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Twisted moduli stabilization in type | string models
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We consider a model with dilaton and twisted moduli fields, which is inspired by type | string models. The
stabilization of their vacuum expectation values is studied. We find that the stabilization of the twisted moduli
field has different aspects from dilaton stabilization.
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[. INTRODUCTION fields. For a similar purpose, models with twisted moduli
fields were studied in Ref$17,18. The Kanler potential of
Superstring theory is a promising candidate for a unifiedthe twisted moduli fields is not clear. Here we will use the
theory including gravity. It has no free parameter, and the’;lssumptlon of the canonical form, which was studied in Ref.
gauge couplings, Yukawa couplings, and other couplings olflg] and show that this form is important to stabilize the
low energy effective field theory are determined by vacuumVEV of twisted moduli. As another example, we will assume
expectation value§VEVs) of dilaton or moduli fields. Thus, the logarithmic form of the Khaler potential the twisted
it is important to stabilize these VEVs. Indeed, several stabimoduli fields like the dilaton and other moduli fields. That is
lization mechanisms have been proposed. an example of a Kialer potential that has a different behavior
The dilaton or moduli fields have no potential perturba-from the canonical form. However, we will show that even in
tively. Only nonperturbative effects lift their potential. the case with the logarithmic Kéer potential the positive
Gaugino condensations are nonperturbative effects that coukkponent in the nonperturbative superpotential is useful for
are plausibly generate a nonperturbative superpotential of dthe stabilization of twisted moduli fields.
laton or moduli fields. However, one cannot stabilize the This paper is organized as follows. In the next section, we
VEV of the dilaton field to a fine value in the model with a briefly review the stabilization of the dilaton VEV in the
superpotential generated by a single gaugino condensatidgacetrack model. In Sec. Ill, we study the model with dilaton
and a tree-level Kaler potential. One of the simple exten- and twisted moduli fields. In Sec. lll A, we briefly discuss
sions is the model with double gaugino condensation and & twisted moduli fields. In Sec. Il B we consider the single
tree-level Kaler potential, i.e., the so-called racetrack modelgaugino condensation model and show how different the sta-
[1-6], while a nonperturbative Kder potential has also bilization of twisted moduli fields is from the dilaton stabi-
been considere[—9]. In fact, one can stabilize the VEV of lization. In Sec. lll C we consider a specific double gaugino
the dilaton field to a finite value depending on the beta funccondensation model in order to study the simultaneous sta-
tion coefficients of the gauge couplings relevant to gaugindilization of the dilaton and twisted moduli fields. In Sec. IlI
condensation. D we give a comment on the effects of twisted moduli fields
Twisted moduli fields appear in orbifold or orientifold on the dilaton VEV. Section IV is devoted to a conclusion
models. These are localized at fixed points. In type | modelsand discussion.
the twisted moduli fields are gauge singlets, while they are
charged in heterotic models. The gauge kinetic functions de- Il. THE RACETRACK MODEL
pend on twisted moduli in type | model$0,11]. They play )
a role |n 4D Green- Schwarz anomaly Cance”a“on e. g for The tree'level Kh|el’ pOtentia| Of the di|at0n f|e|d iS Ob'
anomalousU (1) [12,13, while the dilaton field plays the tained as
same role in heterotic model$4].! Thus, their VEVs deter- _
mine the magnitude of the Fayet-lliopoulos terms. The pre- K=-In(S+5S). (]
diction of the gauge couplings depends on the VEVs of the
twisted moduli fields. The mirage unification of gauge cou-The gauge kinetic function of heterotic models is obtained as
plings is one possibility to explain the experimental values of

gauge couplings with a lower string scdtE6]. Hence, the f=S 2
magnitude of twisted moduli field VEVs is phenomenologi-
cally important. up to the Kac-Moody level, and the gauge coupliggs

In this paper, we consider a model with dilaton andobtained as R&)=1/g?. This is the same for the gauge
twisted moduli fields that is inspired by type | string models, multiplets originating from D9-branes in type | models. Per-
and study the stabilization of dilaton and twisted moduliturbatively, the dilaton field has a flat potential. Single

gaugino condensation induces the nonperturbative superpo-

tential
*Email address: tetsu@gauge.scphys.kyoto-u.ac.jp
"Email address: kobayash@gauge.scphys.kyoto-u.ac.jp
See also Refl15] for anomaloud(1) in heterotic models. 2See also Ref[20].
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lar potential forA=10 andd=1 WithoutW(T).
. The upper line corresponds to T(
+T)3V/|W(T)|? for A=10,d=1, andg(T,T)
=-0.5.

W=de 49, 3 W=de™ 2SW(T). @)
whered is a constantA = — 247?/b, andb is the one-loop
beta function coefficient, e.g.b=—-3N, for pure N A
=1 SU(N,) Yang-Mills theory. With the above Kder po- le 452\W(T)|?
tential, the scalar potentid is written as =

The corresponding scalar potential is written as

{[(S+9)A+11%+g(T, T}, (8

(S+S)(T+T)3
1 . .
V= ——[|(S+S)Ws—W|2—3|W|2], (4 With
S+S )
_ 1 — Wy
: - , 9T T=5[(T+T), —3| —3. 9
whereWs denotes the first derivative oY with respect toS 3 W

i.e., Ws=dW/3S. Here we have not taken into account the . )
terms, althoug!s has aD-term potential in heterotic models Here we have used the Keer potential ofT as

if the model has anomaloug(1).2 We have the following —

solutions foraV/3dS=0: —3In(T+T). (10

(S+§)WS— W=0, (5) However, the inglusion OW(T).doe-s n(?t help the stabi.liza-
tion of S If g(T,T)<—1, the situation is the same as in the

case withoutW(T). If g(T,T)>—1, the scalar potential
monotonically decreases with The upper line in Fig. 1

© shows [+ T)3V/|W(T)|2 for A=10,d=1, andg(T,T)=
—-0.5.

One mechanism to stabilize the VEV 6fis to consider
With the single gaugino condensation superpotergg the superpotential with double gaugino condensations,
the solution(5) leads toS+ S= — 1/A, which is not a realis-
tic VEV for Sin the asymptotically free case. The solution

(6) leads toA (S+S)=1/2, but this corresponds to the maxi- With this superpotential, the solutiofs) of v/9S=0 is
mum point ofV. See Fig. 1, where the lower line shows the given as

scalar potential against= S+Sin the case withA =10 and

or

—, _(S+S)Ws—W
(S+9)“ W 2W——c——.

W=d,e 215+d,e 225, (12)

d=1. | | Im(S)= ————(2n+1), (12)
In heterotic models, the requirement $£(2,Z) duality Ar—A,
invariance of the overall moduli field@l leads to the follow- A g
i i _29 1 1+2A,Re(S
ing superpotential21—23: RE(S)= Ir‘.[ 1Re(S)] 1 13
Al_AZ [1+2A2Rd5)]d2

3In this case, the dilaton fiel® is relevant to Green-Schwarz If A,Re(S)>1, the latter equation becomes the simple equa-
anomaly cancellation. tion
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FIG. 1. The lower line corresponds to the sca-
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Aqd, the twisted moduli field. Thus, the magnitude of the Fayet-
Re(S) = EME- (14 lliopoulos term is determined by the VEV 1.
Unfortunately, the Kaler potential ofM, K(M,M), is
In the case with In§;d,; /A,d,)=0(1), the stabilized value of still unclear. In the limitM —0, the Kaler metric has no
Re(S) is determined by 1/{;—A,). Thus, the natural order singularity. Hence, the Kder potentialk (M,M) could be
of Sis O(1/A). If A; and A, are close to each other, the expanded as
VEV of Sis enhanced. For example, one can ob@{i) of
S in two cases(i) the case with large beta-function 1 .
coefficient§ b;=0(100) and(ii) the case with fine-tuning K(M,M)= E(M+M)2+ cee (19
values (A1,A5). For the latter case, we have FgE 1, e.g.,
for (Az_Al)/A1=OO4 a.ndb1= 10. . A A
Actually, this form has been studied in R¢L9]. Thus, we
IIl. STABILIZATION IN MODEL WITH TWISTED use the assumption of the "War potential ask(M,M)
MODULI =3(M+M)? in one-half of our analyses. However, since its
A Twisted moduli reliability for M=0(1) may be unclear, we assume
_Twisted moduli fieldsM are Iocaliged at orbifold fixed K(M,I\W)z—ln(M +|\7) (20)
points and these moduli fields are important from several
phenomenological viewpoints in 4D models obtained from . y .
type | and type Il orientifold models. For example, the gaugeas a trial f°”.”” of the Rhler potential forM 20(.1)' e
We also give comments on the gauge coupling unification.

F:Qﬁ]tlgétjgrcat:)g: acr%rrvt\alrsit)tzrrld;r;g to gauge groups Orlglnatmg‘Nithin the framework of the minimal supersymmetric stan-
dard model (MSSM), three gauge couplings o8U(3)
f,=S+ o.M, (15) X SU(2)XU(1)y meet aroundVly=2X 10'® GeV. Suppose
that the three gauge groups originate from different sets of
whereo, is a model-dependent const@§hR,25. Concerning  D9-branes. If one can stabilize R®& o,Re(M), the gauge
o4, here we take the purely phenomenological standpointgouplings are universal at the string schMeg. That implies
that is, we treato, as free parameters. Similarly, for the Ms~My . Otherwise, ifoc,Re(M) is sizable, the gauge cou-
gauge groups originating from, e.g., D5-branes, which arglings are, in general, nonuniversalMt. However, one of
wrapped on theith torus (=1,2,3), the corresponding the interesting possibilities to explain the experimental val-
gauge kinetic functions are written as ues of the gauge couplings is the so-called mirage unification
[16]. The MSSM gauge coupling at is obtained as

fsa=Ti+ 05.M, (16)
. . g . . 1 bMSSM 2
whereTi_|s the moduli field corresponding to théh torus — g MSSMy 4 2 s 21)
and its Kdler potential is obtained as 92(w) a 1672 w2’

CT=— AT . .
K(Ti i) ==In(Ti+ T, 9 whereb!*5Mare the one-loop beta-function coefficients for

that is, its form is exactly the same as théhka potential of the MSSM. Let us consider a specific model where the con-
the dilaton field(1). Thus, we can discuss the stabilization of stantsay >>" are proportional tcb} *>™. In this scenario,
T; due to gaugino condensation from D5-originating gaugéhe gauge couplings are nonuniversaMa, but its predic-
groups in the same way as the stabilizatiorSafue to con-  tion is the same as the universal gauge coupling arddipd
densation from D9 gaugino fields. Here, we concentrate offhe string scaleM¢ can be low depending o) >S"M.
the S stabilization. Note that even a small value of Ré) such asay "M

One of the important aspects is that the twisted moduli=0(0.01) is important. If the ratio ofl to My satisfies
field M plays a role in the 4D Green-Schwarz anomaly can-

cellation mechanism. For example, under anomald($) M. oMSSMRgM)
. P S a
symmetry, the twisted moduli fields are assumed to trans- IOglOM_NT’ (22)
form at the one-loop level: X :
M—M+idgsA, (18  that leads to MSSM gauge couplings consistent with the ex-
. ) _ perimental values.
with the transformation parametér. The Fayet-lliopoulos Thus, it is important to study the stabilization of the

term is written by the first derivative of the Kker potential  twisted moduli fieldV. That is the issue we will study in the

IK(M,M)/dM, whereK(M,M) is the Kzler potential of following sections. We will also discuss how the twisted
moduli field M affects the stabilization of the dilaton fiefl

“In Ref.[24] large beta-function coefficients are studied from the
viewpoint of F theory. SWe would like to thank Kiwoon Choi for suggesting this point.
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> ol & [ FIG. 2. The upper and lower lines shaw
i / =™ m2+g(S+9)] for g(S+S)=—1 and
P Y [ —3, respectively.
2t } / _
T y 4
4 1 1 1 1 1 1 1
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m

B. Single gaugino condensation m=M+M-Agc. (27)
Here we study the case with single gaugino condensation, o _
although one cannot stabilize the dilaton field with singleThen the scalar potential is written as
gaugino condensation as seen in Sec. Il. That will be useful ST 0222
for later discussions. The Kéer potential is written as e 7 —
P V= TemZ’Z[m2+ 9S+S)], (29
K=—In(S+S)+K(M,M), (23

. . . where

and the superpotential due to the gaugino condensation is

obtained as 2

— — W
g(S+9)=|(S+9) —3. (29

S
w !

W:defA(SJr(rM). (24)

Using the Kdaler potential and the superpotential, we canFor single gaugino condensation, we have
write the scalar potential as

g(S+S)=(A(S+9S)+1)2-3. (30)
K(M,M) i 2 . . -
_¢© -1\M JK(M,M) _ The solutions of the stationary conditie’v/dm=0 are ob-
Vv — (K™ y W—-Wy, !
S+S M tained as follows:
+|(S+§)WS_W|2_3|W|2:|, (25) m=0, m=iv—2—g(S+S). (31)

The former solution corresponds to E@6). The latter solu-
where (K1) denotes the inverse of the Kar metric for ~ tions are allowed only if

M and M. Again, we do not take into accoum terms. =
Inclusion of D terms will be studied elsewhere. For this sca- 2+9(S+95)<0. (32
I(;i\;/p;?\;e_ngail,s one of the solutions to the stationary CondltlonBy the definition(30), this inequality is never satisfied for
(S+S)>0. We haved?V/om?>0 for the former solution
(&K(M,M) m=0 if

v Ao-) W=0, (26)

2+9(S+S)>0. (33

that is, JK(M,M)/dM = A¢ is one solution. By the definition(30), this inequality is always satisfied for

(S+§)>O. In addition, for the latter solution, we always
have ¢>V/gm?>0 if the solution is realized, i.e., 2g(S

To be concrete, we use the assumption of thal&apo- +§)<0. In Fig. 2 the upper and lower lines show
tentialK=%(M+|\7)2. In this case, it is convenient to define Ee’“z’z[szrg(Sng)] for g(S+§):—1 and — 3, respec-
m as tively.

1. The case with K= 3(M+M)?2
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FIG. 3. The upper and lower lines shawve
—[e™™/(m' —1)][m'2+g(S+9)] for g(S+9)
=—1.5 and—3, respectively.

More explicitly, these solutions lead to the following val-  For ¢<0, the region with Re{1)>0 corresponds ton’

ues of ReM): <1. In this case, the second derivative of the scalar poten-
_ tial, 9>V/o9m’?2, is positive atm’ =0 if
2REM)=Ac, 2REM)=Ac+\—2—-g(S+9). _
(34) g(S+9)>-2. (39

In the case that the Kder potentialK(M,l\W)= LM+ ,\7)2 This is always satisfiEd by the definitigB0) if (S+§)>0.
is reliable, in particular Re&)<O(1), these results are At m’'=1—+\—g(S+S)—1, we haves?V/dm’'?>0 if
valid. Similar analyses can be done for the polynomial _
Kahler potential. However, it is not clear that the expansion g(S+9<-2. (40)

of the Kzler potentialK(M,M)=%(M+M?)+ - - - is reli- o - - . =
able for ReM)=0(1). Thus, in the next subsection we wil Th|s is never satisfied E’%,the ’deflnltlc(ﬂr(g) if (S+9)>0.
perform the same analysis by assumitig —In(M+M) asa  Figure 3 showsy=—[e""/(m’—1)][m""+g(S+S)] for
trial. That is an example of a Kder potentials that has be- 9(S+S)=—1.5 and—3, respectively. The scalar potential

havior opposite to the canonical form at larfe has a singularity ain’ =1, which comes from the singularity
of the Kahler potential aM =0. However, in the vicinity of
2. The case with K= —In(M+M) M =0 the Kaler potentiaK(M,M) = (M + M)? as studied

in the previous subsection is more reliable than thélia
potential — In(M +M).

For >0, the region with Re{1) >0 corresponds ton’
>1. However, the second derivative of the scalar potential,
M =(M+M)oA+1. (35) (92\_//(9m’2, is always negative an’'=1+\-g(S+S)—-1.
This situation is the same as the problem of dilaton stabili-

Using this variable, we can write the scalar potent2s) as zation by single gaugino condensation as seen in Sec. II.
Thus, the model withr<0 is interesting fokK (M,M) =

Here the same analysis as in SetBll1 will be done with

the assumptiol = —In(M +|\7). In this case, it is convenient
to define

oA B S42mme — —In(M+l\7), that is, the positive exponent bf in the super-
V= (515 (m—1) e 85"9 e M m' 2+ g(S+9)]. potential is useful. The solutionsm’=0 and 1
(36) —\—9g(S+9S)—1 correspond to
The solutions of the stationary conditioW/dm’ =0 are ob- oRE M) = -1 - —g(S+§)— 1 @)
tained as «M)= aA’ oA '
m=0, m=1+ /—g(S+§)— 1. (37) respectively. ) - -
Assuming the Khler potentialsK(M,M)=3%(M+M)?
The latter solution is allowed only if and —In(M+M), we have shown that the VEV of R()
. can be stabilized with the VEV d& fixed. The former case
g(S+9<—-1. (38)  implies that the canonical Kder potential is important for
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stabilization of the twisted moduli. This analysis can be ex-solution and the VEV ofS itself is obtained by Eqs(13),

tended to the case with a polynomial iar potential
K(M,M). On the other hand, the latter case WM, M)
= —In(M+M) shows that, even with the logarithmic Klar

(14). The analysis of the scalar potential for the twisted
moduli is almost the same as what was done in Sec. Il B. The

present case corresponds to the case gﬁﬂmg) =—-3 and

potential, the positive exponent in the nonperturbative supedo=C.

potential is useful to stabilize the VEV of twisted moduli
fields. It is speculative whether reall((M,M)=—In(M

+M) for largeM, but that is an example of a Kter potential
that has behavior opposite to the canonical form at ladge
For other forms of the Kaer potential, the analysis can be

extended. The key point in the stabilization of twisted moduli

is that the polynomial form of the Kaer potential is useful
and the positive exponent & in the superpotential is help-

To be concrete, we again use the assumptioki @f, M)
as the canonical form and logarithmic form. First, in the case

with K(M,M)= (M +M)2 the solutions of/V/dm=0 are
obtained as

Cx1

> (46)

Cc
Re(M)= 7,

ful. These aspects differ from the dilaton stabilization. TheFor the former solution, we havé?V/dm?<0 because of
positive exponent of the dilaton field in the nonperturbativeg(s+§): —13. If there are additional contributions increas-
supeerpotentlal corresponds to the asymptotically nonfre?hg the value ofy(S+S), this solution could be a local mini-

case’
Of course, the VEV o8is not stabilized in the case with

single gaugino condensation which was discussed in thi

subsection. In order to study the stabilizationSsdnd M at

mum. On the other hand, for the latter solution 2 Kg(
=C=1, we haves?V/gm?>0 as well as??V/gmsS>0. At
this point, theF component oM is obtained as

the same time, we will consider double gaugino condensa-

tions in the following subsections.

C. Mirage model

e(l—cz)/4|\“/‘vll

S+S

|FM|=

(47)

Here we consider the superpotential generated from gimilarly, we can analyze the potential minima for the

double gaugino condensations, i.e., the racetrack model,
W:dle—Al(S+0'lM)+dze—A2(8+0'2M)_ (42)

Mirage unification can occur in the case thef SSM for

the MSSM are proportional to the one-loop beta-function

coefficients b} *SM. Here we consider a specific type of
gaugino condensation model whesg for double gaugino

condensations are proportional to their one-loop beta

function coefficients, that is, we can write
A,o,=C, (43

where C is common for the double gaugino condensation
for a=1,2. Then the superpotential can be written as
W=e MW, W=(d,;e *15+d,e 25). (44)

The corresponding scalar potential is written as

eK(M,M)—C(MH\W) "
V= = K™hi
S+S (K
— 2
IK(M,M - — e~ ~
X (&—M)—c |W|2+]|(S+S)Wg— W|2—3|W|?|.

(49)

The racetrack solution(13),(14) corresponding to
+S)Ws—W=0 is still a solution of 3V/9S=0 for the

present scalar potential. Here we restrict ourselves to this

bSee Ref[26] for dilaton stabilization in the asymptotically non-
free case.

assumed Kaler potentialK(M,M)=—In(M+M). We are
interested in the case witG<0. The solutions obHV/om’
=0 are obtained as

1 1
Re(M)=— -~

T Tt (48)

For the former solution, Ré&{)=-1/2C, we have
d?VIom'2<0 because of(S+ S)=—3. Additional contri-
butions increasingy(S+S) might make this point a local

dninimum. For the solution R&()=—1/J/2C, we have

9?VIom'2>0 as well as7>V/dm’ 9S>0. At this point, theF
component ofM does not vanish. Furthermore, stabilized
values must satisfy the constraint Rg(=Re(S)
+0,Re(M)>0. For the above solution RE()=—1/\/2C,

we can write

Re(f,)=ReS) - (49)

1
V24,
Thus, the stabilized value o8 [Eq. (14)] must satisfy
Re(S)>1/\2A,. Recall that the natural order @& is of

O(1/A) unlessA, are close each other or I{d;/A.d,) is
large.

D. Generic racetrack model

In the previous section, we considered the specific race-
track model, i.e.o1A;=0,A,. For the generic case A,
# 0,A,, the analyses become complicated. Here we give a
comment on this generic case.

046006-6
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As solutions ofgV/dS=0, we again concentrate on the

solution (5). That leads to the following equations:

[2A,Re(S)+1]d;
"[2A,Re(S) + 1]d,

=(A;—Ay)RES)

+(A101—Az0;,)REM), (50)

(51
Furthermore, ifARe(S)>1, we obtain
_ (Ayo1—Az0) 1 Agdy
RegS)= WRQM)-F mlﬂ@
(52)

PHYSICAL REVIEW D 68, 046006 (2003

Re(S)= + 2 RaM) RaM 4t
q )_ _0-1 A_]_ d ) q ) Al_AZ nAZdZ
(57
for K(M,M)=%(M+M)2, and
RES) = — o REM) + — Lt 8
&S)=—o,Re )+E+mnm (58

for K(M,M)=—In(M+M). For the latter case, the first term
in the right-hand side would be important when Rg(is
enhanced by the fine-tuning,~o,. Thus, the value of
Re(M) has an interesting effect on the stabilized value of
Re(S).

IV. CONCLUSION

We have studied stabilization of the dilaton and twisted
moduli by assuming canonical and logarithmic forms for the

The second term in the right hand side is the same as Eganler potential of the twisted moduli field. The canonical

(14). The first term is a new contribution froml. When

Kahler potential plays a role in the stabilization of the

Aj01=A4507, the first term vanishes and that is consistentyisted moduli. This analysis can be extended to the case

with Sec. Il C. However, ifA;o,#A50,, the VEV of
Re(M) corresponds effectively to a large differencedgfin
Eq. (14) as can be seen by replacimg— d,e4a”aReM)
Thus, the value of R&() is important for the stabilized
value of Ref).

Suppose that the VEV of RE() is also stabilized by the
following equation similar to Eq(5):

aK(M,l\W)W W0 2
— W Wy =0. (53
Combined with Eq(50), for ARe(S)>1, we obtain
K AA -
o _S 2001 03) (54)
M (Ax—Ay)
For example, that leads to
A1Ay(o1—073)
ReM)= ————— 55
M= 205 59
for K(M,M)=%(M+M)2, and
A—A,
Re(M)= (56)

- 2A1A5(01—07)

for K(M,M)=—In(M+M). In the former(latten case, the
value of ReM) is enhanced(suppressedfor fine-tuning
A;~A,, while it is suppressedenhanced for fine-tuning
o1~ 0,. Equation(52) becomes

with a polynomial Kéaler potential. On the other hand, even
with the logarithmic Kaler potential, the positive exponent
of the twisted moduli field in the nonperturbative superpo-
tential is significant. The logarithmic form was used as an
example of a Khler potential that has different behavior
from the canonical form. That suggests that even for this
case the positive exponent of the twisted moduli fields in the
superpotential would be helpful. These aspects are different
from the dilaton stabilization.

Similarly, in models where the gauge kinetic functions
depend linearly on two or more moduli fields, the positive
exponent of these fields in the superpotential might be help-
ful for moduli stabilization.

We have also considered the specific racetrack model with
o1A=05A, in order to discuss stabilization of the dilaton
and twisted moduli at the same time. In the generic case, the
VEV of M affects the stabilized value of the dilaton VEV.
This point is also important in the stabilization of the twisted
moduli fields.

Knowledge of the Khler potential of the twisted moduli
field is necessary to investigate numerically reliable results.
We have not taken into accouilt terms. Inclusion ofD
terms will be studied elsewhere.

The models that have been studied lead to a negative cos-
mological constant. That is a common problem in dilaton
stabilization. A vanishing cosmological constant could be re-
alized by models with more gaugino condensaf®ha non-
perturbative Kaler potential[9], or R symmetry[27].
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