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Twisted moduli stabilization in type I string models

Tetsutaro Higaki* and Tatsuo Kobayashi†
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We consider a model with dilaton and twisted moduli fields, which is inspired by type I string models. The
stabilization of their vacuum expectation values is studied. We find that the stabilization of the twisted moduli
field has different aspects from dilaton stabilization.
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I. INTRODUCTION

Superstring theory is a promising candidate for a unifi
theory including gravity. It has no free parameter, and
gauge couplings, Yukawa couplings, and other couplings
low energy effective field theory are determined by vacu
expectation values~VEVs! of dilaton or moduli fields. Thus
it is important to stabilize these VEVs. Indeed, several sta
lization mechanisms have been proposed.

The dilaton or moduli fields have no potential perturb
tively. Only nonperturbative effects lift their potentia
Gaugino condensations are nonperturbative effects that c
are plausibly generate a nonperturbative superpotential o
laton or moduli fields. However, one cannot stabilize t
VEV of the dilaton field to a fine value in the model with
superpotential generated by a single gaugino condensa
and a tree-level Ka¨hler potential. One of the simple exten
sions is the model with double gaugino condensation an
tree-level Kähler potential, i.e., the so-called racetrack mod
@1–6#, while a nonperturbative Ka¨hler potential has also
been considered@7–9#. In fact, one can stabilize the VEV o
the dilaton field to a finite value depending on the beta fu
tion coefficients of the gauge couplings relevant to gaug
condensation.

Twisted moduli fields appear in orbifold or orientifol
models. These are localized at fixed points. In type I mod
the twisted moduli fields are gauge singlets, while they
charged in heterotic models. The gauge kinetic functions
pend on twisted moduli in type I models@10,11#. They play
a role in 4D Green-Schwarz anomaly cancellation, e.g.,
anomalousU(1) @12,13#, while the dilaton field plays the
same role in heterotic models@14#.1 Thus, their VEVs deter-
mine the magnitude of the Fayet-Iliopoulos terms. The p
diction of the gauge couplings depends on the VEVs of
twisted moduli fields. The mirage unification of gauge co
plings is one possibility to explain the experimental values
gauge couplings with a lower string scale@16#. Hence, the
magnitude of twisted moduli field VEVs is phenomenolog
cally important.

In this paper, we consider a model with dilaton a
twisted moduli fields that is inspired by type I string mode
and study the stabilization of dilaton and twisted mod

*Email address: tetsu@gauge.scphys.kyoto-u.ac.jp
†Email address: kobayash@gauge.scphys.kyoto-u.ac.jp
1See also Ref.@15# for anomalousU(1) in heterotic models.
0556-2821/2003/68~4!/046006~8!/$20.00 68 0460
d
e
f

i-

-

ld
i-

ion

a
l

-
o

s,
e
e-

r

-
e
-
f

,
i

fields. For a similar purpose, models with twisted mod
fields were studied in Refs.@17,18#. The Kähler potential of
the twisted moduli fields is not clear. Here we will use t
assumption of the canonical form, which was studied in R
@19#,2 and show that this form is important to stabilize th
VEV of twisted moduli. As another example, we will assum
the logarithmic form of the Ka¨hler potential the twisted
moduli fields like the dilaton and other moduli fields. That
an example of a Ka¨hler potential that has a different behavi
from the canonical form. However, we will show that even
the case with the logarithmic Ka¨hler potential the positive
exponent in the nonperturbative superpotential is useful
the stabilization of twisted moduli fields.

This paper is organized as follows. In the next section,
briefly review the stabilization of the dilaton VEV in th
racetrack model. In Sec. III, we study the model with dilat
and twisted moduli fields. In Sec. III A, we briefly discus
the twisted moduli fields. In Sec. III B we consider the sing
gaugino condensation model and show how different the
bilization of twisted moduli fields is from the dilaton stab
lization. In Sec. III C we consider a specific double gaugi
condensation model in order to study the simultaneous
bilization of the dilaton and twisted moduli fields. In Sec. I
D we give a comment on the effects of twisted moduli fiel
on the dilaton VEV. Section IV is devoted to a conclusio
and discussion.

II. THE RACETRACK MODEL

The tree-level Ka¨hler potential of the dilaton field is ob
tained as

K52 ln~S1S̄!. ~1!

The gauge kinetic function of heterotic models is obtained

f 5S ~2!

up to the Kac-Moody level, and the gauge couplingg is
obtained as Re(S)51/g2. This is the same for the gaug
multiplets originating from D9-branes in type I models. Pe
turbatively, the dilaton field has a flat potential. Sing
gaugino condensation induces the nonperturbative supe
tential

2See also Ref.@20#.
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FIG. 1. The lower line corresponds to the sc

lar potential forD510 andd51 without Ŵ(T).
The upper line corresponds to (T

1T̄)3V/uŴ(T)u2 for D510, d51, and g(T,T̄)
520.5.
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W5de2DS, ~3!

whered is a constant,D5224p2/b, andb is the one-loop
beta function coefficient, e.g.,b523Nc for pure N
51 SU(Nc) Yang-Mills theory. With the above Ka¨hler po-
tential, the scalar potentialV is written as

V5
1

S1S̄
@ u~S1S̄!WS2Wu223uWu2#, ~4!

whereWS denotes the first derivative ofW with respect toS,
i.e.,WS5]W/]S. Here we have not taken into account theD
terms, althoughS has aD-term potential in heterotic model
if the model has anomalousU(1).3 We have the following
solutions for]V/]S50:

~S1S̄!WS2W50, ~5!

or

~S1S̄!2WSS52W̄
~S1S̄!WS2W

~S1S̄!W̄S2W̄
. ~6!

With the single gaugino condensation superpotential~3!,
the solution~5! leads toS1S̄521/D, which is not a realis-
tic VEV for S in the asymptotically free case. The solutio
~6! leads toD(S1S̄)5A2, but this corresponds to the max
mum point ofV. See Fig. 1, where the lower line shows t
scalar potential againsts[S1S̄ in the case withD510 and
d51.

In heterotic models, the requirement ofSL(2,Z) duality
invariance of the overall moduli fieldT leads to the follow-
ing superpotential@21–23#:

3In this case, the dilaton fieldS is relevant to Green-Schwar
anomaly cancellation.
04600
W5de2DSŴ~T!. ~7!

The corresponding scalar potential is written as

V5
ue2DSu2uŴ~T!u2

~S1S̄!~T1T̄!3
$@~S1S̄!D11#21g~T,T̄#%, ~8!

with

g~T,T̄![
1

3 U~T1T̄!
WT

W
23U2

23. ~9!

Here we have used the Ka¨hler potential ofT as

23 ln~T1T̄!. ~10!

However, the inclusion ofŴ(T) does not help the stabiliza
tion of S. If g(T,T̂),21, the situation is the same as in th
case withoutŴ(T). If g(T,T̂).21, the scalar potentia
monotonically decreases withs. The upper line in Fig. 1
shows (T1T̄)3V/uŴ(T)u2 for D510, d51, andg(T,T̄)5
20.5.

One mechanism to stabilize the VEV ofS is to consider
the superpotential with double gaugino condensations,

W5d1e2D1S1d2e2D2S. ~11!

With this superpotential, the solution~5! of ]V/]S50 is
given as

Im~S!5
p

D12D2
~2n11!, ~12!

Re~S!5
1

D12D2
ln

@112D1Re~S!#d1

@112D2Re~S!#d2
. ~13!

If DaRe(S)@1, the latter equation becomes the simple eq
tion
6-2
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Re~S!5
1

D12D2
ln

D1d1

D2d2
. ~14!

In the case with ln(D1d1 /D2d2)5O(1), the stabilized value o
Re(S) is determined by 1/(D12D2). Thus, the natural orde
of S is O(1/D). If D1 and D2 are close to each other, th
VEV of S is enhanced. For example, one can obtainO(1) of
S in two cases ~i! the case with large beta-functio
coefficients4 bi5O(100) and~ii ! the case with fine-tuning
values (D1 ,D2). For the latter case, we have Re(S)51, e.g.,
for (D22D1)/D150.04 andb1510.

III. STABILIZATION IN MODEL WITH TWISTED
MODULI

A. Twisted moduli

Twisted moduli fieldsM are localized at orbifold fixed
points and these moduli fields are important from seve
phenomenological viewpoints in 4D models obtained fro
type I and type II orientifold models. For example, the gau
kinetic functions corresponding to gauge groups originat
from D9-branes are written as

f a5S1saM , ~15!

wheresa is a model-dependent constant@12,25#. Concerning
sa , here we take the purely phenomenological standpo
that is, we treatsa as free parameters. Similarly, for th
gauge groups originating from, e.g., D5-branes, which
wrapped on thei th torus (i 51,2,3), the corresponding
gauge kinetic functions are written as

f 5a5Ti1s5aM , ~16!

whereTi is the moduli field corresponding to thei th torus
and its Kähler potential is obtained as

K~Ti ,T̄i !52 ln~Ti1T̄i !, ~17!

that is, its form is exactly the same as the Ka¨hler potential of
the dilaton field~1!. Thus, we can discuss the stabilization
Ti due to gaugino condensation from D5-originating gau
groups in the same way as the stabilization ofS due to con-
densation from D9 gaugino fields. Here, we concentrate
the S stabilization.

One of the important aspects is that the twisted mod
field M plays a role in the 4D Green-Schwarz anomaly c
cellation mechanism. For example, under anomalousU(1)
symmetry, the twisted moduli fields are assumed to tra
form at the one-loop level:

M→M1 idGSL, ~18!

with the transformation parameterL. The Fayet-Iliopoulos
term is written by the first derivative of the Ka¨hler potential
]K(M ,M̄ )/]M , whereK(M ,M̄ ) is the Kähler potential of

4In Ref. @24# large beta-function coefficients are studied from t
viewpoint of F theory.
04600
l

e
g

t,

e

e

n

li
-

s-

the twisted moduli field. Thus, the magnitude of the Fay
Iliopoulos term is determined by the VEV ofM.

Unfortunately, the Ka¨hler potential ofM , K(M ,M̄ ), is
still unclear. In the limitM→0, the Kähler metric has no
singularity. Hence, the Ka¨hler potentialK(M ,M̄ ) could be
expanded as

K~M ,M̄ !5
1

2
~M1M̄ !21•••. ~19!

Actually, this form has been studied in Ref.@19#. Thus, we
use the assumption of the Ka¨hler potential asK(M ,M̄ )
5 1

2 (M1M̄ )2 in one-half of our analyses. However, since
reliability for M5O(1) may be unclear, we assume5

K~M ,M̄ !52 ln~M1M̄ ! ~20!

as a trial form of the Ka¨hler potential forM>O(1).
We also give comments on the gauge coupling unificati

Within the framework of the minimal supersymmetric sta
dard model ~MSSM!, three gauge couplings ofSU(3)
3SU(2)3U(1)Y meet aroundMX5231016 GeV. Suppose
that the three gauge groups originate from different sets
D9-branes. If one can stabilize Re(S)@saRe(M ), the gauge
couplings are universal at the string scaleMs . That implies
Ms'MX . Otherwise, ifsaRe(M ) is sizable, the gauge cou
plings are, in general, nonuniversal atMs . However, one of
the interesting possibilities to explain the experimental v
ues of the gauge couplings is the so-called mirage unifica
@16#. The MSSM gauge coupling atm is obtained as

1

ga
2~m!

5S1sa
MSSMM1

ba
MSSM

16p2
ln

Ms
2

m2
, ~21!

whereba
MSSM are the one-loop beta-function coefficients f

the MSSM. Let us consider a specific model where the c
stantssa

MSSM are proportional toba
MSSM. In this scenario,

the gauge couplings are nonuniversal atMs , but its predic-
tion is the same as the universal gauge coupling aroundMX .
The string scaleMs can be low depending onsa

MSSMM .
Note that even a small value of Re(M ) such assa

MSSMM
5O(0.01) is important. If the ratio ofMs to MX satisfies

log10

Ms

MX
;

sa
MSSMRe~M !

0.03
, ~22!

that leads to MSSM gauge couplings consistent with the
perimental values.

Thus, it is important to study the stabilization of th
twisted moduli fieldM. That is the issue we will study in the
following sections. We will also discuss how the twiste
moduli fieldM affects the stabilization of the dilaton fieldS.

5We would like to thank Kiwoon Choi for suggesting this poin
6-3
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FIG. 2. The upper and lower lines showv
[em2/2@m21g(S1S̄)# for g(S1S̄)521 and
23, respectively.
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B. Single gaugino condensation

Here we study the case with single gaugino condensat
although one cannot stabilize the dilaton field with sing
gaugino condensation as seen in Sec. II. That will be us
for later discussions. The Ka¨hler potential is written as

K52 ln~S1S̄!1K~M ,M̄ !, ~23!

and the superpotential due to the gaugino condensatio
obtained as

W5de2D(S1sM ). ~24!

Using the Kähler potential and the superpotential, we c
write the scalar potential as

V5
eK(M ,M̄ )

S1S̄
F ~K21!M̄

MU]K~M ,M̄ !

]M
W2WMU2

1u~S1S̄!WS2Wu223uWu2G , ~25!

where (K21) M̄
M denotes the inverse of the Ka¨hler metric for

M and M̄ . Again, we do not take into accountD terms.
Inclusion ofD terms will be studied elsewhere. For this sc
lar potential, one of the solutions to the stationary condit
]V/]M50 is

S ]K~M ,M̄ !

]M
2Ds DW50, ~26!

that is,]K(M ,M̄ )/]M5Ds is one solution.

1. The case with KÄ 1
2 „M¿M̄ …

2

To be concrete, we use the assumption of the Ka¨hler po-
tentialK5 1

2 (M1M̄ )2. In this case, it is convenient to defin
m as
04600
n,

ul

is
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n

m[M1M̄2Ds. ~27!

Then the scalar potential is written as

V5
e2D(S1S̄)2s2D2/2

S1S̄
em2/2@m21g~S1S̄!#, ~28!

where

g~S1S̄![U~S1S̄!
WS

W
21U2

23. ~29!

For single gaugino condensation, we have

g~S1S̄!5~D~S1S̄!11!223. ~30!

The solutions of the stationary condition]V/]m50 are ob-
tained as follows:

m50, m56A222g~S1S̄!. ~31!

The former solution corresponds to Eq.~26!. The latter solu-
tions are allowed only if

21g~S1S̄!,0. ~32!

By the definition~30!, this inequality is never satisfied fo
(S1S̄).0. We have]2V/]m2.0 for the former solution
m50 if

21g~S1S̄!.0. ~33!

By the definition~30!, this inequality is always satisfied fo
(S1S̄).0. In addition, for the latter solution, we alway
have ]2V/]m2.0 if the solution is realized, i.e., 21g(S
1S̄),0. In Fig. 2 the upper and lower lines showv
[em2/2@m21g(S1S̄)# for g(S1S̄)521 and 23, respec-
tively.
6-4
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FIG. 3. The upper and lower lines showv5

2@e2m8/(m821)#@m821g(S1S̄)# for g(S1S̄)
521.5 and23, respectively.
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More explicitly, these solutions lead to the following va
ues of Re(M ):

2 Re~M !5Ds, 2 Re~M !5Ds6A222g~S1S̄!.
~34!

In the case that the Ka¨hler potentialK(M ,M̄ )5 1
2 (M1M̄ )2

is reliable, in particular Re(M ),O(1), these results are
valid. Similar analyses can be done for the polynom
Kähler potential. However, it is not clear that the expans
of the Kähler potentialK(M ,M̄ )5 1

2 (M1M̄2)1••• is reli-
able for Re(M )>O(1). Thus, in the next subsection we wi
perform the same analysis by assumingK52 ln(M1M̄) as a
trial. That is an example of a Ka¨hler potentials that has be
havior opposite to the canonical form at largeM.

2. The case with KÄÀ ln„M¿M̄…

Here the same analysis as in Sec. III B 1 will be done with
the assumptionK52 ln(M1M̄). In this case, it is convenien
to define

m8[~M1M̄ !sD11. ~35!

Using this variable, we can write the scalar potential~25! as

V5
sD

~S1S̄!~m821!
e2D(S1S̄)12e2m8@m821g~S1S̄!#.

~36!

The solutions of the stationary condition]V/]m850 are ob-
tained as

m850, m8516A2g~S1S̄!21. ~37!

The latter solution is allowed only if

g~S1S̄!,21. ~38!
04600
l
n

For s,0, the region with Re(M ).0 corresponds tom8
,1. In this case, the second derivative of the scalar po
tial, ]2V/]m82, is positive atm850 if

g~S1S̄!.22. ~39!

This is always satisfied by the definition~30! if ( S1S̄).0.

At m8512A2g(S1S̄)21, we have]2V/]m82.0 if

g~S1S̄!,22. ~40!

This is never satisfied by the definition~30! if ( S1S̄).0.
Figure 3 showsv52@e2m8/(m821)#@m821g(S1S̄)# for
g(S1S̄)521.5 and23, respectively. The scalar potenti
has a singularity atm851, which comes from the singularity
of the Kähler potential atM50. However, in the vicinity of
M50 the Kähler potentialK(M ,M̄ )5 1

2 (M1M̄ )2 as studied
in the previous subsection is more reliable than the Ka¨hler
potential2 ln(M1M̄).

For s.0, the region with Re(M ).0 corresponds tom8
.1. However, the second derivative of the scalar potent

]2V/]m82, is always negative atm8511A2g(S1S̄)21.
This situation is the same as the problem of dilaton stab
zation by single gaugino condensation as seen in Sec. II

Thus, the model withs,0 is interesting forK(M ,M̄ )5

2 ln(M1M̄), that is, the positive exponent ofM in the super-
potential is useful. The solutionsm850 and 1

2A2g(S1S̄)21 correspond to

2Re~M !5
21

sD
,

2A2g~S1S̄!21

sD
, ~41!

respectively.
Assuming the Ka¨hler potentialsK(M ,M̄ )5 1

2 (M1M̄ )2

and 2 ln(M1M̄), we have shown that the VEV of Re(M )
can be stabilized with the VEV ofS fixed. The former case
implies that the canonical Ka¨hler potential is important for
6-5
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stabilization of the twisted moduli. This analysis can be e
tended to the case with a polynomial Ka¨hler potential
K(M ,M̄ ). On the other hand, the latter case withK(M ,M̄ )
52 ln(M1M̄) shows that, even with the logarithmic Ka¨hler
potential, the positive exponent in the nonperturbative su
potential is useful to stabilize the VEV of twisted modu
fields. It is speculative whether reallyK(M ,M̄ )52 ln(M
1M̄) for largeM, but that is an example of a Ka¨hler potential
that has behavior opposite to the canonical form at largeM.
For other forms of the Ka¨hler potential, the analysis can b
extended. The key point in the stabilization of twisted mod
is that the polynomial form of the Ka¨hler potential is useful
and the positive exponent ofM in the superpotential is help
ful. These aspects differ from the dilaton stabilization. T
positive exponent of the dilaton field in the nonperturbat
superpotential corresponds to the asymptotically non
case.6

Of course, the VEV ofS is not stabilized in the case wit
single gaugino condensation which was discussed in
subsection. In order to study the stabilization ofS andM at
the same time, we will consider double gaugino conden
tions in the following subsections.

C. Mirage model

Here we consider the superpotential generated fr
double gaugino condensations, i.e., the racetrack model

W5d1e2D1(S1s1M )1d2e2D2(S1s2M ). ~42!

Mirage unification can occur in the case thatsa
MSSM for

the MSSM are proportional to the one-loop beta-funct
coefficientsba

MSSM. Here we consider a specific type o
gaugino condensation model wheresa for double gaugino
condensations are proportional to their one-loop be
function coefficients, that is, we can write

Dasa5C, ~43!

whereC is common for the double gaugino condensatio
for a51,2. Then the superpotential can be written as

W5e2CMW̃, W̃5~d1e2D1S1d2e2D2S!. ~44!

The corresponding scalar potential is written as

V5
eK(M ,M̄ )2C(M1M̄ )

S1S̄
F ~K21!M̄

M

3U]K~M ,M̄ !

]M
2CU2

uW̃u21u~S1S̄!W̃S2W̃u223uW̃u2G .

~45!

The racetrack solution~13!,~14! corresponding to (S
1S̄)W̃S2W̃50 is still a solution of ]V/]S50 for the
present scalar potential. Here we restrict ourselves to

6See Ref.@26# for dilaton stabilization in the asymptotically non
free case.
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solution and the VEV ofS itself is obtained by Eqs.~13!,
~14!. The analysis of the scalar potential for the twist
moduli is almost the same as what was done in Sec. II B.
present case corresponds to the case withg(S1S̄)523 and
Ds5C.

To be concrete, we again use the assumption ofK(M ,M̄ )
as the canonical form and logarithmic form. First, in the ca
with K(M ,M̄ )5 1

2 (M1M̄ )2 the solutions of]V/]m50 are
obtained as

Re~M !5
C

2
,

C61

2
. ~46!

For the former solution, we have]2V/]m2,0 because of
g(S1S̄)523. If there are additional contributions increa
ing the value ofg(S1S̄), this solution could be a local mini
mum. On the other hand, for the latter solution 2 Re(M )
5C61, we have]2V/]m2.0 as well as]2V/]m]S.0. At
this point, theF component ofM is obtained as

uFMu5
1

AS1S̄
e(12C

2
)/4uW̃u. ~47!

Similarly, we can analyze the potential minima for th
assumed Ka¨hler potentialK(M ,M̄ )52 ln(M1M̄). We are
interested in the case withC,0. The solutions of]V/]m8
50 are obtained as

Re~M !52
1

2C
, 6

1

A2C
. ~48!

For the former solution, Re(M )521/2C, we have
]2V/]m82,0 because ofg(S1S̄)523. Additional contri-
butions increasingg(S1S̄) might make this point a loca
minimum. For the solution Re(M )521/A2C, we have
]2V/]m82.0 as well as]2V/]m8]S.0. At this point, theF
component ofM does not vanish. Furthermore, stabilize
values must satisfy the constraint Re(f a)5Re(S)
1saRe(M ).0. For the above solution Re(M )521/A2C,
we can write

Re~ f a!5Re~S!2
1

A2Da

. ~49!

Thus, the stabilized value ofS @Eq. ~14!# must satisfy
Re(S).1/A2Da . Recall that the natural order ofS is of
O(1/D) unlessDa are close each other or ln(D1d1 /D2d2) is
large.

D. Generic racetrack model

In the previous section, we considered the specific ra
track model, i.e.,s1D15s2D2. For the generic cases1D1
Þs2D2, the analyses become complicated. Here we giv
comment on this generic case.
6-6
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As solutions of]V/]S50, we again concentrate on th
solution ~5!. That leads to the following equations:

ln
@2D1Re~S!11#d1

@2D2Re~S!11#d2
5~D12D2!Re~S!

1~D1s12D2s2!Re~M !, ~50!

~D12D2!Im~S!1~D1s12D2s2!Im~M !5~2n11!p.
~51!

Furthermore, ifDRe(S)@1, we obtain

Re~S!5
~D1s12D2s2!

D22D1
Re~M !1

1

D12D2
ln

D1d1

D2d2
.

~52!

The second term in the right hand side is the same as
~14!. The first term is a new contribution fromM. When
D1s15D2s2, the first term vanishes and that is consiste
with Sec. III C. However, ifD1s1ÞD2s2, the VEV of
Re(M ) corresponds effectively to a large difference ofda in
Eq. ~14! as can be seen by replacingda→dae2DasaRe(M ).
Thus, the value of Re(M ) is important for the stabilized
value of Re(S).

Suppose that the VEV of Re(M ) is also stabilized by the
following equation similar to Eq.~5!:

]K~M ,M̄ !

]M
W1WM50. ~53!

Combined with Eq.~50!, for DRe(S)@1, we obtain

]K

]M
5

D1D2~s12s2!

~D22D1!
. ~54!

For example, that leads to

Re~M !5
D1D2~s12s2!

2~D22D1!
~55!

for K(M ,M̄ )5 1
2 (M1M̄ )2, and

Re~M !5
D12D2

2D1D2~s12s2!
~56!

for K(M ,M̄ )52 ln(M1M̄). In the former~latter! case, the
value of Re(M ) is enhanced~suppressed! for fine-tuning
D1'D2, while it is suppressed~enhanced! for fine-tuning
s1's2. Equation~52! becomes
04600
q.

t

Re~S!5S 2s11
2

D1
Re~M ! DRe~M !1

1

D12D2
ln

D1d1

D2d2
~57!

for K(M ,M̄ )5 1
2 (M1M̄ )2, and

Re~S!52s1Re~M !1
1

2D1
1

1

D12D2
ln

D1d1

D2d2
~58!

for K(M ,M̄ )52 ln(M1M̄). For the latter case, the first term
in the right-hand side would be important when Re(M ) is
enhanced by the fine-tunings1's2. Thus, the value of
Re(M ) has an interesting effect on the stabilized value
Re(S).

IV. CONCLUSION

We have studied stabilization of the dilaton and twist
moduli by assuming canonical and logarithmic forms for t
Kähler potential of the twisted moduli field. The canonic
Kähler potential plays a role in the stabilization of th
twisted moduli. This analysis can be extended to the c
with a polynomial Kähler potential. On the other hand, eve
with the logarithmic Ka¨hler potential, the positive exponen
of the twisted moduli field in the nonperturbative superp
tential is significant. The logarithmic form was used as
example of a Ka¨hler potential that has different behavio
from the canonical form. That suggests that even for t
case the positive exponent of the twisted moduli fields in
superpotential would be helpful. These aspects are diffe
from the dilaton stabilization.

Similarly, in models where the gauge kinetic functio
depend linearly on two or more moduli fields, the positi
exponent of these fields in the superpotential might be h
ful for moduli stabilization.

We have also considered the specific racetrack model w
s1D15s2D2 in order to discuss stabilization of the dilato
and twisted moduli at the same time. In the generic case,
VEV of M affects the stabilized value of the dilaton VEV
This point is also important in the stabilization of the twist
moduli fields.

Knowledge of the Ka¨hler potential of the twisted modul
field is necessary to investigate numerically reliable resu
We have not taken into accountD terms. Inclusion ofD
terms will be studied elsewhere.

The models that have been studied lead to a negative
mological constant. That is a common problem in dilat
stabilization. A vanishing cosmological constant could be
alized by models with more gaugino condensation@5#, a non-
perturbative Ka¨hler potential@9#, or R symmetry@27#.
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