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de Sitter vacua in string theory
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We outline the construction of metastable de Sitter vacua of type IIB string theory. Our starting point is
highly warped IIB compactifications with nontrivial NS and RR three-form fluxes. By incorporating known
corrections to the superpotential from Euclidean D-brane instantons or gaugino condensation, one can make
models with all moduli fixed, yielding a supersymmetric AdS vacuum. Inclusion of a small number of
D3-branes in the resulting warped geometry allows one to uplift the AdS minimum and make it a metastable
de Sitter ground state. The lifetime of our metastable de Sitter vacua is much greater than the cosmological
time scale of 1010 yr. We also prove, under certain conditions, that the lifetime of dS space in string theory will
always be shorter than the recurrence time.
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I. INTRODUCTION

There has recently been a great deal of interest in find
de Sitter~dS! vacua of supergravity and string theory. This
motivated in part by the desire to construct possible mod
for late-time cosmology~since a small positive cosmologica
constant seems to be required by recent data@1#!, and in part
by more conceptual worries that arise in the study of
quantum gravity~as discussed, for instance, in@2#!. The
no-go theorem of@3# guarantees that such solutions cann
be obtained in string or M theory by using only the lowe
order terms in the 10D or 11D supergravity action, but o
expects that corrections to the leading order Lagrangia
the gs or a8 expansion or inclusion of extended sourc
~branes! should improve the situation. Indeed, a careful d
cussion of how such additional sources~which are present in
string theory! invalidate the no-go theorem for warped bac
grounds and allow one to find highly warped compactific
tions appears in@4#. Additional sources which violate th
assumptions of the theorem were shown to yield dS vacu
noncritical string theory in@5#.

Here, we use our knowledge of quantum corrections
extended objects in string theory to argue that there are
solutions of ordinary critical string theory. Our basic strate
is to first freeze all the moduli present in the compactific
tion, while preserving supersymmetry. We then add extra
fects that break supersymmetry in a controlled way and
the minimum of the potential to a positive value, yielding d
space. To illustrate the construction we work in the spec
context of IIB string theory compactified on a Calabi-Ya
~CY! manifold in the presence of flux. As described in@4#
such constructions allow one to fix the complex struct
moduli, but not the Ka¨hler moduli of the compactification. In
particular, to leading order ina8 and gs , the Lagrangian
possesses a no-scale structure which does not fix the ov
volume~we shall assume that this is theonly Kähler modulus
in the rest of this paper; it is of course possible to constr
explicit models which have this property!. In order to
achieve the first step of fixing all moduli, we therefore ne
to consider corrections which violate the no-scale structu
0556-2821/2003/68~4!/046005~10!/$20.00 68 0460
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Here we focus on quantum nonperturbative corrections to
superpotential which are calculable and show that these
lead to supersymmetry preserving AdS vacua in which
volume modulus is fixed in a controlled manner.

Having frozen all moduli we then introduce supersymm
try breaking by adding a fewD3-branes in the compactifica
tion; this is a compactified version of the situation discuss
in @6#. The addition ofD3-branes does not introduce add
tional moduli: their world volume scalars are frozen by
potential generated by the background fluxes@6#. Inclusion
of anti-D3 branes in the absence of other corrections yield
run-away to infinite volume of the compact space~since the
energy density in theD3-branes generates a tadpole for t
volume modulus!. However, we show that in the presence
the quantum corrections we have described, in a sufficie
warped background theD3 tension can be a small enoug
correction to lift the formerly AdS vacuum to positive co
mological constant, without destabilizing the minimum.

The extent of supersymmetry breaking and also the res
ing cosmological constant of the dS minimum can be var
in our construction, within a range, in two ways. One m
vary the number ofD3-branes which are introduced in th
above manner, and one can also vary the warping in
compactification ~by tuning the number of flux quant
through various cycles!. It is important to note that this cor
responds to a freedom to tunediscreteparameters, so while
fine tuning is possible, one should not expect to be able
tune to arbitrarily high precision. Since there is still
vacuum at very large radius with approximately zero ene
~this is the Dine-Seiberg runaway vacuum@7#!, any dS mini-
mum is only a false vacuum; but it is only destabilized
tunneling effects, and we argue that the lifetimes one
achieve are extremely long. In addition, we argue that un
the assumption that the potential between the dS minim
and the Dine-Seiberg vacuum at infinity is positive~which
will be true in any simple examples, since a single dS ma
mum is the only intervening critical point!, the lifetime of the
dS minimum isalwaysshorter than the timescale for Poin
carérecurrences discussed in@8#.
©2003 The American Physical Society05-1
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While our emphasis in this paper is on dS vacua it
worth remarking that the first step of our construction, wh
freezes all moduli, is of interest in its own right~for another
recent approach to this problem, see@9#; other recent ideas
about fixing the volume modulus, while leaving other mod
unfixed, appear in@10# and references therein!. In fact
moduli stabilization has been an important open questio
string theory and related phenomenology. We show that
can be achieved by putting together a few different effe
all of which are quite well understood by now. Preservi
supersymmetry~SUSY! allows us to carry out this analysi
with control. Once all moduli are frozen, SUSY breakin
effects other than the introduction ofD3-branes alone can
also be considered. Some of these, like the D3/D7 inflati
ary models of@11#, or models with both branes and an
branes@12#, are also of possible cosmological interest.

A more complete discussion of the possible cosmolog
toy models that one can construct using combinations of
ingredients described in this paper, in the spirit of@13#, will
appear in@14#.

We should note that there has been a great deal of in
esting work on constructing dS solutions in supergravity a
string theory. dS minima of 4D gauged supergravities wh
do not as yet have a known string theory embedding
peared in@15,16#, while dS compactifications of gauged 6
supergravity appear in@17#. The work of @5# constructs dS
vacua in supercritical string theory using many of the sa
ingredients which arise here. Finally, the importance of us
fluxes in the cosmological context was stressed in@18#,
where the problem of moduli stabilization was left as a bla
box ~related ideas appeared in@19#!. Cosmology of the sim-
plest flux compactifications, on theT6/Z2 orientifold @20–
22# ~whose gauged supergravity description is worked ou
@23#!, was recently investigated in@24#.

II. FLUX COMPACTIFICATIONS OF IIB STRING
THEORY, INCLUDING CORRECTIONS

In this section we briefly describe the required knowled
of flux compactifications of type IIB string theory. In Se
II A we describe the models of@4#, and in Sec. II B we enu-
merate various quantum corrections which can modify
superpotential and Ka¨hler potential used in@4#. In Sec. II C,
we show that incorporating the generic corrections can y
~supersymmetric! AdS minima with all moduli stabilized.

A. Calabi-Yau orientifolds with flux

We start withF theory@25# compactified on an elliptic CY
fourfold X. The F-theory fourfold is a useful way of encod
ing the data of a solution of type IIB string theory; the ba
manifoldM of the fibration encodes the IIB geometry, whi
the variation of the complex structuret of the elliptic fiber
describes the profile of the IIB axiodilaton. In such a mod
one has a tadpole condition

x~X!

24
5ND31

1

2k10
2 T3

E
M

H3`F3 . ~1!
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HereT3 is the tension of a D3-brane,ND3 is the net number
of (D32D3) branes one has inserted filling the noncomp
dimensions, andH3 , F3 are the three-form fluxes in the IIB
theory which arise in the NS and RR sector, respectively.
shown by Sen@26#, in the absence of flux, it is always pos
sible to deform such anF-theory model to a locus in modul
space where it can be thought of as an orientifold of a
Calabi-Yau compactification. For this reason, we will use
language of IIB orientifolds, withM being the Calabi-Yau
threefold which is orientifolded. In this language, the te
x(X)/24 counts the negative D3-brane charge coming fr
the O3 planes and the induced D3 charge on D7-bran
while the terms on the right-hand side count the net
charge from transverse branes and fluxes in the CY manif
As in @4#, we will assume we are working with a mode
having only one Ka¨hler modulus, soh1,1(M )51 @h1,1(X)
52, and one modulus is frozen in taking theF-theory limit,
where one shrinks the elliptic fiber#. Such models can be
explicitly constructed, by, e.g. using the examples of C
fourfolds in @27# or by explicitly constructing orientifolds of
known CY threefolds withh1,151.

In the presence of the nonzero fluxes, one generate
superpotential for the Calabi-Yau moduli, which follow
from @28# ~see also@29,30#! and is of the form

W5E
M

G3`V, ~2!

whereG35F32tH3, with t the IIB axiodilaton. Combining
this with the tree-level Ka¨hler potential

K523 ln@2 i ~r2 r̄ !#2 ln@2 i ~t2 t̄ !#2 lnF2 i E
M

V`V̄G
~3!

wherer is the single volume modulus (r5b/A21 ie4u2f;
our conventions are as in@4#!, and using the standardN51
supergravity formula for the potential, one finds

V5eKS (
a,b

gab̄DaWDbW23uWu2D
→eKS (

i , j
gi j̄ DiWD jWD . ~4!

Here,a,b runs over all moduli fields, whilei , j runs over all
moduli fields exceptr; and we see that becauser does not
appear in Eq.~2!, it cancels out of the potential energy~4!,
leaving the positive semi-definite potential characteristic
no-scale models@31#.

One should use this potential as follows. Fix an integ
choice ofH3 ,F3 in H3(M ,Z); then, the potential~4! fixes
the moduli at values where the resultingG3 is imaginary
self-dual ~ISD!. Supersymmetric solutions, furthermore, r
quire G3 to be type~2,1! @more generally,G3 would have a
~0,3! piece#. Thus in supersymmetric solutionsW50 on the
vacuum, while in the nonsupersymmetric solutions,W
5W0, a constant which is determined by the~0,3! piece of
G3. In generic solutions, the complex structure moduli of t
5-2
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de SITTER VACUA IN STRING THEORY PHYSICAL REVIEW D68, 046005 ~2003!
F-theory fourfold ~in IIB language, the complex structur
moduli, the dilaton, and the moduli of D7-branes! are com-
pletely fixed, leaving only the volume modulusr. The scale
of the massesm for the moduli which are fixed is

m;
a8

R3 ~5!

whereR is the radius of the manifold (Imr scales likeR4).
In this approximation,R is unfixed. By tuning flux quanta, i
is possible~at least in some cases! to fix gs at small values,
though not arbitrarily small.

There is one last point we will need to use in Sec. III. T
fluxes ~and any transverse branes! serve as sources for
warp factor. Therefore, such models with branes and flux
generically warped compactifications. In fact, as shown
@4#, following the earlier work of@20,32–35#, it is possible to
construct models with exponentially large warping. One c
write the Einstein frame metric of the compactification as

ds10
2 5e2A(y)hmndxmdxn1e22A(y)g̃mn~y!dymdyn ~6!

with y coordinatizing the compact dimensions, andg̃mn the
unwarped metric onM ~so in the orientifold limit, it is a
Calabi-Yau metric!. Then it is shown in@4# ~by compactify-
ing the Klebanov-Strassler solution@36#! that one can con-
struct models parametrized by flux integersM ,K such that

eAmin;exp@2~2pK !/~3gsM !# ~7!

with eA being of order one at generic points. This means
particular that with reasonably small flux quanta, one c
generate exponentially large ratios of scales in such mod

In the following, we will assume thatgs and the complex
structure moduli have been fixed at the scale~5! by a suitable
choice of flux, and we concentrate on an effective fie
theory for the volume modulusr. This is self-consistent, in
that the final mass forr will be small compared to Eq.~5!.
We have one last comment. Light states could also arise f
modes living in the throat region which experiences la
warping. We assume here that any such excitations
gapped, as in@36#. Then typically ther modulus, which has
a Planck scale suppressed mass, will be much lighter
these excitations and we can neglect them as well in the
energy theory.

B. Corrections to the no-scale models

Here, we write down two known sources of corrections
the no-scale models, both parametrize possible correction
the superpotential~2!. Then, in Sec. II C, we show that in
cluding either correction to the superpotential yields sup
symmetric models with AdS vacua.

~1! Witten has argued that in type IIB compactifications
this type, there can be corrections to the superpotential c
ing from Euclidean D3-branes@37#. This happens when th
fourfold X used forF-theory compactification admits divi
sors of arithmetic genus one, which project to four-cycles
the baseM. In the presence of such instantons, there i
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correction to the superpotential which at large volume yie
a new term

Winst5T~zi !exp~2p ir! ~8!

whereT(zi) is a complex structure dependent one-loop d
terminant, and the leading exponential dependence co
from the action of a Euclidean D3-brane wrapping a fo
cycle in M. Since thezi and the dilaton are fixed by th
fluxes at a scale~5!, we can integrate them out and view~8!
as simply providing a superpotential for the volume mod
lus.

~2! In general models of this sort, one finds~at special loci
in the complex structure moduli space! non-Abelian gauge
groups arising from geometric singularities inX, or in type
IIB language, from stacks of D7-branes wrapping 4-cycles
M. Assume that the fluxes have fixed one at a point in mod
space where this phenomenon occurs~examples appear in
@38#, for instance!. Consider a stack ofNc coincident branes.
The 4D gauge coupling of theSU(Nc) Yang-Mills theory on
such wrapped branes@we ignore the decoupledU(1) factor#
satisfies

8p2

gY M
2

52p
R4

gs
52p Im r. ~9!

Since the complex structure moduli ofX are completely
fixed, the D7-brane moduli~at least in cases where th
4-cycle being wrapped has vanishingh1, which are easy to
arrange! are also fixed. Therefore, any charged matter fie
~which would create a Higgs branch for the D7 gauge theo!
have also been given a mass at a high scale; and the
energy theory is pureN51 supersymmetricSU(Nc) gauge
theory. This theory undergoes gluino condensation, wh
results in a nonperturbative superpotential

Wgauge5LNc

3 5Ae2p ir/Nc ~10!

whereLNc
is the dynamical scale of the gauge theory, a

the coefficientA is determined by the energy scale belo
which the SQCD theory is valid.~There are also threshol
corrections in general; these contribute subleading effec!
We see that this leads to an exponential superpotential fr
similar to the one above~but with a fractional multiple ofr
in the exponent, since the gaugino condensate looks lik
fractional instanton effect inW).

So effects~1! and~2! have rather similar consequences f
our analysis; we will simply assume that there is an ex
nential superpotential forr at large volume. In our compan
ion paper@14# we investigate some interesting possibiliti
for cosmology if there are multiple non-Abelian gauge fa
tors. Using the fourfolds in@27#, it is easy to construct ex
amples@with h1,1(X)52] which could yield gauge groups o
total rank up to;30. The results of@39# suggest that much
larger ranks should be possible.

One important comment is in order before we proce
Besides corrections to the superpotential of the kind d
cussed above, there are also corrections to the Ka¨hler poten-
tial ~see, e.g.@40# for a calculation of some leading correc
5-3
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KACHRU et al. PHYSICAL REVIEW D 68, 046005 ~2003!
tions!. In our analysis we will ensure that the volum
modulus is stabilized at values which are parametrica
large compared to the string scale. This makes our negle
Kähler corrections self-consistent.

C. Supersymmetric AdS vacua

Here we show that the corrections to the superpoten
considered above can stabilize the volume modulus, lea
to a SUSY-preserving AdS minimum. We perform an ana
sis of the vacuum structure just keeping the tree-level Ka¨hler
potential

K523 ln@2 i ~r2 r̄ !# ~11!

and a superpotential

W5W01Aeiar. ~12!

W0 is a tree level contribution which arises from the fluxe
The exponential term arises from either of the two sour
above, and the coefficienta can be determined accordingl
In keeping with the fact that the complex structure mod
and the dilaton have received a mass~5!, we have set them
equal to their vacuum expectation values~VEVs! and con-
sider only the low-energy theory of the volume modulus.
avoid the need to worry about additional open-string mod
we assume the tadpole condition~1! has been solved by turn
ing on only flux, i.e. with no additional D3-branes.

At a supersymmetric vacuumDrW50. We simplify
things by setting the axion in ther modulus to zero, and
letting r5 is. In addition we takeA,a andW0 to be allreal
andW0 negative. The minimum then lies at

DW50→W052Ae2ascrS 11
2

3
ascrD . ~13!

The potential,V5eK(Grr̄DrWDrW23uWu2), at the mini-
mum is negative and equal to

VAdS5~23eKW2!AdS52
a2A2e22ascr

6scr
. ~14!

We see in Fig. 1 that we have stabilized the volume modu

FIG. 1. Potential~multiplied by 1015) for the case of exponentia
superpotential withW0521024, A51, a50.1. There is an AdS
minimum.
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while preserving supersymmetry. It is important to note th
the AdS minimum is quite generic. Any corrections to t
Kähler potential will still result in a SUSY minimum which
solves~13!.

A few comments are in order before we proceed. A co
trolled calculation requires thats@1; this ensures that the
supergravity approximation is valid and thea8 corrections to
the Kähler potential are under control. It also requires th
as.1 so that the contribution to the superpotential from
single ~fractional! instanton is reliable. Generically, if th
fluxes break supersymmetry,W0;O(1), and these condi-
tions will not be met. However, it is reasonable to expect t
by tuning fluxes one can arrange so thatW0!1. In these
circumstances we see from Eq.~13! that as.1. Taking a
,1, one can then ensure thats@1, as required.

As an illustrative example we considerW0521024, A
51, a50.1. This results in a minimum atscr;113.

Another possibility to get a minimum at large volume
to consider a situation where the fluxes preserve SUSY,
the superpotential involves multiple exponential terms,
‘‘racetrack potentials’’ for the stabilization ofr @41#. Such a
superpotential could arise from multiple stacks of sev
branes wrapping four cycles which cannot be deformed i
each other in a SUSY-preserving manner@14#. In this case by
tuning the ranks of the gauge groups appropriately one
obtain a parametrically large value ofs at the minimum.

Finally it is plausible that in some cases there could
some other moduli that have not yet been fixed in this
proximation~if, for instance, the fluxes were nongeneric a
left some of the complex structure moduli of the Calabi-Y
manifold unfixed!. Since the dilaton is already fixed b
fluxes and the radial modulus is fixed due to nonperturba
exponential terms in the superpotential, one might find in
esting and realistic cosmology driven by these other sc
fields from the compactified string theory. Here, however,
will neglect this possibility, and focus instead on anoth
mechanism for uplifting the AdS vacuum to a dS vacuum

III. CONSTRUCTING dS VACUA

In this section we uplift the supersymmetric AdS vacua
Sec. II C to yield dS vacua of string theory. In Sec. III A w
describe the new ingredient:D3-branes transverse toM. In
Sec. III B, we show that for reasonable choices of para
eters, the inclusion ofD3-branes yields dS vacua.

A. D3-branes in ISD fluxes

In the tadpole condition~1!, there is a contribution from
both localized D3-branes and from fluxes. To find AdS vac
with no moduli in the preceding section, we assumed that
condition was saturated by turning on fluxes in the comp
manifold. Now, we assume that in fact we turn ontoo much
flux, so that Eq.~1! can only be satisfied by introducing on
D3-brane. In the flux background determining a solution
the sort described in Sec. II, theD3-branes do not have trans
lational moduli; they are fixed by the ISD fluxes, which ge
erate a potential for the world volume scalars. This kind
situation was studied in@6#.
5-4
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de SITTER VACUA IN STRING THEORY PHYSICAL REVIEW D68, 046005 ~2003!
Now, the tadpole is cancelled, but there is an extra bi
energy density from the ‘‘extra’’ flux andD3-brane. In fact,
as in Eq.~73! of @6#, one finds that theD3-brane adds an
additional energy:

dV52
a0

4T3

gs
4

1

~ Im r!3
~15!

with a0 the warp factor at the location of theD3-brane. As
described in@6#, in the presence of ISD fluxes of the so
characterizing the Klebanov-Strassler throat, any anti-D
branes are driven to the end of the throat, where the w
factor is minimized. It follows from Eq.~7! that the value of
a0 is exponentially small, and hence in suitable models
inclusion of aD3-brane adds to the potential an expone
tially suppressed term. The prefactor of 2 in Eq.~15! arises
because the ambient five-form flux adds a repulsive ene
equal to the tension for aD3-brane, see@42# @above Eq.
~3.9!#. Note also that we are considering solutions wh
meet the ISD condition, even in the presence of the ad
tional flux required to insert theD3-brane. There are correc
tions to Eq.~15! but these are quadratic in the number
D3-branes that are added and are small.

The important point is that due to the warping the addit
of the D3-brane breaks supersymmetry by a very sm
amount. In general terms, we get a term in the poten
which goes like

dV5
8D

~ Im r!3
~16!

~the factor of 8 is added for later convenience!. The coeffi-
cient D depends on the number ofD3-branes and on the
warp factor at the end of the throat. These parameters ca
altered by discretely changing the total flux, and the flux
which enter in Eq.~7!, respectively. This allows us to var
the coefficientD and the SUSY breaking in the system, wh
still keeping them small.~More properly, since the flux can
only be discretely tuned,D can be varied but not with arbi
trary precision.! We will see that by tuning the choice ofD
one can perturb the AdS vacua of Sec. II C to produce
vacua with a tunable cosmological constant. The vacua
clearly only be metastable, since all of the sources of ene
we have introduced vanish as Imr→`.

B. Uplifting AdS vacua to dS vacua

We now add to the potential a term of the formD/s3, as
explained above. For suitable choices ofD, the AdS mini-
mum will become a dS minimum, but the rest of the pote
tial does not change too much. There is one new impor
feature, however: there is a dS maximum separating the
minimum from the vanishing potential at infinity. The pote
tial is

V5
aAe2as

2s2 S 1

3
saAe2as1W01Ae2asD1

D

s3 .
04600
f

-
rp

e
-

y

i-

f

ll
l

be
s

S
ill
y

-
nt
S

By fine tuningD, it is easy to have the dS minimum ver
close to zero. For the modelW0521024, A51, a50.1,
D5331029 we find the potential~multiplied by 1015) ~see
Fig. 2!.

Note, if one does not require the minimum to be so clo
to zero,D does not have to be fine tuned so precisely. A
minimum is obtained as long asD lies within a range, even-
tually disappearing for large enoughD. If one does fine tune
to get the minimum very close to zero, the resulting pote
tials are quite steep around the dS minimum. In this circu
stance, the new term basically uplifts the potential witho
changing the shape too much around the minimum, so thr
field acquires a surprisingly large mass~relative to the final
value of the cosmological constant!.

It is important to mention that the value of the volum
modulus shifts only slightly in going from the AdS minimum
to the new dS minimum. This means if the volume was la
in the AdS minimum to begin with, it will continue to be
large in the new dS minimum, guaranteeing that our appro
mations are valid.

If one wants to use this potential to describe the pres
stage of acceleration of the universe, one needs to fine
the value of the potential in dS minimum to beV0;102120

in units of Planck density. In principle, one could achieve
e.g., by fine tuningD. However, the tuning we can really d
by varying the fluxes, etc., in the microscopic string theory
limited, though it may be possible to tune quite well if the
are enough three-cycles inM.

IV. HOW STABLE IS THE dS VACUUM?

The radial moduluss5Im r has a kinetic term (3/4s2)
3(]s)2 which follows from the Ka¨hler potential~3!. For
cosmological purposes it is convenient to switch to the
nonical variablew5A3/2 lns5A3/2 ln(Imr), which has a
kinetic term1

2 (]w)2. In what follows we will use the fieldw
and it should not be confused with the dilatonf.

A. General theory

The dS vacuum statew0 corresponding to the local mini
mum of the potential withV0.0 is metastable. Therefore

FIG. 2. Potential~multiplied by 1015) for the case of the expo
nential superpotential and including aD/s3 correction withD53
31029 which uplifts the AdS minimum to a dS minimum.
5-5
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may decay, and then the universe will roll towards large v
ues of the fieldw and decompactify. Here we would like t
address two important questions.

~1! Do our dS vacua survive for a large number of Plan
times? For instance, if we fine tune to get a small cosmolo
cal constant, is the dS vacuum sufficiently stable to surv
during the 1010 years of the cosmological evolution? If th
answer is positive, one can use the dS minimum for
phenomenological description of the current stage of ac
eration~late-time inflation! of the universe.

~2! Is the typical decay time of the dS vacuum longer
shorter than the recurrence timet r;eS0, where S0
524p2/V0 is the dS entropy@43#? If the decay time is longe
than t r;eS0, one may need to address the issues about
consistency of the stringy description of dS space raise
@2,5,8#.

We will argue that the lifetime of the dS vacuum in o
models is not too short and not too long: it is extremely la
in Planck times~in particular, one can easily make mode
which live longer than the cosmological time sca
;1010 years), and it is much shorter than the recurren
time t r;eS0.

In order to analyze this issue we will remember, followin
Coleman and De Luccia@44#, basic features of the tunnelin
theory taking into account gravitational effects.

To describe tunneling from a local minimum atw5w0
one should consider anO(4)-invariant Euclidean spacetim
with the metric

ds25dt21b2~t!~dc21sin2cdV2
2!. ~17!

The scalar fieldw and the Euclidean scale factor~three-
sphere radius! b(t) obey the equations of motion

w913
b8

b
w85V,w , b952

b

3
~w821V!, ~18!

where primes denote derivatives with respect tot. ~We use
the system of unitsM p51.!

These equations have several instanton soluti
„w(t), b(t)…. The simplest of them is theO(5) invariant
four-spheres one obtains when the fieldw sits at one of the
extrema of its potential, andb(t)5H21sinHt. Here H2

5V/3, andV(w) corresponds to one of the extrema. In o
case, there are two trivial solutions of this type. One of th
describes time-independent field corresponding to the m
mum of the effective potential atw5w0, with V05V(w0).
Another one is related to the maximum of the potential
w5w1, with V15V(w1).

Coleman–De Luccia~CDL! instantons are more compl
cated. They describe the fieldw(t) beginning in a vicinity of
the false vacuumw0 at t50, and reaching some consta
value w f.w1 at t5t f , whereb(t f)50. It is tempting to
interpret CDL instantons as the tunneling trajectories in
polating between the different vacua of the theory. Howev
one should be careful with this interpretation because
trajectoriesw(t) for CDL instantons do not begin exactly i
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the metastable minimumw0 and do not end exactly in the
absolute minimum of the effective potential. We will discu
this issue later.

According to@44#, the tunneling probability is given by

P~w!5e2S(w)1S0, ~19!

whereS(w) is the Euclidean action for the tunneling traje
tory „w(t), b(t)…, and S05S(w0) is the Euclidean action
for the initial configurationw5w0. Note thatS(w) in Eq.
~19! for the tunneling probability is the integral over th
whole instanton solution rather than the integral over its h
providing the tunneling amplitude.

The tunneling action is given by

S~w!5E d4xAgS 2
1

2
R1

1

2
~]w!21V~w! D . ~20!

In d54 the trace of the Einstein equation isR5(]w)2

14V(w). Therefore the total action can be represented by
integral ofV(w):

S~w!52E d4xAgV~w!522p2E
0

t f
dtb3~t!V„w~t!….

~21!

The Euclidean action calculated for the false vacuum
solutionw5w0 is given by

S052
24p2

V0
,0. ~22!

Similarly, for the dS maximumw5w1 one has S15
224p2/V1.

This action for dS spaceS0 has a simple sign-reversa
relation to the entropy of de Sitter spaceS0:

S052S051
24p2

V0
. ~23!

Therefore the decay time of the metastable dS vacu
tdecay;P21(w) can be represented in the following way:

tdecay5eS(w)1S05t re
S(w). ~24!

The semiclassical approximation is applicable only
uS(w)u@1. Equation ~21! implies that for the tunneling
through the barrier withV(w).0 ~which is the case for the
tunneling from dS space to Minkowski space in our mod!
the actionS(w) is always negative,S(w),0. This means
that the decay time of dS space to Minkowski space is ex
nentially smaller than the recurrence time tr . The existence
of the runaway vacuum at̀ in field space with zero energ
is a standard feature of all string theories@7#. We conclude
that the problems related to the decay time exceeding
recurrence timet r @2,5,8# will not appear in the simples
string theory models, where a single dS maximum will se
rate the dS minimum from̀ .

Now that we found the upper bound on the tunneli
time, we will try to estimate the tunneling time in our mod
5-6
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using some particular instanton solutions. In general, i
very difficult to find analytical solutions for the CDL instan
tons and calculate the tunneling probability. We will inves
gate this problem using two different approaches which a
in a certain sense, opposite to each other: the thin-wall
proximation and the no-wall approximation.

B. Thin-wall approximation

Let us assume that one can describe the present sta
the acceleration of the universe by our model, so thatV0
;102120 in Planck units~more generally, the analysis of th
section will work forV0 very small compared to the startin
AdS cosmological constant, which can be arranged by t
ing!. This is a hundred orders of magnitude smaller than
height of the barrierV1 in our model. In Minkowski space
the conditionV0!V1 usually means that the thin-wall ap
proximation is applicable. Let us check whether one can
it in our case.

In application to our scenario~tunneling from dS space
with vacuum energyV0.0 to Minkowski space! one can
represent the results of@44# in the following useful form:

P5expS 2
S~w0!

@11~4V0/3T2!#2D . ~25!

HereT is not temperature but tension of the bubble wall;
our case

T5E
w0

`

dwA2V~w!. ~26!

Equation~25! confirms our general conclusion that the su
pression of the tunneling is always smaller thane2S(w0), and
the decay time is shorter thant r .

There are two limiting cases of special interest:V0@T2

andV0!T2. The meaning of these two conditions becom
clear if we restoreM p in these inequalities:V0M p

2@T2 and
V0M p

2!T2. If we turn off the gravitational interaction
(M p→`), one hasV0M p

2@T2, and we obtain the wel
known result for the tunneling in the thin-wall approximatio
in Minkowski space:

P5expS 2
27p2T4

2V0
3 D . ~27!

From Eq.~26! one finds thatT;DwAV1, whereDw is the
typical width of the dS maximum. This means thatV0@T2

~in units M p51), and one can ignore the gravitational e
fects in the thin-wall approximation only if

Df!AV0

V1
. ~28!

One can easily check that for our model this condition
not satisfied, so we must take gravitational effects into
count and study an opposite limitV0!T2. Then in the first
approximation one simply has
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P'exp@2S~w0!#5expS 2
24p2

V0
D;exp~210122!.

~29!

Thus, for all practical purposes our dS vacuum is complet
stable.

On the other hand, if one expands Eq.~25! in powers of
V0 /T2, one finds

P'exp@2S~w0!#3expS 64p2

T2 D . ~30!

For the sub-Planckian tensionT!1 one finds that the prob
ability of the tunneling is exponentially larger thanP
'exp@2S(w0)#. The decay time of dS space due to CD
instantonstdecay

CDL is much smaller than the recurrence timet r

;exp@2S(w0)#, in agreement with our general result:

tdecay
CDL ;t rexpS 2

64p2

T2 D . ~31!

In the thin-wall approximation~for V0!T2) the radius of
the bubble isRB54/T @44#, whereas the thickness of the wa
is approximatelyDRB5T/V1. This means that the thin-wal
approximation taking gravity into account is valid ifDRB
!RB , i.e. T2!V1.

C. ‘‘No-wall’’ approximation: Hawking-Moss instanton and
stochastic approach to tunneling

Now we will return to the simplest instanton solution
sitting at the dS minimumw5w0 and the dS maximumw
5w1. According to Hawking and Moss~HM! @45#, they de-
scribe tunneling through the barrier, with the probability
tunneling suppressed as

P5e2S(w1)1S(w0)5expS 2
24p2

V0
1

24p2

V1
D . ~32!

This result may seem rather controversial because the ins
ton solution w(t)5w1 does not interpolate between th
stable vacuum and the false vacuum.

In fact, as we already mentioned, the last problem appe
for all CDL solutions as well. These solutions never beg
exactly in the false vacuum, so how could they be conside
interpolating solutions? This problem disappears in the th
wall limit, but it shows up very clearly in numerical calcu
lations going beyond the thin wall approximation.

There are several different ways in which one can addr
this issue. In@46# it was noticed that instead of considerin
an exactly constant solutionw5w1 one may consider a con
figuration that coincides with this solution everywhere e
cept a small vicinity of the end point att f5pH21. The
action involves integration*dtb3(t)L(gmn ,w). Since the
scale factorb(t)5H21sinHt vanishes att f5pH21, one
can make very strong modifications of the solutionw5w1 in
a small vicinity of t f without changing the action in a sig
nificant way. If the action changes by less thanO(1), then
each such configuration can be used for the description
5-7
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tunneling despite the fact that it is not a true solution
classical equations of motion neart f . This allows one to
bend the solutionw5w1 ~or the CDL solution! in such a way
that it begins to interpolate between the different vacua.

One may also patch HM instantons and CDL instanton
each other in several different ways, which may provide th
alternative interpretation and justify the results obtained
using CDL and HM instantons, see e.g.@47–49#. More re-
cently a possible interpretation of CDL and HM instanto
was suggested in@50#. Significant progress was achieved b
Gen and Sasaki in the development of a consistent Ha
tonian approach to tunneling with gravity@51#.

But these methods do not address another problem
the Hawking-Moss tunneling: Since the instantonw5w1 is
exactly homogeneous, it seems to describe a homogen
tunneling in the whole universe, which is impossible. O
can circumvent this problem by claiming that the whole u
verse is reduced to the interior of a single causal patch of
H21. However, this approach, which is often used for t
description of eternal dS space~which does not decay!, may
be less useful in applications to inflationary cosmology sin
it loses information about the whole universe except fo
small part of sizeH21.

The most intuitively transparent description of th
~nearly! homogeneous tunneling was provided in@52–55# in
the context of the stochastic approach to inflation.

One may consider quantum fluctuations of a light sca
field w with m25V9!H25V/3. During each time interva
dt5H21 this scalar field experiences quantum jumps w
the wavelength;H21 and with a typical amplitudedw
5H/2p. Then the wavelength of these fluctuations gro
exponentially. As a result, quantum fluctuations lead to
local change of the amplitude of the fieldw which looks
homogeneous on the horizon scaleH21. From the point of
view of a local observer, this process looks like a Brown
motion of the homogeneous scalar field. If the potential ha
dS minimum atw0 with m!H, then eventually the probabil
ity distribution to find the field with the valuew becomes
time independent@52–55#

P~w,w0!;expS 24p2

V~w! DexpS 2
24p2

V~w0! D . ~33!

This result was obtained without any considerations ba
on the Euclidean approach to quantum gravity. It provide
simple interpretation of the Hawking-Moss tunneling. Du
ing inflation, long wavelength perturbations of the sca
field freeze on top of each other and form complicated c
figurations, which, however, look almost homogeneous
the horizon scaleH21. If originally the whole universe was
in a statew0, the scalar field starts wandering around, a
eventually it reaches the local maximum of the effective p
tential atw5w1. According to Eq.~33!, the probability of
this event is suppressed by exp@2(24p2/V0)1(24p2/V1)#.
As soon as the fieldw reaches the top of the effective pote
tial, it may fall down to another minimum, because it loo
nearly homogeneous on a scale of horizon, and gradien
the fieldw are not strong enough to pull it back tow0. The
probability of this process is given by the Hawking-Mo
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expression~32!. However, this is not a homogeneous tunn
ing all over the universe, but rather a Brownian motio
which looks homogeneous on the scaleH21 @53#.

One can take a logarithm of the probability distributio
~33! and find that the entropy of the state with the fie
stochastically moving in the potentialV(w) is given by

S„w…5
24p2

V~w!
. ~34!

This is the simplest derivation of dS entropy that does
involve ambiguous Euclidean calculations. It is valid ev
for the states outside the dS minimum, as long as the co
tion um2u!H2 ~i.e. uV9u!V) remains valid.

This result allows one to obtain a simple interpretation
the HM tunneling, proposed in@47#. Indeed, Eq.~32! has the
standard thermodynamic form describing the probability
thermal fluctuations

P5eDS5eS(w1)2S„w0…. ~35!

A similar thermodynamic approach was recently develop
in a series of papers by Susskindet al. @8#.

Since the entropyS(w1)524p2/V1 is positive, one finds
another confirmation of our general result:

tdecay
HM 5e2S11S05t rexpS 2

24p2

V1
D!t r . ~36!

On the other hand, in our caseS1!S0, so in the first approxi-
mation one finds, as before, thattdecay

HM 't r;e10122
.

Note that the quasi-homogeneous HM tunneling and
CDL tunneling correspond to two different processes;
pending on the potential, one of these processes may ha
much faster than another. Let us compare the rate of
quasi-homogeneous HM tunneling with the rate of tunnel
due to CDL instantons in the thin wall approximation forT
!1:

tdecay
HM

tdecay
CDL

5expF8p2S 8

T2 2
3

V1
D G . ~37!

This shows thattdecay
HM ,tdecay

CDL ~HM tunneling dominates! for
3T2.8V1. Meanwhile, in the opposite case, 3T2,8V1, the
tunneling occurs due to CDL instantons. This is consist
with our estimate of validity of the thin wall approximation
T2!V1.

It is useful to represent this result in a different way. L
us use the estimateT;DwAV1, where Dw is the typical
width of dS maximum. This estimate implies that 3T2

.8V1 and tdecay
HM ,tdecay

CDL if Dw.1, i.e. if the width of the
maximum is much greater than the Planck mass. For
potentials with the nearly Minkowski minima this conditio
coincides with the inflationary slow-roll conditionuV9u,V.

Thus we are coming to the conclusion that the HM tu
neling, and the thermodynamic approach discussed ab
are most efficient for the description of the tunneling in t
inflationary universe, where their validity has been firm
established by the stochastic approach to inflation. On
5-8
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other hand, in the situations where the potentials are v
thin, Df!1, one should use the CDL instantons, and
thin-wall approximation is valid.

This result has a very simple interpretation. CDL insta
tons describe tunneling through the barrier. Meanwhile, H
instantons in the inflationary regime can be interpreted
terms of the Brownian motion, when the field slowly climb
to the top of the barrier due to accumulation of quant
fluctuations with the Hawking temperatureH/2p. If the bar-
rier is very wide, it is easier to climb the barrier rather that
tunnel through it. In this case the HM tunneling prevails a
the stochastic/thermodynamic description of this proces
terms of dS entropy is very useful. If the barrier is very th
it is easier to tunnel, and CDL instantons are more efficie

For the simple models with the parameters given in
paper one has 3T2,8V1, and the tunneling occurs mainl
due to CDL instantons. Even in this case the stochas
thermodynamic approach may remain useful: If this a
proach is valid not only in the context of inflationary co
mology with uV9u!V but also in the situations withuV9u
*V, it provides a simple upper bound on the decay time
dS space,tdecay,eS(w0)2S(w1).

V. DISCUSSION

It has been a difficult problem to construct realistic co
mologies from string theory as long as the moduli fields
not frozen. In this paper we have seen that it is possible
stabilize all moduli in a controlled manner in the gene
setting of compactifications with flux. This opens up a pro
ising arena for the construction of string cosmologies.

More specifically, we have seen that it should be poss
to construct metastable dS vacua in the general framewor
@4#, by including anti-branes@6# and incorporating non-
perturbative corrections to the superpotential from D3 inst
tons @37# or low-energy gauge dynamics. For cosmology
might be more interesting to include a more complica
sector at the end of the warped throat. For instance,
D3/D7 inflationary models of@11#, or models with both
branes and anti-branes@12#, could be of interest in this con
text. It should also be possible to make similar constructi
in the heterotic theory, perhaps using the models of@56# as a
starting point~and then incorporating a mechanism to sta
lize the dilaton in a controlled manner!.

It is worth summarizing why we believe the constructio
in this paper are reliable. Our analysis was carried out in
framework of supergravity. There are two kinds of corre
tte
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tions to this analysis, in thegs anda8 expansions. By tuning
the fluxes we have argued that both of these can be c
trolled. For example, it is reasonable to believe thatgs can be
stabilized at a value of ordergs;0.1 and the volumes@1
~for the volume this was discussed in Sec. II C!. Note that for
reliability we do not require that the dilaton and volume
made arbitrarily small or big; in fact this is not possible sin
the fluxes can only be tuned discretely. We only require t
these moduli take appropriately small or big values, and
can be achieved, especially ifM has enough three-cycles
yielding many possible choices of flux background.

We were also able to prove, in Sec. IV, that our d
minima are short lived compared to the time scale for Po
carérecurrences. This generalizes to any construction wh
the dS minimum is separated from the Dine-Seiberg r
away vacuum~which is ubiquitous in string theory! by a
potential which remains non-negative; the simplest c
trolled examples in string theory will have this feature. O
can also imagine more complicated shapes of the pote
between the dS minimum and infinity, which include som
intervening AdS critical points. It is natural to wonder if
more general statement can be obtained that would app
these cases as well.

Finally, it would be interesting to discover string theo
models which naturally incorporate both greater than 6e
foldings of early universe inflation and a late-time cosm
ogy in agreement with the most recent data@1#. ~To show
that it is possible to obtain a small enough value of the
cosmological constant for late-time cosmology, one wo
have to demonstrate that an idea along the lines of@18# can
be implemented in this context.! Some further steps toward
making more realistic cosmological toy-models inspired
string theory, in the same general framework as this pa
will be presented in@14#.
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@30# G. Curio, A. Klemm, D. Lüst, and S. Theisen, Nucl. Phys

B609, 3 ~2001!.
@31# E. Cremmer, S. Ferrara, C. Kounnas, and D.V. Nanonpou

Phys. Lett.133B, 61 ~1983!; J. Ellis, A.B. Lahanas, D.V. Na-
nopoulos, and K. Tamvakis,ibid. 134B, 429 ~1984!.

@32# K. Becker and M. Becker, Nucl. Phys.B477, 155 ~1996!.
@33# H. Verlinde, Nucl. Phys.B580, 264 ~2000!; C. Chan, P. Paul,

and H. Verlinde,ibid. B581, 156 ~2000!.
@34# P. Mayr, Nucl. Phys.B593, 99 ~2001!; J. High Energy Phys.

11, 013 ~2000!.
@35# B. Greene, K. Schalm, and G. Shiu, Nucl. Phys.B584, 480

~2000!.
@36# I.R. Klebanov and M.J. Strassler, J. High Energy Phys.08, 052

~2000!.
@37# E. Witten, Nucl. Phys.B474, 343 ~1996!.
@38# P. Tripathy and S.P. Trivedi, J. High Energy Phys.03, 028

~2003!.
@39# P. Candelas and H. Skarke, Phys. Lett. B413, 63 ~1997!; V.

Kaplunovsky and J. Louis,ibid. 417, 45 ~1998!.
@40# K. Becker, M. Becker, M. Haack, and J. Louis, J. High Ener

Phys.06, 060 ~2002!.
@41# N.V. Krasnikov, Phys. Lett. B193, 37 ~1987!; L. Dixon, ‘‘Su-

persymmetry Breaking in String Theory,’’ SLAC-PUB-522
~1990!.

@42# J. Maldacena and H. Nastase, J. High Energy Phys.09, 024
~2001!.

@43# G.W. Gibbons and S.W. Hawking, Phys. Rev. D15, 2738
~1977!; 15, 2752~1977!.

@44# S.R. Coleman and F. De Luccia, Phys. Rev. D21, 3305~1980!.
@45# S.W. Hawking and I.G. Moss, Phys. Lett.110B, 35 ~1982!.
@46# A.S. Goncharov and A.D. Linde, Sov. J. Part. Nucl.17, 369

~1986!.
@47# A.D. Linde, Phys. Rev. D58, 083514~1998!.
@48# R. Bousso and A. Chamblin, Phys. Rev. D59, 084004~1999!.
@49# R. Bousso and A.D. Linde, Phys. Rev. D58, 083503~1998!.
@50# T. Banks, ‘‘Heretics of the false vacuum: Gravitational effec

on and of vacuum decay. II,’’ hep-th/0211160.
@51# U. Gen and M. Sasaki, Phys. Rev. D61, 103508~2000!.
@52# A.A. Starobinsky, inCurrent Topics in Field Theory, Quantum

Gravity and Strings, edited by H.J. de Vega and N. Sanche
Lecture Notes in Physics, Vol. 26~Springer, Heidelberg, 1986!,
p. 107.

@53# A.D. Linde, Particle Physics And Inflationary Cosmolog
~Harwood, Chur, Switzerland, 1990!.

@54# A.D. Linde, Nucl. Phys.B372, 421 ~1992!.
@55# A.D. Linde, D.A. Linde, and A. Mezhlumian, Phys. Rev. D49,

1783 ~1994!.
@56# K. Becker, M. Becker, K. Dasgupta, and P. Green, J. H

Energy Phys.04, 007 ~2003!.
5-10


