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We address dynamical supersymmetry breaking withitNanl supersymmetric standardlike model based
on aZ,XZ, type llA orientifold with intersecting D6-branes. The model possesses an additional, confining
gauge sector with thelSp(2), X USp(2)gX USp(4) gauge group, where the gaugino condensation mecha-
nism allows for the breaking of supersymmetry and stabilizes moduli. We derive the leading contribution to the
nonperturbative effective superpotential and determine numerically the minima of the supergravity potential.
These minima break supersymmetry and fix two undetermined moduli, which in turn completely specify the
gauge couplings at the string scale. For this specific construction the minima have a negative cosmological
constant. We expect that for other supersymmetric standardlike models with intersecting D6-branes, which also
possess confining gauge sectors, the supersymmetry breaking mechanism would have qualitatively similar
features.
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[. INTRODUCTION three-family standard model. An example of a supersymmet-
ric SU(5) GUT model with four families of quarks and lep-

The second string revolution and the advent of D-branesons(i.e., a net number of fout0-plets and fous-plets was
opened the door for the construction of open string solutionsalso presented if25]. The original construction is based on
which correspond to the strongly coupled heterotic stringgn Z;X Z, orientifold with D6-branes wrapping specific su-
sector. The techniques of conformal field theory in describPersymmetric three-cycles of the six-torug°ET>X T?
ing D-branes and orientifold planes on orbifolds allow for XT?). .
the construction of consistent four-dimensiohs# 1 super- Recently, a new example of the supersymmetric three-

symmetric models based on type Il orientifolds. Particularfarnily left-right symmetric model based on afl/Z, orien-

. tifold was constructed27]. Further developmenti28] in-
podels_,tr:egrssentecli n lt?((éjfﬂ-t—ﬂl]),.falrg b_asetlj qtr] const(;ucr—]_ volve the construction of a larger class of supersymmetric
'°|”f5 With D-branes °Car? a o|[1 ! °| singu far;]'es’ ";” CNlthree-family standardlike models, basedTd(Z,% Z,) ori-
ral fermions appear on the world volumes of the D-branes. ¢ ito1ds, by exploring the wrapping of D6-branes along

An alternative construction with chiral fermions that has

: S more general supersymmetric three-cydlasd implement-
been explored only recently is that of type Il orientifold ing Ramond-RamondRR) tadpole cancellation conditiohs

. ; . 'A systematic exploration of a general class of supersymmet-
the open string spectrum, localized at the intersectjaB ric three-family SU(5) GUT models arising fromré/(z,

The model building with intersecting branes was developed, Z,) orientifolds with D6-branes wrapping general super-
[14_1.8 (and subsequently explored [19-23), where con- symmetric three-cycles was most recently presentd@%h
structions ofnonsupersymmetribrane world models were These quasirealistic constructions provide a testing

Myround to further address the phenomenology of such

metric three-family standardlike models as well as grand UNizonstructiongd A preliminary phenomenological study of the

figd theory(GUT) models were obtairjed. However, the sta- g three-family standardlike modg24,25 was explored in
bility of nonsupersymmetric models is not well understood,£35 36,

especially when the string scale is close to the Planck scal
since nonsupersymmetric models are subject to large quan-—
tum corrections. Typically, the models are unstable when ;
D-branes are intersecting at angles, since supersymmetry &%

generically broken. . discussed if26], the D-brane picture provides a description of how
On the other hand, examples &f=1 supersymmetric cniral fermions arise from singularities &b, compactifications

orientifold models with branes at angles were constructed ifigg_32 24,25 Recently, there has been an exploration of phenom-
[24-24, resulting in quasirealistic models containing the enological featurege.g., the problem of doublet-triplet splitting,
threshold corrections, and proton dec@j GUT models derived
from G, compactificationg33,34]. It would be interesting to ex-
*On sabbatic leave from the University of Pennsylvania. plore related features in this class of orientifold models.

These model§24—-29 correspond in the strong coupling limit to
mpactifications of M theory on certain singuds manifolds. As
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In [35] a detailed study of the gauge couplings and theirto the leading instanton contribution, as a function of moduli
renormalization groudRG) flow was made. At the string and then focus on the concrete example. We further mini-
scale these couplings depend on an additional modulus pasize the supergravity potential numerically and analyze the
rametery=R}/R], WhereRily2 are the respective radii of the features of the minima, including implications for the values
ith two-torus. The standard-model gauge sector does not pref gauge couplings and gaugino masses. Conclusions are
dict realistic low-energy values of gauge couplingsima-  given in Sec. IV, where we contrast our results with those for
rily due to the additional Higgs and exotic fields in the mass-the perturbative heterotic string constructions.
less spectrum On the other hand, the additional non-

Abelian gauge sector with the gauge growpSp(2)a

XUSp(2)gXSp(4) has negative values of th functions Il. MODEL
and thus allows for a confining phase in the infrared regime. _
Gaugino condensation can in turn take place and trigger dy- A. Essential features of the model

namical supersymmetry breaking there. Charge confinement |n this section we shall provide the key features of the
also implies the interesting feature that the left-handed mentonstruction. We refer the reader to the original papers
bers of an exoti¢ SU(2)-singlef family can become com- [24,25 for more detailed discussions.
posite while their right-handed partners are elementary. ~ For concreteness, we consider an orientifold of type 1A
The main purpose of this paper is to address dynamican T®/(z,x Z,). The orbifold actions have generatdts
supersymmetry breaking in the supersymmetric standard-likgcting as6:(z;,z,,23) —(— 21, 2,,23) and w:(z;,2,,25)
model with intersecting D6-brang¢g4,25. The approach is —(24,-2,,—25) on the complex coordinates, of T®
_ . L b {l 1
based on the study 8 =1 super Yang-MillSSYM) theory  hich is assumed to be factorizable. The orientifold action is
with a confining phase in the infrared regime. There thenn \here O is world-sheet parity, andR acts by
gaugino condensation generates a non-perturbative effecti\fs_ (’z 2 7 )_}(? 7 ?) The model c;ontains four kinds
superpotential37]. A subsequent minimization of the super- Of' Oé, zlénges asls’oi:’iaie.d with the actions @R ORY
gravity potential in turn determines the ground state, WhichQR SRH ' The cancellation of the RR cros',s cap ,tad
w, w. - _

in certain cases breaks supersymmetifpr recent exciting X . i
developments involving the exact nonperturbative superpoDOIeS requires the introduction &f stacks ofN, D6-branes

tential, which includes all higher order instanton corrections (=1 - - - K) wrapp(ied on three-cycleftaken to be the
for large classeBl=1 super Yang-Mills theories, s§gg,3q  Product of 1-cyclesif,,m;) in theith two-torug and their
and references therejn. images undef)R wrapped on cyclesr(,,—m).

We shall show that the additional gauge sectors of the The cancellation of untwisted tadpoles imposes con-
supersymmetric standardlike model allow for dynamical sustraints on the number of D6-branes and the types of three-
persymmetry breaking via gaugino condensation. For th@ycles that they wrap around. The cancellation of twisted
specific example we calculated the explicit dependence dadpoles determines the orbifold actions on the Chan-Paton
the nonperturbative superpotential on the moduli fidddi-  indices of the branegvhich are explicitly given ir{24,25)).
lator) andU (complex structure modulusf one of the three The condition that the system of branes presektel
internal two-tori; the other two are fixed due to the super-Supersymmetry requir¢43] that each stack of D6-branes be
symmetry constraint of the string construction. The minimi-related to the O6 planes by a rotationSi(3): denoting by
zation of the explicit supergravity potential in turn produces?; the angles the D6-brane forms with the horizontal direc-
isolated, supersymmetry breaking minima, with both modulition in theith two-torus, supersymmetry preserving configu-
SandU fixed. These moduli completely determine the valuesgations must satisfy); + 6,+ 6;3=0. This in turn imposes a
of the gauge couplings in the theory at the string scale. Unconstraint on the wrapping numbers and the complex struc-
fortunately, the specific example has the property that théure moduliy;=R5/R; .
value of the potential at the minimum is negative and of the The rules to compute the spectrum are analogous to those
order of the string scale. in [16]. We summarize the resulting chiral spectrum in Table

While we address a specific model, we expect that the, found in[24,25, where
gualitative features would be generic in other models, with 11 11, 2.2 292 3.3 33
intersecting branes and confining gauge sectors, such as con- ab= (NaMy—Mzn;,) (NzMp—Mzng) (NMy—mzng). (1)
structed in28]. All of these examples typically have a num-
ber of non-Abelian confining gauge group factors, typically
associated withJSp groups. The nonperturbative superpo- The D6-brane configuration for the first example leading
tential, which is a sum of exponential factors that typicallyto a three-family standardlike model is provided in Table Il
depend on the dilato® and complex structure moduli; and satisfies the tadpole cancellation conditions. The con-
will allow for minima in which such moduli are stabilized. figuration is supersymmetric for

The paper is organized as follows. We summarize in Sec.

[l the results for the gauge group couplings and the explicit

dependence of the gauge coupling on mo&dindU; , first X1:X2:x3=1:3:2. (2
in a general case of models with intersecting branes and then

for the specific model considered. In Sec. Ill we determine

the explicit form of the nonperturbative superpotential, dueThe weak hypercharge is given by
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TABLE I. General spectrum on D6-branes at generic angles 1 3
(namely, not parallel to any O6 plane in all three Xofihe spectrum Va=-(2m)3]] \/niZ( Ri1)2+ fniz(Riz)Z, (5)
is valid for tilted tori. The models may contain additional non-chiral 4 i=1
pieces in theaa’' sector and imb, ab’ sectors with zero intersec-
tion, if the relevant branes overlap.

where Rilj2 are the radii of the two dimensions of thth

Sector Representation two-torus,m'=m' for i=1,2, m3=m3=m?3-%n?3 (the third
aa U(N,/2) vector multiplet T2 is tilted), and the wrapping numbers'(m') are given in
3 adj. chiral multiplets Table 1. One can tradg, in Eq. (4) for the four-dimensional
~biba " hial mulioets i NN T Planck scaleM 59 which is defined as the coefficient of the
ab Chiral multiplets in No/2Ny/2) rep. Einstein term in the low energy effective action:
ab’+b’'a l.pe chiral multiplets in (N./2,Ny/2) rep.
aa’'+a’a 1 4 1
Z(Iaa’g(la,OG) S4d=(|\/|(p4d))zf dX4\/§R+ cee = 167TGNJ dX4\/§R+ SN
chiral multiplets in sym. rep. o) (N,/2) (6)

4
2 Iae\"*‘%la,OG

chiral multiplets in antisym. rep. df (N,/2)

Since Gy Y?=1.22x10"° GeV, we haveM{?=(1/4/x)
X Gy 2=1.7x 10" GeV. The Planck scale is related to the
string couplinggs and string scalé ¢ by

Y=(B—L)/2+(Qg+ Qg/)/2, (3
whereB—L=Q3/3—Q; andQs is the charge corresponding M (42— M§V6 7
to theU(1) in U(3)c. (Mp™) " 2m g @)
. . . . - S
The resulting spectrum is given in the original paper
[24,25 and the subsequent papégs,36.
whereVy is the total internal volume given by
B. Gauge couplings
We shall summarize the results of the gauge coupling cal-
culations for the model. Since the gauge couplings are asso- (2m)8 8 -
ciated with different stacks of branes, they do not exhibit a V6:T£[1 RiR>. (8

conventional gauge unification. Nevertheless, the value of
each gauge coupling at the string scale is predicted in terms
of a modulusy and the ratio of the Planck to string scales. ) ) o 6
The running is strongly affected by the exotic matter and"9ain, the factor ofz is due to the orbifolding off® by Z,
multiple Higgs fields, leading to low values of the MSSM X Z2- This factor was included i35]. Employing Eq.(7)
sector couplings at low energy. However, the hidden sectofllows us to write the gauge couplings in terms M,
groups are asymptotically free. ME?D, V5 andVe:

The gauge coupling of the gauge field from a stack of
D6-branes wrapping a three-cycle is given by

V
2 6
=+27M Vs, 9
1 M§V3 Oym s \/_(_deP4 3 9
e @
gym (2m)°gs
which in terms of the complex structure modyli=R,/R}

hereM.=1/\/a’ is the stri legs is the stri -
where M =1/\/a' is the string scaleg, is the string cou becomes

pling andV; is the volume of the three-cycle wrapped by a
particular D6-brane. For our specific cadégis given by

\/EMS VX1X2X3

2The definition ofV in Eq. (5) differs from one i 35] by a factor Oym= (4d) 3 . (10)
of %. This factor has to be included, due to the orbifoldingrbfby Mp H Vni2+ mi2y2
Z,XZ,, which is an Abelian group of order 4. This implies that the i Xi
expressions in35] for g\z,,\,I andag should be increased by a factor
of 4. The numerical results ifi35], which were given forMg
~ME | are still approximately valid for the casé,~M&9/4. The supersymmetric conditioi@) implies

I
[
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TABLE Il. D6-brane configuration for the three-family model.

Type Gauge group Na (n},m)x (n2,md)x (n2,md)
Ay USH(8)—U(1)gxU(1)s 8 (0,1)X (0,—1)X (2.0)
Az UsSp(2)a 2 (1,0)X (1,0)%X (2,0)
B, u(2), 4 (1,00x (1,—1)X (1,312
B2 USp(2)s 2 (1,0)X(0,1)%x (0,—1)
Cy U(4)—U(3)cxU(1), 6+2 (1,—1)X(1,0)X (1,172
C, USp(4) 4 (0,1)x (1,0)x (0,—1)
, 4@'\/'5 Rk
M= "0 — ) (1)
Mp \/[(n1)2+(ml)z)(z][(nz)2+9(m2)2)(2][(n3)2+4(m3)2X2]
|
where y=x;. 1 Mg
At a scaleM below the string scale, the coupling, t=5-Inyr (14)

=g2/4m of theath gauge factor is givefat one loop by

1 _ Ca()()
aa(M)  agly) et

3 M
CYG(X) = \/;Mglsd) X3/2

12

where

(13

and

TABLE llI. Coefficientsc, of 1/ag and B functions, for the
USp(2)g andUSp(2), associated with th&, and A, brane con-
figuration, respectively, and Sp(4) group associated with the,
brane configuration. The beta function ef2 (—5) for USp(4)
includes(does not includethe contributions of three chiral 5-plets
that are not localized at intersectioffff. turns out thatg=—2 for

USp4) corresponds to the case where in addition to the chiral mat

ter there are three massless vector pairs, i.e., three padrarmd 4.

In turn, B=—5 corresponds to the case with chiral matter and no.
additional massless vector pairs. In the subsequent section we fou
that B=—2 corresponds to the optimal example that stabilizes,

moduli and breaks supersymmetry at a scé&l®lgyi,g, While the
case withB=—5 has an instability for R&{) -0 with V— — o,
We also checked the case wid+ —3 (four massless vector pajrs
where there are stable minima for: B¢&0.76, ReU)=0.20,
IM(S)=0.48+3M, Im(U)=5.70+ 36N, with V=—-5.02L?
(negative cosmological constant of ordkélrstrmg“) as well as the
case with S/=—1 that has only a run-away solution: F8(
Re(U)—» asV—0.]

Groupa Ca Ba(int)
usp(2)s 6x° —4
Usp(2)a 2 -6
UsSp(4) 2x°? —2(-5)

The low energy predictions for the model are giver]35).
[There, after correcting for the factor 1/4 in Ep), Mg
~ME9/4 was assumed, and the low energy result depends
on one modulus parametgr] Since we focus on the addi-
tional confining gauge sector, we state the values,oénd

B2 for these gauge couplings in Table Ill. [B85] the renor-
malization group equations were studied without the inclu-
sion of the chiral supermultiplets associated with the open
string sector of the brane. There are three copies of such
states in the adjoint representation; they are due to the fact
that the supersymmetric cycles wrapped by D6-branes are
not rigid. In the standard-model sector they affect in a nega-
tive way the low energy predictions for the standard model
gauge couplings. However, in the quasihidden sector the
only such states are associated with tH&p(4) gauge
group, where they change the beta function there frobnto

—2. For the sake of completeness we include them in the
study of gaugino condensation.

In the following subsection we shall derive the explicit
mplex moduli dependence of the gauge couplings, which
e suitable for the determination of the effective nonpertur-
bative superpotential.

C. Gauge kinetic function and Kahler potential in terms
of complex structure moduli

To determine the moduli dependence of the gauge cou-
plings in type IIA theory with D6-branes in terms of complex
structure moduli, we shall employ the fact that type IIA
theory with D6-branes i§ dual to type | theory with D9-
branes and backgrounB fluxes. Hence, to arrive at the
proper definition of the moduli fields we shall start by writ-
ing down the moduli fields in the type | theory with D9-
branes, which are well knowfsee for examplg40]). We
then apply the duality transformations to arrive at the moduli
fields for D6-branes.
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In the type | string with D9-branes, the real part of the

dilaton S has the familiar expression

MSITE | RIR)

Re(S)=——5 - (15)
The real part of the Kialer moduliT' is defined as
M2RR!
i s M2
Re(T) = — - (16

Again, R} , are the radii of the of théth torus,Ms=1/a" is
the string scaled’ is the string tensionandgs is the string
coupling.

The T-duality transformations between D9-branes with

PHYSICAL REVIEW D68, 046002 (2003

1 nn R ~ nn
f= Z[n1n2n38— n*m?miutl—min’miuU?—m'm?n3u3].

(23

It is indeed a holomorphi¢and lineay function of the fields,
as required by supersymmetry.

For the specific case of the additioriguasihiddehgauge
sector,

fluxes and D6-branes wrapped on three-cycles are the fol-

lowing (see, e.g.[40]):

R, ——, 1
=R, (18)
9 % (19)

— T S .
T MR,

Under these transformations, the real part of the dileBon

and the complex structure moduli’ take the following
form:

M3IT2_.R!
Re(S)= SZW;Q“, (20)
S
~ M3RIRLRY
ReU)= %g“ (21)
S

wherei # j #Kk.
The expression fog%M, Eq. (4), is determined in terms

of V3, Eq.(5). The supersymmetry constraint for the particu-

lar model requires the conditiof®) on the y;=RL/R} . It

1 1
fUSp(A):ZUZZ:L_ZUy (24)

1 1
fUSp(Z)B:ZU =Y (29
fusp2),= ES’ (26)

where the second equality in the above equations follows

from Eq. (2), which implies

1
uluzud=1:-:

. @7)

N| -

andUu=U"?.
For the sake of completeness we also quote the gauge
kinetic functions for the standard model sector:

1
flu@e. =7

S luz—ls lU 28
t3U%=g|StgY) (28

turns out[40] that these relations ensure that the volume of

the three-cyclé/; in Eq. (5) can be written
1 non
V3=Z(277)3(n1n2n3R(11)R(12)R(13)— n‘m?m*R{PRIZIRE)
—m'n?m*RPRPIRE) — mim?niRVRPIRE)), (22

where for the specific modein'=m' (i=1,2), m*=m?

=m3—1n3. [It can be verified explicitly for each set of

(n',m’) in the model that Eqs(5) and (22) are indeed
equivalent]

As a result of supersymmetrg;,\z,lERe(f), where the
gauge kinetic functiorf is a holomorphic function of the

1/ 3 ) 1/ 3
fu(z)L—Z S+§U =1 S+§U , (29)
1.1
fluwg.uwe1 =3 Y7 =7Y. (30
From Egs.(28), (30), and(3), one finds
(5[5, "
Y=721°" 30 (31)

for weak hypercharge.
The Kahler potential for the fields is the so-called no-
scale potential. It takes the following canonical form:

3
K= —Iog(S+§)—IZl log(U'+U")

= —10og(S+S)—3 log(U+U)+log(6). (32)

moduli SandU'. Given the above definition of the real part In Eq.(32) and elsewhere we have set the Planck sbH}&

of the dilatonSand theU' moduli and the form o 3, Eq.
(4), with the V; derived in Eq.(22) one obtains

to unity; i.e., all dimensional quantities are scaled by appro-
priate powers oM {9 |
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A. Scalar potential and its ground states

Given the Kaler potential and the effective superpoten-

In local Supersymmetric theory the gaugino Condensaté&' of the moduli fieldsU and S, one can derive the scalar

(N*\,) is contained in the definition of a chiral superfield:

U=WW,, (33
whereW, is the vector superfield whose fermionic compo-
nent isA“. The confinement scale of the strongly coupled
theory is defined as the scale at which the effective gaug

coupling becomes strong and perturbation theory breaks

down. Consequently, the gaugino condensit®®\ )|
«u3. This can be generated by an exact effective superp
tential for the chiral field/ [37],

u
5| B IogF+const ,

(39

1
W(U®) = ZUtw(®) = —
ar

where® is the modulus field in the theory which determines
the strength of the gauge coupling constants through th
gauge kinetic function$y,; B is the g-function coefficient
of the strongly coupled group, amtl is the cutoff scale of
the theory.

The effective potential generates a vacuum expectatio
value (VEV) for U,

X const. (35

3 8m?
U=A~ex 7]‘\/\/(@)

Integrating out the field/, an effective potential of the
moduli fields can be generated,

Wei(P) B A ;{8W2f (<I>)) dA3exd bfy(®)]
=———expg — = ex ,

(36)

where we have defined the constadts 8/32e7? and b

=8%IB.
The three group®/Sp(4), USp(2),, andUSp(2)g that

become strongly coupled have the beta function coefficients

B1=—2, B,=—4, andB3;= — 6, respectively. With the pre-

viously defined gauge kinetic functions, the effective poten-

tial for the moduli fieldsU andSis

W(U.S) = ds A%exd] 22U | +d,A%exd 22U
T 12 2 4
bs
+d3A36X 78 , (37)

whered, = B;/32e7? andb; =872/, . This is of course only
the leading instanton contribution to the non-perturbative su
perpotential. It can be justifiedost-factumif the negative

exponents are large at the minimum of the potential. Thistant ~—1.16x10 {M{¥74,

potential for the moduli fields,

= (S+§)(9W—W2
(S+S)(U+U)3 JS
(U+U) oW |7 ,
e 5~ W 3w (38)

In the above potential we have absorbed the coefficignt

%om the log 6 term in the Kaler potential(32) in the defi-

nition of A3—\/6A3.

It is expected that the gauge coupling threshold correc-
tions would introduce corrections that depend on toroidal
Kahler moduliT; (see[41]) of a form that would modify the
superpotential in a multiplicative way, i.e.Wga
=Wy(T;)W(S,U), whereW, typically depends on a product
of Dedekind modular functions »(T;), i.e., W,
&Hﬁzln(Ti)‘z. A superpotential contribution of that type,
along with the Kaler potentialk = —H?leog(Ti+Ti), could
in turn also contribute to supersymmetry breaking and stabi-
lization of Kahler moduli. In this paper we are not including
these effects; i.e., we assume that the dominant effects asso-
ciated with the supersymmetry breaking come from the tree
level gauge coupling contribution and are thus associated
with the SandU sector contributions. We hope to return to
the threshold correction contributions to the effective super-
potential in the future.

It is difficult to derive analytical expressions for the mini-
mum of the potential, so we proceed with a numerical analy-
sis.

The potential is periodic in Imd) and Im(S), with peri-
ods 1N/7 and M/, respectively, whereM and N are
integers. Thus, one can focus on finding the values ofljm(
and Im(@©) in the “fundamental domain”{0,12/r} and
{0,3/7}, respectively. The numerical minimization yields the
minimum at

Re(S)=1.10, Re¢U)=0.575,

Im(S)=0.48+3M/7m, Im(U)=1.91+12N/7. (39
Figure 1 depicts the potential near the minimum as a func-
tion of moduliSandU.

The value of the potential is negative at the minimum and
is  approximately —3.56x10 3L2 where L
=6A%/(327%). In the potential(38) we have set the
Planck scale to 1. The string scale is typically chosen to be of
the same order as the Planck scale and thasO(1) (in
Planck unit$. In our specific casésee the following subsec-
tion) M~1.88M &% and thusA3~6.33M &9 13, As a con-
sequencé ~1.81x 10 M &¥]2 and the cosmological con-

Since all the other

indeed turns out to be the case for the specific solution disparameters of the potential at the minima are fixed, the large

cussed in the next subsection.

negative cosmological constant is inevitable.
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-0.00348

—-0.0035 1

—0.00352 -

—0.00354 |

—0.00356

%
XS \“‘ X/

FIG. 1. Plots of potential V (in units of A2
=[6A%/(327%e)]?) as a function of Re§) and Re{) [Im(U)
=1.91 and Img)=0.48], Re®) and Im(@S) [Re(U)=0.575 and
Im(U)=1.91], and Rey) and ImU) [Re(S)=1.10 and Imf)
=0.48], respectively. Here R8, Im(S), ReU), and ImU) are
denotedsr, si, ur, andui, respectively.

PHYSICAL REVIEW D68, 046002 (2003

e U+l aw |2 R
FUK FU:3 TW—W [(S+S)(U+U) ]
~1.03x1077L?, (41)

—3|W|X[(S+S)(U+U)]P~—356x1073L2. (42

HereF ;=eX2(9,W+K 4W) andK ,=d,K.

In the case in which one does not include the matter con-
tribution that is associated with the open string sector of the
USp(4) brane, its beta function changes fren2 to —5. In
the latter case we found unstable points whére —o as
Re(U)—0. One such point corresponds to M)
=4.242, Ref)=0.606, ImS)=0.388. This phenomenon is
due to the fact that in this case the negative contribution of
the potentiaarising from the— 3|W|? term) turns out to be
dominant for small values of RE(). We do not encounter
this instability in the casg8=—2, for which the relative
strengths of the exponents in the effective superpotential bal-
ance in a way that the negative contributions to the potential
do not dominate for small values of R¢) and/or Re§).

B. Phenomenology

We first comment on features of the gauge couplings. The
guantitiesy and lkg defined in Egqs(12) and(13) are re-
lated to the moduli by

ReU) 1
X:‘/GR({S)' a—szRe(S). (43)

At the minimum of the potential they take the valugs
=0.295 and 1.kg=3.46, corresponding toM\¥/Mg
=0.542, which satisfies the perturbative consistency condi-
tion ME9/M¢>1/\/87 [35]. From these values and the ex-
pressions for the MSSM gauge parametersand B, given

in Table VI of [35], we can calculate the predicted values of
the standard model gauge couplings at the electroweak
scale® The inverse strong and electromagnetic couplings are
predicted to be

1 1
— =522, —=525 (44)

ag

which are much larger than the respective experimental val-
ues~8.5 and 128. The unrealistically small values predicted
for the gauge couplings are due to the extra chiral matter in
the constructiof. The weak angle sy, which is a ratio of

The terms that dynamically break supersymmetry are sig- 3A fully realistic construction would predict the electroweak scale

nificantly smaller than the contribution from the 3|W|2
term. In particular,

— — W
FKSFg=|(S+ S)og W

2
/[<S+§><U+U>3]

~4.95<10 L2, (40)

from the soft supersymmetry breaking. In our case, we simply use
the experimental electroweak scale, which corresponds-.06
in Eq. (14).

4Unlike in [35], we are also including the chiral states that are not
localized at the brane intersections for consistency with our treat-
ment of the strongly coupled confining sector. With these states, the
strongSU(3) group is not asymptotically free.

046002-7



CVETIé, LANGACKER, AND WANG PHYSICAL REVIEW D 68, 046002 (2003

gauge couplings, fares somewhat better: it is predicted to bem, = (1.20-2.03)x 10 *L~(2.17-3.671)x 10" MU,
0.29, not too far from the experimental 0.23. (50)
Unfortunately, since the minima have negative cosmologi-
cal constants, these vacua do not provide realistic back- . L .
grounds for a detailed study of the soft supersymmetry . _These masses are nonuniversal, compiledicating SI9-
breaking parameters of the charged matter sector of th |f|cqntCP-V|0Iat|ng phases qnd the values for the _speC|f|c
model. We defer this investigation for the future. solutllon are too large. As in all such co.nstruct|ons, the
We can however determine gaugino masses in terms ¢augind masses below the string scale ;at|sfy the same RG
theFgandF . The general expression for the gaugino mas£auations at one loop as the corresponding gauge couplings,
(i.e., terms of the typa .\, in the Lagrangiahis SO that M, (1)/m,(0) = a4(t)/ @a(0). However, unlike het-
erotic constructions and simple grand unified theories, the
—_ gaugino masses and gauge couplings at the string scale de-
mxaz(%ifa)K‘f’iqSiFZj- (45  pend on two modulS and U. These dependences are non-
_ universal and are different for the gaugino masses and gauge
HereK ?i%i is the inverse of the Kaer metric,f, is a gauge couplings. Thus the gaugino unification prediction
kinetic function, andF , was defined after Eq42). In the =~ my(t)/mMy(t) = ap(t)/a4(t) of those models is lost. Rather,
standard model sector the gauge functions, determined Eqsne has
(28)—(30), vyield the following expressions for gaugino
masses at the string scale:

Mp(t) aa(t)  mp(0)fy
Ma(Dap(t)  my(0)f,”

1 = 1 = (51
m[U(3)CrU(l)1]: ZKSSFE‘F ﬂKUUFU
For example, for the minimum of the potential in this model,

=(1.89-3.48)x 10 4L~(3.42-6.30) the right-hand side of Eq(51) is 0.52-0.028 for (b,a)
=(SU(3),SU(2)) and 10.6-0.14 for  (b,a)
:(SU(Z),\/§U(1)Y), where \/§U(1)Y corresponds to the
coupling 5ay/3 that unifies witha, and a3 in the conven-
tional minimal supersymmetric SYMSSM).

X 10 MG (46)

1 = 3  —
My(z), = 7KSFst+ gK Ry
=(2.41-3.99)x10 “L IV. CONCLUSIONS

~(4.36— 7.15|)><10*5M(P4d), (47) We conclude with a few remarks contrasting the results
obtained with those of the perturbative heterotic quasirealis-
tic models. The supersymmetry breaking in heterotic models
has been extensively studiddee, e.g.[42,43 and refer-
ences therein and, for recent studiggf]). One specific fea-
. 5 ture of heterotic models is that the tree level gauge couplings
=(3.93-3.56)x10°L are universal and depend only on one modBusherefore,
~(7.11-6.44)x 10" 'MED (48 the gaugino condensation typically generates an effective su-
perpotential that involves only one field, thus making the
where we have restored the appropriate factvigf®) inthe ~ minimization of the supergravity potential a more intricate
final expressions. When a set 0{1)’s with chargesQ, is  Process. In addition, for a number of quasirealistic models,
broken to a singl&J (1)’ with chargeQ’ ==,d,Q,, then the ~ While possessing an additional gauge sector, such sectors of-

U(1)" coupling and gaugino masses are related to those ¢n were not confiningthe beta functions were positive due
the original factors by to the additional matter Further exploration involved the

string threshold corrections that depend on toroidal moduli
s and allow for additional features of the supersymmetry
2 — My breaking vacuum. In these examples the cosmological con-

_ T UUE—
Mu)gue1= 7K Fu

2
S => % m’ :aﬁaa_. (49)  stantwas in general large and negative and would have to be
a' @ @ > da fixed by hand.
Y a, In contrast the supersymmetric models with intersecting
D6 branes provide a framework with a confining gauge sec-
From Eq.(3) one then obtairs tor, where gaugino condensation can be addressed explicitly.

We have demonstrated in an explicit example that the effec-
tive nonperturbative superpotential allows for the minimum
%In the present case, the additioti(1) factors are not broken at Of the supergravity potential in which supersymmetry is bro-
a high scalem, therefore refers to the diagondlY element of the ken and the moduliwhich determine the tree level gauge
gaugino mass matrix. couplings at the string scaleare completely determined.
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