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Fall of stringy de Sitter spacetime
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Kachru, Kallosh, Linde, and Trivedi recently constructed a four-dimensional de Sitter compactification of
type 1IB string theory, which they showed to be metastable in agreement with general arguments about de Sitter
spacetimes in quantum gravity. In this paper, we describe how discrete flux choices lead to a closely spaced set
of vacua and explore various decay channels. We find that in many situations NS5-brane mediated decays
which exchange NSNS 3-form flux for D3-branes are comparatively very fast.
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I. INSTABILITIES OF dS FLUX COMPACTIFICATIONS has been an object of study in many papers, incluflidg-
15].
de Sitter spacetim@S) holds a special place in the study  We consider a slight twist on the brane instanton decays.
of quantum gravity. Constructing and exploring the maxi-In [6], the cosmological constant gets a positive contribution
mally symmetric spacetime with a positive cosmologicalfrom D3-branes, rather than directly from the fluxes. This
constantA has been the source of much recent interest deeffect has been seen in the AdS conformal field theéBIyT)
spite (or perhaps because)oits stubborn opacity. While correspondence, where instantonic Neveu-Schwarz 5-branes

much progress has been made in _the undgrstandirjg of tl?RISS-brane)sprovide a decay mode for thﬁ-branes[m].

otf:gr d mgﬁ;m?,lal\yés)symmetnc d;oLunons,t_lekovt\Fm | %nddThese results apply to the similar dS compactifications of
anti—ge sitter spaces, as until recently €luded .. 1 and are particularly of interest because they can end
string theoretic description because of some of its unique

properties. The observer-dependent horizon of dS, like Ina state of positive cosmological constant. Therefore, one

black hole horizon, yields a thermal state with finite entropy.mlght wonder whether this typg of decay coulq oceur quickly
Not only are theSmatrix observables of string theory pre- enough. to affect the_cosmolog|cal constant within the age of
cluded inA>0 spaceg1], but, due to the inevitable Poin- the Universe. In this paper, we generalize the reSL_llFs of
carerecurrence§?], all observables are ill-defind@]. These ~ Kachru, Pearson, and Verlind&PV) [16] to dS compactifi-
issues would merely be of abstract theoretical importanc&ations and compare the decay rate through the 5-brane
were it not for recent observational eviderjed indicating channel to two other decays, one to decompactification and
that not only wasA >0 in the early Universe during infla- the other by D3-brane tunneling in the compactification
tion, but it seems to be so today. manifold. We give explicit examples in which the 5-brane
It has become increasingly clear that dS cannot be a stabecays are much faster than the others.
state in any theory of quantum gravity. The symmetries of dS In the next section, we review the dS vacuum construction
are incommensurate with the discrete spectrum implied byhat we will study. In Sec. Ill, we flesh out the discrete land-
finite entropy[5]. Rather than a stable vacuum, dS is insteadscape of vacua that are available through tuning and among
a metastable resonance whose lifetime, on general entropighich our instantons will interpolate. We then review the
grounds, must be less than the recurrence fis€/]. AdS/CFT instantons df16] and make the corrections neces-
One would ask, then, what does string theory say abouary to compactify their backgrounds in Sec. IV. We apply
dS and its decay modes? String models of dS have beegur calculation to find decay times for specific sets of initial
difficult to find partly because, as nonsupersymmetric vacuaparameters in Sec. V and compare them to those of KKLT in
they are isolated points in moduli space with all moduli sta-sec. vI. In addition, we comment on two other possible de-
bilized. Notably, some dS compactifications of string theorycay channels. We will generally keep factors of the gravita-
were described iii8,9] and, in a well-controlled manner for tional couplingx, and the string lengta’ explicit in for-

critical strings, by Kachru, Kallosh, Linde, and Trivedi myjas, but any numbers we cite should be taken in Planck or
(KKLT) [6]. Generically, any string theoretic dS compactifi- string units.

cation can decay and decompact]f§;10] because the 10D
Poincareinvariant string vacuum is supersymmetric and so
has vanishing energy density. However, this is far from the
only decay mode. For example, in any compactification in
which RR fluxes contribute to the potential, D-brane instan- Constructing a solution of string or M theory with a four-
tons change the fluxes and the cosmological constant. Thidimensional dS vacuum has been a longstanding challenge.
Such a solution must be nonsupersymmetric and requires
aspects of the theory beyond the low-energy SUGRA limit.

Il. BUILDING dS VACUA

*Electronic address: frey@vulcan.physics.ucsb.edu Recently, however, KKLT[6] presented a specific con-
"Electronic address: lippert@physics.ucsb.edu struction in critical string theory with no unfixed moduli. The
*Electronic address: brook@physics.ucsb.edu model was based on the warped flux compactifications stud-
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ied by Giddings, Kachru, and PolchinsiGKP) [17]." Non- K=-3log —i(p—p)]—log —i(7—7)]

perturbative corrections fix the overall Klar modulus of

this tree-level no-scale model, resulting in a stable, super- i _

symmetric AdS vacuum. KKLT then added3-branes to —log _EJMQ/\Q ©)
4

yield a metastable dS vacuum and showed, by considering
decays,to decompactification, the lifetime to be less than thglong with W, gives the no-scale potential
Poincarerecurrence time.
The GKP compactification of type IIB string theory on a _ak UM AN YA

threefoldM with 7-branes and O3-planes can be efficiently v=e Z LDwow @
described as an F-theory compactification on a CY fourfold . ) )
(CY) X. X is elliptically fibered ovemM such that the fiber's Wherei,j sum over all moduli butp, Kj;=4,d,K is the
complex structure-=co+ie~ % is the type 1B axion-dilaton  Kahler metric, andD;=d;+ 4,k is the Kenler covariant de-

(we take for simplicityr=i/gs). We will consider the orien- rivativg. Exc_ept for the volume. modulus, thi; potgntial
tifold limit of F theory in whichM is an orientifolded Cy 9€nerically fixes all other moduli such th@ is imaginary

self-dual’® The remaining condition for supersymmetry,
threefold. Three-form fluxes and D3-branes are added su 'pW=0 is satisfied only whely=0, which implies that in

Jt?ocr: t)Of tgg %I?g?r:]?dﬁﬁlf constraint, or the global Conservaéupersymmetric vacu@, is a(2,1) form.
- 5 :

The geometry oM is, of course, very complicated but is
accurately described near conifold points by the Klebanov-
Strassler(KS) solution[30]. Wrapped fluxes warp and de-
form the conifold; at the tiy=0, the metric is

ds?=h""2p, dx*dx"
+hgMa’(e?Udy?+dQ2+e?y?dQ3) (5

iJ

1 x(X)
OINDg_Nﬁ‘FZ— H3/\F3_7 (1)

The Euler number of the CY fourfolg(X) gives the effec- ] ) i )
tive negative D3-brane charge in type 1B O3-planes andvhereb~1 is a numerical constant aref is the compacti-
D7-branes wrapped on 4-cycles Mt For typical choices of ~fication length scalehere we use 10D string frameNotice
X, x(X) can be up t®(10%) [28]. This must be balanced by that theS® at the tip has a fixed proper size depending only

- on the fluxes. Also, th&? is nontrivially fibered over th&>.
:Eg @?Z;%i;rcl)\lmSljSD jr?g(??gg‘%rrﬁiﬁ@?ﬁ?&??ﬁi?ﬂd Away from the tip, the throat has approximately a warped

conifold metric
also sourcd-s.

To construct their model, KKLT began by choosiXgnd ds?~h~2y, dx*dx”+h'%?(dr?+r2d i) ()
a set of wrapped fluxes, while settifNgy3=Ngz=0. The CY , _ _ _
threefoldM hasbs>1 three-cycles, and a particular choice Wheredst, ; is the metric on the basg"™. In this region, the
of fluxes Hy, F3e H3(M,Z) represents a point in ab3 ~ warp factor is approximately
dimensional lattice. The fluxes combine into a single com- _ 4.4
plex 3-form G;=F3;— rH;. For simplicity, KKLT chose h=1+(L%rlog(r/rs) 0
hY(X)=2, so thatM has a single Kaler modulusp. In  with the length scald.*=5%e *'g;Ma’. Here, the radial
addition to the modulir and p, M hash?{M) complex coordinates andy are complicated functions of each other,

structure moduliz®. ' and the tip is ay=0r=r. For the undeformed conifold, the
In the presence of fluxes, the classical 4D effectVe  gjngular tip is located at=r =Te~ ¥4 Splitting the conifold
=1 superpotential i§18] into the tip and throat in this manner is describedidm] and

references therein.
The radial modulus Ip=e*/g,= 0 is defined so that, at

1 large radius, the total unwarped volume of the compactifica-
WO:E MG3/\Q’ @ tion is fyd®xyh P2g~eSia’3. The fluxes through any
4 3-cycle of M are quantized, and for a given conifold throat
. . . 1 1
where () is the holomorphia3,0 form on M. W, then is M= —f Fs, K=- _f Hs (8)
given by the(0,3) part of theG; flux which, because the 4mia’ Ja 4ma’JB

fluxes are quantized, can only be tuned discretely. The tre
level Kahler potential (ignoring warping of the spacetime
metric)

SWhere theA cycle is theS® which stays finite at the tip and
the B cycle is the six-dimensional dual 8f GKP found that

2t is natural to wonder if corrections to the Klar potential due
to warping could fix the radial modulus. While the precise form of
The GKP type of compactification was studied earlier in simplerk is difficult to compute forp, because the 10D solution exists at
cases and in M theory bji8—-21. The supersymmetry conditions tree level for all compactification scales, the final potential must be
and equations of motion were considered22-24. Explicit con- no-scale[29]. We will look at warping in the complex structure
structions on tori and K3 are if25-27. Kahler potential below.
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the warp factor at the tip of the conifold is related to the

1 1
deformation parameter of the tip, which is determined by SE[(p]Zf d4x\/§ - —R+ E(é’(p)z-‘rV(go)
the flux superpotential), by 2Ky
(gsM)? F{ 2wK} - [ a\ovie) 13
h(y=0)~———7—, z=exg— . 9
(y=0) 2] Y €)

using Einstein’s equations to get the second line. The instan-
It is this particular form of the warp factor that gives the tON @co IS an Q4)-symmetric interpolation between the dS

cycle a fixed proper size at the tip. Note that this is not the/&cuum atec, and the supersymmetric vacuum @t .
~ . . When Wick rotated back, this gives the usual expanding
r—r limit of Eq. (7) because the conifold is deformed. .
o . . bubble of true vacuum inside the false dS vacuum. The ac-
To generate a nontrivial potential f@r, as suggested in

[17], KKLT considered nonperturbative corrections to the su—tlon of the static dS vacuum is simply computed to give

perpotential (2). Both wrapped Euclidean D3-branes and

2
gluino condensation on the worldvolume of non-Abelian D7- Sp=— 24m =-% (14)
branes generate additional terms of the form K3V

where S, is the entropy of the dS vacuum. The tunneling
probability per unit volume is given by the difference be-
tween the action of the instanton solution and the static dS
where the constan&s~O(1) anda~O(10 1). For simplic-  vacuum:

ity, KKLT took p to be purely imaginaryp=io, andA, a,

SW=Agar (10)

W, to be real. The potential now becomes Ploray—€ Secou S, (15)
o From Eq.(13), §[ ¢]<0 for V(¢)>0, and the resulting life-
Ve aAe Aear| 1427 W, (11  time is exponentially less than the Poincaeeurrence time
207 3 ' t,~e>:
t((j:tlejcléyw eSO7‘S[¢]‘<tr (16)

and for suitableW,<<0 there is a supersymmetric vacuum

with V<0, implying the noncompact directions are AdS. which is in line with the general arguments [&7,33.
For |[Wo| <1, the AdS minimum lies atre;>1 where the In addition to the CDL instanton, KKLT considered de-
SUGRA can be trusted and’ corrections are small. compactification decay via the stochastic Hawking-Moss
__The final step in the KKLT construction is to add enough (HMm) instantor{34]. Considering decays of general dS string
D3-branes so tha¥,>0 and the vacuum is dS. The global compactifications,5] and[7] also discussed thermal fluctua-
Fs charge must still be conserved via Ed), and the addi- tions using the HM reasoning. Whereas the CDL instanton
tion of p D3-branes givedly;= — p. By adjusting the fluxes, tunnels through the potential barrier, the HM instanton relies
a corresponding increase ji,H3/\F3 balances this reduc- on thermal fluctuations to carry to the top of the potential,
tion. TheD3-branes break supersymmetry and add some exwhere it can then roll down the other side to the true vacuum.
tra energy[16], While the original HM process is homogeneous, KKLT ar-
gued it should be interpreted as a horizon-sized fluctuation.
If the potential has a broad, flat maximum @i, the state
SV = %; D=2ush~(r) (12) there is approximately dS with enerd(¢,)>V, and en-
o tropy S;. The probability per unit volume for a thermal fluc-
tuation is given by the difference in entropies between the

Wwhereus is the brane charge. To minimize their energy, thefluctuatlon and equilibrium:

D3-branes migrate to a conifold tip, so the energy density per qum eSS0, 17)
D3-brane depends, through EE), on the fluxes. For suffi- eeay

ciently fine-tuned parameters, this additional term in the poThe decay timetwcay:(Pge'\ﬁa;)_l is again less than the

Unlike the AdS vacuum, the dS minimum is only meta- (16) when the potential barrier is short and wide and thus the
stable. KKLT investigated one possible decay mode, tunnekyin-wall approximation is invalid.

ing to large o. The potential becomes arbitrarily close to
zero at large radius, so it is possible to tunnel to a runaway,
decompactifying solution.

Coleman and De Lucci&CDL) [32] described such an As described in Sec. I, obtaining the vacua constructed in
instanton including gravitational back-reaction. In terms of a[6] requires fine-tuning subject to several constraints. First,
canonical scalar fieldo= (1/3/2logo)/x,, the Euclidean ac- one must adjust the bulk fluxes so thty|<1. Moreover, a
tion is dS minimum requires fine-tuning of the fluxds,andM, in

[ll. FINDING dS PARAMETERS
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M cause problems when considering loop corrections.
The smallest possible value @, for the parameters used
5 s in KKLT, is O(10™29), a far cry from the desire®(10™ 129,
’ In order to obtain a more realistic vacuum energy, one must
5 attempt to construct a background witt|~O(10™%9).
While such a fine-tuning seems improbable, wlith suffi-
1.5 E:ier]nly large, it is at least possibléf not particularly natural
13].
1 We have so far considered only a single KS throat, as in
KKLT. However, a general CY has many of them. By con-
0.5 sidering backgrounds with multiple KS throats the discret-
/ uum density is increased dramatically. One finds that Eq.
0 A (12) becomes,
0 800 1000
FIG. 1. The possible dS vacua with for givenM illustrate the Dip; B
density of states consistent with a discretuum. SV= Z '_3'; Di=2uzh (ry), (18)
g

the KS throat. A given value oV, tightly constrains one’s
choice forDp [cf. Eq.(12)]. For example, KKLT presented a
model with Wo=—10"% and_an AdS minimum ofVo=  wherei labels the different throats. Clearly, by adjusting the
—2.00<10 % by adding oneD3-brane withD=3x10"°  fluxes in each individual throat, one may tud®/ with
they achieved a dS minimum &,=1.77<10 '’ Thisisa greater accuracy. For a single KS throat we foud@0%)
very special choice of fluxes indeed. FPp<3x10 ° the  configurations with a dS minimum. Analogously, for 2 KS
minimum is atV,<0 and is AdS, and fobp=7.5x10 °a throats (75M;<M,, 75<M,=<300) we findO(10°) dS
local minimum no longer exists. There are additional con-minima. It is easy to find configurations wit®(10) KS
straints as well. I116] it is shown that there exists a classi- throats® leading to an amazingly dense set of vacua. The
cal instability if p/M=0.08. Furthermore, results from Sec. inclusion of a second throat also lowers our minimum value
Il of [17] rely on approximations valid wheiK/(gsM) of Vy by an order of magnitude. Though this is nice, it does
=1/2. little good in helping build a model with a realistic cosmo-
With such fine-tuning and taking into account that thelogical constant. We suspect that even with the addition of 10
tuning parameter andM are discrete, one might question or more throats the lofty goal of,~ 1029 would still be
if it is possible to build such a model at all. Such tuning far out of reach.
would require the existence of a “discretuuri.We have The following sections describe various decays, analo-
done numerical searches in order to map out the discretgous to those studied {r16], in which one unit oH5 flux is
landscape of dS vacua. Figure 1 shows the existence of trexchanged foM D3-branes. For geometries with single KS
discretuum. Here we have plotted the possible valiyethat  throats, after one decay the final state has a negative cosmo-
have a dS minimum and can be achieved with integer fluxelogical constant and a big crunch in its future. It has been
for the parameters used in KKLW,=—-10 4 a=.1,A  argued that these decays should not be allowed in a quantum
=1,0s=0.1, k,=a'=1.%Itis clear that for a desired value theory of gravity and also that instantons mediating these
of V, there exists a configuration of fluxes witl,=V, decays may not be possible to constrl&8]. We will not
+¢, wheree is very small; i.e. a discretuum does exist. For WOITy about these subtletigsther than the well-known ef-
each of the models studig/gM>1/2. Here we have al- fects on the instanton actig82]) since our main focus is on
lowed M to range from 75 to 1000. The lower bound avoidsnstanton decays ending in dS. The configuration with mul-
the classical instabilityfor p<6). As one goes to higher and tiple KS throats is more interesting. As Wl_th the sm_gle throat,
higher values oMM, one must also increase the amount oftheése may decay directly into states with negative cosmo-
induced D3-brane charge on the D7-branes in order to satisfgical constant. However, there can now be decays from one
Eq. (1). This might require adding more D7-branes and, thus,ds vacuum to another with smalldr (modulo some classi-

more degrees of freedom, which, though massive, coul&a| evo_lution we yvill d_iscuss latprThis process is of par-
ticular interest, since it allows for a rather generic set of

fluxes on several KS throats to undergo a series of decays to
3The authors of[13] coined this term to refer to situations in dS vacua with smaller and smaller cosmological constant;

which a discrete spectrum is sufficiently dense to allow fogan  this situation is similar to that envisioned §37] and ex-
mos arbitrarily fine-tuning. Our discretuum is not as finely spacedPanded upon by11,12,14.
as those if13].

4In addition to tuningV, by varying the fluxesM and K, one
could, in principle, varyV, by adjusting the bulk fluxes. While this ~ °One can estimate the small¢¥{,| to have log{Wp|)~—2bs. We
would certainly increase the discretuum density, we léagecon-  thank S. Kachru for discussion on this point.
stant as explicit calculation o, in terms of bulk fluxes is pro- ®For example, if35] a family of quintics are constructed with 16
hibitively complicated. conifold singularities.
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argued strenuouslyB6], the thin-wall limit certainly does not
describe the full picture of the decays, but the other contri-
butions to the Euclidean path integra@uch as Hawking-
Moss instantons at the other extrenshould only enhance

the decay rate. Therefore, we take the point of view that the

thin-wall limit estimates an upper limit for the decay time.
As a consequence of the thin-wall limit, we may, as in
KKLT, ignore the polarization of th®3-branes in the initial
metastable state. Before we turn to the modifications neces-

o sary for including KPV instantons in KKLT compactifica-
FIG. 2. Top: In the KPV procesg D3-branes polarize into an tions, let us also note that our instantons are cousins of the
NS5-brane wrapping a8’ on the A cycle. The NS5-brane then supersymmetry-changing domain wall bubbles founB8i,

slides to the opposite pole, becomikty-p D3-branes. Bottom: In  just as the AJS/CFT instantons of KPV are related to the
the thin-wall limit, the NS5-brane instead wraps thecycle at a  BPS domain walls.

particular Euclidean radius.

IV. DECAYS IN THE MANNER OF KPV B. Corrections for compactifications

There are several modifications that we have to make to
the KPV instanton decay formula due to the fact that we

The KS geometry found at conifold points of GKP com- have a compact GKP geometry rather than a noncompact
pactifications was first studied in the usual decoupling limitconifold.
of string-gauge theory dualitieg30]. The relevant gauge The first and most obvious correction is that gravity is no
theory dual is a duality cascade with an energy dependenonger decoupled, so we should include the effects of gravi-
effective number of D3-branes; in the IR, most of the D3-tation on the decay time. These effects are well known
branes have been transformed into 3-form fluxes. The BPEL1,12,3%; in Appendix B, we work out the specific formula
domain wall that transforms the D3-branes to fluxes was dewe need. The decay time, including gravibut ignoring the
scribed by KPV; it is a polarized NS5-brane that carries D34arge number of massive fields in the compactificatios
brane charges and bends over theycle at the deformed tyecay~exd —AS:], whereASe is the difference of the Eu-
conifold tip [16]. As the NS5-brane moves over tAecycle,  clidean actions for the instanton and the initial background
the D3-branes are absorbed into the background RR flux, argtate as given in EqB10). It depends only on the bubble
the background NSNS flux jumps by a unit due to the NS5+ension, the initial vacuum energy density, and the change in
brane charge. energy density. Given two dS states from Sec. Ill, we just

KPV also described nonsupersymmetric gauge theorieseed to calculate the bubble tension and plug into(Bg0).
with p D3-branes at the tip of the conifold, as in KKLT. Due  There are also modifications to the tension of the bubble.
to the 3-form flux background, thB3-branes suffer a clas- 1he easiest to calculate is an effect of working in the 4D
sical instability to brane polarizatioffirst discovered in Einstein frame. Let us emphasize that we need to work in the
[38]) as an NS5-brane wrapping & in the A cycle. How- 4D Einstein frame to use the superpotential formalism of

ever, forp=M/12, the NS5-brane itself is unstable to col- S€c. Il, and this is also the frame in which the potential has
lapse around thé cycle, reducing the NSNS flux and turn- Peen calculated. The Einstein frame is also the frame used in
ing the D3-branes into supersymmetric D3-branes, Forcalcul_atmg the instanton decay time. It is easiest to get this
smallerp, the decay of the NS5-brane proceeds by tunnelingty 90ing to the NS5-brane action

in Euclidean spacetime, the NS5-brane is slightly polarized

with D3 charge at infinity and bends around tAecycle to SE:“_Z‘ d4x‘/det9uv5f d3x\ges, (19
leave D3-branes at the origjd6]. This process is illustrated Os

in the top line of Fig. 2.

For p small enough, KPV showed numerically that the Wwhereg,, is the 4D pullback of the 10D metricj is the
thin-wall approximation is very reasonable. In that limit, the delta function at the radius of the bublleith the determi-
instanton appears to be an Nss-brane Wrapping thé?uﬂf nant Of the metl’iC includéd and 953 iS the determinant Of
the A cycle at a fixed radius, as shown in the bottom line ofthe metric on theA cycle. The 10D string frame and 4D
Fig. 2. The wrappe® 5 flux inducesM units of charge in the  Einstein frame are related by Y47, = g5 %e®g,,,, so the
NS5 worldvolume gauge theory which is canceled by theNS5 action becomes

charge carried by the ends Bf D3-branes. The D3-branes

A. Review of NS5-brane instantons

: Se=27r37

end on the outside of the NS5-brane, afid-p D3-branes 5
end on the inside. The bubble tension in the effective theory 7213\ 312
is just the NS5-brane tension times the volume of the TSEMSgSe‘g"( M) (27%)(bgMa’)32
cycle. These instantons are clearly related to the BPS domain 9s
walls KPV found. b3/2,

In the rest of this paper, we will focus on the thin-wall = 3 3254 94" (20
limit to estimate the instanton bubble tension. As has been 16m°a’ "g5 o
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(Henceforth 7 is the instanton bubble tensignin the first  proper distance. This is clearly minimized when only the last
equality for the tensiorrs, we have separated the contribu- two terms contribute. Taking the averageta potential in
tion from the conversion to Einstein frame, the warp factor,the exponential, we gefup to numerical factors of order
and the volume of thé cycle. We have ignored the contri- unity)
bution to the action from the NSNS 6-form potential, which
KPV showed is negligible in the thin-wall limit. Heuristi- =222 (| AW+ | AK|[(W)]). (22)
cally this is because the 6-form potential only has two legs
on theA cycle and the 5-brane fills the entire cycle, as shownThis comes from the definition of the covariant derivative
in Fig. 2. However, the RR field strength; gives a world-  and the chain rulg This derivation is very similar to that of
volume anomaly that requirdd D3-branes to attach to the BPS domain walls and is also used [#0]. Actually, it is
5-brane. Here, there aeD3-branes on the outside aldl  easy to generalize this estimate to include other moduli, but
—p D3-branes on the inside. we will only considerz in the superpotential and k&r po-
The other correction we should make is due to the actionential. We should note thatW andA K are calculated from
for the moduli. Since the moduli are fixed by the flux super-the inside of the NS5-bran@vherez is not in a vacuum
potential (2), after the NS5-brane bubble changes the fluxstate to the new vacuum on the interior of the instanton and
the VEVs of the moduli will change. Therefore, we need tonot from the original vacuum to the new vacuum. Since we
take into account the rolling of the moduli to the new are just making an estimaté, - -) will be an average value
vacuum. We will focus on the deformation modulusf the  over the region of variation of.
conifold for the following reasons. First, it clearly changes The change in the superpotential is given entirely by the
significantly whenK changegsee Eq(9)]. Also, for a non-  superpotential of the conifold just inside the NS5-brane mi-
compact conifold,K does not affect the dilaton or other nusW,. This is because in the vacuum states, khand M
moduli, so we would expect that they would be only mini- fluxes are(2,1) forms and so do not contribute to the super-
mally affected by a change d&€ in the compact caséhe potential (see, for example[31]). Using the notation and
other moduli are typically fixed by fluxes on other cygles conventions 0f17,29, we get
Also, KKLT have shown that the VEV of does not change

much due to the presence BB-branes. Therefore, since we (27)2a" 572 K
expectgs and o to keep roughly the same values before and AW=-W(z)=— —8( MG(z)—i —z)
after the decay, we expect that they will not roll much, and Ka s
we will treat them as constants. There is actually a significant
tree-level potential fogs ando whenzis not at its VEV, and (2m)2a’'2 [ M K
we will consider its effects in the next subsection. Neverthe- ~— —8z(ﬁln z—i g_>
less, we expect our estimate of the contribution fronot to Ka s
be affected significantly by other moduli. To be conservative, 5.)2" 512
one could multiply the contribution frormby a fudge factor, ~— i&z, (23
but we note that we are only making an estimate to begin gsxf‘@1
with, so we are not quite that careful.
To estimate the tension due to the rolling pfwe will  whereK is the NSNS flux on the inside of the bubble and

assume that just inside the NS5-branés in its original s evaluated outside the bubble. This follows from the defi-
vacuum value outside of the NS5-brane and rolls quickly toitions

the new VEV inside. This is probably not the exact classical

solution, but we will use it and the thin-wall approximation

as an upper limit. At tree levelvhere we are working we f O=a'%%, f Q=a'¥%G(z),
can write the action as A B

1
1 _ — _ G= —zlog z+ holomorphic (24
Se(2)=— f d*x\Qa[ K10,20" 2+ K3 K 2D ,WD,W] 2m 219

Ka

and the relation from Eq. (9 that z(outside)
272 — I ~exp(—2n/gM)z(inside). To overestimat€W), we will

= —5 | dérd K™Kz~ k7€ D W) take

Ka
X(szg?_ Kie/C/2+itzw) |<W>|%|WO| + |AW| (25)
+ K320, 2D, W+ k5eM27199,2D,W],  (21) The Kzhler potential is significantly more complicated,

and, because we are concerned with a modulus that lives at
wherew is some phaséphysically, we have to take it so that the bottom of a throat, we need to take the warp factor into
the Euclidean action comes out positive because it startegccount. Including warping and bunching thehkar poten-
positive definit¢. As abovey is the radius of curvature of the tial for all other complex moduli together intk, (that is,
bubble, while ¢ is the radial coordinate corresponding to integrals over other cyclgsEq. (3) becomeg29]
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a' 3(gsM)2

’7TK?1

KC(compley = —log 121%30g|2|%. (27

i _
e’Cc——Uﬂf Qh K(compley~ K, — e’
A B

5
- f Q f Qh) . . .

A JB (This is, to our knowledge, the first calculation of part of a

Kahler potential with warping includepActually, there will

To computefgQ2h, we use the trick that the cycles have abe other terms in th8 cycle integral, but it is reasonable to
monodromyB— B+ A aroundz=0 (in the same way it was believe that, as in the unwarped case, this is the leading term
used to find the leading term i§) and Eq.(9) (which is  that depends oz Then, using Eq(3) and assuming the
valid at points both inside and outside the bubliteexpand complex structure gives small contributions k@, we get

. (26)

out roughly
|
3 2
Os o (gsM) 4w
et~ , AK~-— 2|3 ——e*™3M 1 |og| 2|2 (e*™0M — 1) |. 28
3 P RGN ol ) (29)
The total bubble tension is therefore
o b3/2Z 277.29;/2 (277_)2&/5/22_'— W (271_)2a/5/2Z ar3(gSM)2|Z|2/3
> 1673a’ 3/29340'9/4 45372 gskg 0 gSKg 27TK2
4
X | ——e43M 1 |og| z|2(e*™30M — 1) } . (29
gsM

With the bubble tension in hand we are now in a position tobounce instanton of quantum mechanic§44]; the instan-
calculate decay rates. However, before moving on we wouldon should only tunnel through the barrier to some energy
like to take a closer look at subtle issues ignored in the abovelightly lower than the initial state, and classical evolution
calculation. The anxious reader, fretting over the fate of hisshould take over. Typically, in the thin-wall limit, we just
or her universe, may skip ahead to Sec. V, and leave thassume that the inside of the instanton is just the final state.

following subsection for a more careful reading. In our case, though, we expect that the D3 migration would
not be well approximated at all by a thin-wall instanton be-
C. Other considerations cause they are very far from tl23-branes, so the potential
is very flat. (Contrast this to the case for tremodulus,
1. D3-brane migration where the gradient of the potential is Planck sgalghis

The KPV instanton bubble not only reduces the NSNSIogic is consistent with the discussion of Hawking-Moss and

L = . . related instantons if6,36].
flux K and annihilated3-branes, but it also leaves behind We expect the migration time to be similar to the bubble

D3-branes. If there ar®3-branes in other throats, the D3- thickness for the motion of the D3-branes in the Euclidean
branes will feel an attraction and roll through the Hutind description of the instanton. The migration times are larger
into the throat with theD3-branes. Eventually, they will an- than the bubble radius for the rest of the instanton, so we will
nihilate with theD3-branes via tachyon condensation. If this treat the D3-brane migration as a classical process. In fact,
migration is part of the instanton, then, in many cases, all théhe migration times are larger than the initial dS radius itself
D3-branes will be annihilated, leaving a Big Crunch spacefor the models we consider, which is the maximum bubble
time with negative energy density. If there are moreradius.
D3-branes to start, the final state could still be dS. In Appendix A, we estimate the classical migration time
However, we argue that we should not consider the mifor a single D3-brane migrating from one tip to another. For
gration of the D3-branes to be part of the instanton, buthe particular model we examindty,~O(10") (in string
rather as a classical process that occurs after the bubblits. As discussed below, decay times for the instantons we
nucleates. Our logic is something like the discussion of there considering are much larg@(exg10°]). Thus, in spite
of the fact that total migration will vary a great deal from
model to model, the total decay timAtror=Atgecay
We assume forces due to objects in the bulk, such as D7-branes Aty =Atgecay IS relatively unaffected.
with gluino condensatiof41], can be ignored. We thank S. Kachru ~ We should note that the classical D3-brane migration fol-
and L. McAllister for discussion on this point. lowed by D3D3 annihilation could leave a state with nega-

046008-7



FREY, LIPPERT, AND WILLIAMS PHYSICAL REVIEW D68, 046008 (2003

TABLE |. Models and cosmological constants.

Model  p;.p, K, M, K, M, z;x107  z,x10°  AAX10%  A_x10Y

1 11 9 15 3 19 4.2 4.9 3.9 69
2 11 9 15 4 26 4.2 6.3 3.9 2.7
3 11 9 15 9 69 4.2 28 3.9 4.5
4 15 9 15 8 51 4.2 5.2 3.9 4.5
5 15 9 15 13 91 4.2 13 3.9 7.6

tive cosmological constant. In cosmology, if the spatial slicesof the superpotential. As before, tlg,W terms cancel with
have non-negative curvature, the FRW constraint equatior-3|W|2. As a final approximation, we take only the leading
means that the universe cannot actually transition to a negaerms of the Kaler metric forz small. Thus, we approximate
tive cosmological constant. Instead, there is a Big Crunchihe potential as

singularity[43—45. Though it is preferable to end in a dS EVINETY 5

state after the full decay, this is not necessary as long as the V=gse “(2m)
initial instanton has a lifetime much longer than the age of

12 |Z|4/3

K4(gsM)? [log|z|?|

the universe. Note that the instanton, however, ends in a state M K |2
of positive cosmological constant, so we avoid the concerns X Zbg z+ g_ . (30
raised by[36]. s
We have used
2. Rolling radius
N ; ; (gsM )za, 3 _

ow we should go back and examine the classical poten- K=—————17 “30g|z|2 (31)

tial for o that arises becauseis away from its VEV. The 187k,

behavior of the radial modulus in flux-generated potentials B

has been studied in an attempt to find inflationary behavior if2s the Kaler metric forz This is singular az=0, but our
[46]; we are in a different regime here because we do nogvolution never takeg—0.

take z to be slowly rolling. One point to address is that we T0 get a very rough estimate of the change in radial
cannot actually calculate the Keer potential with warping mModulusu (remember thatr=e*"/g,) while z changes, we
for z excited because it is not clear if E@) would still hold ~ approximate that the proper distance in thelirection of
asz changes. However, we will assume that it is valid sincemoduli space is proportional to the proper distance moved in
the starting and ending points of our evolution are vacuunthe z direction of moduli space. The proportionality constant
states for some values of the flifx The key point is that for IS given by the directional derivativén the moduli space
instantons that go from dS to dS, the boundary conditions ofrthonormal framgof the potential. Using the Kder metric

o mean it should not roll much, so the following discussion(31) to get the orthonormal frame, we find that

does not apply. What we are doing here is comparing instan-

tons with different boundary conditions, one with un- Au~ ViV VK Az 32)
changed in the final state and one with—~ in the final vV 12
state.

We make the comparison as follows. The classical poten- (gM)2a' 3
tial for o andz naturally pushes to large radius as long as Au~ ————|2|*Flog|z|*|(e*™%" ~1) (33
zis not in its vacuum staténote that this potential is ex- 187k,

tremely large compared to the KKLT potentidll), so we . P
can ignore the KKLT potential hereWe will make a very up to factors of order unity. We have used,Az for the

rough estimate of the changedrwhile zrolls to its vacuum. ~ Proper distance in the direction. The factor of/12 in Eq.
If we believe thatr changes enough to get over the barrier of(32) comes from the normalization of ,
the KKLT potential before reaches its vacuum and the clas-  USing the potential graphed in KKLT as a guide, we ex-
sical potential vanishes, then we expect dS to MinkowskP€ct thatdu only needs to be=0.1 for the MlngkOWSI_(' decay
decays—mediated by NS5-branes—will dominate over dS t§° Predominate, which is achieved lzy=10"". As it turns
dS decays. This is because the classical evolution shouUt We will mainly be interested in cases with smalieso
have a lower action. Otherwise, the dS to dS decays willVe will not consider the 5-brane mediated dS to Minkowski
dominate, at least in the NS5-brane channel. We will not sayl€cays any further.
anything else about these dS to Minkowski decays since they
are less computationally tractable and are somewhat redun-
dant with other decays to large radius. Due to the fact that dS has a temperature, we might expect
Now we can roughly estimate the potential iorandz.  that the 5-branes that make up our instantons should have
As in GKP[17], we work assuming sma#l, which implies  some nonzero entropy. Since the exponential of the entropy
that 9,W>(9,K)W, so we will consider only the derivative gives a density of states, the decay time should be reduced

3. Thermal enhancements
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TABLE Il. Tensions and decay times.

Model KPV: (7/7c) In(tiina)x107° KKLT: (/7o) In(tiee) X108 T2T: (7/75) In(tiar,) <1018

deca deca deca

1 0.163 0.66 1.8 0.32 24970 0.35
2 0.164 86 7.7 8.9 24257 8.9
3 0.164 40 5.9 5.2 16512 5.2
4 0.163 3.7 2.9 11 34054 11
5 0.164 18 4.6 3.1 33517 3.1

by a factor exp—S(NS5)]. This argument was first given in by the notably small value of;, which makes the tension
[14]. There it was argued that the brane instantons probablyery small. Note that we have specifically chosen models
are out of thermal equilibrium with any matter or radiation in where this is the case. The change in and resulting value of
the cosmology, so they should have a temperature corrédhe cosmological constand(A andA _ respectively, due to
sponding to the dS temperature. However, whether the tenKPV decay, are also given in Table I. The small valuezpf
perature should be the initial dS temperature, final dS temeorresponds to smalAA|, which would increase the decay
perature, or the geometric mean was undetermined. It is nofime, but this effect is compensated by the small bubble ten-
clear[47] that the brane has a well-defined temperature besion. How the decay rate depends on these values is given
cause it corresponds to accelerating observers in the two dsxplicitly by Eq.(B10). We list the tensions and decay times
spacetime$. for the KPV instantons in Table I, along with tensions and
We will, however, neglect this effect. The bubble tem- decay times for two other decay modes discussed in Sec. VI
perature is just the inverse radiuk=1/(27r) [47]. There- below. Note that the lifetimes for these models are
fore, the temperature is not high enough to excite the~exp(10), where as the age of the univer@ines the ho-
“Kaluza-Klein” modes of the bubble much, and the entropy rizon volume is ~exp(1F), so even the most anxious
would access only the zero-mode quantum mechanics. Weader can now relax and enjoy the rest of the paper.
expect that the enhancement factor would be relatively weak, For each of the models discussed above, although the ini-
therefore. tial instanton decay yields a spacetime with positive cosmo-
logical constant, the ensuing D3-brane migration results in a
negative cosmological constant, a situation which, as dis-
V. CALCULATION OF DECAY TIMES cussed iN43—45, ultimately leads to a Big Crunch singu-

Throughout this paper, we have mainly discussed thdarity. Note, as previqusly mentioned, _this is a c_Iassi_caI pro-
KPV instantons as CDL thin-wall instantons. However, theyC€SS and thus avoids arguments given against instanton
contain an NS5-brane, which makes them also of the menfiécays to negative\ [36]. The total migration time, as
brane class of instantons studied 4y, 12. In Appendix B, ~ Shown in Appendix A, is negligible compared to the decay
we demonstrate the equivalence of these two formalisms b€ and will thus be ignored. We should also note that,
showing that they give the same decay rate given initial andlthough it seems difficult to find two throat models with a
final cosmological constants and instanton tension. positive cosmological constant after D& annihilation, it

Using the results of Sec. IV and Appendix B, we are ableshould be possible to construct multiple 2) throat models
to calculate decay rates. For illustrative purposes let us firghat end in dS.
consider a model with a single KS throat. In particular, for 3

D3-bfanes sitting at the tip of a thrqat wikh=12, M =87, VI. COMPARISON TO OTHER DECAY MODES
one finds that the probability per unit volume for NS5-brane
mediated decay i®~exp(—10'%). Decays to decompactifi- ~ The KPV instanton is just one of several avenues by

cation are much fasteP~exp(—10'"). We expect this to which these dS vacua can decay. One particular mode, thor-
generally be the case for single throat models. Moreover, agughly studied ir{6,7] and reviewed at the end of Sec. Il is
discussed irf36], since all single throat decays will have  tunneling to decompactificatiofin the CDL formalism. In
<0 in the final state, the instantons mediating these decayese decays, or for any decay in whith =0, AS; takes a
might not exist. It is for this reason we have chosen to focugarticularly simple form,
on models with 2 KS throats, which, after the initial decay,
have A>0.

What follows is a discussion of the decay rates for several ASe=— L (34)
different two throat models. Table | shows the fluxes and (1+ 72 7%)?
number ofD3-branesp;, in each throat. In each model the
initial KPV instanton occurs in throat 1. This decay is driven

Note that these are the decay times for a unit volume, i.e.

tdecay= Pt
8We thank the authors di7] for sharing their results with us  '%Note, however, that it is long compared to the string scale,
prior to publication. O(10%).
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For comparison purposes, we have calculated the CDL tertime (tj2(,,). Once again, these decay times and tensions are
sions and decay timestﬁcf) for five models discussed listed in Table Il. Note, however, that these instantons tunnel
above. These are also listed in Table Il. Note that in eaclo negative cosmological constant; while they would be ruled
model the tensions are super-critical,r.>1. This will in  out by[36], they are not forbidden by the original calculation
fact always be true for decays to decompactification since, of [32]. As with the KKLT decays, the tensions are uniformly
supercritical, and 3¢,y is remarkably similar tdge,y. In-
T 1 * deed, we expect these decays to be super-critical because the
T_c = mﬁhdd’ V2V(¢)=1, (35 conifold throats are long in string units, giving a wide poten-
tial barrier. Moreover, taking the Iimithg-»A+ in Eq.

for any V(¢) whose barrier widthin string or Planck units (B10), it is easy to see that,

for our normalizatioh is greater that/2/3. Noting thatS, D42
<0, it is clear from Eq.(34) that the lifetime, tyecay (ASg)or~——, (39

~exp(—ASy), increases withr/ .. Though the story is more Ay

complicated when comparing to decays with #0, this KLT
will generally still be the case, and it is this fact which drives anqthhus from Eqs(14) and (34), one can see thaGecaV
thecay 0 be much greater thati; .. Take careful note that tdecay-

Table 1l lists the logs of the decay times. For these model? The_ reader_sh_ould remember that we are_workmg only in
tKKLT)/tKPV —exp(1). These KPV instantons are, in tech- he thin-wall limit and that Hawking-Moss instantons can
ndlgf;l tgr:ercnasy much ml.,ICh much faster. It is ossil;Ie to findalso give significant contributions to the decay rate. How-

' { QPV Y ever, in the models we have described, the dS to dS decays

. ; : P KKLT
super-critical KP.V mstant_ons n Wh'dﬁecaﬁtdecay- X are subcritical, so the Hawking-Moss contributions seem un-
ever, these require largern the decaying throat, leading to likely to change our qualitative results; KKLT found that

larger initial cosmological constant and slower decay timesy ., ing-Moss instantons begin to dominate over thin-wall
Another particularly simple decay mode occurs in modelsInstantons only wher~ V(@) > ..

with multiple KS throats. The potential energy oba-brane The KPV instanton deals only with changes to fluxes and
is proportional toh™*(r), the inverse warp factor given by pranes in Eq.(1). One might speculate about processes
Eq. (9), which is locally minimized at the tip of each throat. \,hich could involve changes tq(X), or the induced D3
However, the energy is lower still at the tip of other throatscharge on wrappedp(q) 7-branes in the type I1B. From the
with smaller z. D3-branes can therefore_: tunnel from one E_theory viewpoint this would obviously involve topology
throat to another. On the other harid;- 1 in the bulk, pre-  change. While one could consider nontrivial D7-brane
senting a substantial potential barrier through which to tunyoridvolume gauge fields undergoing a small instanton tran-
nel. These instantons are similar to the glueball decays consjtion and emitting D3-branes into the bulk, we know of no
sidered in[48,49. _ _ analog for nontrivial curvature on a four-cycle. A possijgle

As in previous examples, we consider models with twochanging instanton would involve D7-branes unwrapping a
KS throats. TheD3-brane portion of the total potential is particular 4-cycle and wrapping a different one; however,
initially [cf. Eq.(18)] these 4-cycles would be homologous unless the D7-brane

can tear, so the induced D3-brane charge would remain the

2us g~ 2pus, _ ~ same. However, it may be interesting to explore whether
oV= Fh (rl)pl+?h (r2)p2. (36) x-changing mechanisms are possible.
After the tunneling occurs, the form aofV is unchanged VII. CONCLUSIONS

except forp;—p;+1 andp,—p,—1. These decays have

litle effect on o, and thuso will be treated as a constant 14 represent the end of the universe for anyone unfortu-

throughout this calculation. ; . .
) : ._nate enough to experience it. Note, however, unlike the de-
To find the decay rate, we compute the instanton tension ; 9 P

. T . .= >~Cays in CDL, even when DBB annihilation following a
E;ozr]r? the Euclidean brane action in the thin-wall limit using KPV decay results in a Big Crunch, lifeforms might be ca-

pable of knowing joy for 1028 s while the D3-branes mi-
_ 3/2.1/4 grate across the compact manifold. We can all take comfort
r=(2m\o) 9. in the fact that even the fastest decays we consider have
- decay times incredibly greater than the age of our universe.
f'Zdr 2 \/&[h‘l(r)—h‘l(Tl)]. (37) Assuming that our calculations hold even approximately for
I a? a compactification with a realistic cosmological constant, we
will have to worry about the death of the Sun long before the
The prefactor is from the conversion betweaeand a canoni-  death of the universe.
cally normalized scalar in the 4D Einstein frame. Note that Of interest, however, is the fact that we constructed decay
here we are using rescaled coordinate®3bdoes not ap- modes other than the straightforward decay to decompactifi-
pear in the metric(6). We then plugr and A.=«5(V  cation discussed i6,7,33. In fact, we found it easy to
+6V.) into Eq.(B10) to obtain the “throat-to-throat” decay construct NS5-brane mediated decays that occur much more

The decays considered in this paper in a very real sense
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Throat 1 from the two throatgi.e. the time through the bulk of the CY
0 may be ignoref
5.10°¢ We turn our attention once more to the met@ (with
» the overall scale of the manifold scaled back im [30] it
-4-10 was shown that thg; flux wrapped on the A-cycle smoothly
5 -6-107° deforms the tip of the conifold. Though we will find that the
» majority of the travel time comes from the tip of throat 1, we
-8-10 may ignore most of the details coming from the deformation
~0.00001 of the conifold since the motion is assumed to be radial. We
will use the undeformed metric and, when working near the
-0.000012 tip, multiply the warp factoh by an overall constant 0.4 to
0 0.2 0.4 0.6 0.8 account for the deformatiolt. This has little effect on the
¥ final result, however it was such a trivial correction it seemed
FIG. 3. Potential in throat {model 1. silly not to include it. The warp factor, away from the tip, is

4

h= L—4In(r/rs) (A1)
r

rapidly than the decompactification decays. We reiterate that
the NS5-brane decays can have a subcritical tension. It is
also noteworthy that the final state of many decays is not

10D Minkowski spacetime but is instead dS or a space with
negative cosmological constant which ends in a Big Crunch. r.=r-exg — m_ 1 (A2)
In fact, depending on the region of parameter space, we 0 3g.M? 4

found that decays mediated by NS5-branes can end in dS,

10D Minkowski, or with negative cosmological constant, p=no. of D3— branes; r2=3/253 (A3)
without considering other decay channels. The lesson is that,

even in the KKLT models, there are many different meta-pye to the deformation of the conifold discussed above we
stable vacua and many different possible decay modes. will only be interested in the regiofi,=r exp(L/4)<r=<r,.

Note that this avoids the naked singularityratr.
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APPENDIX A: MIGRATION OF D3-BRANES

h™1 - . .
“1p_ [i2 2

The KPV decay leaves D3-branes at the tip of the KS P L=— Os (VEE=hr+ (. (A6)
throat where it occurs. In this appendix we analyze their
subsequent classical motion in configurations with multipleAssuming that the proper velocity is small,
KS throats. The D3-branes, produced by a decay in one o
throat(throat 1), are attracted bjp3-branes in another throat L 1ttt [ht-gif(n)].
(throat 3, migrate across the compact manifdid and even- pg L= 2 s - Os L (A7)
tually annihilate theD3-branes. Here we work in the
SUGRA limit to approximate the total migration time, in a It is easy to check that this a valid approximation. In particu-
two-throat geometry. As discussed in Sec. V, the KPV/CDLIar, one only needs to consider throat 2, since this is where
decay times are so large that the migration times have littithe D3-branes are moving fastest. One can show fhat
effect. This appendix, therefore serves largely to show that (g,M?)/8 will insure that Eq(A7) is valid.
one may, in fact, ignore the migration time and to illuminate
how the migration itself proceeds.

It will be assumed that the back-reaction of the migrating 11one finds this correction by comparing the “near tip” warp
D3-branes is negligible, the proper velocity of the branegactor found in[30] to the naive limit of the undeformed Klebanov-
remains small, and that the majority of the travel time comeSseytlin geometry.
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Sincet(7) is a cyclic variable, we know thatl/at= Throat 2
—E/g, is constant, leaving us with 3.107°
1(ar\? . 2.5-107°
E==|—] +V(r); V(r)=[h"—f A
5|5 TV Vn=[hT=f(n0],  (A) e
and the travel time through a single throat is therefore, >1.5-107°
1-107°
At==* ' ar (A9)
ST e — a7
ro V2[E-V(1)] 310
0
The +/— corresponds to branes traveling into/out of the 0 0.2 0.4 0.6 0.8
throat. T
Note that the time here is a coordinate time, but we will FIG. 4. Potential in throat 2model 2.

see that it is so small compared to decay times that we do not
need to worry about conversion to proper time in the 4DD3-branes are produced at rest. However, one may gain con-

Einstein frame. trol of the situation by linearizing the potential nearr and
integrating away from the problematic singular point. It is in
1. Throat 1 this limit that we multiplyh, by the numerical factor-0.4

The D3-branes, produced at rest in throat 1, feel a slighdiscussed above. Once a safe distance away frem,
gravitational attraction to thé®3-branes at the bottom of Which for technical reasons coming from the linearization of
throat 2. Since the gravitational attraction is weakest while irEq. (A11) we take to ber ~T +zr,, one may evaluate the
throat 1, one suspects the majority of the migration time itrest of the integralA9) numerically. For model 1, one finds
comes from throat 1. We show below that, in fact, throat 2that
can be ignored completely. This also justifies not including

the travel time through the bulk of the CY. At;=1.5x 10", (A12)
The Ramond-Ramond potentidl,=h; '/gs, is not af-
fected by charge contained in throat 2. Physically, this is due 2. Throat 2

to the charge being screened; mathematically, we are work- £or completeness, we will determine time spent in throat

ing on a compact manifold and may consider just the chargg g hsequently showing that it is of no importance. In order
enclosed in throat 1. However, the geometry does, albeltt deduce® Il that [+d Ty~ (Nugi— Pluaaing i
slightly, know about what is happening in throat 2. 0 deducet,, recall ha 4~ (Nerr—p). Plugging in

In order to get an estimate of the migration time we will the appropriate constants, this leaves us with

make theglperhaps bolgassumption that, as with most multi- rSh2a,f = (277 a’?)(Ner— p). (A13)
pole solutions in gravity, the warp factor is changed by an ' ¢
additive factor, Using what we know from the KS geometry, we defihe

=h"1+V, wh h i isfi
hy(r)—hy(r)+ &(r): , Where the potential(r), satisfies

, _(27ma'?gyp  r¥L®

277« 5 J,V
5(r)E——4(N2+p+3gSM /817). r L5 [In(r/rg)]”
(2ro—r)

(A14)

(A10)  This can be integrated and gives a solution depending on
exponential-integral functions. The potential is shown in Fig.
Here, the subscripts indicate the throat in which the fluxesi, Numerically integrating EqIA9) for throat 2 gives
are containedp is the number oD3-branes in throat &here

are noD3-branes in throat)1 Expanding to first order i, At;~9.9, (A15)
we see that
which is clearly negligible compared to EGA12).
27ma’ ) s
V(r)=—————(Na+p+3gM“/8m)h, °(r). APPENDIX B: INCLUSION OF GRAVITY
(2ro=r) ALL) IN BUBBLE NUCLEATION

. . o In recent literature, there has been some confusion con-
~ Figure 3 shows the potential. Note that the majority of thecerning the relation of two formalisms for studying thin-wall
time will be spent at the tip of this throat. We have beenjnstantons. The method of Coleman and De Lud€®L)
unable to evaluate the integréh9) explicitly. Numerical  [32,36 describes smooth instantons in the limit of large ra-
methods also proved difficult, due to the singular behavior otjius of curvature; this formalism was used 8] to argue
the integrand as—T. This results from the fact that the that bubbles will always nucleate in a dS background before
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the recurrence time. Alternately, however, we could imaginéubble and is- 1 if the radius is decreasing. Since the Ricci
that the bubble wall is truly an infinitesimally thin mem- scalar in the bubble is given by the cosmological constant,
brane, such as a D-brane, with a delta function stress tensahe action just becomes

This type of configuration was studied by Brown and Teitel-

boim (BT) [11,17. In a description of dS solutions in non- L, g, 2T 1

critical string theony[8], Ref.[15] uses the BT formalism to ~ ASe=27"7r"+ 7r (K-— K+)_P(A—V—_A+V+)'
argue that there is a critical tension above which the bubble 4 4 (B3)
occupies more than half the original de Sitter sphere and

above which the decay time changes behavior as a functionhe interior volumes for the bubble and background are
of the bubble tension. Additionally15] claims that the de- given by (for either sign of the cosmological constant

cay time is of order the recurrence time at the critical tension.

In this appendix, we show that the CDL and BT formal- L 3?1 A\ %2
isms actually agree; this is reassuring, since even D-branes Ve=2m ALl 13|19 1= 3’ -1
should be described as smooth objects in a complete version - A "

- 0+(1——ir2) —1

2

of string theory. Our results show that the decay time is
always less than the recurrence time, ag5r7,33. Addi- 3
tionally, we confirm that more than half the original de Sitter
sphere decays above the critical tension, but we show that is algebraically simple to see that the extrinsic curvature
(due to some technical consideratiptise decay time is ac- terms combine with the square root terms from the volume to
tually a smooth function of the bubble tension. We work in agive exactly the CDL actioriB1) up to the signsr... The
4D effective theory throughout. reason[15] found a different action is that they omitted the
We begin by describing the two formalisms. In both CDL extrinsic curvature terms.
and BT, the nucleation/decay time is given by exponentiating Now we should see why the CDL result should actually
the difference of théEuclidean bubble and background ac- have the signg-.. . For a de Sitter background, the terms in
tions. Therefore, the exterior of the bubble, which is approxi-square brackets of E¢B1) come from integrals
mated by the background, contributes nothing in both for-
malisms. J"’c(r)dgr( 1— A_+r2) (B5)
At that point, CDL note that, since both bubble and back- 0 3 ’
ground have the same behavior at infinity, they can integrate
some terms in the Ricci tensor by parts. After determiningvhich CDL evaluate by replacindé=dr(1—r?A./3
the bubble tensiom as a functional of the potential, they find However, as they note,= y3/A .. sifVA ./3¢], so &(r) is

] . (B4)

)7 1/2_

that the action is double-valued. In fact, the correct integral is
3 jl ¥

2 312 — d B6

ASg=27r31+ 12727 (Ai{(l—%rz) —1} Asdo @-r2a.1"2 Y (65

fa T which just introduces a factor af. in the (- --)%? terms.

1 A, \%? This precisely agrees with the BT results. In this paper, we
2
AL 1- 3" -1 (B1)  will be concerned only with the case_=1, ando,=—-1

only for A, >0 and tension above critical.

5 ) ) o To find the radius of the bubble given the two cosmologi-
where A =«;V.. are the potential outside and inside the ca| constants and the tension, we could minimize the action
bubble respectivelfthis is a combination of Eq¢3.11) and  with respect tor. However, it is easier to use the Israel
(3.13 from [32]]. Minimizing this action with respect to the matching condition across the bubble wall, which has trace
bubble curvature radiusgives the decay rate. K, —K_=(3/2)x27. The answer is given bj15] and can be

On the other hand, BT cannot use the same integration byitten as
parts because the infinite stress of the bubble wall separates
the interior and exterior regions. Instead, the bubble action 1 (Kfﬂ 2 A [ AA\?
2 * 3 " ( 3K[21’7') ,

must include extrinsic curvature terms; it is these terms that 2
will explain the apparent contradiction between CDL and BT
formalisms. The extrinsic curvatures of the interior and ex-

r

terior regions are A= & AA=A_—A, (B7)
2 - '
1 A vz It is tedious but straightforward to check that this matches
Ke=—30. 2 3 (B2) " the result from minimizing the action. The maximum radius
occurs at critical tension
whereo . =1 if the radius of curvature of the outside/inside (2 1an 12 -
region of the bubble is increasing toward the exterior of the 4'c 13
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and is 1/?= A _/3=1/R; for positive initial cosmological ~While this is a mess, the reader should note that the sign of
constant. Note that for vanishing initial vacuum energy, gravihe last term is independent of the tension. That is because,
ity stabilizes the false vacuum for tension bigger than criti-for 7<7,, o, =1 but the quantity in the square brackets in
cal, as in[32]. Also, for negative initial cosmological con- the last term of Eq(B9) is the square of a negative number,
stant, the radius becomes infinite for tensions lower tharso the square root introduces a sign. For supercritical tension,
critical. We will concern ourselves only with initial de Sitter that quantity is the square of a positive number, but then
spacetimes, so we do not face some of the concerns raised by, = — 1. We have chosen to write the variables in this form
[36] about decays of Minkowski and AdS spacetimes. in order to illuminate the dependence on the level spacing.
We will finally write down the action for the bubbles: Please see Fig. 5 for the qualitative features of the a&isn
as a function ofA _ ,AA. While in some ways the physics
22 AA depends more directly on the initial cosmological constant
4 . . . . . .
(—) - — A ., in this paper we typically work with a fixed final _,
4 B andA A depends on the same moduli that control the bubble
2 tension.
We should note that this action reduces to the known for-
6 mulas in special cases. In particular, the result of CDL as
So

quoted in KKLT,
32
ASg=————— (B11)

2.2 _(1+T§/TZ)2
(;&17)2 A_—AAR2 (AA)2
+ +

2
3K,yT

6
KA LA _
3/2

AA
r_3+A+

( KiT

ASe=27%r% 7+

AA\?

33T
AA )2

2
3K,yT

+

_0'+A_

+

32

is valid for all tensions when the final vacuum energy van-
ishes. A related result is that, for amy. =0, as the bubble
tension goes to infinity, the decay time goes to the recurrence
time of the original dS.

As final comments, let us reemphasize, follow|3g,36,

that the final states are not maximally symmetric spacetimes
but rather cosmological ones. In particular, decays with a
negative final cosmological constant lead not to AdS but to a
Big Crunch singularity within the bubble. Additionally, as

mentioned in[36], these instantons are technically different

from instanton decays of inflationary spacetimes. It seems
reasonable that for sufficiently small decay rates treating the
initial spacetime as dS is a good approximation, but it re-
mains an interesting problem to study decays of possibly

more cosmologically relevant spacetimes.

FIG. 5. The bubble minus background action as a function of the cosmological constants. The variabiESKévéAS, L
=A_/k57, anddL=AA/k572.
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