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We outline the construction of metastable de Sitter vacua of type IIB string theory. Our starting point is
highly warped [IB compactifications with nontrivial NS and RR three-form fluxes. By incorporating known
corrections to the superpotential from Euclidean D-brane instantons or gaugino condensation, one can make
models with all moduli fixed, yielding a supersymmetric AdS vacuum. Inclusion of a small number of
D3-branes in the resulting warped geometry allows one to uplift the AdS minimum and make it a metastable
de Sitter ground state. The lifetime of our metastable de Sitter vacua is much greater than the cosmological
time scale of 1& yr. We also prove, under certain conditions, that the lifetime of dS space in string theory will
always be shorter than the recurrence time.
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[. INTRODUCTION Here we focus on quantum nonperturbative corrections to the
superpotential which are calculable and show that these can
There has recently been a great deal of interest in findingead to supersymmetry preserving AdS vacua in which the
de Sitter(dS) vacua of supergravity and string theory. This is volume modulus is fixed in a controlled manner.
motivated in part by the desire to construct possible models Having frozen all moduli we then introduce supersymme-

for late-time cosmologysince a small positive cosmological try breaking by adding a fe®3-branes in the compactifica-
constant seems to be required by recent fiffaand in part tjon: this is a compactified version of the situation discussed
by more conceptual worries that arise in the study of dSy, 6] The addition ofD3-branes does not introduce addi-
quantum gravity(as discussed, for instance, [Q])' The tional moduli: their world volume scalars are frozen by a
no-go theorem of3] guarantees that such solutions cannotpotential generated by the background flukék Inclusion

be obtained in string or M theory by using only the lowest . . . :
order terms in the 10D or 11D supergravity action, but oneOf anti-D3 brgngs_ in the absence of other correctl_ons yields a
un-away to infinite volume of the compact spdsace the

expects that corrections to the leading order Lagrangian ify o —
the gs or ' expansion or inclusion of extended sources€Nergy density in th®3-branes generates a tadpole for the

(braneg should improve the situation. Indeed, a careful dis-volume modulus However, we show that in the presence of
cussion of how such additional sourdeshich are present in  the quantum corrections we have described, in a sufficiently
string theory invalidate the no-go theorem for warped back- warped background thB3 tension can be a small enough
grounds and allow one to find highly warped compactifica-correction to lift the formerly AdS vacuum to positive cos-
tions appears irf4]. Additional sources which violate the mological constant, without destabilizing the minimum.
assumptions of the theorem were shown to yield dS vacua in The extent of supersymmetry breaking and also the result-
noncritical string theory in[5]. ing cosmological constant of the dS minimum can be varied
Here, we use our knowledge of quantum corrections andh our construction, within a range, in two ways. One may
extended objects in string theory to argue that there are d@ary the number oD3-branes which are introduced in the
solutions of ordinary critical string theory. Our basic strategyabove manner, and one can also vary the warping in the
is to first freeze all the moduli present in the compactifica-compactification (by tuning the number of flux quanta
tion, while preserving supersymmetry. We then add extra efthrough various cyclgslt is important to note that this cor-
fects that break supersymmetry in a controlled way and lifresponds to a freedom to tunéscreteparameters, so while
the minimum of the potential to a positive value, yielding dSfine tuning is possible, one should not expect to be able to
space. To illustrate the construction we work in the specifidune to arbitrarily high precision. Since there is still a
context of IIB string theory compactified on a Calabi-Yau vacuum at very large radius with approximately zero energy
(CY) manifold in the presence of flux. As described[# (this is the Dine-Seiberg runaway vacu(if), any dS mini-
such constructions allow one to fix the complex structuremum is only a false vacuum; but it is only destabilized by
moduli, but not the Kaler moduli of the compactification. In tunneling effects, and we argue that the lifetimes one can
particular, to leading order im’ and gg, the Lagrangian achieve are extremely long. In addition, we argue that under
possesses a no-scale structure which does not fix the over#iie assumption that the potential between the dS minimum
volume(we shall assume that this is thaly Kahler modulus  and the Dine-Seiberg vacuum at infinity is positiiehich
in the rest of this paper; it is of course possible to constructvill be true in any simple examples, since a single dS maxi-
explicit models which have this propejtyln order to  mum is the only intervening critical pointthe lifetime of the
achieve the first step of fixing all moduli, we therefore needdS minimum isalwaysshorter than the timescale for Poin-
to consider corrections which violate the no-scale structurecarerecurrences discussed [i8].
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While our emphasis in this paper is on dS vacua it isHereT; is the tension of a D3-bran&lp; is the net number
worth remarking that the first step of our construction, whichof (D3—ﬁ) branes one has inserted filling the noncompact
freezes all moduli, is of interest in its own rigtfor another  dimensions, andf;, F5 are the three-form fluxes in the 1B
recent approach to this problem, §&d; other recent ideas theory which arise in the NS and RR sector, respectively. As
about fixing the volume modulus, while leaving other modulishown by Seri26], in the absence of flux, it is always pos-
unfixed, appear in[10] and references therginin fact  sible to deform such aR-theory model to a locus in moduli
moduli stabilization has been an important open question igpace where it can be thought of as an orientifold of a 1B
string theory and related phenomenology. We show that thi€alabi-Yau compactification. For this reason, we will use the
can be achieved by putting together a few different effectsianguage of 11B orientifolds, witiV being the Calabi-Yau
all of which are quite well understood by now. Preservingthreefold which is orientifolded. In this language, the term
supersymmetrySUSY) allows us to carry out this analysis y(X)/24 counts the negative D3-brane charge coming from
with control. Once all moduli are frozen, SUSY breaking the O3 planes and the induced D3 charge on D7-branes,
effects other than the introduction &f3-branes alone can while the terms on the right-hand side count the net D3
also be considered. Some of these, like the D3/D7 inflationeharge from transverse branes and fluxes in the CY manifold.
ary models of{11], or models with both branes and anti- As in [4], we will assume we are working with a model
braneq12], are also of possible cosmological interest. having only one Khler modulus, sch*{(M)=1 [h¥¥(X)

A more complete discussion of the possible cosmological=2, and one modulus is frozen in taking tRetheory limit,
toy models that one can construct using combinations of theshere one shrinks the elliptic fiberSuch models can be
ingredients described in this paper, in the spiri{ B3], will explicitly constructed, by, e.g. using the examples of CY
appear in14]. fourfolds in[27] or by explicitly constructing orientifolds of

We should note that there has been a great deal of inteknown CY threefolds wittht1=1.
esting work on constructing dS solutions in supergravity and In the presence of the nonzero fluxes, one generates a
string theory. dS minima of 4D gauged supergravities whichsuperpotential for the Calabi-Yau moduli, which follows
do not as yet have a known string theory embedding apfrom [28] (see alsd29,30) and is of the form
peared in15,16], while dS compactifications of gauged 6D
supergravity appear ifil7]. The work of[5] constructs dS
vacua in supercritical string theory using many of the same
ingredients which arise here. Finally, the importance of using
fluxes in the cosmological context was stressed[i8], whereG;=F;— 7H3, with 7 the IIB axiodilaton. Combining
where the problem of moduli stabilization was left as a blackthis with the tree-level Klaler potential
box (related ideas appeared|[ih9]). Cosmology of the sim-

W= f Gy/\Q, (2
M

plest flux compactifications, on thHE®/Z, orientifold [20— Ke =30 —i(0—2) 1=l —i(r—7)]—1 _.f aAd
22] (whose gauged supergravity description is worked out in nL=i(p=p)]=In[=i(r=n)]=In} ~i M
[23]), was recently investigated {i24]. (3)
wherep is the single volume modulugp &b/ 2 +ie*'~¢;
Il. FLUX COMPACTIEICATIONS OF IIB STRING our conventions are as [d]), and using the standafd=1
THEORY, INCLUDING CORRECTIONS supergravity formula for the potential, one finds

In this section we briefly describe the required knowledge
of flux compactifications of type IIB string theory. In Sec.
Il A we describe the models ¢#], and in Sec. || B we enu-
merate various quantum corrections which can modify the -
superpotential and Kaer potential used if4]. In Sec. I C, —>eK( > Q”DiWDjW)- (4)
we show that incorporating the generic corrections can yield "

(supersymmetricAdS minima with all moduli stabilized.

V= eK( S g2°D, WD, W— 3|W|2>
a,b

Here,a,b runs over all moduli fields, while,j runs over all
moduli fields excepp; and we see that becaupedoes not
appear in Eq(2), it cancels out of the potential ener@y),
leaving the positive semi-definite potential characteristic of
We start withF theory[25] compactified on an elliptic CY no-scale modelg31].

fourfold X. The F-theory fourfold is a useful way of encod- One should use this potential as follows. Fix an integral
ing the data of a solution of type IIB string theory; the basechoice ofHg,F; in H3(M,Z); then, the potentia(4) fixes
manifold M of the fibration encodes the 1IB geometry, while the moduli at values where the resulti@y is imaginary
the variation of the complex structureof the elliptic fiber  self-dual 1ISD). Supersymmetric solutions, furthermore, re-
describes the profile of the IIB axiodilaton. In such a model,quire G5 to be type(2,1) [more generallyG; would have a

A. Calabi-Yau orientifolds with flux

one has a tadpole condition (0,3 piecd. Thus in supersymmetric solutioh8=0 on the
vacuum, while in the nonsupersymmetric solution4,
M: n 1 J' H.AFE (1) =W,, a constant which is determined by tf®&3) piece of

24 b3 2K§OT3 mooo ¥ G3. In generic solutions, the complex structure moduli of the
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F-theory fourfold (in 1IB language, the complex structure correction to the superpotential which at large volume yields
moduli, the dilaton, and the moduli of D7-branese com- a new term

pletely fixed, leaving only the volume modulgs The scale i

of the masses for the moduli which are fixed is Winst=T(zj)exp(27rip) (8)

o whereT(z) is a complex structure dependent one-loop de-
m~$ (50 terminant, and the leading exponential dependence comes
from the action of a Euclidean D3-brane wrapping a four-
cycle in M. Since thez; and the dilaton are fixed by the
fluxes at a scal€5), we can integrate them out and vig®)
as simply providing a superpotential for the volume modu-
lus.
(2) In general models of this sort, one fin@d special loci
in the complex structure moduli spaceon-Abelian gauge
roups arising from geometric singularities Xy or in type
B language, from stacks of D7-branes wrapping 4-cycles in
M. Assume that the fluxes have fixed one at a point in moduli
space where this phenomenon occ(ggamples appear in
r\[38], for instancé. Consider a stack dfl. coincident branes.
The 4D gauge coupling of theU(N.) Yang-Mills theory on

B ~ such wrapped brangsve ignore the decoupleld (1) factor
ds%oz e?Al) nwdx"dx"+e 2A(y)gmn(y)dymdyn (6) satisfies

whereR is the radius of the manifold (Im scales likeR*).
In this approximationR is unfixed. By tuning flux quanta, it
is possible(at least in some caset fix g at small values,
though not arbitrarily small.

There is one last point we will need to use in Sec. lll. The
fluxes (and any transverse braneserve as sources for a
warp factor. Therefore, such models with branes and flux ar
generically warped compactifications. In fact, as shown i
[4], following the earlier work 0f20,32-335, it is possible to
construct models with exponentially large warping. One ca
write the Einstein frame metric of the compactification as

with y coordinatizing the compact dimensions, amg, the 8m? R*
unwarped metric orM (so in the orientifold limit, it is a —— =27 —=2mImp. (9)
Calabi-Yau metrig. Then it is shown iff4] (by compactify- Yvym s

ing the Klebanov-Strassler solutigB86]) that one can con-

; . Since the complex structure moduli of are completel
struct models parametrized by flux integésK such that P Pletely

fixed, the D7-brane moduliat least in cases where the
4-cycle being wrapped has vanishihg, which are easy to
arrange are also fixed. Therefore, any charged matter fields

A . . . . (which would create a Higgs branch for the D7 gauge theory
with e being of order one at generic points. This means iNave also been given a mass at a high scale; and the low-

particular that With_ reasonably _smaII flux quanta, one Ca%nergy theory is purtl=1 supersymmetriSU(N,) gauge
generate exponentially large ratios of scales in such model eory. This theory undergoes gluino condensation, which

In the following, we will assume thaj; and the complex ; ; ;
L : . results in a nonperturbative superpotential
structure moduli have been fixed at the sc&leby a suitable P Perp

choice of flux, and we concentrate on an effective field W = A3 = Ae2min/N (10)
.. K . gauge N
theory for the volume modulus. This is self-consistent, in ¢

that the final mass fop will be small compared to E(5). whereANC is the dynamical scale of the gauge theory, and

We have one last comment. Light states could also arise fron}] ficientA is d ined by th le bel
modes living in the throat region which experiences Iarget e coetlicientA Is determined by the energy scale below

warping. We assume here that any such excitations aryhich t_he S.QCD the(I).ryhis vaIid.Th%re are sllso d’;hreshold
gapped, as ifi36]. Then typically thep modulus, which has corrections In general; these contri uFe subleading gﬂects.
a Planck scale suppressed mass, will be much lighter thaWe see that this leads to an exponential superpotentia for

these excitations and we can neglect them as well in the logMilar to the one abovebut with a fractional multiple op
energy theory. in the exponent, since the gaugino condensate looks like a

fractional instanton effect ifV).

So effectq1) and(2) have rather similar consequences for
our analysis; we will simply assume that there is an expo-

Here, we write down two known sources of corrections tonential superpotential fgs at large volume. In our compan-
the no-scale models, both parametrize possible corrections ton paper[14] we investigate some interesting possibilities
the superpotential2). Then, in Sec. Il C, we show that in- for cosmology if there are multiple non-Abelian gauge fac-
cluding either correction to the superpotential yields supertors. Using the fourfolds ih27], it is easy to construct ex-
symmetric models with AdS vacua. amplegiwith h(X) =2] which could yield gauge groups of

(1) Witten has argued that in type IIB compactifications of total rank up to~30. The results of39] suggest that much
this type, there can be corrections to the superpotential comarger ranks should be possible.
ing from Euclidean D3-brand87]. This happens when the One important comment is in order before we proceed.
fourfold X used forF-theory compactification admits divi- Besides corrections to the superpotential of the kind dis-
sors of arithmetic genus one, which project to four-cycles incussed above, there are also corrections to tHdefgoten-
the baseM. In the presence of such instantons, there is dial (see, e.g[40] for a calculation of some leading correc-

efmin~ex — (27K)/(3gsM)] ()

B. Corrections to the no-scale models
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V while preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to the

0.5 Kahler potential will still result in a SUSY minimum which
o solves(13).
10p 0 200 250 300 350 400 A few comments are in order before we proceed. A con-
0.5 trolled calculation requires that>1; this ensures that the
supergravity approximation is valid and thé corrections to
-1 the Kahler potential are under control. It also requires that
ao>1 so that the contribution to the superpotential from a
-1.3 single (fractiona) instanton is reliable. Generically, if the
5 fluxes break supersymmetrW,~O(1), andthese condi-
tions will not be met. However, it is reasonable to expect that

by tuning fluxes one can arrange so thE§<1. In these
FIG. 1. Potentia(multiplied by 13°) for the case of exponential jrcumstances we see from Ed.3) thatao>1. Takinga
superpotential witiVy=—10"%, A=1, a=0.1. There is an AdS <1, one can then ensure that-1, as required.
minimum. As an illustrative example we considevy=—10"*, A
=1, a=0.1. This results in a minimum at,,~113.
Another possibility to get a minimum at large volume is
consider a situation where the fluxes preserve SUSY, and
e superpotential involves multiple exponential terms, i.e.
“racetrack potentials” for the stabilization gf [41]. Such a
superpotential could arise from multiple stacks of seven
branes wrapping four cycles which cannot be deformed into
Here we show that the corrections to the superpotentiag@ach other in a SUSY-preserving manfisf]. In this case by
considered above can stabilize the volume modulus, leadingning the ranks of the gauge groups appropriately one can
to a SUSY-preserving AdS minimum. We perform an analy-obtain a parametrically large value ofat the minimum.

tions). In our analysis we will ensure that the volume
modulus is stabilized at values which are parametricallyt
large compared to the string scale. This makes our neglect ?ﬁ
Kahler corrections self-consistent.

C. Supersymmetric AdS vacua

sis of the vacuum structure just keeping the tree-levdil&a Finally it is plausible that in some cases there could be
potential some other moduli that have not yet been fixed in this ap-
o proximation(if, for instance, the fluxes were nongeneric and
K==3In[—i(p—p)] (11 left some of the complex structure moduli of the Calabi-Yau
) manifold unfixed. Since the dilaton is already fixed by
and a superpotential fluxes and the radial modulus is fixed due to nonperturbative

_ i exponential terms in the superpotential, one might find inter-
W=Wo+Ae™. (12 esting and realistic cosmology driven by these other scalar
W, is a tree level contribution which arises from the fluxes.fi€lds from the compactified string theory. Here, however, we

The exponential term arises from either of the two source®ill neglect this possibility, and focus instead on another

above, and the coefficiet can be determined accordingly. Mechanism for uplifting the AdS vacuum to a dS vacuum.

In keeping with the fact that the complex structure moduli

and the dilaton have received a m#S5 we have set them [1l. CONSTRUCTING dS VACUA

equal to their vacuum expectation valu@&Vs) and con- _ . . .
In this section we uplift the supersymmetric AdS vacua of

sider only the low-energy theory of the volume modulus. To . X
avoid the need to worry about additional open-string moduliS€¢- I C to yield dS vacua of string theory. In Sec. 1A we

we assume the tadpole conditith) has been solved by turn- describe the new ingredieri3-branes transverse td. In

ing on only flux, i.e. with no additional D3-branes. Sec. 1lIB, we show that for reasonable choices of param-
At a supersymmetric vacuund ,W=0. We simplify eters, the inclusion ob3-branes yields dS vacua.

things by setting the axion in the modulus to zero, and

letting p=io. In addition we takeA,a andW, to be allreal A. D3-branes in I1SD fluxes

andW, negative. The minimum then lies at . . _—
o Neg In the tadpole conditioril), there is a contribution from

both localized D3-branes and from fluxes. To find AdS vacua
. (13)  with no moduli in the preceding section, we assumed that the
condition was saturated by turning on fluxes in the compact
: _ _K(~pp] ——y 2 o manifold. Now, we assume that in fact we turn tme much

The potential,V=e"(G"D,WD,W~3|W[%), at the mini- flux, so that Eq(1) can only be satisfied by introducing one
D3-brane. In the flux background determining a solution of

B o atA%emRu the sort described in Sec. Il, ti¥8-branes do not have trans-
Vads=(—3€"W?) pgs=— 6o, (14 |ational moduli: they are fixed by the ISD fluxes, which gen-

erate a potential for the world volume scalars. This kind of

We see in Fig. 1 that we have stabilized the volume modulusituation was studied if6].

2
DW=0—W,= —Aea"cr( 1+ za0q

mum is negative and equal to
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Now, the tadpole is cancelled, but there is an extra bit of V
energy density from the “extra” flux an®3-brane. In fact,
as in Eq.(73) of [6], one finds that thd3-brane adds an 1.20
additional energy:

4

agT 1 ,
sv=2—20 —— (15) 0.8

gs (Imp) 0.6}

with ay the warp factor at the location of tH23-brane. As
described in[6], in the presence of ISD fluxes of the sort 0.2}
characterizing the Klebanov-Strassler throat, any anti-D3-
branes are driven to the end of the throat, where the warp 100 150 200 250 300 350 400
faCFor is minimi_zed. It follows from Eq(_7) th".’u the value of FIG. 2. Potentialmultiplied by 13 for the case of the expo-
_ao IS _exponent|_ally small, and hence in smt_able models thEﬁential superpotential and includingt¥ o° correction withD=3
inclusion of aD3-brane adds to the potential an exponen-y 10-2 which uplifts the AdS minimum to a dS minimum.
tially suppressed term. The prefactor of 2 in E§5) arises
because the amb|_ent five-form flux adds a repulsive energiy fine tuningD, it is easy to have the dS minimum very
equal to the tension for ®3-brane, sed42] [above EQ. close to zero. For the mod&l,=—10"% A=1, a=0.1,
(3.9]. Note also that we are considering solutions whichp =3 1079 we find the potentiaimultiplied by 135 (see
meet the ISD condition, even in the presence of the addirjg, 2),
tional flux required to insert thB3-brane. There are correc- Note, if one does not require the minimum to be so close
tions to Eq.(15) but these are quadratic in the number ofto zero,D does not have to be fine tuned so precisely. A dS
D3-branes that are added and are small. minimum is obtained as long & lies within a range, even-
The important point is that due to the warping the additiontually disappearing for large enoug@h If one does fine tune
of the D3-brane breaks supersymmetry by a very smallto get the minimum very close to zero, the resulting poten-
amount. In general terms, we get a term in the potentialials are quite steep around the dS minimum. In this circum-

(9

which goes like stance, the new term basically uplifts the potential without
changing the shape too much around the minimum, s@the
8D field acquires a surprisingly large masslative to the final
= (16)  value of the cosmological constant
(Imp)? It is important to mention that the value of the volume

modulus shifts only slightly in going from the AdS minimum
(the factor of 8 is added for later conveniencehe coeffi-  to the new dS minimum. This means if the volume was large
cient D depends on the number &3-branes and on the in the AdS minimum to begin with, it will continue to be
warp factor at the end of the throat. These parameters can l&rge in the new dS minimum, guaranteeing that our approxi-
altered by discretely changing the total flux, and the fluxesnations are valid.
which enter in Eq(7), respectively. This allows us to vary If one wants to use this potential to describe the present
the coefficienD and the SUSY breaking in the system, while stage of acceleration of the universe, one needs to fine tune
still keeping them small(More properly, since the flux can the value of the potential in dS minimum to bg~102°
only be discretely tuned) can be varied but not with arbi- in units of Planck density. In principle, one could achieve it,
trary precision. We will see that by tuning the choice &  e.g., by fine tunind. However, the tuning we can really do
one can perturb the AdS vacua of Sec. IIC to produce d®y varying the fluxes, etc., in the microscopic string theory is
vacua with a tunable cosmological constant. The vacua willimited, though it may be possible to tune quite well if there
clearly only be metastable, since all of the sources of energgire enough three-cycles M.
we have introduced vanish as .

IV. HOW STABLE IS THE dS VACUUM?

B. Uplifting AdS vacua to dS vacua . L
pitting The radial modulusr=Imp has a kinetic term (3&°)

We now add to the potential a term of the foB¥io®, as  x(g)2 which follows from the Kaler potential(3). For
explained above. For suitable choicesifthe AdS mini-  cosmological purposes it is convenient to switch to the ca-
mum will become a dS minimum, but the rest of the poten-nonjcal variablee=\3/2 Ino=+3/2 In(Imp), which has a

tial does not change too much. There is one new importantinetic termi (J¢)2. In what follows we will use the fiela
feature, however: there is a dS maximum separating the dgng it should not be confused with the dilatgn
minimum from the vanishing potential at infinity. The poten-
tial is
A. General theory
aAe 27 (1 Cao s, D
=542 §aaAe +Wp+Ae + pct

The dS vacuum state, corresponding to the local mini-
mum of the potential with/;>0 is metastable. Therefore it
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may decay, and then the universe will roll towards large valthe metastable minimump, and do not end exactly in the
ues of the fieldp and decompactify. Here we would like to absolute minimum of the effective potential. We will discuss
address two important questions. this issue later.

(1) Do our dS vacua survive for a large number of Planck According to[44], the tunneling probability is given by
times? For instance, if we fine tune to get a small cosmologi-
cal constant, is the dS vacuum sufficiently stable to survive P(p)=e )", (19

during the 168° years of the cosmological evolution? If the . . . . .
g y g é(vhereS(cp) is the Euclidean action for the tunneling trajec-

answer is positive, one can use the dS minimum for th - : . ;
phenomenological description of the current stage of accelPY (#(7), b(7)), and Sy=S(#) is the Euclidean action

eration (late-time inflation of the universe. for the initial configurationqo:fgo. Note th_atS(<p) in EqQ.

(2) Is the typical decay time of the dS vacuum longer Or(19) fo'r the tunnelmg probability is the' integral over the
shorter than the recurrence time~e® where S, Whol_e_lnstanton soIL_ltlon rath_er than the integral over its half
= 2472V, is the dS entropf43]? If the decay time is longer Providing the tunneling amplitude.
thant,~e%, one may need to address the issues about the "€ tunneling action is given by
consistency of the stringy description of dS space raised in

1 1
[2,5,8. S(go)=j d4x\/§<—§R+ E((?qo)z-i-V((p)). (20)
We will argue that the lifetime of the dS vacuum in our

models is not too short and not too long: it is extremely IargeIn d=4 the trace of the Einstein equation R=(J¢)?

whi:lt? nﬁilf/élmlii(glgnerpatr::;zla:’hgnecgsgoﬁgs;galm%ﬁengz:z _+4V(go). There.fore the total action can be represented by an
~10'%years), and it is much shorter than the recurrencemtegral ofV(e):
time t,~e%. .
In order to analyze this issue we will remember, following S(¢)=— f d*x\gV(e)=— 2772J drb3(7)V(e(1)).
Coleman and De Luccig4], basic features of the tunneling 0
theory taking into account gravitational effects. (21
To describe tunneling from a local minimum at= ¢,
one should consider a@(4)-invariant Euclidean spacetime

with the metric

The Euclidean action calculated for the false vacuum dS
solution ¢= ¢ is given by

o 5 2 2472
ds?=d7?+b?(7)(dy?+sirfydQ3). (17 So=— v <0. (22
0

The scalar fieldp and the Euclidean scale factéthree-  Similarly, for the dS maximume=¢; one hasS;=

sphere radiusb(7) obey the equations of motion — 24| V;.
This action for dS spac&, has a simple sign-reversal

relation to the entropy of de Sitter spaBg

b’ b
¢'+35¢ =V, b'=—2(e"2HV), (19 242
So=—S=+ : (23
Vo
where primes denote derivatives with respecttdWe use Therefore the decay time of the metastable dS vacuum

the system of unitd/,=1.) tiecar~ P~ 1(¢) can be represented in the following way:
These equations have several instanton solutions®® () P g way:

(¢(7), b(7)). The simplest of them is th®(5) invariant
four-spheres one obtains when the figlcits at one of the
extrema of its potential, anth(7)=H !sinH7. Here H>  The semiclassical approximation is applicable only for
=VI/3, andV(¢) corresponds to one of the extrema. In our|S(¢)|>1. Equation (21) implies that for the tunneling
case, there are two trivial solutions of this type. One of thenthrough the barrier with/(¢)>0 (which is the case for the
describes time-independent field corresponding to the minitunneling from dS space to Minkowski space in our mpdel
mum of the effective potential at= ¢y, with Vo=V(¢o). the actionS(¢) is always negativeS(¢)<<0. This means
Another one is related to the maximum of the potential atthatthe decay time of dS space to Minkowski space is expo-
o=@, With V,;=V(¢,). nentially smaller than the recurrence timg The existence
Coleman—De LuccidCDL) instantons are more compli- of the runaway vacuum at in field space with zero energy
cated. They describe the fieds( ) beginning in a vicinity of  is a standard feature of all string theor{gd. We conclude
the false vacuumpy at 7=0, and reaching some constant that the problems related to the decay time exceeding the
value ¢;>¢q at 7=7;, whereb(7;)=0. It is tempting to  recurrence timet, [2,5,8 will not appear in the simplest
interpret CDL instantons as the tunneling trajectories interstring theory models, where a single dS maximum will sepa-
polating between the different vacua of the theory. Howeverrate the dS minimum frore.
one should be careful with this interpretation because the Now that we found the upper bound on the tunneling
trajectoriesp(7) for CDL instantons do not begin exactly in time, we will try to estimate the tunneling time in our model

tdecay: e3¢+ So= 1:res(go) . (24
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using some particular instanton solutions. In general, it is 242

very difficult to find analytical solutions for the CDL instan- PQGXF[—S(%)FGXP( v ) ~exp(—10'%9).
tons and calculate the tunneling probability. We will investi- 0 (29)
gate this problem using two different approaches which are,

in a certain sense, opposite to each other: the thin-wall aprhys, for all practical purposes our dS vacuum is completely

proximation and the no-wall approximation. stable.
On the other hand, if one expands EB5) in powers of
B. Thin-wall approximation Vo /T2, one finds

Let us assume that one can describe the present stage of 6472
the acceleration of the universe by our model, so gt Pwexp[—5(¢o)]xexr(—2). (30
~10"*2%n Planck unitsmore generally, the analysis of this T
section will work forV, very small compared to the starting . . )
AdS cosmological constant, which can be arranged by tuntO" the sub-Planckian tensidn<1 one finds that the prob-

: o : bility of the tunneling is exponentially larger thaR
ing). This is a hundred orders of magnitude smaller than th@N .
height of the barriel; in our model. In Minkowski space, ~exf[—S(go)]. The decay time of dS space due to CDL

the conditionV,<V; usually means that the thin-wall ap- mstantonstgfcgyls much smaller than the recurrence titpe
proximation is applicable. Let us check whether one can usé €XH ~S(¢o)], in agreement with our general result:
it in our case. 6472

In application to our scenari¢unneling from dS space £SO Ntrexp( — _727>
with vacuum energW,>0 to Minkowski spacg one can ey T

represent the results §44] in the following useful form:

(31)

In the thin-wall approximatiorifor V,<T?) the radius of

p( S(¢o) ) the bubble ifRRg=4/T [44], whereas the thickness of the wall

P=ex : (25  is approximatelyARg=T/V;. This means that the thin-wall
approximation taking gravity into account is valid &Rg

<Rg, i.e. T?<V,.

[1+(4V/3T) ]2

HereT is not temperature but tension of the bubble wall; in

our case o . .
C. “No-wall” approximation: Hawking-Moss instanton and

w stochastic approach to tunneling
= Lod(” V2V(g). (26 Now we will return to the simplest instanton solutions,
sitting at the dS minimump= ¢, and the dS maximuny

Equation(25) confirms our general conclusion that the sup-= ¢;. According to Hawking and MosdiM) [45], they de-
pression of the tunneling is always smaller tlan®¢0), and  scribe tunneling through the barrier, with the probability of

the decay time is shorter thap. tunneling suppressed as

There are two limiting cases of special interegg>T? 2 2
andV,<T2. The meaning of these two conditions becomes P:es(*”l”s(‘*’o):ex% 24w " 24m 32)
clear if we restoreM,, in these inequalitiesvoM;>T? and Vo Vi

VOM§<T2. If we turn off the gravitational interactions
(Mp—), one hasVoM2>T2, and we obtain the well

known result for the tunneling in the thin-wall approximation
in Minkowski space:

This result may seem rather controversial because the instan-
ton solution ¢(7)=¢; does not interpolate between the
stable vacuum and the false vacuum.
In fact, as we already mentioned, the last problem appears
27724 for all CDL solutions as well. These solutions never begin
P= ex;{ - —3) . (270 exactly in the false vacuum, so how could they be considered
2V interpolating solutions? This problem disappears in the thin-
. . wall limit, but it shows up very clearly in numerical calcu-
From Eq.(26) one finds thaff~A¢\V;, whereAg is the  |tions going beyond the thin wall approximation.

typical width of the dS maximum. This means thag>T? There are several different ways in which one can address
(in units Mpy=1), and one can ignore the gravitational ef- thjs jssue. If46] it was noticed that instead of considering
fects in the thin-wall approximation only if an exactly constant solutiop= ¢, one may consider a con-
figuration that coincides with this solution everywhere ex-
Ag< \/E 29) cept a small vicinity of the end point at;==H 1. The
Vi action involves integratiorfdrb3(r)L(gW,<p). Since the

scale factorb(7)=H !sinHr vanishes atr;=m7H !, one
One can easily check that for our model this condition iscan make very strong modifications of the solutips ¢ in
not satisfied, so we must take gravitational effects into aca small vicinity of r; without changing the action in a sig-
count and study an opposite limit,<T2. Then in the first nificant way. If the action changes by less thagl), then
approximation one simply has each such configuration can be used for the description of
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tunneling despite the fact that it is not a true solution ofexpression(32). However, this is not a homogeneous tunnel-
classical equations of motion neay. This allows one to ing all over the universe, but rather a Brownian motion,
bend the solutiop= ¢, (or the CDL solutionin such away  which looks homogeneous on the schle?! [53].

that it begins to interpolate between the different vacua. One can take a logarithm of the probability distribution

One may also patch HM instantons and CDL instantons t@33) and find that the entropy of the state with the field
each other in several different ways, which may provide theiistochastically moving in the potenti®l(¢) is given by
alternative interpretation and justify the results obtained by )
using CDL and HM instantons, see e[¢7—49. More re- So)= 24" 34)
cently a possible interpretation of CDL and HM instantons = V(p)'
was suggested ifb0]. Significant progress was achieved by
Gen and Sasaki in the development of a consistent HamilThis is the simplest derivation of dS entropy that does not
tonian approach to tunneling with gravifgi]. involve ambiguous Euclidean calculations. It is valid even

But these methods do not address another problem witfpr the states outside the dS minimum, as long as the condi-
the Hawking-Moss tunneling: Since the instanips ¢, is  tion |[m?[<H? (i.e.|V”|<V) remains valid.
exactly homogeneous, it seems to describe a homogeneous This result allows one to obtain a simple interpretation of
tunneling in the whole universe, which is impossible. Onethe HM tunneling, proposed i#7]. Indeed, Eq(32) has the
can circumvent this problem by claiming that the whole uni-standard thermodynamic form describing the probability of
verse is reduced to the interior of a single causal patch of sizéermal fluctuations
H~1. However, this approach, which is often used for the
description of eternal dS spa¢ehich does not decaymay
be less useful in applications to inflationary cosmology sinceA
it loses information about the whole universe except for an
small part of sizeH 1.

The most intuitively transparent description of the
(nearly) homogeneous tunneling was provided i2—-55 in
the context of the stochastic approach to inflation.

One may consider quantum fluctuations of a light scalar tg'ggay: e‘51+50=trexr< -
field ¢ with m?>=V"<H2=V/3. During each time interval

St=H"1 this scalar_flield exp_eriences quantum _jumps Withon the other hand, in our caSe<S,, so in the first approxi-
the wavelength~H™* and with a typical amplitudede mation one finds, as before, tf'fé‘ﬁﬂay%tremm.

=Hiza. Then the wavelength of these fluct'uations groWs  Note that the quasi-homogeneous HM tunneling and the

exponentially. As a result., quantum flgctuatlops lead to %pL tunneling correspond to two different processes; de-

L?grilocztﬁ\lre]gﬁsogrfhtiea?oe:gggesg;éhle Efcl;dm\'\tlﬂ::h Ol?nc;ksf pending on the potential, one of these processes may happen
9 ' P much faster than another. Let us compare the rate of the

view of a local observer, this process looks like a Brownian . : ; .
. : . uasi-homogeneous HM tunneling with the rate of tunneling
motion of the homogeneous scalar field. If the potential has ! . . o
ue to CDL instantons in the thin wall approximation fbr

dS minimum atpy with m<<H, then eventually the probabil-

P = eAS= gS(¢1)~Sl¢o) (35)

similar thermodynamic approach was recently developed
a series of papers by Susskiatal. [8].

Since the entropy(¢,) =247%/V, is positive, one finds
another confirmation of our general result:

2 2
)<tr . (36
1

ity distribution to find the field with the value@ becomes <L
time independenit52-55 HM
tdecay_ 8772 8 . 3 3
24/77_2 24/772 CDL =ex ™ ﬁ V_ ) ( 7)
P(@,@q)~ex —) exy{ - (33 tdecay '
7o V(QD) V( @O) HM CDL

This shows that gecay<tgecay (HM tunneling dominatesfor

This result was obtained without any considerations base@T?>8V;. Meanwhile, in the opposite caseT3<8V;, the
on the Euclidean approach to quantum gravity. It provides 4unneling occurs due to CDL instantons. This is consistent
simple interpretation of the Hawking-Moss tunneling. Dur- with our estimate of validity of the thin wall approximation,
ing inflation, long wavelength perturbations of the scalarT?<V;.
field freeze on top of each other and form complicated con- It is useful to represent this result in a different way. Let
figurations, which, however, look almost homogeneous orus use the estimaté~ A V,, whereAg is the typical
the horizon scaléd 2. If originally the whole universe was width of dS maximum. This estimate implies thaf®3
in a stateg,, the scalar field starts wandering around, and>8V; and tga<taesy if A¢>1, i.e. if the width of the
eventually it reaches the local maximum of the effective po-maximum is much greater than the Planck mass. For the
tential ate=¢,. According to Eq.(33), the probability of potentials with the nearly Minkowski minima this condition
this event is suppressed by éx{24m72/V,) + (2472IV,)]. coincides with the inflationary slow-roll conditigiv”|<V.
As soon as the fielg reaches the top of the effective poten-  Thus we are coming to the conclusion that the HM tun-
tial, it may fall down to another minimum, because it looks neling, and the thermodynamic approach discussed above,
nearly homogeneous on a scale of horizon, and gradients afre most efficient for the description of the tunneling in the
the field ¢ are not strong enough to pull it back ig. The inflationary universe, where their validity has been firmly
probability of this process is given by the Hawking-Moss established by the stochastic approach to inflation. On the
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other hand, in the situations where the potentials are vertions to this analysis, in thgs anda’ expansions. By tuning
thin, A¢<<1, one should use the CDL instantons, and thethe fluxes we have argued that both of these can be con-
thin-wall approximation is valid. trolled. For example, it is reasonable to believe thatan be
This result has a very simple interpretation. CDL instan-stabilized at a value of ordegys~0.1 and the volumer>1
tons describe tunneling through the barrier. Meanwhile, HM(for the volume this was discussed in Sec. Jl Note that for
instantons in the inflationary regime can be interpreted irreliability we do not require that the dilaton and volume be
terms of the Brownian motion, when the field slowly climbs made arbitrarily small or big; in fact this is not possible since
to the top of the barrier due to accumulation of quantumthe fluxes can only be tuned discretely. We only require that
fluctuations with the Hawking temperaturg27. If the bar-  these moduli take appropriately small or big values, and this
rier is very wide, it is easier to climb the barrier rather that tocan be achieved, especially M has enough three-cycles,
tunnel through it. In this case the HM tunneling prevails andyielding many possible choices of flux background.
the stochastic/thermodynamic description of this process in We were also able to prove, in Sec. IV, that our dS
terms of dS entropy is very useful. If the barrier is very thin, minima are short lived compared to the time scale for Poin-
it is easier to tunnel, and CDL instantons are more efficientcarerecurrences. This generalizes to any construction where
For the simple models with the parameters given in outhe dS minimum is separated from the Dine-Seiberg run-
paper one has B<8V,, and the tunneling occurs mainly away vacuum(which is ubiquitous in string theoyyby a
due to CDL instantons. Even in this case the stochastigbotential which remains non-negative; the simplest con-
thermodynamic approach may remain useful: If this ap-rolled examples in string theory will have this feature. One
proach is valid not only in the context of inflationary cos- can also imagine more complicated shapes of the potential

mology with |V”|<V but also in the situations withv”|  between the dS minimum and infinity, which include some
=V, it provides a simple upper bound on the decay time ofintervening AdS critical points. It is natural to wonder if a
dS spacet gecay< eS¢o) ~Xe1), more general statement can be obtained that would apply in

these cases as well.
Finally, it would be interesting to discover string theory
V. DISCUSSION models which naturally incorporate both greater thane60
It has been a difficult problem to construct realistic cos-foldings of early universe inflation and a late-time cosmol-
mologies from string theory as long as the moduli fields are?9 In agreement with the most recent dgta (To show
not frozen. In this paper we have seen that it is possible t&1at it is possible to obtain a small enough value of the dS
stabilize all moduli in a controlled manner in the generalc0Smological constant for late-time cosmology, one would
setting of compactifications with flux. This opens up a prom-Nave to demonstrate that an idea along the lineis.8f can
ising arena for the construction of string cosmologies. be implemented in this contextSome further steps towards
More specifically, we have seen that it should be possibl&"@king more realistic cosmological toy-models inspired by
to construct metastable dS vacua in the general framework String theory, in the same general framework as this paper,
[4], by including anti-braneg6] and incorporating non- Wil be presented iri14].
perturbative corrections to the superpotential from D3 instan-
tqns[37] or Iow-gnergy gauge Qynamics. For cosmolqu, it ACKNOWLEDGMENTS
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