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Bosonic corrections toDr at the two-loop level
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The details of two recent calculations of the two-loop bosonic corrections to the muon lifetime in the
standard model are presented. The matching to the Fermi theory is discussed. Renormalization in the on-shell
and the modified minimal subtraction schemes is studied and the transition between the schemes is shown to
lead to identical results. High precision numerical methods are compared with the mass difference and large
mass expansions.
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I. INTRODUCTION

The muon decay lifetime (tm) has been used for a lon
time as an input parameter for high precision predictions
the standard model~SM!. It allows for an indirect determi-
nation of the mass of theW boson (MW), which suffers
currently from a large experimental error of 39 MeV@1#, one
order of magnitude worse than that of theZ boson mass
(MZ). A reduction of this error by the CERN Large Hadro
Collider ~LHC! to 15 MeV@2# and by a future linear collide
to 6 MeV @3# would provide a stringent test of the SM b
confronting the theoretical prediction with the experimen
value.

The extraction ofMW with an accuracy matching that o
the next experiments, i.e., at the level of a few MeV, nec
sitates radiative corrections beyond one-loop order. La
two-loop contributions from fermionic loops have been c
culated in@4#. The current prediction is affected by two type
of uncertainties. First, apart from the still unknown Hig
boson mass, two input parameters introduce large errors.
current knowledge of the top quark mass results in an e
of about 30 MeV@5#, which should be reduced by the LH
to 10 MeV and by a linear collider even down to 1.2 Me
The inaccuracy of the knowledge of the running of the fi
structure constant up to theMZ scale,Da(MZ), introduces a
further 6.5 MeV error. Second, several higher order corr
tions are unknown. In fact the last unknown correction at
O(a2) order has been calculated only recently in@6# and@7#.
This contribution comes from diagrams with no closed f
mion loops.

It is the purpose of the present work to give a detai
description of the methods used in the calculations prese
in @6# and @7#. Since one of the groups used high precisi
numeric methods and the other deep expansions both in m
differences and in large masses, a comparison can be g

In the next section we discuss the question of matching
the Fermi theory onto the standard model at low ene
scales. Then we move to a discussion of renormalizatio
the on-shell scheme and continue with the modified minim
subtraction (MS) scheme. A section on the transition b
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tween the schemes contains comparisons of the methods
the final results. A description of the computational metho
and conclusions close the main part of the work. In the A
pendixes, a derivation of the electric charge counterte
through theU(1) Ward identity can be found, followed b
the explicit analytic results for the expansions of the on-sh
andMS quantities.

II. MATCHING

The muon lifetimetm can be computed from the effectiv
Fermi theory given by the Lagrangian

L eff5LQED1LQCD
(5) 1

GF

A2
OF1higher dimension operators,

~1!

whereOF is the four-fermion Fermi operator of dimension

OF5@ n̄mga~12g5!m#@ ēga~12g5!ne#, ~2!

andGF is the Fermi constant. Note that Eq.~1! is a definition
of GF . This Lagrangian can be used to describe low ene
processes~such that energies are!MW) mediated by the
weak charged current. Since the theory of Eq.~1! is non-
renormalizable, an ultraviolet cutoffL should be introduced

In particular, for the muon decay process we have

1

tm
5

GF
2mm

5

192p3 S 128
me

2

mm
2 D ~11Dq!, ~3!

with me and mm being the masses of the electron and t
muon, respectively. The quantityDq describes all QED cor-
rections in the Fermi theory and has been calculated at
one-loop@8# and the two-loop@9# order.

By its natureGF is the Wilson coefficient function of the
operatorOF and can be evaluated from the SM. Traditio
ally, the matching relation betweenGF and the parameters o
the SM is parametrized as follows:
©2003 The American Physical Society04-1
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GF

A2
5

e2

8~12MW
2 /MZ

2!MW
2 ~11Dr !. ~4!

The quantityDr 5Dr (1)1Dr (2)1••• absorbs the effects o
all loop diagrams.

It is the purpose of the following subsection to establ
the framework for the calculation ofDr .

A. Factorization theorem

In principle, the muon decay amplitude can be evalua
directly in the SM, but this is not feasible in practice. The
are many scales involved which vary from less than 1 M
to 100 GeV, i.e., by more than five orders of magnitude.
the other hand, the number of Feynman diagrams grows
fast with the number of loops. A way to keep the proble
manageable is to switch on the machinery of effect
Lagrangians@see Eq.~1!#. This allows one to simplify the
calculation enormously and to separate consistently the
energy ~‘‘soft’’ ! dynamics from the high energy~‘‘hard’’ !
static characteristics.

Suppose that we can compute the muon decay ampli
ASM in the SM. Then the Fermi constantGF defined through
Eq. ~1! can be predicted fromASM. Indeed, we should re
quire that both evaluations in the SM and the Fermi the
give the same result. At the tree level the correspond
matching equation reads

ASM5
GF

A2
^muOFuenmn ē&1OS mm

4

MW
4 D . ~5!

This equation just states that the amplitude of the proc
m→enn̄ is the same both in the full SM and in the effectiv
Fermi theory up to operators of higher dimension.

When loop effects are taken into account, matrix eleme
in both sides of Eq.~5! get quantum corrections. SinceASM

and^muOFuenmn ē& are amputated matrix elements one has
renormalize the external wave functions also. Therefore
final form of the matching equation reads

AZ2,e
SMZ2,m

SMZ2,ne

SM Z2,nm

SM ASM

5AZ2,e
eff Z2,m

eff Z2,ne

eff Z2,nm

eff ZOF

21 GF

A2
^muOFuenmn ē&

1OS mm
4

MW
4 D , ~6!

whereZ2,f
SM and Z2,f

eff are the wave function renormalizatio
constants of the fermions evaluated in the SM and in
effective theory, respectively, andZOF

is the renormalization
constant of the Fermi operator in the effective theory.

There are two ways to computeGF from the SM: ~1! a
standard matching calculation, or~2! automatic matching via
the factorization theorem.

The former approach works always by simply computi
all ingredients~apart fromGF) in the matching equation Eq
05300
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~6!. This requires, however, much extra effort to evaluate
‘‘soft’’ pieces ~or, at least, to separate them! in the amplitudes
and theZ’s. Historically, for this purpose the Pauli-Villar
regularization was used in@10# and then extended to two
loop order in@11#. The same approach has also been app
in @5#.

How it works at the one-loop level is demonstrated in F
1. There are only three infrared divergent diagrams with
photon. From each diagram its counterpart in the Fe
theory should be subtracted. The left diagram in each line
Fig. 1 corresponds to the result in the full model and the
fore contains both the ‘‘soft’’ and the ‘‘hard’’ parts. The righ
one contains only the ‘‘soft’’ part, which means that the d
ference is the requested ‘‘hard’’ correction. In addition, f
the diagrams in the frame the Pauli-Villars regularization
introduced to regularize the ultraviolet divergences. At t
two-loop level we have a very similar situation. The diffe
ence is that instead of ‘‘hard’’ and ‘‘soft’’ terms there are no
‘‘hard-hard,’’ ‘‘hard-soft,’’ ‘‘soft-hard,’’ and ‘‘soft-soft’’ con-
tributions. Of these, only the ‘‘hard-hard’’ piece contribut
to GF .

Accidentally, it happens that the sum of the three ‘‘so
diagrams inside the frame in Fig. 1 is an ultraviolet fin
quantity~let us call itSsoft). It is easy to prove that this hold
true also to all orders. This is a consequence of the Wa
Takahashi identity for QED. This fact, however, is a pu
coincidence rather than something fundamental. If suc
cancellation had not occurred, renormalization of the ope
tor OF would be required, as is taken into account in Eq.~6!.

The scheme given in Fig. 1 is consistent but the disadv
tage of it is that there arises the problem of bookkeeping
‘‘soft’’ and ‘‘hard’’ parts, and the problem is already ver
complicated at the two-loop level. Indeed, at the two-lo
level one has to subtract from each diagram the ‘‘hard-so
‘‘soft-hard,’’ and ‘‘soft-soft’’ pieces.

FIG. 1. One-loop factorization with Pauli-Villars regularizatio
4-2
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Therefore it would be very helpful to find some other w
to obtain the ‘‘hard’’ part. Thus we come to the second w
to computeGF—automatic matching. This procedure is th
most straightforward and the most economical~minimal in
cost! way to compute. It is based on the factorization the
rem, proven, e.g., in@12#. It allows one to extract the ‘‘hard’
part directly without any reference to ‘‘soft’’ pieces. As
well known example of such a procedure we can mention
evaluation of Wilson coefficient functions in deep inelas
scattering processes.

Returning to the sum of the three ‘‘soft’’ graphs in Fig.
(Ssoft) we notice that inGF all ‘‘soft’’ modes are eliminated.
This means that all subgraphs in Fig. 1 should be compu
at vanishing masses of the leptons. In this case the W
Takahashi identity not only makesSsoft ultraviolet finite but
also nullifies it. Thus all ‘‘soft’’ parts add up to zero. This
also true to all orders of perturbation theory. In other wor
one can from the very beginning nullify all external m
menta and masses and evaluate the bubble diagrams
tained. Of course, new infrared divergences are genera
They cancel, however, in the expression forGF . To regular-
ize these infrared divergences we use the dimensional r
larization.

To prove rigorously that infrared singularities indeed dr
out from the result one can turn to the framework for co
struction of effective low energy Lagrangians given in@12#.
At the level of individual Feynman diagrams one can se
rate ‘‘soft’’ and ‘‘hard’’ scales with the help of the asymptot
expansion procedure@13#. Let F denote a Feynman diagram
Then

F; (
H#F

S•T~H !, ~7!

where the sum runs over all ‘‘hard’’ subgraphsH of the dia-
gramF; S is a ‘‘soft’’ subgraph obtained fromF by shrinking
H to a point andT stands for the Taylor expansion~before
integration! of H with respect to all ‘‘soft’’ parameters. The
exact rules for construction of hard subgraphs are discu
in detail in @13#.

The important property of the operation Eq.~7! is that it
has the combinatorial structure of theR operation@14#. This
allows one to promote the operation on a single Feynm
diagram to an operation on the whole Feynman amplit
~the factorization theorem!. By this procedure all infrared
divergencies are absorbed either by the ‘‘soft’’ matrix e
ment or by the renormalization constantZO of the operator.
The detailed discussion can be found in@12#. At this point,
we should stress once more that although in general the s
ration into ‘‘soft’’ and ‘‘hard’’ parts is arbitrary, in this case i
is fixed by the existing result for the QED corrections in t
Fermi model@8,9#, and the procedure described above sa
fies the appropriate matching equation, Eq.~5!.

In the case ofGF we have further simplifications:
~1! The anomalous dimension of the Fermi operatorOF is

zero; thereforeZOF
in the matching equation Eq.~6! is equal

to 1.
~2! At zero lepton masses and external momenta allZ2

eff

and the ‘‘soft’’ matrix element in Eq.~6! are equal to 1.
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Finally we get

GF

A2
5@AZ2,e

SMZ2,m
SMZ2,ne

SM Z2,nm

SM ASM#hard, ~8!

where the subscript ‘‘hard’’ means that all ‘‘soft’’ scales a
put to zero.

Thus the problem is reduced completely to the vacu
Feynman diagrams of one- and two-loop order and the bo
keeping problem does not arise at all. The wave funct
renormalization constants are to be computed in the on-s
scheme. Again, for massless leptons, the wave func
renormalization constants are defined through vacuum
grams only. Such diagrams can be evaluated analytically
ing the reduction formulas of@15# based on Integration by
Parts identities@16#.

B. Projection

An important problem in the calculation is the reductio
of the amplitudes to scalar integrals. It is not only of prac
cal importance. In fact, it is connected to the correct defi
tion of the matrix elements in the model, since dimensio
regularization is used.

The matching to the Fermi theory with its doubleV-A
chiral structure is made possible because of the l
handedness of the charged current in the standard model
‘‘hard’’ components of the diagrams contain only massle
fermions and therefore formally the structure of the tw
spinor lines can be mapped onto the operator

gmPL ^ gmPL . ~9!

In four dimensions, every string of an odd number of gam
matrices and a left-handed projector can be reduced to
structuregmPL due to the Chisholm identity

gmgngr5gmngr1gnrgm2gmrgn2 i emnrsgsg5 . ~10!

The reduction leads to the operator

TmngmPL ^ gnPL , ~11!

whereTmn is some tensor made of the integration momen
Since there are no nonvanishing external momenta, this
sor must be proportional togmn and the result Eq.~9! fol-
lows. A suitable way to obtain the right value directly is
use a projector made of trace operators. Let the orig
product of strings of gamma matrices be denoted by

G1^ G2 . ~12!

We wish to obtain the proportionality coefficientA in the
following equation:

E G1^ G25A3~gmPL ^ gmPL!. ~13!

Two possibilities of closing the spinor strings with trac
operators are depicted in Fig. 2. The left one has been use
@5# and is given by the equation
4-3
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A5
1

4dE Tr~G1gmPR!Tr~G2gmPR!, ~14!

where the dimension of space-timed has been kept arbitrar
and the trace of the unit matrix has been put to 4, as usua
second possibility which we used to perform the calculatio
presented in this work is given by

A52
1

2d~d22!
E Tr~G1gmPRG2gmPR!, ~15!

and corresponds to the right picture in Fig. 2.
Both projectors are obviously equivalent in four dime

sions due to the Chisholm identity as explained above.
difference starts to be important for divergent integrals.
fact the problem only occurs for one-particle-irreducib
four-point diagrams, where the divergence can come fr
two sources: first from the external wave function renorm
ization, which is incomplete due to infrared divergences, a
second due to infrared divergences of the diagrams th
selves. As noticed in@5# the first projector Eq.~14! needs to
be corrected, as it does not satisfy several requirements,
for example, the vanishing of diagrams with propagator
sertion in the photon lines. Moreover, one can explici
check that without corrections the subtracted diagrams in
Pauli-Villars approach do not cancel and the dependenc
theL scale remains. In the automatic factorization appro
this shows up through an incomplete cancellation of div
gences. Notice, however, that the result is gauge indep
dent; thus it is only the finiteness of the result that shows
the projector is incorrect.

On the contrary, the projector Eq.~15! does not require
any corrections. It does satisfy all the algebraic requireme
and also yields a finite result as well as the exact cancella
of the subtraction diagrams of Fig. 1 ind dimensions and in
all orders of perturbation theory. This useful property follow
from the fact that this projector respects the Fierz symme
in d dimensions with respect to the last vector boson l
connecting the two gamma matrix strings. One can ch
explicitly that, for example,

gmgngrPL ^ grgngmPL;gmgngrgngmPL ^ grPL ,
~16!

where; means equality after projection. In fact, if the fe
mion strings of Eq.~12! are rewritten as

FIG. 2. Two of the possible projectors forDr . The dashed lines
represent the strings of Dirac matrices, and the crosses the pr
tion operators.
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G15G18g
mPL , ~17!

G25gmPLG28 , ~18!

then the projector will give the same result for

G18g
mPL ^ gmPLG28 ~19!

and

G18g
mPLG28^ gmPL , ~20!

which can be proved by inserting both expressions into
~15! and performing the trivial index contraction.

III. ON-SHELL RENORMALIZATION

Two-loop calculations within the on-shell renormalizatio
scheme require the knowledge of several counterterms
the very least, charge and mass counterterms are neede
this section we first discuss the problem of gauge invaria
in connection with tadpole diagrams. We then give spec
expressions for the required counterterms.

A. Tadpoles and gauge invariance of counterterms

It has been known for a long time that the inclusion
tadpoles is necessary to obtain gauge invariant counterte
In fact, this property was first noticed@17,18# shortly after
the proof of renormalizability of gauge theories, and expli
calculations have shown how this works up to the two-lo
level @19#. A general proof of the quantum action principl
which has as a consequence the gauge invariance of on-
processes in the bare Lagrangian, requires the inclusio
even those tadpoles that would be cancelled by normal
dering~one-loop tadpoles! @20#. There are, however, two dis
advantages of having tadpoles in actual calculations. F
this requires the inclusion of diagrams that dropout in
final result. Second, in large scale calculations one wo
like to reduce the number of diagrams as much as poss
by evaluating only the one-particle-irreducible~1PI! ones,
and these cannot have tadpole parts. Therefore, as long a
wish to obtain results at the least cost and by using au
mated software, it is interesting to consider alternative p
sibilities.

It turns out that it is possible to prepare the bare Lagra
ian in such a way, that the only gauge dependent quant
would be the wave function renormalization constants a
the vacuum renormalization constant, and still all of the ta
poles would be canceled@17#. Let us start by considering a
Lagrangian in which the bare coupling and masses are
fined through physical processes. The masses can be eq
lently defined through the position of the poles of the phy
cal Smatrix in the complex plane as recently proved@21#. In
such a case all of the bare parameters would be gauge in
ant, because they would satisfy equations that have this s
property ~as long as they are given in an invariant regul
ization, of course!. It is important to supply a condition on
the vacuum expectation value of the bare Higgs fieldv0 that
would resum terms of orderO(a0). A choice that is still

ec-
4-4
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FIG. 3. Vacuum expectation
value counterterm insertion into
the W boson self-energy~a!, re-
producing tadpole insertions~b!
and ~c!.
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consistent with gauge invariance is

1

2
v0S 1

2
v0

2l02m0
2D50, ~21!

wherel0 andm0 are defined through the Higgs Lagrangia

LHiggs5
1

2
m0

2F0
†F02

1

4
l0~F0

†F0!2, ~22!

andF0 is the Higgs doublet. Equation~21! implies the van-
ishing of the linear term in the Lagrangian. Although th
term will be subsequently altered, the tree-level contribut
will always vanish.

We now introduce an additional renormalization of t
bare vacuum expectation value

v0→v0Zv
1/2. ~23!

The renormalization constantZv can be used to cancel th
tadpoles recursively, which implies together with Eq.~21!
that the first nonvanishing term in its perturbative expans
starts at orderO(a). The linear term in the Higgs field ca
now be written as

2T0H052
MW

0 sinuW
0

e0
~MH

0 !2Zv
1/2~Zv21!H0, ~24!

where the following relations have been used:

v05
2 sinuW

0 MW
0

e0
, ~25!

m0
25~MH

0 !2, ~26!

l05S e0MH
0

sinuW
0 MW

0 D 2

. ~27!

At the tree level the contribution is zero, since thenZv
(0)

51, as noticed above. To one-loop order, the relation
tween the tadpole diagrams and the vacuum expecta
value is simple:

dZv
(1)5

e

sinuWMWMH
2

PH
(1) , ~28!

whereiPH
(1) is the sum of 1PI one-loop tadpole diagrams

the Higgs field. The situation gets much more complicated
the two-loop level:
05300
n
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dZv
(2)5

e

sinuWMWMH
2

PH
(2)2

1

2
dZv

(1)S dZv
(1)1dZH

(1)

12
dMH

2(1)

MH
2

1
dMW

2(1)

MW
2

12
d sinuW

(1)

sinuW
2dZe

(1)D .

~29!

The insertion of this counterterm reproduces all of the t
pole diagrams that would be included in the usual approa
An example is depicted in Fig. 3. AZv in the W boson
self-energy~a! leads effectively through the first term in Eq
~29! to insertion of a one-loop tadpole with a vertex count
term ~b!. This counterterm also contains a correction to t
vacuum expectation value of the Higgs field, which rep
duces the tadpole diagram~c!.

B. On-shell scheme counterterms

The on-shell renormalization scheme is defined by
requirement that the masses be identified through the p
of the physicalS matrix ~as the real part of the pole!, while
the electric charge coincides with the value measured in
Thompson scattering process, as for example in the quan
Hall effect. These conditions are enough to fix all of the fr
parameters of the SM with minimal Higgs sector@neglecting
the Cabibbo-Kobayashi-Maskawa~CKM! matrix and the
strong coupling constant#. The counterterms have been give
by many authors~although here we need also to supply thee
order parts at the one-loop level!. The peculiarity of the
present work is the specific definition of the bare mass
which are gauge invariant without including tadpole d
grams. This, however, implies that the formulas defining
counterterms will be slightly different.

At the one-loop level, the mass counterterms are relate
the on-shell self-energies through

dMH
2(1)5RePHH

(1) ~MH
2 !2

3

2
MH

2 dZv
(1) , ~30!

dMW
2(1)52PWW,T

(1) ~MW
2 !2MW

2 dZv
(1) , ~31!

dMZ
2(1)52PZZ,T

(1) ~MZ
2!2MZ

2dZv
(1) , ~32!

where iP i i denotes the self-energy diagrams of the bosoi
and the subscriptT stands for the transverse part. For boso
corrections to the Higgs boson mass counterterm the real
has to be taken due to the possible decay into aW or Z boson
pair. To one-loop order this still yields a gauge invaria
4-5
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result for the renormalized amplitude. TheW and Z bosons
do not require such a treatment either at one- or at two-l
order.

At the two-loop order, onlyW andZ boson mass counter
terms are needed, and they assume the form

dMW
2(2)52PWW,T

(2) ~MW
2 !2dZW

(1)dMW
2(1)2MW

2 dZv
(2)

2dZv
(1)~MW

2 dZW
(1)1dMW

2(1)!, ~33!

dMZ
2(2)52PZZ,T

(2) ~MZ
2!2dZZ

(1)dMZ
2(1)2MZ

2dZv
(2)

2dZv
(1)~MZ

2dZZ
(1)1dMZ

2(1)!1
1

4
MZ

2~dZgZ
(1)!2.

~34!

The last term in theZ boson mass counterterm, which do
not occur in theW boson mass counterterm, has its origin
the mixing betweenZ andg. If the self-energies have imag
nary parts, then suitable additional terms have to be inclu
as described in@5#. The above formulas are valid only if th
subdivergencies in the two-loop self-energies are renorm
ized. They also require the wave function renormalizat
constants of the bosons~the prime denotes a derivative wit
respect to the momentum squared!

dZW
(1)5PWW,T

(1)8 ~MW
2 !, ~35!

dZZ
(1)5PZZ,T

(1)8 ~MZ
2! ~36!

and the mixing renormalization

dZgZ
(1)5

2

MZ
2

PgZ,T
(1) ~MZ

2!. ~37!

The last two constants form part of the 232 renormalization
matrix of the neutral bosons

S Am
0

Zm
0 D 5S ZZZ

1/2 1

2
ZgZ

1

2
ZZg Zgg

1/2 D S Am

Zm
D . ~38!

The remaining two renormalization constants define the p
ton field and can be obtained at zero momentum tran
from the following formulas:

dZZg
(1)52

2

MZ
2

PgZ,T
(1) ~0!, ~39!

dZgg
(1)5Pgg,T

(1)8 ~0!. ~40!

The electric charge counterterm can be obtained in
ways. The first consists in simply calculating the scatter
of fermions off real photons, i.e., at zero momentum trans
This, however, unnecessarily introduces three-point fu
tions. A second possibility is to use theU(1) Ward identity.
A suitable relation between the wave function renormali
05300
p

d

l-
n
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o
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-

-

tion constants of the photon and theZ boson was proved in
@22,23# using the BRS symmetry. A simpler proof is given
Appendix A. The one- and two-loop counterterms in the o
shell scheme are given by

dZe
(1)52

1

2
dZgg

(1)2
1

2

sinuW

cosuW
dZZg

(1) , ~41!

dZe
(2)52

1

2
dZgg

(2)2
1

2

sinuW

cosuW
dZZg

(2)1~dZe
(1)!2

1
1

8
~dZgg

(1)!22
1

2

d sinuW

cos3uW

dZZg
(1) . ~42!

The two-loop wave function renormalization of the photon
given by the short formula

dZgg
(2)5Pgg,T

(2)8 ~0!2
1

4
~dZZg

(1)!2, ~43!

whereas in the mixing counterterm the vacuum expecta
value correction again makes its appearance:

dZZg
(2)52

2

MZ
2

PgZ
(2)~0!2

1

2
dZZZ

(1)dZZg
(1)2

1

MZ
2

dZZg
(1)dMZ

2(1)

2dZv
(1)dZZg

(1) . ~44!

In the on-shell calculation the ghost sector was also ren
malized. The corresponding constants are as in@5# up to an
unimportant renormalization of the ghost wave functions,
difference being dictated by simplicity. The wave functio
renormalization constants of the ghosts and Goldst
bosons have been left unspecified. For the ghosts, these
stants cancel trivially within every closed loop. With th
Goldstone bosons, the situation is more complicated, s
the fact that the gauge fixing term should not be renorm
ized induces Goldstone wave function renormalization c
stants in the ghost sector. These can cancel only in ga
invariant quantities. This indeed happened for all the m
and coupling counterterms and for the complete result.

IV. MS RENORMALIZATION

In this section we describe in detail the renormalization
Dr in theMS scheme.Dr is computed through the matchin
procedure described before in Sec. II and defined by Eq.~4!
with all parameters~masses and coupling! given also in the
MS scheme. Here we choose the strategy of multiplicat
renormalization. After multiplication by the on-shell wav
function renormalization constants of external fermion fiel
the result is expressed in terms of bare masses and bare
tric charge. In order to get theMS renormalized result for
GF one needs to substitute all bare parameters in the fo

e05m«Zee~m!,

~mi
0!25Zmi

mi
2~m!, ~45!
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wheree(m) and mi(m) are theMS charge and masses, r
spectively, and m is the MS parameter. The
MS renormalization constants will be specified in the n
two subsections.

Let us stress that in Eq.~45! we renormalize only the
physical parameters and no renormalization of the unph
cal sector~ghost sector and gauge fixing parameters! is re-
quired. The renormalization of the boson particle wave fu
tions is also unnecessary, apart from the on-shell w
function renormalization constants in the neutral gauge s
tor, which are needed to define the electric charge coun
term in Sec. IV A. TheMS wave function counterterms can
cel anyway in the final expression.

As already mentioned earlier, in order to have explici
gauge invariant counterterms, one should take the tad
diagrams into account properly. There are two ways to
this: either just include all possible Higgs boson tadpole d
grams in the calculation, which is done here in t
MS scheme or, alternatively, using the technique descri
in Sec. III A include the tadpoles effectively by inserting th
new countertermdZv . In both cases we obtained the sam
gauge invariant result for the counterterms.

Below we present the analytical expressions for cha
and massMS renormalization constants, needed in order
obtain a finite expression forDr in the MS scheme.

A. Coupling and mass renormalization

The bare chargee0 and theMS chargee are related via

e05m«eS 11
e2~m!

16p2«
Ze

(1,1)1
e4~m!

~16p2!2«
Ze

(2,1)

1
e4~m!

~16p2!2«2
Ze

(2,2)D , ~46!

where the constantsZ’s, as we shall see in the following, ca
depend on sinuW.

There are two ways to determine theMS renormalization
constant in this expression. One is to proceed exactly as
its on-shell counterpart in Sec. III B, i.e., from the Wa
identity

15ZeH AZgg1
1

2

sinuW
0

cosuW
0

dZZgJ . ~47!

The one- and two-loop counterterms are given by Eqs.~41!
and ~42!, respectively, with the only difference that witho
renormalization of the subdivergencies the wave funct
renormalization constants read

dZgg
(2)5Pgg,T

(2)8 ~0!1dZgg
(1)Pgg,T

(1)8 ~0!

1dZZg
(1)PgZ,T

(1)8 ~0!2
1

4
~dZZg

(1)!,
05300
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dZZg
(2)52

2

MZ
2 S PgZ,T

(2) ~0!1
1

2
dZZg

(1)PZZ,T
(1) ~0!

1
1

2
dZgg

(1)PgZ,T
(1) ~0!1

1

2
dZZZ

(1)PgZ,T
(1) ~0! D

2
1

2
dZZZ

(1)dZZg
(1) , ~48!

where this time all of the self-energies are unrenormaliz
All other one-loop field renormalization constants were d
fined before in Sec. III B. At the end we have an express
for the on-shell charge renormalization constant expres
via the bare charge, Weinberg angle, and masses. Now
writing the bare quantities in terms ofMS ones with yet
unknown coefficients in Eq.~46! and requiring that the tran
sition between on-shell andMS charges should not contai
divergencies, we easily extract theMS charge renormaliza
tion constants.

Alternatively, the renormalization group analysis can
applied. In order to findZe we differentiate Eq.~46! with
respect to logm2 and take into account that

de

d logm2
52

«

2
e1be , ~49!

where

be5
e3

16p2
b11

e5

~16p2!2
b11••• ~50!

is theb function. Since (d/dlogm2)e050, the left-hand side
~LHS! of Eq. ~46! becomes zero after the differentiatio
while the RHS relates the coefficientsbj and the unknown
constants in Eq.~46!:

Ze
(1,1)5b0 ,

Ze
(2,2)5

3

2
b0

2 ,

Ze
(2,1)5

1

2
b1 . ~51!

The functionbe can be extracted from the existing calc
lation in the unbroken theory; namely, for theSU(2) and
U(1) chargesg andg8, respectively, theb functions read

bg85
1

12

g83

16p2
1

1

4

g85

~16p2!2
1

3

4

g83g2

~16p2!2
,

bg52
43

12

g3

16p2
2

259

12

g5

~16p2!2
1

1

4

g3g82

~16p2!2
.

~52!

The one-loop result is given in@24#, while the two-loop co-
efficients have been evaluated in@25#.
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FIG. 4. The exact result~solid line! for Dr bos
(2) in theMS scheme~left and right panels! vs its ~1! large Higgs boson mass expansion~long

dashed line! and ~2! mass difference expansion~dotted line!. The short dashed line~3! represents the@3/3# Padéapproximant. In the right
panel the large Higgs boson mass expansion curve coincides completely with the numerical result for this range.
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From the relation

1

e2
5

1

g2
1

1

g82
, ~53!

it is easy to deduce that

be5e3S bg

g3
1

bg8

g83D . ~54!

Using now Eqs.~52!, ~53!, and~54! we obtain

be52
7

2

e3

16p2
1

e5

~16p2!2 S 2
125

6 sin2uW

1
1

2 cos2uW
D ,

~55!

and, finally, from Eq.~51! we have

Ze
(1,1)52

7

2
,

Ze
(2,2)5

147

8
,

Ze
(2,1)52

125

12

1

sin2uW

1
1

4

1

cos2uW

. ~56!

The explicit calculation confirms the above result.
Similarly to the charge renormalization we write for th

masses of theZ, W, and Higgs bosons

~mV
0 !25mV

2~m!S 11
g2~m!

16p2«
ZV

(1,1)1
g4~m!

~16p2!2«
ZV

(2,1)

1
g4~m!

~16p2!2«2
ZV

(2,2)D . ~57!

For mZ and mW the renormalization constants up to tw
loops are required while for the Higgs boson we need o
the one-loop expression. The analysis, similar to that
05300
y
-

scribed above for the charge, has been done in detail in@19#.
There the explicit expressions forZV

(1,1) , ZV
(2,1) , andZV

(2,2) are
given.

B. MS results for Dr

In Fig. 4 we plotDr bos
(2)MS as a function of theMS Higgs

boson mass in different scales. As input parameters we u
the on-shell values given in Table I.

The solid curve represents the exact result. Two ot
curves represent expansions in different regimes: asmH
→mZ and asmH→`. They cover almost the whole region o
mH under consideration. In order to extend the range of
expansion aroundmZ the Pade´ approximant was constructed
It sufficiently improves the situation for the intermedia
Higgs boson masses. Thus the expansions completely c
the region of interest. The details of the expansions are
cussed more precisely in Sec. VI B.

V. TRANSITION BETWEEN THE SCHEMES

Once we have the result in theMS scheme it is necessar
to translate it into the on-shell parameters, which are kno
with high precision for the electroweak sector, contrary
the strong interacting sector of the standard model. To
end one has to consider the proper scheme indepen
quantity, which is

ap

2MW
2 sin2uW

~11Dr ![
GF

A2
. ~58!

This should be contrasted with the naive approach of tak
simply Dr and substitutingMS parameters.

Using the methods described in Sec. IV, we obtain
following series expansions connecting on-shell a
MS parameters:

TABLE I. Parameter values used in the calculation@1#.

a21 137.03599976~50!

MW 80.423~39! GeV
MZ 91.1876~21! GeV
4-8
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FIG. 5. One-loop corrections to the relations between the on-shell andMS masses for theW, Z, and Higgs bosons@D i
15a/(4p)X1
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long dashed line~1! represents the large Higgs boson mass expansion, and the dotted line~2! represents the mass difference expansion. T
short dashed line~3! gives the@4/4# Padéapproximant, which coincides for this range with the exact result for theW andZ boson mass
corrections.
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aOS5aMSF11
aMS

4p
x1,MS

a
1S aMS

4p D 2

x2,MS
a G , ~59!

MW,OS
2 5MW,MS

2 F11
aMS

4p
x1,MS

W
1S aMS

4p D 2

x2,MS
W G ,

~60!

MZ,OS
2 5MZ,MS

2 F11
aMS

4p
x1,MS

Z
1S aMS

4p D 2

x2,MS
Z G ,

~61!

MH,OS
2 5MH,MS

2 S 11
aMS

4p
x1,MS

H D , ~62!

where theMS renormalization scale dependence has b
neglected. The series for the Higgs boson mass relatio
needed only to first order, since the Higgs field starts to c
tribute to the decay only at the one-loop level.

The above relations have to be inverted to yield
MS parameters in terms of the on-shell ones. For any
rameterA the relation will be written as follows:

AMS5AOSF11
aOS

4p
X1,OS

A 1S aOS

4p D 2

X2,OS
A G . ~63!

The expansion coefficients are obtained by inverting
original series up to the required order. At one loop this le
trivially to
05300
n
is
-

e
a-

e
s

X1,OS
A 5@2x1,MS

A
#Mi ,MS→Mi ,OS

. ~64!

The coefficients for the three bosons are depicted in Fig
with parameters values as given in Table I, in a compari
of the different evaluation methods. For Higgs boson mas
greater than 200 GeV the large mass expansion with six
efficients is indiscernible from the numerical result. T
mass difference expansion always fails around 120 GeV
the visible range from 80 GeV to 200 GeV, the Pade´ approxi-
mation based on the mass difference expansion turns ou
practically coincide with the exact result for vector boson
For the Higgs boson this cannot happen due to the oc
rence of the two-particle production thresholds, and inde
there is a region between the thresholds which cannot
reproduced with either the mass difference or the large m
expansion. Obviously, if it was needed this region could
covered by threshold expansions.

The two-loop correction contains terms coming also fro
the one-loop terms and the proper expression reads

X2,OS
A 5F2x2,MS

A
1x1,MS

a x1,MS
A

1(
i

M i ,MS
2

]x1,MS
A

]Mi ,MS
2 x1,MS

i G
Mi ,MS→Mi ,OS

. ~65!

The corrections for the vector bosons are depicted simila
to the one-loop case in Fig. 6. The expansions themselves
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less precise. It is, however, interesting to note that the P´
approximation together with the large mass expansion co
the whole range with high precision. Even the threshold
gion is reproduced with a relatively small error, although t
is due to the fact that the peaks are not very pronounced

We can now combine all the perturbative expansions
translate theMS result into the on-shell one. We shall n
reproduce the formula since it can easily be obtained fr
the previous equations. It is important, however, to note t
things. First, in the expression for the two-loopDr there are
the following terms:

~Dr (2)!OS5•••1
X2,OS

W

sin2uW

2
X2,OS

Z

sin2uW

1•••. ~66!

If this is combined with the fact that the results in bo
MS and on-shell schemes behave as 1/sin4uW, it is obvious
that one term in theW andZ boson mass difference expa
sion is lost. Second, the result in theMS scheme behaves a
MH

4 , whereas the one in the on-shell scheme behave
MH

2 . Therefore, one term in the large Higgs boson m
05300
de
er
-

s

d

o

as
s

expansion is also lost. As a result, if the expansions of@19#
are taken, the final result can be given with five coefficie
in both expansions in the large mass case. The formulas
be found in Appendix B. The mass difference expansion
quires an independent calculation of the on-shell propag
diagrams and the result can be found in Appendix C. T
numerical results can be found in Fig. 7. It should be stres
that it was checked that the exact analytic result with
expansions obtained by the translation procedure descr
above and by an explicit renormalization in the on-sh
scheme are the same.

It is interesting to consider the transition between t
schemes performed purely numerically. In Fig. 8, the so
curve represents the one-loop correction as well as the
of the one- and two-loop corrections. The fact that they
indiscernible on this scale is due to their relative smallne
The most reliable way of obtaining the correction~apart from
the exact method! is to take the one-loop result and substitu
the MS parameters only in the normalization in Eq.~58!,
whereas the masses in (Dr bos

(1))MS should be left in the on-
shell scheme. This is shown in the curve~2!. If one simply
takes the whole invariant, however, and substitutes all of
n
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FIG. 7. On-shellDr bos
(2) . The

long dashed line~1! represents the
large Higgs boson mass expansio
and the dotted line~2! represents
mass difference expansion. Th
short dashed line~3! gives the
@3/3# Padé approximant. The
dash-dotted lines~4! and ~5! cor-
respond to lower terms in the
large Higgs boson mass expan
sion, whereas~6! is the leading
term.
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MS parameters, then curve~1! is obtained, which diverges
strongly for Higgs boson masses larger than about 250 G
It turns out that the sum of the one- and two-loop correctio
does not reduce the scheme dependence substantiall
shown by curve~3!, where the correction up to two-loo
order in theMS scheme has been given forMS parameters
translated from on-shell values using Eqs.~59!–~62!.

VI. COMPUTATIONAL METHODS

The calculation of the bosonic corrections to the mu
lifetime is a relatively complex task. The number of Fey
man diagrams to be calculated is around 5000 in theRj

gauge. This makes it necessary to use automated softw

A. Software and checks

The first step of the calculation is the generation of d
grams. Several systems are presently available. Obvio
each differs in its ease of use, speed, and design conce

The on-shell calculation was based on theC11 library
DIAGEN @26#. It generates all diagrams together with all ne
essary counterterms. The main advantage of this softwa
the speed, since all of the diagrams were generated in a
seconds, thus making the generation phase a negligible
of the calculation.

Alternatively, for the calculation with the tadpoles the i
put generatorDIANA @27# has been applied. We note th
according to the rules given in Sec. IV no counterterm d
grams should be generated. They are all taken into acc
by the multiplicative renormalization.

The diagrams to be evaluated can be divided into t
broad classes. First are those which can be reduce
vacuum bubbles. Here, partial integration identities@16# sup-
plied with analytical formulas@15# can be used.

The second more complicated problem is the evalua
of the two-loop two-point functions at nonvanishing extern
momentum~at the valuesq25MZ

2 andq25MW
2 in our case!.

From the several possibilities two different algorithms ha
been used to deal with these diagrams.

The algorithm described in@28# has been chosen becau
of its simplicity. As a final result of the tensor reductio
scalar two-loop propagator integrals are obtained. A h
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FIG. 8. Numeric translation ofDr form theMS scheme to the
on-shell scheme vs the exact result~solid line!.
05300
V.
s
as

n
-

e.

-
ly

s.

-
is
w

art

-
nt

o
to

n
l

e

h

precision numerical evaluation of these is currently poss
with one-dimensional integral representations@29#. To this
end C11 programs were used based on the libraryS2LSE

@30#. For large scale differences, which occur when t
Higgs mass is much above the masses of theW and theZ
boson, double precision turns out to be insufficient. An e
way to see it is to remark that the individual terms in t
result can behave asMH

8 whereas due to the screening the
rem @31# the whole result behaves at most asMH

2 . For a
Higgs boson mass of the order of 1 TeV, this means t
cancellations of the order of 106 will have to occur. If we
combine this with the fact that in double precision some
the integrals can be evaluated only to five digits, the num
cal instability becomes apparent. A way out of this proble
on 32-bit machines is to use software emulated quadru
precision. Of course, this signifies an important drop in
fectiveness. In practice, the software runs about 20 tim
slower. Ten times are due to the use of software emula
for arithmetical operations and two to more integrati
points, which are needed for higher precision. On pres
gigahertz processors, the evaluation of a single point of
final result requires around 20 s and a conservative estim
of the error over the whole range of Higgs boson mass fr
100 GeV to 1 TeV is four digits.

Alternatively to the numerical method, we used also
semianalytic method of expansions~see next subsection!. In
this case the huge cancellations mentioned above do
cause any problem.

The size of the programs written inC11 and inFORM @32#
requires stringent checks. A helpful property of the boso
corrections to the propagators is that the value of ev
single diagram can be obtained rather easily through
momentum or large mass expansions. In fact, for theZ boson
propagators a low momentum expansion up to tenth or
provided a five-digit agreement with the integral represen
tions for each diagram independently and for the whole su
Additionally, we also made an expansion around the po
MH5MZ ~see the next subsection! and got excellent agree
ment between the numerical and expanded results. In
case of theW boson propagators not all of the diagrams a
below threshold. It turns out that 345 contain a photon o
massless ghost line, which causes as many as around 1
them to be either on threshold or infrared divergent. In t
case the low momentum expansion either fails to converg
converges very slowly. A way out of this is given by larg
mass expansions. If the lines which are to be considere
heavy are chosen in a specific way, then the large mass
pansion leads only to vacuum bubbles and one-loop pro
gator diagrams and the convergence is comparable to
case of theZ boson propagators. An example choice of t
heavy lines for two different topologies is given in Fig.
This procedure fails only for graphs that represent pure Q
corrections to aW boson line. In this case, however, th
result is known analytically@33#.

Another way of testing the analytical reduction and t
diagram generation software is to check the Ward-Takah
identities for the propagators. Here the following relatio
have been evaluated:
4-11
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p2~PZZ,L
(2) 12iM ZPZGZ

(2) !1MZ
2PGZGZ

(2) 1p2~PZGZ

(1) !2

1PZZ,L
(1) PGZGZ

(1) 50, ~67!

p2~PWW,L
(2) 22MWPWGW

(2) !1MW
2 PGWGW

(2) 2p2~PWGW

(1) !2

1PWW,L
(1) PGWGW

(1) 50 ~68!

both for on-shell values of the momentum and in an exp
sion around zero up to third order. HereGZ andGW stand for
the neutral and charged would-be Goldstone bosons, res
tively, the subscriptL denotes the longitudinal parts of th
vector boson self-energies, and the scalar vector transit
are given by

PVGV

m ~p!5pmPVGV
~p2!, ~69!

wherep is the ingoing momentum of the vector boson.
The combination of the two checks described above t

the software from the diagram generation to the numer
evaluation. An additional test is of course provided by gau
invariance, and indeed the calculation was performed in
generalRj gauge with three independent gauge paramet
We observed explicitly the cancellation of each of them fro
the final result and the counterterms.

Since the bosonic corrections to the propagators in
MS scheme have been evaluated within the large Higgs
son mass approach in@19# a comparison was also possib
for the whole result. It turns out that the agreement is per
for Higgs boson masses running as low as 200 GeV~see Fig.
6!.

To complete the description of the computational me
ods, let us note thatC11 and FORM were supplied with a
collection ofAWK andBOURNE shell scripts managed by sev
eral MAKEFILES. The system prepared in this way runs co
pletely automatically from the beginning with diagram ge
eration up to the numerical evaluation with plots. Actual
the specificity of the problem allowed reduction of the eva
ation time of the whole problem down to only one hour a
a half, which is rather short for multiloop calculations.

B. Expansions

Here we give more details on how the expansions
performed in two different regimes that we considered: in
mass differencehZ5(MH

2 2MZ
2)/MZ

2 and in the mass ratio
zH5MZ

2/MH
2 .

The expansion in the mass differenceMH
2 2MZ

2 is espe-
cially simple. It is just a Taylor expansion of all Higgs prop
gators and Higgs boson masses in the vertices aroundMZ .
No additional subgraphs are necessary in this case. The
FIG. 9. A choice of formally
heavy lines in the large mass ex
pansion of twoW boson propaga-
tor topologies.
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pansion in the heavy Higgs boson limit is somewhat m
involved. It is given by the rules of asymptotic expansio
@13#.

In addition, in the presence of bothMZ and MW we ex-
pand in the difference of these masses as well. Indeed,

MZ
22MW

2

MZ
2

5sin2uW'0.23 ~70!

is a rather small parameter and the convergence of this s
is quite fast. This trick was used previously in@19#. The
advantage of this approach is that in the case of on-s
Green’s functions all integrals have only one scale. This
lows one to use theFORM packageONSHELL2 @34# to evaluate
these integrals analytically.

We should also note that to extend the range of thehZ

expansion we apply the Pade´ approximation. Throughout this
paper we use a@3/3# Padéapproximant forDr and@4/4# for
the scheme transition formulas. The Pade´ approximation for
thezH series does not work well since this series is nonal
nating.

VII. CONCLUSIONS

A recent calculation of the two-loop bosonic correctio
to Dr performed by two independent groups has been
scribed in detail, from the matching to the Fermi theory
the renormalization and the explicit results in the on-sh
and MS schemes. The framework for the evaluation of t
Fermi constantGF based on the low energy factorizatio
theorem has been constructed. It allows one to computeGF
as a Wilson coefficient in a simple manner. This approac
general and is also applicable to other low energy quantit

A comparison of different expansions and numeric
methods has been given. It has been proven that in a w
range of Higgs boson masses expansions provide as m
precision as needed and cover the whole region of inter
The only problematic region, however, is connected to
thresholds forW and Z boson pair production. If the Higgs
boson was indeed found in this range, then a precise re
could also be obtained with expansions, but this time of
threshold type. The coincidence of the numerical and ana
cal results serves as a strong check on the calculation.

The accuracy of the numerical transformation betwe
MS and on-shell schemes has been tested. It is shown
for Higgs boson masses larger than;250 GeV the two-loop
correction does not reduce the scheme dependence, w
can be explained by huge cancellations of large terms du
the transition procedure.
4-12
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APPENDIX A: U„1… WARD IDENTITY AND THE
RENORMALIZATION OF CHARGE

In this appendix we present a derivation of the relat
between the charge renormalization constant and diffe
wave function renormalization constants valid to all ord
of perturbation theory. The derivation is based on the us
the U(1) Ward-Takahashi identity for the weak hyperchar
gauge group. To begin with, let us take the bareU(1) gauge
boson fieldBm

0 and rewrite it in terms of mass eigenstates

Bm
0 5cW

0 Am
0 1sW

0 Zm
0 . ~A1!

Here cW
0 5cosuW

0 and sW
0 5sinuW

0 are the bare values of th
cosine and sine of the Weinberg angle.

In the next step we express our bare gauge boson fi
through the renormalized ones:

~Z2
B!1/2$cWAm1sWZm%5cW

0 H 1

2
ZgZZm1~Zgg!1/2AmJ

1sW
0 H ~ZZZ!1/2Zm1

1

2
ZZgAmJ .

~A2!

Now taking the coefficient in front ofAm in the equation
above we have

~Z2
B!1/2cW5cW

0 ~Zgg!1/21
1

2
sW

0 ZZg . ~A3!

To complete the derivation we need to relate theZ2
B renor-

malization constant to the charge renormalization const
The electric charge is related to the weak hypercharge via
following equation:

e05g1
0cW

0 5~Z2
B!21/2g1cW

0 5Zee5Zeg1cW , ~A4!

where we have made use of theU(1) Ward-Takahashi iden
tity Zg1

5(Z2
B)21/2. Now we can easily deduce that

Ze5~Z2
B!21/2

cW
0

cW
. ~A5!
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Substituting this relation into Eq.~A3! we have

15ZeH ~Zgg!1/21
sW

0

cW
0

1

2
ZZgJ . ~A6!

Using this final relation one can considerably simplify t
calculation of the on-shell charge renormalization const
and avoid dealing with infrared rearrangement while co
puting the three-point Green’s function.

APPENDIX B: LARGE HIGGS BOSON MASS EXPANSION
OF Dr bos

„2… IN THE ON-SHELL SCHEME

In this appendix, the on-shell renormalizedDr bos
(2) is given

in a twofold expansion, in the large Higgs boson mass an
the mass difference between theW andZ bosons. The num-
ber of terms is consistent with the result@19# as explained in
Sec. V. The leading behavior both in the Higgs boson m
and in the sine of the Weinberg angle has been factori
out:

~Dr bos
(2)!OS5S a

4p sin2uW
D 2

MH
2

MZ
2 (

n50

4

sin2nuWRn
OS. ~B1!

The occurring transcendental numbers are

S15
p

A3
,

S25
4

9

Cl2~p/3!

A3

.0.2604341376321620989557291432080308 . . . ,

~B2!

while zH5MZ
2/MH

2 . Note that the leading term in the Higg
boson mass can be resummed in sin2uW to give the behavior

Dr Higgs
(2) 5S a

4p sin2uW
D 2

MH
2

8MW
2 F9A3Cl2S p

3 D1
49

72
2

11pA3

4

2
25p2

108 G . ~B3!

The expansion coefficients read
4-13
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APPENDIX C: MASS DIFFERENCE EXPANSION OF Dr bos

„2… IN THE ON-SHELL SCHEME

The correctionDr bos
(2) in the on-shell scheme for Higgs boson masses in the vicinity of theZ boson mass is correctly

described by an expansion in the mass difference between the Higgs boson and theZ boson and in the mass difference betwe
the W andZ bosons. The series below contains five terms in both variables:

~Dr bos
(2)!OS5S a

4p sin2uW
D 2

(
n50

4

sin2nuWRn
OS. ~C1!

The transcendental numbers are the same as in the previous section. The lack of logarithms of mass ratios follows fro
that a Taylor series in the mass difference does not lead to any infrared problems. The variablehZ denotes (MH

2

2MZ
2)/MZ

2 :
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APPENDIX D: LARGE HIGGS BOSON MASS EXPANSION OF Dr bos
„2… IN THE MS SCHEME

In this appendix,Dr bos
(2) renormalized in theMS scheme is presented as a twofold expansion in the large Higgs boson

and in the mass difference between theW and theZ bosons. The expansion is parametrized as follows:
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The parameters, i.e., masses, and the coupling constant are in theMS scheme. Apart from the numbers Eq.~B2!, it is assumed
that ln(mZ,H

2 )5 ln(mZ,H
2 /m2), m being theMS renormalization scale:
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APPENDIX E: MASS DIFFERENCE EXPANSION OF Dr bos

„2… IN THE MS SCHEME

The correction in theMS scheme is given by six coefficients in the double expansion in the mass differences betwe
W andZ bosons and between the Higgs boson and theZ bosons:
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All parameters are in theMS scheme andhZ5(mH
2 2mZ
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2 . Note also that the logarithms contain the renormalization sc

as ln(mZ
2)5 ln(mZ
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