators. Here the following relations
scalar two-loop propagator integrals are obtained. A higthave been evaluated:

FIG. 8. Numeric translation air form theMS scheme to the
on-shell scheme vs the exact regigiblid line).

MS parameters, then curvd) is obtained, which diverges

A. Software and checks
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FIG. 9. A choice of formally
heavy lines in the large mass ex-
pansion of twoW boson propaga-
tor topologies.

pZ(H(ZZZ),L+2iMZH(ZZ(%Z)+ M§H§322)62+ pZ(H(Zl(%Z)Z pansion in t'he heavy Higgs boson limit is sqmewhat more
involved. It is given by the rules of asymptotic expansions
+1152, 11§ )5, =0, 67 [13]
In addition, in the presence of botl, and M, we ex-
PZ(H\(AZ/Q/V,L—ZMWHS/\Z/Z:,W” M\2NH(GZV)VGW_ pZ(Hf,%W)Z pand in the difference of these masses as well. Indeed,
+ TG, 18 6 =0 (69) MZ-M2,
———— =sif6,~0.23 (70)
both for on-shell values of the momentum and in an expan- z

sion around zero up to third order. Hege andG,, stand for
the neutral and charged would-be Goldstone bosons, respec-
tively, the subscripL denotes the longitudinal parts of the is a rather small parameter and the convergence of this series
vector boson self-energies, and the scalar vector transitiori§ quite fast. This trick was used previously [ii9]. The
are given by advantage of this approach is that in the case of on-shell
Green’s functions all integrals have only one scale. This al-
lows one to use theorRM packageoNSHELL2[34] to evaluate
g (p)=p*Tlye,(P?), (69  these integrals analytically.
We should also note that to extend the range ofhhe
expansion we apply the Padpproximation. Throughout this
wherep is the ingoing momentum of the vector boson. paper we use f3/3] Padeapproximant forAr and[4/4] for
The combination of the two checks described above teste scheme transition formulas. The Pmroximation for
the software from the diagram generation to the numericahe z,, series does not work well since this series is nonalter-
evaluation. An additional test is of course provided by gaugeating.
invariance, and indeed the calculation was performed in the
generalR; gauge with three independent gauge parameters.
We observed explicitly the cancellation of each of them from
the final result and the counterterms.
Since the bosonic corrections to the propagators in the

— - . A recent calculation of the two-loop bosonic corrections
MS scheme have been evaluated within the large Higgs bq{b Ar performed by two independent arouns has been de-
son mass approach [19] a comparison was also possible p y two indep group

for the whole result. It turns out that the agreement is perfecﬁf”bed n de.ta|l,. from the matchlpg o the Fgrml theory to
e renormalization and the explicit results in the on-shell

for Higgs boson masses running as low as 200 G=¢é Fig. the ren -
6). andMS schemes. The framework for the evaluation of the
To complete the description of the computational meth-Fermi constantGe based on the low energy factorization
ods, let us note that++ and FORM were supplied with a theorem has been constructed. It allows one to com@gte
collection ofawk andBOURNE shell scripts managed by sev- @s @ Wilson coefficient in a simple manner. This approach is
eral MAKEFILES. The system prepared in this way runs com-9general and is also applicable to other low energy quantities.
pletely automatically from the beginning with diagram gen- A comparison of different expansions and numerical
eration up to the numerical evaluation with plots. Actually, Methods has been given. It has been proven that in a wide
the specificity of the problem allowed reduction of the evalu-range of Higgs boson masses expansions provide as much
ation time of the whole problem down to only one hour andPrecision as needed and cover the whole region of interest.

a half, which is rather short for multiloop calculations. The only problematic region, however, is connected to the
thresholds folW and Z boson pair production. If the Higgs

boson was indeed found in this range, then a precise result
could also be obtained with expansions, but this time of the
Here we give more details on how the expansions arghreshold type. The coincidence of the numerical and analyti-
performed in two different regimes that we considered: in theca| results serves as a strong check on the calculation.
mass differencér,=(M%—M3)/MZ and in the mass ratio __The accuracy of the numerical transformation between
4= MﬁlMﬁ- MS and on-shell schemes has been tested. It is shown that
The expansion in the mass diﬁerenmi—Mg is espe-  for Higgs boson masses larger thar250 GeV the two-loop
cially simple. Itis just a Taylor expansion of all Higgs propa- correction does not reduce the scheme dependence, which
gators and Higgs boson masses in the vertices artdipd  can be explained by huge cancellations of large terms during
No additional subgraphs are necessary in this case. The ethe transition procedure.

VII. CONCLUSIONS

B. Expansions
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APPENDIX B: LARGE HIGGS BOSON MASS EXPANSION

APPENDIX A: U(1) WARD IDENTITY AND THE OF Arf)%)s IN THE ON-SHELL SCHEME

RENORMALIZATION OF CHARGE . . . (2) i i
In this appendix, the on-shell renormalizady;; is given

In this appendix we present a derivation of the relationin a twofold expansion, in the large Higgs boson mass and in
between the charge renormalization constant and differenhe mass difference between t¢éandZ bosons. The num-
wave function renormalization constants valid to all ordersber of terms is consistent with the resil®] as explained in
of perturbation theory. The derivation is based on the use ofec. V. The leading behavior both in the Higgs boson mass
the U(1) Ward-Takahashi identity for the weak hyperchargeand in the sine of the Weinberg angle has been factorized
gauge group. To begin with, let us take the bidifel) gauge out:
boson fieIde and rewrite it in terms of mass eigenstates:

B%=cQ A% +s82°. (A1) o 22 4
S (Ar@)OS=| ———| =2 3 sirP"g,RSS. (BY)
bo: . 2 n
0 0o . Amsirffy/ M3 n=o0
Here c$,=cosé), and s, =sin &, are the bare values of the
cosine and sine of the Weinberg angle.
In the next step we express our bare gauge boson fields )
through the renormalized ones: The occurring transcendental numbers are

1
(Z) Y4 WA, +SwZ,}= cS\,[ Ezyzzﬂ +(Z,,) 1’2A#}

S - a
1 e
+S\9\/ (Zzz)llzz +_ZZ A ]
no &Ly
(A2) 4 Cly(w/3)
Now taking the coefficient in front oA, in the equation 9 3

above we have ~0.260434137632162098955729143208030. ,

1 B2)
(23 Pew=CYUZ,y) 2 52,y (A (

To complete the derivation we need to relate #erenor-  While zy=M3/M7, . Note that the leading term in the Higgs
malization constant to the charge renormalization constanboson mass can be resummed irfgjato give the behavior
The electric charge is related to the weak hypercharge via the

following equation:

2 3,12
M 7\ 49 1173
_ 2) _ @ H
P =gich=(2) YRich=Zee=Zgicw,  (A4)  Arifges ( py; 0W> oz 9@CIZ(§) t—
where we have made use of tb€1) Ward-Takahashi iden- 2572
tity Zg, =(Z3) "> Now we can easily deduce that - W} (B3)
CO
Z=(25) V2= (AS) | -
Cw The expansion coefficients read
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APPENDIX C: MASS DIFFERENCE EXPANSION OF Arf)%)s IN THE ON-SHELL SCHEME

The correctionArEf))S in the on-shell scheme for Higgs boson masses in the vicinity ofZthmson mass is correctly
described by an expansion in the mass difference between the Higgs boson Atb#oe and in the mass difference between

the W andZ bosons. The series below contains five terms in both variables:
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APPENDIX D: LARGE HIGGS BOSON MASS EXPANSION OF Ar{2LIN THE MS SCHEME

In this appendixArEf))S renormalized in théIS scheme is presented as a twofold expansion in the large Higgs boson mass
and in the mass difference between Weand theZ bosons. The expansion is parametrized as follows:
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The parameters, i.e., masses, and the coupling constant areNitStrezheme. Apart from the numbers EB2), it is assumed
that In(m3 ;) =In(m3 ,,/x?), u being theMS renormalization scale:
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APPENDIX E: MASS DIFFERENCE EXPANSION OF Ar2 IN THE MS SCHEME
The correction in theS scheme is given by six coefficients in the double expansion in the mass differences between the
W andZ bosons and between the Higgs boson andztesons:
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