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Fall of stringy de Sitter spacetime
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Kachru, Kallosh, Linde, and Trivedi recently constructed a four-dimensional de Sitter compactification of
type IIB string theory, which they showed to be metastable in agreement with general arguments about de Sitter
spacetimes in quantum gravity. In this paper, we describe how discrete flux choices lead to a closely spaced set
of vacua and explore various decay channels. We find that in many situations NS5-brane mediated decays
which exchange NSNS 3-form flux for D3-branes are comparatively very fast.
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I. INSTABILITIES OF dS FLUX COMPACTIFICATIONS

de Sitter spacetime~dS! holds a special place in the stud
of quantum gravity. Constructing and exploring the ma
mally symmetric spacetime with a positive cosmologic
constantL has been the source of much recent interest
spite ~or perhaps because of! its stubborn opacity. While
much progress has been made in the understanding o
other maximally symmetric solutions, Minkowski an
anti–de Sitter~AdS! spaces, dS has until recently elud
string theoretic description because of some of its uni
properties. The observer-dependent horizon of dS, lik
black hole horizon, yields a thermal state with finite entro
Not only are theS-matrix observables of string theory pre
cluded inL.0 spaces@1#, but, due to the inevitable Poin
carérecurrences@2#, all observables are ill-defined@3#. These
issues would merely be of abstract theoretical importa
were it not for recent observational evidence@4# indicating
that not only wasL.0 in the early Universe during infla
tion, but it seems to be so today.

It has become increasingly clear that dS cannot be a st
state in any theory of quantum gravity. The symmetries of
are incommensurate with the discrete spectrum implied
finite entropy@5#. Rather than a stable vacuum, dS is inste
a metastable resonance whose lifetime, on general entr
grounds, must be less than the recurrence time@5–7#.

One would ask, then, what does string theory say ab
dS and its decay modes? String models of dS have b
difficult to find partly because, as nonsupersymmetric vac
they are isolated points in moduli space with all moduli s
bilized. Notably, some dS compactifications of string theo
were described in@8,9# and, in a well-controlled manner fo
critical strings, by Kachru, Kallosh, Linde, and Trive
~KKLT ! @6#. Generically, any string theoretic dS compacti
cation can decay and decompactify@7,10# because the 10D
Poincare´ invariant string vacuum is supersymmetric and
has vanishing energy density. However, this is far from
only decay mode. For example, in any compactification
which RR fluxes contribute to the potential, D-brane insta
tons change the fluxes and the cosmological constant.
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has been an object of study in many papers, including@11–
15#.

We consider a slight twist on the brane instanton deca
In @6#, the cosmological constant gets a positive contribut
from D3-branes, rather than directly from the fluxes. Th
effect has been seen in the AdS conformal field theory~CFT!
correspondence, where instantonic Neveu-Schwarz 5-br
~NS5-branes! provide a decay mode for theD3-branes@16#.
These results apply to the similar dS compactifications
KKLT and are particularly of interest because they can e
in a state of positive cosmological constant. Therefore,
might wonder whether this type of decay could occur quic
enough to affect the cosmological constant within the age
the Universe. In this paper, we generalize the results
Kachru, Pearson, and Verlinde~KPV! @16# to dS compactifi-
cations and compare the decay rate through the 5-b
channel to two other decays, one to decompactification
the other by D3-brane tunneling in the compactificati
manifold. We give explicit examples in which the 5-bran
decays are much faster than the others.

In the next section, we review the dS vacuum construct
that we will study. In Sec. III, we flesh out the discrete lan
scape of vacua that are available through tuning and am
which our instantons will interpolate. We then review th
AdS/CFT instantons of@16# and make the corrections nece
sary to compactify their backgrounds in Sec. IV. We app
our calculation to find decay times for specific sets of init
parameters in Sec. V and compare them to those of KKLT
Sec. VI. In addition, we comment on two other possible d
cay channels. We will generally keep factors of the gravi
tional couplingk4 and the string lengtha8 explicit in for-
mulas, but any numbers we cite should be taken in Planc
string units.

II. BUILDING dS VACUA

Constructing a solution of string or M theory with a fou
dimensional dS vacuum has been a longstanding challe
Such a solution must be nonsupersymmetric and requ
aspects of the theory beyond the low-energy SUGRA lim

Recently, however, KKLT@6# presented a specific con
struction in critical string theory with no unfixed moduli. Th
model was based on the warped flux compactifications s
©2003 The American Physical Society08-1
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ied by Giddings, Kachru, and Polchinski~GKP! @17#.1 Non-
perturbative corrections fix the overall Ka¨hler modulus of
this tree-level no-scale model, resulting in a stable, sup
symmetric AdS vacuum. KKLT then addedD3-branes to
yield a metastable dS vacuum and showed, by conside
decays to decompactification, the lifetime to be less than
Poincare´ recurrence time.

The GKP compactification of type IIB string theory on
threefoldM with 7-branes and O3-planes can be efficien
described as an F-theory compactification on a CY fourf
~CY! X. X is elliptically fibered overM such that the fiber’s
complex structuret5c01 ie2f is the type IIB axion-dilaton
~we take for simplicityt5 i /gs). We will consider the orien-
tifold limit of F theory in which M is an orientifolded CY
threefold. Three-form fluxes and D3-branes are added s
ject to the global tadpole constraint, or the global conser
tion of RR 5-formF5 flux:

05ND32ND31
1

2k10
2 m3

E
M

H3`F32
x~X!

24
. ~1!

The Euler number of the CY fourfoldx(X) gives the effec-
tive negative D3-brane charge in type IIB O3-planes a
D7-branes wrapped on 4-cycles ofM. For typical choices of
X, x(X) can be up toO(105) @28#. This must be balanced b
the charge from 4D space-filling D3-branes,D3-branes, and
the wrapped NSNS and RR 3-form fluxesH3 andF3, which
also sourceF5.

To construct their model, KKLT began by choosingX and
a set of wrapped fluxes, while settingND35ND350. The CY
threefoldM hasb3@1 three-cycles, and a particular choic
of fluxes H3 , F3PH3(M ,Z) represents a point in a 2b3
dimensional lattice. The fluxes combine into a single co
plex 3-form G35F32tH3. For simplicity, KKLT chose
h1,1(X)52, so thatM has a single Ka¨hler modulusr. In
addition to the modulit and r, M has h2,1(M ) complex
structure moduliza.

In the presence of fluxes, the classical 4D effectiveN
51 superpotential is@18#

W05
1

k4
8EM

G3`V, ~2!

where V is the holomorphic~3,0! form on M. W0 then is
given by the~0,3! part of theG3 flux which, because the
fluxes are quantized, can only be tuned discretely. The t
level Kähler potential~ignoring warping of the spacetim
metric!

1The GKP type of compactification was studied earlier in simp
cases and in M theory by@18–21#. The supersymmetry condition
and equations of motion were considered in@22–24#. Explicit con-
structions on tori and K3 are in@25–27#.
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K523 log@2 i ~r2 r̄ !#2 log@2 i ~t2 t̄ !#

2 logS 2
i

k4
6EM

V`V̄ D ~3!

along withW0 gives the no-scale potential

V5eK(
i ,̄

K i ̄DiWD̄̄W̄ ~4!

where i , j sum over all moduli butr, Ki ̄5] i] ̄K is the
Kähler metric, andDi5] i1] iK is the Kähler covariant de-
rivative. Except for the volume modulusr, this potential
generically fixes all other moduli such thatG3 is imaginary
self-dual.2 The remaining condition for supersymmetr
DrW50 is satisfied only whenW050, which implies that in
supersymmetric vacuaG3 is a ~2,1! form.

The geometry ofM is, of course, very complicated but i
accurately described near conifold points by the Kleban
Strassler~KS! solution @30#. Wrapped fluxes warp and de
form the conifold; at the tipy50, the metric is

ds25h21/2hmndxmdxn

1bgsMa8~e2udy21dV3
21e2uy2dV2

2! ~5!

whereb;1 is a numerical constant andeu is the compacti-
fication length scale~here we use 10D string frame!. Notice
that theS3 at the tip has a fixed proper size depending o
on the fluxes. Also, theS2 is nontrivially fibered over theS3.
Away from the tip, the throat has approximately a warp
conifold metric

ds2'h21/2hmndxmdxn1h1/2e2u~dr21r 2dsT1,1
2

! ~6!

wheredsT1,1
2 is the metric on the baseT1,1. In this region, the

warp factor is approximately

h511~L4/r 4!log~r /r s! ~7!

with the length scaleL45 81
8 e24ugsMa8. Here, the radial

coordinatesr andy are complicated functions of each othe
and the tip is aty50,r 5 r̃ . For the undeformed conifold, th
singular tip is located atr 5r s5 r̃ e21/4. Splitting the conifold
into the tip and throat in this manner is described in@31# and
references therein.

The radial modulus Imr5e4u/gs[s is defined so that, a
large radius, the total unwarped volume of the compactifi
tion is *Md6xAh21/2g'e6ua8 3. The fluxes through any
3-cycle ofM are quantized, and for a given conifold throa

M5
1

4p2a8
E

A
F3 , K52

1

4p2a8
E

B
H3 ~8!

where theA cycle is theS3 which stays finite at the tip and
theB cycle is the six-dimensional dual ofA. GKP found that

r

2It is natural to wonder if corrections to the Ka¨hler potential due
to warping could fix the radial modulus. While the precise form
K is difficult to compute forr, because the 10D solution exists
tree level for all compactification scales, the final potential must
no-scale@29#. We will look at warping in the complex structur
Kähler potential below.
8-2
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FALL OF STRINGY de SITTER SPACETIME PHYSICAL REVIEW D68, 046008 ~2003!
the warp factor at the tip of the conifold is related to t
deformation parameterz of the tip, which is determined by
the flux superpotential~2!, by

h~y50!'
~gsM !2

uzu4/3
, z5expF2

2pK

gsM
G . ~9!

It is this particular form of the warp factor that gives theA
cycle a fixed proper size at the tip. Note that this is not
r→ r̃ limit of Eq. ~7! because the conifold is deformed.

To generate a nontrivial potential forr, as suggested in
@17#, KKLT considered nonperturbative corrections to the s
perpotential ~2!. Both wrapped Euclidean D3-branes a
gluino condensation on the worldvolume of non-Abelian D
branes generate additional terms of the form

dW5Aeiar ~10!

where the constantsA;O(1) anda;O(1021). For simplic-
ity, KKLT took r to be purely imaginary,r5 is, andA, a,
W0 to be real. The potential now becomes

V5
aAe2as

2s2 H Ae2asS 11
as

3 D1W0J , ~11!

and for suitableW0,0 there is a supersymmetric vacuu
with V0,0, implying the noncompact directions are Ad
For uW0u!1, the AdS minimum lies atscr@1 where the
SUGRA can be trusted anda8 corrections are small.

The final step in the KKLT construction is to add enou
D3-branes so thatV0.0 and the vacuum is dS. The glob
F5 charge must still be conserved via Eq.~1!, and the addi-
tion of p D3-branes givesND352p. By adjusting the fluxes
a corresponding increase in*MH3`F3 balances this reduc
tion. TheD3-branes break supersymmetry and add some
tra energy@16#,

dV5
Dp

s3
; D52m3h21~r ! ~12!

wherem3 is the brane charge. To minimize their energy, t
D3-branes migrate to a conifold tip, so the energy density
D3-brane depends, through Eq.~9!, on the fluxes. For suffi-
ciently fine-tuned parameters, this additional term in the
tential lifts the AdS global minimum to a dS local minimum

Unlike the AdS vacuum, the dS minimum is only met
stable. KKLT investigated one possible decay mode, tun
ing to larges. The potential becomes arbitrarily close
zero at large radius, so it is possible to tunnel to a runaw
decompactifying solution.

Coleman and De Luccia~CDL! @32# described such an
instanton including gravitational back-reaction. In terms o
canonical scalar fieldw5(A3/2 logs)/k4, the Euclidean ac-
tion is
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SE@w#5E d4xAgS 2
1

2k4
2

R1
1

2
~]w!21V~w!D

52E d4xAgV~w! ~13!

using Einstein’s equations to get the second line. The ins
ton wCDL is an O~4!-symmetric interpolation between the d
vacuum atwcr and the supersymmetric vacuum atw5`.
When Wick rotated back, this gives the usual expand
bubble of true vacuum inside the false dS vacuum. The
tion of the static dS vacuum is simply computed to give

S052
24p2

k4
4V0

52S0 ~14!

where S0 is the entropy of the dS vacuum. The tunnelin
probability per unit volume is given by the difference b
tween the action of the instanton solution and the static
vacuum:

Pdecay
CDL ;e2S[wCDL] 1S0. ~15!

From Eq.~13!, S@w#,0 for V(w).0, and the resulting life-
time is exponentially less than the Poincare´ recurrence time
t r;eS0:

tdecay
CDL ;eS02uS[w] u,t r ~16!

which is in line with the general arguments of@5,7,33#.
In addition to the CDL instanton, KKLT considered de

compactification decay via the stochastic Hawking-Mo
~HM! instanton@34#. Considering decays of general dS strin
compactifications,@5# and@7# also discussed thermal fluctua
tions using the HM reasoning. Whereas the CDL instan
tunnels through the potential barrier, the HM instanton rel
on thermal fluctuations to carryw to the top of the potential,
where it can then roll down the other side to the true vacuu
While the original HM process is homogeneous, KKLT a
gued it should be interpreted as a horizon-sized fluctuat
If the potential has a broad, flat maximum atw1, the state
there is approximately dS with energyV(w1).V0 and en-
tropy S1. The probability per unit volume for a thermal fluc
tuation is given by the difference in entropies between
fluctuation and equilibrium:

Pdecay
HM ;eS12S0. ~17!

The decay timetdecay
HM 5(Pdecay

HM )21 is again less than the
recurrence timet r and is also less than the CDL decay tim
~16! when the potential barrier is short and wide and thus
thin-wall approximation is invalid.

III. FINDING dS PARAMETERS

As described in Sec. II, obtaining the vacua constructed
@6# requires fine-tuning subject to several constraints. Fi
one must adjust the bulk fluxes so thatuW0u!1. Moreover, a
dS minimum requires fine-tuning of the fluxes,K andM, in
8-3
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the KS throat. A given value ofW0 tightly constrains one’s
choice forDp @cf. Eq.~12!#. For example, KKLT presented
model with W0521024 and an AdS minimum ofV05

22.00310215; by adding oneD3-brane withD5331029,
they achieved a dS minimum ofV051.77310217. This is a
very special choice of fluxes indeed. ForDp&331029 the
minimum is atV0,0 and is AdS, and forDp*7.531029 a
local minimum no longer exists. There are additional co
straints as well. In@16# it is shown that there exists a class
cal instability if p/M*0.08. Furthermore, results from Se
III of @17# rely on approximations valid whenK/(gsM )
*1/2.

With such fine-tuning and taking into account that t
tuning parametersK andM are discrete, one might questio
if it is possible to build such a model at all. Such tunin
would require the existence of a ‘‘discretuum.’’3 We have
done numerical searches in order to map out the disc
landscape of dS vacua. Figure 1 shows the existence o
discretuum. Here we have plotted the possible valuesV0 that
have a dS minimum and can be achieved with integer flu
for the parameters used in KKLT,W0521024, a5.1, A
51, gs50.1, k45a851.4 It is clear that for a desired valu
of V0 there exists a configuration of fluxes withṼ05V0
1e, wheree is very small; i.e. a discretuum does exist. F
each of the models studiedK/gsM.1/2. Here we have al-
lowed M to range from 75 to 1000. The lower bound avoi
the classical instability~for p<6). As one goes to higher an
higher values ofM, one must also increase the amount
induced D3-brane charge on the D7-branes in order to sa
Eq. ~1!. This might require adding more D7-branes and, th
more degrees of freedom, which, though massive, co

3The authors of@13# coined this term to refer to situations i
which a discrete spectrum is sufficiently dense to allow for an~al-
most! arbitrarily fine-tuning. Our discretuum is not as finely spac
as those in@13#.

4In addition to tuningV0 by varying the fluxesM and K, one
could, in principle, varyW0 by adjusting the bulk fluxes. While this
would certainly increase the discretuum density, we leaveW0 con-
stant as explicit calculation ofW0 in terms of bulk fluxes is pro-
hibitively complicated.

FIG. 1. The possible dS vacua withV0 for givenM illustrate the
density of states consistent with a discretuum.
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cause problems when considering loop corrections.
The smallest possible value ofV0, for the parameters use

in KKLT, is O(10220), a far cry from the desiredO(102120).
In order to obtain a more realistic vacuum energy, one m
attempt to construct a background withuW0u;O(10255).
While such a fine-tuning seems improbable, withb3 suffi-
ciently large, it is at least possible,5 if not particularly natural
@13#.

We have so far considered only a single KS throat, as
KKLT. However, a general CY has many of them. By co
sidering backgrounds with multiple KS throats the discr
uum density is increased dramatically. One finds that
~12! becomes,

dV5(
i

Dipi

s3
; Di52m3h21~ r̃ i !, ~18!

wherei labels the different throats. Clearly, by adjusting t
fluxes in each individual throat, one may tunedV with
greater accuracy. For a single KS throat we foundO(103)
configurations with a dS minimum. Analogously, for 2 K
throats (75<M1<M2 , 75<M2<300) we findO(105) dS
minima. It is easy to find configurations withO(10) KS
throats,6 leading to an amazingly dense set of vacua. T
inclusion of a second throat also lowers our minimum va
of V0 by an order of magnitude. Though this is nice, it do
little good in helping build a model with a realistic cosm
logical constant. We suspect that even with the addition of
or more throats the lofty goal ofV0;102120 would still be
far out of reach.

The following sections describe various decays, ana
gous to those studied in@16#, in which one unit ofH3 flux is
exchanged forM D3-branes. For geometries with single K
throats, after one decay the final state has a negative cos
logical constant and a big crunch in its future. It has be
argued that these decays should not be allowed in a quan
theory of gravity and also that instantons mediating th
decays may not be possible to construct@36#. We will not
worry about these subtleties~other than the well-known ef-
fects on the instanton action@32#! since our main focus is on
instanton decays ending in dS. The configuration with m
tiple KS throats is more interesting. As with the single thro
these may decay directly into states with negative cosm
logical constant. However, there can now be decays from
dS vacuum to another with smallerL ~modulo some classi-
cal evolution we will discuss later!. This process is of par-
ticular interest, since it allows for a rather generic set
fluxes on several KS throats to undergo a series of decay
dS vacua with smaller and smaller cosmological consta
this situation is similar to that envisioned by@37# and ex-
panded upon by@11,12,14#.

5One can estimate the smallestuW0u to have log(uW0u);22b3. We
thank S. Kachru for discussion on this point.

6For example, in@35# a family of quintics are constructed with 1
conifold singularities.
8-4
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IV. DECAYS IN THE MANNER OF KPV

A. Review of NS5-brane instantons

The KS geometry found at conifold points of GKP com
pactifications was first studied in the usual decoupling lim
of string-gauge theory dualities@30#. The relevant gauge
theory dual is a duality cascade with an energy depend
effective number of D3-branes; in the IR, most of the D
branes have been transformed into 3-form fluxes. The B
domain wall that transforms the D3-branes to fluxes was
scribed by KPV; it is a polarized NS5-brane that carries D
brane charges and bends over theA cycle at the deformed
conifold tip @16#. As the NS5-brane moves over theA cycle,
the D3-branes are absorbed into the background RR flux,
the background NSNS flux jumps by a unit due to the NS
brane charge.

KPV also described nonsupersymmetric gauge theo
with p D3-branes at the tip of the conifold, as in KKLT. Du
to the 3-form flux background, theD3-branes suffer a clas
sical instability to brane polarization~first discovered in
@38#! as an NS5-brane wrapping anS2 in the A cycle. How-
ever, for p*M /12, the NS5-brane itself is unstable to co
lapse around theA cycle, reducing the NSNS flux and turn
ing the D3-branes into supersymmetric D3-branes. F
smallerp, the decay of the NS5-brane proceeds by tunneli
in Euclidean spacetime, the NS5-brane is slightly polariz
with D3 charge at infinity and bends around theA cycle to
leave D3-branes at the origin@16#. This process is illustrated
in the top line of Fig. 2.

For p small enough, KPV showed numerically that th
thin-wall approximation is very reasonable. In that limit, t
instanton appears to be an NS5-brane wrapping the fullS3 of
the A cycle at a fixed radius, as shown in the bottom line
Fig. 2. The wrappedF3 flux inducesM units of charge in the
NS5 worldvolume gauge theory which is canceled by
charge carried by the ends ofM D3-branes. Thep D3-branes
end on the outside of the NS5-brane, andM2p D3-branes
end on the inside. The bubble tension in the effective the
is just the NS5-brane tension times the volume of theA
cycle. These instantons are clearly related to the BPS dom
walls KPV found.

In the rest of this paper, we will focus on the thin-wa
limit to estimate the instanton bubble tension. As has b

FIG. 2. Top: In the KPV process,p D3-branes polarize into an
NS5-brane wrapping anS2 on the A cycle. The NS5-brane then
slides to the opposite pole, becomingM2p D3-branes. Bottom: In
the thin-wall limit, the NS5-brane instead wraps theA cycle at a
particular Euclidean radius.
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argued strenuously@36#, the thin-wall limit certainly does not
describe the full picture of the decays, but the other con
butions to the Euclidean path integral~such as Hawking-
Moss instantons at the other extreme! should only enhance
the decay rate. Therefore, we take the point of view that
thin-wall limit estimates an upper limit for the decay tim
As a consequence of the thin-wall limit, we may, as
KKLT, ignore the polarization of theD3-branes in the initial
metastable state. Before we turn to the modifications ne
sary for including KPV instantons in KKLT compactifica
tions, let us also note that our instantons are cousins of
supersymmetry-changing domain wall bubbles found in@39#,
just as the AdS/CFT instantons of KPV are related to
BPS domain walls.

B. Corrections for compactifications

There are several modifications that we have to make
the KPV instanton decay formula due to the fact that
have a compact GKP geometry rather than a noncom
conifold.

The first and most obvious correction is that gravity is
longer decoupled, so we should include the effects of gra
tation on the decay time. These effects are well kno
@11,12,32#; in Appendix B, we work out the specific formul
we need. The decay time, including gravity~but ignoring the
large number of massive fields in the compactification!, is
tdecay;exp@2DSE#, whereDSE is the difference of the Eu-
clidean actions for the instanton and the initial backgrou
state as given in Eq.~B10!. It depends only on the bubbl
tension, the initial vacuum energy density, and the chang
energy density. Given two dS states from Sec. III, we j
need to calculate the bubble tension and plug into Eq.~B10!.

There are also modifications to the tension of the bubb
The easiest to calculate is an effect of working in the
Einstein frame. Let us emphasize that we need to work in
4D Einstein frame to use the superpotential formalism
Sec. II, and this is also the frame in which the potential h
been calculated. The Einstein frame is also the frame use
calculating the instanton decay time. It is easiest to get
by going to the NS5-brane action

SE5
m5

gs
2E d4xAdetgmndE d3xAgS3, ~19!

where gmn is the 4D pullback of the 10D metric,d is the
delta function at the radius of the bubble~with the determi-
nant of the metric included!, and gS3 is the determinant of
the metric on theA cycle. The 10D string frame and 4D
Einstein frame are related byh21/2gmn

E 5gs
22e6ugmn , so the

NS5 action becomes

SE52p2r 3t5 ,

t5[m5gse
29uS z2/3

gsM
D 3/2

~2p2!~bgsMa8!3/2

5
b3/2z

16p3a8 3/2gs
5/4s9/4

. ~20!
8-5
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~Hencefortht is the instanton bubble tension.! In the first
equality for the tensiont5, we have separated the contrib
tion from the conversion to Einstein frame, the warp fact
and the volume of theA cycle. We have ignored the contr
bution to the action from the NSNS 6-form potential, whi
KPV showed is negligible in the thin-wall limit. Heuristi
cally this is because the 6-form potential only has two le
on theA cycle and the 5-brane fills the entire cycle, as sho
in Fig. 2. However, the RR field strengthF3 gives a world-
volume anomaly that requiresM D3-branes to attach to th
5-brane. Here, there arep D3-branes on the outside andM
2p D3-branes on the inside.

The other correction we should make is due to the ac
for the moduli. Since the moduli are fixed by the flux sup
potential ~2!, after the NS5-brane bubble changes the fl
the VEVs of the moduli will change. Therefore, we need
take into account the rolling of the moduli to the ne
vacuum. We will focus on the deformation modulusz of the
conifold for the following reasons. First, it clearly chang
significantly whenK changes@see Eq.~9!#. Also, for a non-
compact conifold,K does not affect the dilaton or othe
moduli, so we would expect that they would be only min
mally affected by a change ofK in the compact case~the
other moduli are typically fixed by fluxes on other cycle!.
Also, KKLT have shown that the VEV ofs does not change
much due to the presence ofD3-branes. Therefore, since w
expectgs ands to keep roughly the same values before a
after the decay, we expect that they will not roll much, a
we will treat them as constants. There is actually a signific
tree-level potential forgs ands whenz is not at its VEV, and
we will consider its effects in the next subsection. Nevert
less, we expect our estimate of the contribution fromz not to
be affected significantly by other moduli. To be conservati
one could multiply the contribution fromz by a fudge factor,
but we note that we are only making an estimate to be
with, so we are not quite that careful.

To estimate the tension due to the rolling ofz, we will
assume that just inside the NS5-branez is in its original
vacuum value outside of the NS5-brane and rolls quickly
the new VEV inside. This is probably not the exact classi
solution, but we will use it and the thin-wall approximatio
as an upper limit. At tree level~where we are working!, we
can write the action as

SE~z!5
1

k4
2E d4xAg4@Kzz̄]mz]mz̄1k4

4eKK zz̄DzWD̄z̄W̄#

5
2p2

k4
2 E djr 3@K zz̄~Kzz̄]jz2k4

2eK/22 ivD̄z̄W̄!

3~Kzz̄]jz̄2k4
2eK/21 ivDzW!

1k4
2eK/21 iv]jzDzW1k4

2eK/22 iv]jz̄D̄ z̄W̄#, ~21!

wherev is some phase~physically, we have to take it so tha
the Euclidean action comes out positive because it sta
positive definite!. As above,r is the radius of curvature of th
bubble, while j is the radial coordinate corresponding
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proper distance. This is clearly minimized when only the l
two terms contribute. Taking the average Ka¨hler potential in
the exponential, we get~up to numerical factors of orde
unity!

tz'2p2e^K&/2~ uDWu1uDKuu^W&u!. ~22!

~This comes from the definition of the covariant derivati
and the chain rule.! This derivation is very similar to that o
BPS domain walls and is also used in@40#. Actually, it is
easy to generalize this estimate to include other moduli,
we will only considerz in the superpotential and Ka¨hler po-
tential. We should note thatDW andDK are calculated from
the inside of the NS5-brane~where z is not in a vacuum
state! to the new vacuum on the interior of the instanton a
not from the original vacuum to the new vacuum. Since
are just making an estimate,^•••& will be an average value
over the region of variation ofz.

The change in the superpotential is given entirely by
superpotential of the conifold just inside the NS5-brane m
nusW0. This is because in the vacuum states, theK andM
fluxes are~2,1! forms and so do not contribute to the supe
potential ~see, for example,@31#!. Using the notation and
conventions of@17,29#, we get

DW52W~z!52
~2p!2a8 5/2

k4
8 S MG~z!2 i

K

gs
zD

'2
~2p!2a8 5/2

k4
8

zS M

2p i
ln z2 i

K

gs
D

'2 i
~2p!2a8 5/2

gsk4
8

z, ~23!

whereK is the NSNS flux on the inside of the bubble andz
is evaluated outside the bubble. This follows from the de
nitions

E
A
V5a8 3/2z, E

B
V5a8 3/2G~z!,

G5
1

2p i
z logz1holomorphic ~24!

and the relation from Eq. ~9! that z(outside)
'exp(22p/gsM)z(inside). To overestimatêW&, we will
take

u^W&u'uW0u1uDWu. ~25!

The Kähler potential is significantly more complicated
and, because we are concerned with a modulus that live
the bottom of a throat, we need to take the warp factor i
account. Including warping and bunching the Ka¨hler poten-
tial for all other complex moduli together intoKc ~that is,
integrals over other cycles!, Eq. ~3! becomes@29#
8-6
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K~complex!52 logFe2Kc2
i

k4
6 S E

A
VE

B
V̄h

2E
A
V̄E

B
VhD G . ~26!

To compute*BVh, we use the trick that the cycles have
monodromyB→B1A aroundz50 ~in the same way it was
used to find the leading term inG) and Eq.~9! ~which is
valid at points both inside and outside the bubble! to expand
out
t
u
ov
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th
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K~complex!'Kc2eKc
a8 3~gsM !2

2pk4
6

uzu2/3loguzu2. ~27!

~This is, to our knowledge, the first calculation of part of
Kähler potential with warping included.! Actually, there will
be other terms in theB cycle integral, but it is reasonable t
believe that, as in the unwarped case, this is the leading t
that depends onz. Then, using Eq.~3! and assuming the
complex structure gives small contributions toKc , we get
roughly
e^K&'
gs

16s3
, DK'2

a8 3~gsM !2

2pk4
6

uzu2/3F 4p

gsM
e4p/3gsM1 loguzu2~e4p/3gsM21!G . ~28!

The total bubble tension is therefore

t5t51tz'
b3/2z

16p3a8 3/2gs
5/4s9/4

1
2p2gs

1/2

4s3/2 H ~2p!2a8 5/2

gsk4
8

z1S W01
~2p!2a8 5/2

gsk4
8

zD a8 3~gsM !2

2pk4
6

uzu2/3

3U 4p

gsM
e4p/3gsM1 loguzu2~e4p/3gsM21!UJ . ~29!
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With the bubble tension in hand we are now in a position
calculate decay rates. However, before moving on we wo
like to take a closer look at subtle issues ignored in the ab
calculation. The anxious reader, fretting over the fate of
or her universe, may skip ahead to Sec. V, and leave
following subsection for a more careful reading.

C. Other considerations

1. D3-brane migration

The KPV instanton bubble not only reduces the NS
flux K and annihilatesD3-branes, but it also leaves behin
D3-branes. If there areD3-branes in other throats, the D3
branes will feel an attraction and roll through the bulk7 and
into the throat with theD3-branes. Eventually, they will an
nihilate with theD3-branes via tachyon condensation. If th
migration is part of the instanton, then, in many cases, all
D3-branes will be annihilated, leaving a Big Crunch spa
time with negative energy density. If there are mo
D3-branes to start, the final state could still be dS.

However, we argue that we should not consider the
gration of the D3-branes to be part of the instanton,
rather as a classical process that occurs after the bu
nucleates. Our logic is something like the discussion of

7We assume forces due to objects in the bulk, such as D7-br
with gluino condensation@41#, can be ignored. We thank S. Kachr
and L. McAllister for discussion on this point.
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bounce instanton of quantum mechanics in@42#; the instan-
ton should only tunnel through the barrier to some ene
slightly lower than the initial state, and classical evoluti
should take over. Typically, in the thin-wall limit, we jus
assume that the inside of the instanton is just the final st
In our case, though, we expect that the D3 migration wo
not be well approximated at all by a thin-wall instanton b
cause they are very far from theD3-branes, so the potentia
is very flat. ~Contrast this to the case for thez modulus,
where the gradient of the potential is Planck scale.! This
logic is consistent with the discussion of Hawking-Moss a
related instantons in@6,36#.

We expect the migration time to be similar to the bubb
thickness for the motion of the D3-branes in the Euclide
description of the instanton. The migration times are lar
than the bubble radius for the rest of the instanton, so we
treat the D3-brane migration as a classical process. In f
the migration times are larger than the initial dS radius its
for the models we consider, which is the maximum bub
radius.

In Appendix A, we estimate the classical migration tim
for a single D3-brane migrating from one tip to another. F
the particular model we examine,DtM;O(1015) ~in string
units!. As discussed below, decay times for the instantons
are considering are much larger,O(exp@109#). Thus, in spite
of the fact that total migration will vary a great deal fro
model to model, the total decay timeDtTOT5Dtdecay
1DtM.Dtdecay is relatively unaffected.

We should note that the classical D3-brane migration f
lowed by D3/D3 annihilation could leave a state with neg

es
8-7
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TABLE I. Models and cosmological constants.

Model p1 ,p2 K1 M1 K2 M2 z131017 z23105 DL31031 L231017

1 1,1 9 15 3 19 4.2 4.9 3.9 69
2 1,1 9 15 4 26 4.2 6.3 3.9 2.7
3 1,1 9 15 9 69 4.2 28 3.9 4.5
4 1,5 9 15 8 51 4.2 5.2 3.9 4.5
5 1,5 9 15 13 91 4.2 13 3.9 7.6
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tive cosmological constant. In cosmology, if the spatial slic
have non-negative curvature, the FRW constraint equa
means that the universe cannot actually transition to a n
tive cosmological constant. Instead, there is a Big Cru
singularity @43–45#. Though it is preferable to end in a d
state after the full decay, this is not necessary as long as
initial instanton has a lifetime much longer than the age
the universe. Note that the instanton, however, ends in a s
of positive cosmological constant, so we avoid the conce
raised by@36#.

2. Rolling radius

Now we should go back and examine the classical po
tial for s that arises becausez is away from its VEV. The
behavior of the radial modulus in flux-generated potent
has been studied in an attempt to find inflationary behavio
@46#; we are in a different regime here because we do
take z to be slowly rolling. One point to address is that w
cannot actually calculate the Ka¨hler potential with warping
for z excited because it is not clear if Eq.~9! would still hold
asz changes. However, we will assume that it is valid sin
the starting and ending points of our evolution are vacu
states for some values of the fluxK. The key point is that for
instantons that go from dS to dS, the boundary conditions
s mean it should not roll much, so the following discussi
does not apply. What we are doing here is comparing ins
tons with different boundary conditions, one withs un-
changed in the final state and one withs→` in the final
state.

We make the comparison as follows. The classical pot
tial for s andz naturally pushess to large radius as long a
z is not in its vacuum state~note that this potential is ex
tremely large compared to the KKLT potential~11!, so we
can ignore the KKLT potential here!. We will make a very
rough estimate of the change ins while z rolls to its vacuum.
If we believe thats changes enough to get over the barrier
the KKLT potential beforez reaches its vacuum and the cla
sical potential vanishes, then we expect dS to Minkow
decays—mediated by NS5-branes—will dominate over dS
dS decays. This is because the classical evolution sh
have a lower action. Otherwise, the dS to dS decays
dominate, at least in the NS5-brane channel. We will not
anything else about these dS to Minkowski decays since
are less computationally tractable and are somewhat re
dant with other decays to large radius.

Now we can roughly estimate the potential fors and z.
As in GKP @17#, we work assuming smallz, which implies
that ]zW.(]zK)W, so we will consider only the derivative
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of the superpotential. As before, theDrW terms cancel with
23uWu2. As a final approximation, we take only the leadin
terms of the Ka¨hler metric forz small. Thus, we approximate
the potential as

V5gs
4e212u~2p!5

a8 2

k4
8~gsM !2

uzu4/3

u loguzu2u

3U M

2p
logz1

K

gs
U2

. ~30!

We have used

Kzz̄52
~gsM !2a8 3

18pk4
6

uzu24/3loguzu2 ~31!

as the Ka¨hler metric forz. This is singular atz50, but our
evolution never takesz→0.

To get a very rough estimate of the change in rad
modulusu ~remember thats5e4u/gs) while z changes, we
approximate that the proper distance in theu direction of
moduli space is proportional to the proper distance move
thez direction of moduli space. The proportionality consta
is given by the directional derivative~in the moduli space
orthonormal frame! of the potential. Using the Ka¨hler metric
~31! to get the orthonormal frame, we find that

Du'
¹ûV

¹ẑV

AKzz̄Dz

A12
~32!

Du'
~gsM !2a8 3

18pk4
6

uzu2/3u loguzu2u~e2p/gsM21! ~33!

up to factors of order unity. We have usedAKzz̄Dz for the
proper distance in thez direction. The factor ofA12 in Eq.
~32! comes from the normalization ofu.

Using the potential graphed in KKLT as a guide, we e
pect thatDu only needs to be*0.1 for the Minkowski decay
to predominate, which is achieved byz*1023. As it turns
out, we will mainly be interested in cases with smallerz, so
we will not consider the 5-brane mediated dS to Minkows
decays any further.

3. Thermal enhancements

Due to the fact that dS has a temperature, we might exp
that the 5-branes that make up our instantons should h
some nonzero entropy. Since the exponential of the entr
gives a density of states, the decay time should be redu
8-8
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TABLE II. Tensions and decay times.

Model KPV: (t/tc) ln(tdecay
KPV )31029 KKLT: ( t/tc) ln(tdecay

KKLT)310218 T2T: (t/tc) ln(tdecay
T2T )310218

1 0.163 0.66 1.8 0.32 24970 0.35
2 0.164 86 7.7 8.9 24257 8.9
3 0.164 40 5.9 5.2 16512 5.2
4 0.163 3.7 2.9 1.1 34054 1.1
5 0.164 18 4.6 3.1 33517 3.1
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by a factor exp@2S(NS5)#. This argument was first given in
@14#. There it was argued that the brane instantons proba
are out of thermal equilibrium with any matter or radiation
the cosmology, so they should have a temperature co
sponding to the dS temperature. However, whether the t
perature should be the initial dS temperature, final dS te
perature, or the geometric mean was undetermined. It is
clear @47# that the brane has a well-defined temperature
cause it corresponds to accelerating observers in the tw
spacetimes.8

We will, however, neglect this effect. The bubble tem
perature is just the inverse radius,T51/(2pr ) @47#. There-
fore, the temperature is not high enough to excite
‘‘Kaluza-Klein’’ modes of the bubble much, and the entrop
would access only the zero-mode quantum mechanics.
expect that the enhancement factor would be relatively we
therefore.

V. CALCULATION OF DECAY TIMES

Throughout this paper, we have mainly discussed
KPV instantons as CDL thin-wall instantons. However, th
contain an NS5-brane, which makes them also of the m
brane class of instantons studied by@11,12#. In Appendix B,
we demonstrate the equivalence of these two formalisms
showing that they give the same decay rate given initial
final cosmological constants and instanton tension.

Using the results of Sec. IV and Appendix B, we are a
to calculate decay rates. For illustrative purposes let us
consider a model with a single KS throat. In particular, fo
D3-branes sitting at the tip of a throat withK512, M587,
one finds that the probability per unit volume for NS5-bra
mediated decay isP;exp(21019). Decays to decompactifi
cation are much faster,P;exp(21017). We expect this to
generally be the case for single throat models. Moreover
discussed in@36#, since all single throat decays will haveL
,0 in the final state, the instantons mediating these dec
might not exist. It is for this reason we have chosen to fo
on models with 2 KS throats, which, after the initial deca
haveL.0.

What follows is a discussion of the decay rates for seve
different two throat models. Table I shows the fluxes a
number ofD3-branes,pi , in each throat. In each model th
initial KPV instanton occurs in throat 1. This decay is driv

8We thank the authors of@47# for sharing their results with us
prior to publication.
04600
ly

e-
-
-
w
-

dS

e

e
k,

e

-

y
d

e
st

as

ys
s
,

al
d

by the notably small value ofz1, which makes the tension
very small. Note that we have specifically chosen mod
where this is the case. The change in and resulting valu
the cosmological constant (DL andL2 respectively!, due to
KPV decay, are also given in Table I. The small value ofz1
corresponds to smalluDLu, which would increase the deca
time, but this effect is compensated by the small bubble t
sion. How the decay rate depends on these values is g
explicitly by Eq.~B10!. We list the tensions and decay time9

for the KPV instantons in Table II, along with tensions a
decay times for two other decay modes discussed in Sec
below. Note that the lifetimes for these models a
;exp(109), where as the age of the universe~times the ho-
rizon volume! is ;exp(103), so even the most anxiou
reader can now relax and enjoy the rest of the paper.

For each of the models discussed above, although the
tial instanton decay yields a spacetime with positive cosm
logical constant, the ensuing D3-brane migration results
negative cosmological constant, a situation which, as
cussed in@43–45#, ultimately leads to a Big Crunch singu
larity. Note, as previously mentioned, this is a classical p
cess and thus avoids arguments given against insta
decays to negativeL @36#. The total migration time, as
shown in Appendix A, is negligible compared to the dec
time10 and will thus be ignored. We should also note th
although it seems difficult to find two throat models with
positive cosmological constant after D3/D3 annihilation, it
should be possible to construct multiple (.2) throat models
that end in dS.

VI. COMPARISON TO OTHER DECAY MODES

The KPV instanton is just one of several avenues
which these dS vacua can decay. One particular mode, t
oughly studied in@6,7# and reviewed at the end of Sec. II,
tunneling to decompactification~in the CDL formalism!. In
these decays, or for any decay in whichL250, DSE takes a
particularly simple form,

DSE52
S0

~11tc
2/t2!2

. ~34!

9Note that these are the decay times for a unit volume,
tdecay5P21.

10Note, however, that it is long compared to the string sca
O(1015).
8-9
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For comparison purposes, we have calculated the CDL
sions and decay times (tdecay

KKLT) for five models discussed
above. These are also listed in Table II. Note that in e
model the tensions are super-critical,t/tc.1. This will in
fact always be true for decays to decompactification sinc

t

tc
5

1

A4V~f1!/3
E

f1

`

dfA2V~f!>1, ~35!

for any V(f) whose barrier width~in string or Planck units
for our normalization! is greater thatA2/3. Noting thatS0
,0, it is clear from Eq. ~34! that the lifetime, tdecay
;exp(2DSE), increases witht/tc . Though the story is more
complicated when comparing to decays withL2Þ0, this
will generally still be the case, and it is this fact which driv
tdecay
KKLT to be much greater thantdecay

KPV . Take careful note tha
Table II lists the logs of the decay times. For these mod
tdecay
KKLT/tdecay

KPV ;exp(108). These KPV instantons are, in tec
nical terms, much much much faster. It is possible to fi
super-critical KPV instantons in whichtdecay

KKLT,tdecay
KPV . How-

ever, these require largerz in the decaying throat, leading t
larger initial cosmological constant and slower decay tim

Another particularly simple decay mode occurs in mod
with multiple KS throats. The potential energy of aD3-brane
is proportional toh21(r ), the inverse warp factor given b
Eq. ~9!, which is locally minimized at the tip of each throa
However, the energy is lower still at the tip of other throa
with smaller z. D3-branes can therefore tunnel from o
throat to another. On the other hand,h;1 in the bulk, pre-
senting a substantial potential barrier through which to t
nel. These instantons are similar to the glueball decays c
sidered in@48,49#.

As in previous examples, we consider models with t
KS throats. TheD3-brane portion of the total potential i
initially @cf. Eq. ~18!#

dV5
2m3

s3
h21~ r̃ 1!p11

2m3

s3
h21~ r̃ 2!p2 . ~36!

After the tunneling occurs, the form ofdV is unchanged
except forp1→p111 and p2→p221. These decays hav
little effect on s, and thuss will be treated as a constan
throughout this calculation.

To find the decay rate, we compute the instanton tens
from the Euclidean brane action in the thin-wall limit usin
@32#:

t5~2pAs!3/2gs
1/4a8

E
r̃ 1

r̃ 2
dr 2Am3

s3
@h21~r !2h21~ r̃ 1!#. ~37!

The prefactor is from the conversion betweenr and a canoni-
cally normalized scalar in the 4D Einstein frame. Note th
here we are using rescaled coordinates soe2u does not ap-
pear in the metric~6!. We then plugt and L65k4

2(V
1dV6) into Eq.~B10! to obtain the ‘‘throat-to-throat’’ decay
04600
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time (tdecay
T2T ). Once again, these decay times and tensions

listed in Table II. Note, however, that these instantons tun
to negative cosmological constant; while they would be ru
out by@36#, they are not forbidden by the original calculatio
of @32#. As with the KKLT decays, the tensions are uniform
supercritical, andtdecay

T2T is remarkably similar totdecay
KKLT . In-

deed, we expect these decays to be super-critical becaus
conifold throats are long in string units, giving a wide pote
tial barrier. Moreover, taking the limitk4

2t@L1 in Eq.
~B10!, it is easy to see that,

~DSE!T2T'
24p2

L1
, ~38!

and thus from Eqs.~14! and ~34!, one can see thattdecay
KKLT

;tdecay
T2T .
The reader should remember that we are working only

the thin-wall limit and that Hawking-Moss instantons ca
also give significant contributions to the decay rate. Ho
ever, in the models we have described, the dS to dS de
are subcritical, so the Hawking-Moss contributions seem
likely to change our qualitative results; KKLT found tha
Hawking-Moss instantons begin to dominate over thin-w
instantons only whent;AV(w1).tc .

The KPV instanton deals only with changes to fluxes a
branes in Eq.~1!. One might speculate about process
which could involve changes tox(X), or the induced D3
charge on wrapped (p,q) 7-branes in the type IIB. From the
F-theory viewpoint this would obviously involve topolog
change. While one could consider nontrivial D7-bra
worldvolume gauge fields undergoing a small instanton tr
sition and emitting D3-branes into the bulk, we know of n
analog for nontrivial curvature on a four-cycle. A possiblex
changing instanton would involve D7-branes unwrapping
particular 4-cycle and wrapping a different one; howev
these 4-cycles would be homologous unless the D7-br
can tear, so the induced D3-brane charge would remain
same. However, it may be interesting to explore whet
x-changing mechanisms are possible.

VII. CONCLUSIONS

The decays considered in this paper in a very real se
would represent the end of the universe for anyone unfo
nate enough to experience it. Note, however, unlike the
cays in CDL, even when D3/D3 annihilation following a
KPV decay results in a Big Crunch, lifeforms might be c
pable of knowing joy for 10228 s while the D3-branes mi-
grate across the compact manifold. We can all take com
in the fact that even the fastest decays we consider h
decay times incredibly greater than the age of our unive
Assuming that our calculations hold even approximately
a compactification with a realistic cosmological constant,
will have to worry about the death of the Sun long before
death of the universe.

Of interest, however, is the fact that we constructed de
modes other than the straightforward decay to decompac
cation discussed in@6,7,33#. In fact, we found it easy to
construct NS5-brane mediated decays that occur much m
8-10



th
It
no
it
c
w
d
t,

th
ta

r
de
G
.

ein
e

io
by
h

io

KS
e
pl
on
t

e
a
D
itt
th
te

ing
e
e

y
e
e

ion
We
the

ed
is

we

-

u-
ere
t

p
-
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rapidly than the decompactification decays. We reiterate
the NS5-brane decays can have a subcritical tension.
also noteworthy that the final state of many decays is
10D Minkowski spacetime but is instead dS or a space w
negative cosmological constant which ends in a Big Crun
In fact, depending on the region of parameter space,
found that decays mediated by NS5-branes can end in
10D Minkowski, or with negative cosmological constan
without considering other decay channels. The lesson is
even in the KKLT models, there are many different me
stable vacua and many different possible decay modes.
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APPENDIX A: MIGRATION OF D3-BRANES

The KPV decay leaves D3-branes at the tip of the
throat where it occurs. In this appendix we analyze th
subsequent classical motion in configurations with multi
KS throats. The D3-branes, produced by a decay in
throat~throat 1!, are attracted byD3-branes in another throa
~throat 2!, migrate across the compact manifoldM, and even-
tually annihilate theD3-branes. Here we work in th
SUGRA limit to approximate the total migration time, in
two-throat geometry. As discussed in Sec. V, the KPV/C
decay times are so large that the migration times have l
effect. This appendix, therefore serves largely to show
one may, in fact, ignore the migration time and to illumina
how the migration itself proceeds.

It will be assumed that the back-reaction of the migrat
D3-branes is negligible, the proper velocity of the bran
remains small, and that the majority of the travel time com

FIG. 3. Potential in throat 1~model 1!.
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from the two throats~i.e. the time through the bulk of the CY
may be ignored!.

We turn our attention once more to the metric~6! ~with
the overall scale of the manifold scaled back in!. In @30# it
was shown that theF3 flux wrapped on the A-cycle smoothl
deforms the tip of the conifold. Though we will find that th
majority of the travel time comes from the tip of throat 1, w
may ignore most of the details coming from the deformat
of the conifold since the motion is assumed to be radial.
will use the undeformed metric and, when working near
tip, multiply the warp factorh by an overall constant;0.4 to
account for the deformation.11 This has little effect on the
final result, however it was such a trivial correction it seem
silly not to include it. The warp factor, away from the tip,

h5
L4

r 4
ln~r /r s! ~A1!

r s5r 0expS 2
2p~N1p!

3gsM
2

2
1

4D ~A2!

p[no. ofD32branes; r 0
253/25/3. ~A3!

Due to the deformation of the conifold discussed above
will only be interested in the region,r̃ 5r sexp(1/4)<r<r 0.
Note that this avoids the naked singularity atr 5r s .

The action for the D3-branes is

S352
m3

gs
E d4jA2G̃1m3E

S(D3)
C̃4 . ~A4!

The Ramond-Ramond potentialC̃4 depends only on the ra
dial distancer:

C̃45
f ~r !

gs
dt`dx1`dx2`dx3 ~A5!

wheret[x0. Working in the gaugej05t(t) andj i5xi , the
Lagrangian becomes,

m3
21L52

h21

gs
~Aṫ22hṙ2!1 f ~r ! ṫ . ~A6!

Assuming that the proper velocity is small,

m3
21L.

1

2

ṙ 2 ṫ21

gs
2

@h212gsf ~r !#

gs
ṫ . ~A7!

It is easy to check that this a valid approximation. In partic
lar, one only needs to consider throat 2, since this is wh
the D3-branes are moving fastest. One can show thap
!(gsM

2)/8 will insure that Eq.~A7! is valid.

11One finds this correction by comparing the ‘‘near tip’’ war
factor found in@30# to the naive limit of the undeformed Klebanov
Tseytlin geometry.
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Since t(t) is a cyclic variable, we know that]L/] ṫ[
2E/gs is constant, leaving us with

E5
1

2 S ]r

]t D
2

1V~r !; V~r ![@h212 f ~r !#, ~A8!

and the travel time through a single throat is therefore,

Dt56E
r 0

r̃ dr

A2@E2V~r !#
. ~A9!

The 1/2 corresponds to branes traveling into/out of t
throat.

Note that the time here is a coordinate time, but we w
see that it is so small compared to decay times that we do
need to worry about conversion to proper time in the
Einstein frame.

1. Throat 1

The D3-branes, produced at rest in throat 1, feel a sl
gravitational attraction to theD3-branes at the bottom o
throat 2. Since the gravitational attraction is weakest while
throat 1, one suspects the majority of the migration time
comes from throat 1. We show below that, in fact, throa
can be ignored completely. This also justifies not includ
the travel time through the bulk of the CY.

The Ramond-Ramond potential,C̃45h1
21/gs , is not af-

fected by charge contained in throat 2. Physically, this is
to the charge being screened; mathematically, we are w
ing on a compact manifold and may consider just the cha
enclosed in throat 1. However, the geometry does, al
slightly, know about what is happening in throat 2.

In order to get an estimate of the migration time we w
make the~perhaps bold! assumption that, as with most mult
pole solutions in gravity, the warp factor is changed by
additive factor,

h1~r !→h1~r !1d~r !;

d~r ![2
27pa8

~2r 02r !4
~N21p13gsM

2/8p!.

~A10!

Here, the subscripts indicate the throat in which the flu
are contained,p is the number ofD3-branes in throat 2~there
are noD3-branes in throat 1!. Expanding to first order ind,
we see that

V~r !52
27pa8

~2r 02r !4
~N21p13gsM

2/8p!h1
22~r !.

~A11!

Figure 3 shows the potential. Note that the majority of t
time will be spent at the tip of this throat. We have be
unable to evaluate the integral~A9! explicitly. Numerical
methods also proved difficult, due to the singular behavio
the integrand asr→ r̃ . This results from the fact that th
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D3-branes are produced at rest. However, one may gain
trol of the situation by linearizing the potential nearr 5 r̃ and
integrating away from the problematic singular point. It is
this limit that we multiplyh1 by the numerical factor;0.4
discussed above. Once a safe distance away fromr 5 r̃ ,
which for technical reasons coming from the linearization
Eq. ~A11! we take to ber; r̃ 1zr0, one may evaluate the
rest of the integral~A9! numerically. For model 1, one find
that

Dt151.531016. ~A12!

2. Throat 2

For completeness, we will determine time spent in thr
2, subsequently showing that it is of no importance. In or
to deduceC̃4, recall that*!dC̃4;(Ne f f2p). Plugging in
the appropriate constants, this leaves us with

r 5h2] r f 5~27pa82!~Ne f f2p!. ~A13!

Using what we know from the KS geometry, we definef
5h211V, where the potential,V(r ), satisfies

] rV5
~27pa82gs!p

L5

r 3/L3

@ ln~r /r s1!#
. ~A14!

This can be integrated and gives a solution depending
exponential-integral functions. The potential is shown in F
4. Numerically integrating Eq.~A9! for throat 2 gives

Dt2'9.9, ~A15!

which is clearly negligible compared to Eq.~A12!.

APPENDIX B: INCLUSION OF GRAVITY
IN BUBBLE NUCLEATION

In recent literature, there has been some confusion c
cerning the relation of two formalisms for studying thin-wa
instantons. The method of Coleman and De Luccia~CDL!
@32,36# describes smooth instantons in the limit of large
dius of curvature; this formalism was used by@6# to argue
that bubbles will always nucleate in a dS background bef

FIG. 4. Potential in throat 2~model 1!.
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the recurrence time. Alternately, however, we could imag
that the bubble wall is truly an infinitesimally thin mem
brane, such as a D-brane, with a delta function stress ten
This type of configuration was studied by Brown and Teit
boim ~BT! @11,12#. In a description of dS solutions in non
critical string theory@8#, Ref. @15# uses the BT formalism to
argue that there is a critical tension above which the bub
occupies more than half the original de Sitter sphere
above which the decay time changes behavior as a func
of the bubble tension. Additionally,@15# claims that the de-
cay time is of order the recurrence time at the critical tensi

In this appendix, we show that the CDL and BT forma
isms actually agree; this is reassuring, since even D-bra
should be described as smooth objects in a complete ver
of string theory. Our results show that the decay time
always less than the recurrence time, as in@5–7,33#. Addi-
tionally, we confirm that more than half the original de Sitt
sphere decays above the critical tension, but we show
~due to some technical considerations! the decay time is ac
tually a smooth function of the bubble tension. We work in
4D effective theory throughout.

We begin by describing the two formalisms. In both CD
and BT, the nucleation/decay time is given by exponentiat
the difference of the~Euclidean! bubble and background ac
tions. Therefore, the exterior of the bubble, which is appro
mated by the background, contributes nothing in both f
malisms.

At that point, CDL note that, since both bubble and ba
ground have the same behavior at infinity, they can integ
some terms in the Ricci tensor by parts. After determin
the bubble tensiont as a functional of the potential, they fin
that the action is

DSE52p2r 3t1
12p2

k4
2 H 1

L2
F S 12

L2

3
r 2D 3/2

21G
2

1

L1
F S 12

L1

3
r 2D 3/2

21G J ~B1!

where L65k4
2V6 are the potential outside and inside t

bubble respectively@this is a combination of Eqs.~3.11! and
~3.13! from @32##. Minimizing this action with respect to the
bubble curvature radiusr gives the decay rate.

On the other hand, BT cannot use the same integration
parts because the infinite stress of the bubble wall sepa
the interior and exterior regions. Instead, the bubble ac
must include extrinsic curvature terms; it is these terms
will explain the apparent contradiction between CDL and
formalisms. The extrinsic curvatures of the interior and e
terior regions are

K6523s6S 1

r 2
2

L6

3 D 1/2

~B2!

wheres651 if the radius of curvature of the outside/insid
region of the bubble is increasing toward the exterior of
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bubble and is21 if the radius is decreasing. Since the Ric
scalar in the bubble is given by the cosmological consta
the action just becomes

DSE52p2tr 31
2p2

k4
2

r 3~K22K1!2
1

k4
2 ~L2V22L1V1!.

~B3!

The interior volumes for the bubble and background
given by ~for either sign of the cosmological constant!

V652p2S 3

L6
D 2H 1

3 Fs6S 12
L6

3
r 2D 3/2

21G
2Fs6S 12

L6

3
r 2D 1/2

21G J . ~B4!

It is algebraically simple to see that the extrinsic curvatu
terms combine with the square root terms from the volume
give exactly the CDL action~B1! up to the signss6 . The
reason@15# found a different action is that they omitted th
extrinsic curvature terms.

Now we should see why the CDL result should actua
have the signss6 . For a de Sitter background, the terms
square brackets of Eq.~B1! come from integrals

E
0

j(r )

djr S 12
L6

3
r 2D , ~B5!

which CDL evaluate by replacingdj5dr(12r 2L6/3)21/2.
However, as they note,r 5A3/L6 sin@AL6/3j#, so j(r ) is
double-valued. In fact, the correct integral is

3

L6
E

s6(12r 2L6/3)1/2

1

dyy2 ~B6!

which just introduces a factor ofs6 in the (•••)3/2 terms.
This precisely agrees with the BT results. In this paper,
will be concerned only with the cases251, ands1521
only for L1.0 and tension above critical.

To find the radius of the bubble given the two cosmolo
cal constants and the tension, we could minimize the ac
with respect tor. However, it is easier to use the Isra
matching condition across the bubble wall, which has tra
K12K25(3/2)k4

2t. The answer is given by@15# and can be
written as

1

r 2
5S k4

2t

4 D 2

1
L̄

3
1S DL

3k4
2t

D 2

,

L̄5
L11L2

2
, DL5L22L1 . ~B7!

It is tedious but straightforward to check that this match
the result from minimizing the action. The maximum radi
occurs at critical tension

k4
2tc5S 4

3
uDLu D 1/2

~B8!
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and is 1/r 25L1/351/RdS
2 for positive initial cosmological

constant. Note that for vanishing initial vacuum energy, gr
ity stabilizes the false vacuum for tension bigger than cr
cal, as in@32#. Also, for negative initial cosmological con
stant, the radius becomes infinite for tensions lower th
critical. We will concern ourselves only with initial de Sitte
spacetimes, so we do not face some of the concerns raise
@36# about decays of Minkowski and AdS spacetimes.

We will finally write down the action for the bubbles:

DSE52p2r 3S t1
6

k4
2L1L2

H DL

r 3
1L1F S k4

2t

4 D 2

2
DL

6

1S DL

3k4
2t

D 2G 3/2

2s1L2F S k4
2t

4 D 2

1
DL

6

1S DL

3k4
2t

D 2G 3/2J D ~B9!

5
2p2

F S k4
2t

4 D 2

1
L22DL/2

3
1S DL

3k4
2t

D 2G 3/2

3S t1
6

k4
2F S L22

DL

2 D 2

2
DL2

4 G H DLF S k4
2t

4 D 2

1

L22
DL

2

3
1S DL

3k4
2t

D 2G 3/2

1~L2DL!

3S k4
2t

4
2

DL

3k4
2t

D 3

1L2S k4
2t

4
1

DL

3k4
2t

D 3J D .
04600
-
-

n

by

While this is a mess, the reader should note that the sig
the last term is independent of the tension. That is beca
for t,tc , s151 but the quantity in the square brackets
the last term of Eq.~B9! is the square of a negative numbe
so the square root introduces a sign. For supercritical tens
that quantity is the square of a positive number, but th
s1521. We have chosen to write the variables in this fo
in order to illuminate the dependence on the level spac
Please see Fig. 5 for the qualitative features of the actionDS
as a function ofL2 ,DL. While in some ways the physic
depends more directly on the initial cosmological const
L1 , in this paper we typically work with a fixed finalL2 ,
andDL depends on the same moduli that control the bub
tension.

We should note that this action reduces to the known f
mulas in special cases. In particular, the result of CDL
quoted in KKLT,

DSE52
S0

~11tc
2/t2!2

~B11!

is valid for all tensions when the final vacuum energy va
ishes. A related result is that, for anyL6>0, as the bubble
tension goes to infinity, the decay time goes to the recurre
time of the original dS.

As final comments, let us reemphasize, following@32,36#,
that the final states are not maximally symmetric spacetim
but rather cosmological ones. In particular, decays with
negative final cosmological constant lead not to AdS but t
Big Crunch singularity within the bubble. Additionally, a
mentioned in@36#, these instantons are technically differe
from instanton decays of inflationary spacetimes. It see
reasonable that for sufficiently small decay rates treating
initial spacetime as dS is a good approximation, but it
mains an interesting problem to study decays of poss
more cosmologically relevant spacetimes.
~B10!

FIG. 5. The bubble minus background action as a function of the cosmological constants. The variables areS5k4
4t2DS, L

5L2 /k4
4t2, anddL5DL/k4

4t2.
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