PHYSICAL REVIEW D 68, 046001 (2003

Conformal field theory couplings for intersecting D-branes on orientifolds
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We present a conformal field theory calculation of four-point and three-point correlation functions for the
bosonic twist fields arising at the intersections of D-branes wrapfsngersymmetrichomology cycles of
type Il orientifold compactifications. Both the quantum contribution from local excitations at the intersections
and the world-sheet disk instanton corrections are computed. As a consequence we obtain the complete
expression for the Yukawa couplings of chiral fermions with the Higgs fields. The four-point correlation
functions in turn lead to the determination of the four-point couplings in the effective theory, and may be of
phenomenological interest.
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[. INTRODUCTION tional exotics[21]. Both supersymmetric and nonsupersym-
metric constructions have adjoint matter associated with each
In recent years, the intersecting D-brane configurationdrane configuration, since the toroidal cycles wrapped by the
have played an important role in several areas. The modiranes arenot rigid. Interestingly, the embedding of super-
prominent one is the construction of four-dimensional solu-symmetric four-dimensional models with intersecting D6-
tions[1-5] of type Il string theory, compactified on orienti- branes has a lift13,14] into M theory that corresponds to the
folds. In particular the appearance of the chiral mat6¥]  compactification of M theory on a singul&@, holonomy

at the brane intersection provides a promising starting pointnanifold[12,13,22—-24

to construct models with potential particle physics implica- While phenomenology of both nonsupersymmetric

tions[6,7]. [6,11,29 and supersymmetrif20,21,26 models has been

The model building with intersecting branes was devel-addressed, the actual string calculations of the couplings in
oped in a series of papers. In particular, nonsupersymmetritis theory have been limited. While the tree-level gauge

[1-5] (and subsequently explored j8—11]) and more re- couplings are relatively easy to determine and their features

cently, supersymmetrif12—18 constructions with quasire- have been studied, see, e[®1] and references therein. A

alistic features of the standardlike and grand-unified modelsalculation of gauge coupling threshold correcti¢8g] is

have been given. One has tremendous freedom in the comaiso of interest, since it could be compared to the strong

structions of nonsupersymmetric models, since the Ramondoupling limit of M-theory compactified on the correspond-

Ramond tadpole cancellation conditions can be satisfied fang G, holonomy spac¢28].

many brane configurations leading to the standard-model An important set of tree level calculations involves the

gauge group and three families of quarks and leptons. Howepen-sector states that appear at the brane intersections.

ever, the fact that the theory is nonsupersymmetric introThese states include the chiral matter. In the supersymmetric
duces the Neveu-Schwarz—Neveu-Schwarz uncancelled tadenstructions the appearance of the full massless chiral su-
poles as well as the radiative corrections of the string scalgpermultiplet is ensured there. The couplings of most interest

(For the constructions with intersecting D6-branes the stringre the three linear superpotential couplings, such as the cou-

scale is necessarily of the order of the Planck scale. Howpling of quarks and leptons to the Higgs fields. On the other

ever, example$19] with intersecting D5-branes have been hand, the four-point couplings are also of interest, since they
given, where the string scale can be as low as the TeV $calendicate the appearance of potentially other higher order
On the other hand, supersymmetric intersecting D-branéerms in the effective Lagrangian.

constructions are extremely constraining. Nevertheless such The calculations of couplings of statéachyong appear-

supersymmetric constructions with intersecting D6-branesing at the nonsupersymmetric intersections of branes also has

which have the standardliKd2,13,15,17 and grand-unified interesting implications in the study of tachyon potential and
model spectrd13,18, have recently been constructed. In the phenomenon of tachyon condensation. In particular, for
particular, these models have an additional quasi-hiddespecificT-dual models of p— (p+2)] bound state configu-

gauge sector that is typically confining which may have in-rations the four-point calculations have been addressed in

teresting implications for the supersymmetry breakifag]. [29-31].

Note, however, that these models typically suffer from addi- The purpose of this paper is to perform explicit string
calculations of the four-point and three-point correlation
functions associated with the states appearing at the intersec-

*On sabbatic leave from the University of Pennsylvania. tions of branes that wrap cycles of the internal tori. The

0556-2821/2003/68)/04600114)/$20.00 68 046001-1 ©2003 The American Physical Society



M. CVETIC AND |. PAPADIMITRIOU PHYSICAL REVIEW D 68, 046001 (2003

(<Y G_j,
C_y Gy
.
da
dq
ds) Gy G_y
ha%
v Gy Gy ™
B a4 ® ®
® ® FIG. 2. Target space: the intersection of two branes intersecting,

respectively, with the two parallel branes at angtes and 7\,
FIG. 1. Target space: the intersection of two parallel branegespectively[Fig. 2@]. World sheet: a disk diagram of the four
separated by respective distanads and d, and intersecting at twist fields located ax, , 5 4[Fig. 2b)]. The calculation involves a
anglesmv [Fig. 1(a)]. World sheet: a disk diagram of the four twist map from the world sheet to target space, allowing for factorization
fields located ak , 5 4[Fig. 1(b)]. The calculation involves a map 0n a three-point function.
from the world sheet to target space.
The next calculation that we set out to do is that of the
nontrivial part of the calculation involves the evaluation of four-point correlation function:
the correlation functions of fouithree bosonic twist fields,
which signify the fact that the states at the intersection arise (0(X1) 7 1(Xa) 7\ (X3) 0\(Xa)), (2)
from the sector with twisted boundary conditions on the
bosonic(and fermioni¢ string degrees of freedonfFor su-
persymmetric cycles the physical massless states at the int

section correspond to the chiral supermultiplefde employ o paraliel branegsee Fig. 2 This correlation function is
the techniques of cpnfor.mall field theory, which are related tc’specifically suited for taking the limit of,— x5 which fac-

the Sttt)j'(ijl dOf ggsosn_lc .?N'St f'ﬁld.s of the closed l:strlng .ther?rytorizes to a three-point function associated with the intersec-
on é)r |fo s[32] mi ar: tec ?lqubes Wdere employed in the s, of three branes. This latter result is particularly interest-
study of type Il string theory for boundstates @f (p+2)  jnq since it provides a key element in the calculation of the
brane sgptoréZQ—?;]]. . . . Yukawa coupling.

Specifically, we focus on intersecting D-branes wrapping -y, hjs set of calculations we determibeth the classical
factorizableN cycles of T™"=T*XT*. ... Thus, in eacll” 5 404 the quantum paxf the amplitude and thus obtain
the D-branes wrap one-cycles, and the problem reduces t0gs exact answer for the calculation. In particular, the calcu-
calculation of correlation functions of bosonic twist fields |ation of the quantum part depends only on the angiesl is
associated with the twisted sectors at intersections ofy, s insensitive to the scales of the internal spaGm the
D-branes on a generdF. Thus the final answer is a product giher hand, the classical part carries information on the ac-

of contributions from each correlation function on edch 5 separation among the branes and the overall volume of
We provide a general result for T2 as well.
In particular the full expressiothoth classical and quan-
tum par for the Yukawa couplings for branes wrapping fac-

. 6 . .
which corresponds to the bosonic twist field correlation func-torlzable cycles off is written as

tion of states appearing at the intersection of two pairwise

3
parallel branes with intersection angter (see Fig. L Y=\2g027]] \/
In the case of the twist fields appearing at the same inter- =1

which corresponds to the bosonic twist field correlation func-
tion of states appearing at the intersection of two branes in-
%’rsecting at respective anglesr and A\ with the third set

<0'V(Xl)0', V(XZ)O-I/(XS)O-* ]/(X4)>1 (1)

47B(vj,1-v))

section, our result is interpreted in terms of the volume of the

torus, the lengths of the one-cycleg andL, that each set of « E exp( _ A;j(m)

branes wrap and the intersection numbersVe also address m

the case when the twist fields are associated with different

intersections of the two branes. In particular we address ifvhereA;(m) is the area of the triangle formed by the three

detail the summation over the instanton sectors for such gerirtersecting branes on thigh torus andg,=e®”, with ®

eral cases. corresponding to the type A dilaton. The coupling is be-
tween two fermion fields and a scalar field, i.e., the massless
states appearing at the respective intersections, whose kinetic

IThis is a special case, when the branes wrap the canonical cycl@)€rgies are taken to be canonically normalized.

: ()

2ma’

of a torus with the complex structune A T-dual interpretation of While we were in a process of completing this work the
this correlation function is that of the bosonic twist fields for D0-D2 paper[33] appeared where a comprehensive analysis of the
brane with the magnetic fluB = cot(mv). classical part of the string contributigilisk instantongsto
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the Yukawa coupling in models with intersecting branes on | terms of the complexified coordinateés=X1+iX2 X
Calabi-Yau manifolds was given, and extensive explicit cal-—= x1—ix2 on T2 the boundary conditions read

culations of the classical string contributions for models of

intersecting branes on toroidal orientifolds were presented. X+ dX=0, 9X+9X=0, on
Our work has a certain overlap with that [#3]. In par-
ticular, our work focuses only on models with branes wrap- (=92, X)U(X2,X3) U (Xg,+),
ping factorizableN-cycles of T2N=T2xT2. ... We evaluate _ o
the classical action contribution by explicitly solving for the e'"oX+e ' 9X=0,

classical solutions of the bosonic string with the boundary o o
conditions governed by the locations of the D-branes. Forthe e '™gX+e'™gX=0, on (X1,Xy)U(Xz,Xs). (4)
special case of the three-point function we therefore also
derive the result of33] that the classical string contribution These conditions define the operator product expansions
to the three-point coupling involves a summation over thelOPES of the embedding fields with the twist operators,
exp(—A/2ma’), whereA corresponds to the area of the tri- namely,
angles associated with the intersections of the branes in each
T2. On the other hand, we have also determined the quantum
part of the correlation functions, thus obtaining the full ex-
pression for the couplings.

The paper is organized as follows. In Sec. Il we determine

IX(2) o (X)~(z2=x)" " tr,(x)+ -,

IX(2) 0, (X)~ (2= X) T (X) + -+,

the correlation functioril). In Sec. Ill we calculat¢2) and IX(2)a,(X)~—(2=X) "1, (X)+ - - -,

factorize it on a three-point function to determine the corre- L o

sponding Yukawa coupling. Conclusions, which include IX(2) o (X)~—(z—x)""Lr,(x)+-- -, (5)
comments on generalizations of these calculations as well as

physical implications, are given in Sec. IV. and similarly foro_,(x). To evaluate the correlation func-

tion of four twist fields{ o ,(X1) o_ ,(X2) o, (X3) o_ ,(X4)) we
consider the correlators

II. FOUR-POINT FUNCTION WITH ONE (z,w)
INDEPENDENT ANGLE 9.z,

In order to evaluate the path integral for the partition 1 Ve
function of open strings stretching between D-branes inter- < B ;&X(Z)aX(W)UV(Xl)U‘ ”(XZ)UV(X3)U‘V(X4)>
secting at an anglerv we split the embedding fieldX! = ,
=X+ Xy, into a classical solution to the equation of mo- (01(X) 01 (X2) 01(X5) - (Xa))
tion, subject to the appropriate boundary conditions, and a (6)
guantum fluctuation. The mode expansion for the quantum __
fluctuation is not integer moded due to the boundary condih(z,w)
tions. The vacuum of thX' conformal field theory(CFT) is

then created by primary fields, acting on theSL(2,R) 11— —

invariant vacuum. The partition function naturally factorizes < - —,f?X(Z)c?X(W)UV(Xl)U—V(Xz)UV(Xs)U—V(X4)>
into a classical contribution due to world sheet instanton sec- — @

tors and a quantum amplitude due to quantum fluctuations. (0,(X1) 0, (X2) 0 (X3) T ,(X4)) ’
In contrast with the instanton contribution, the quantum am- (7)

plitude contains no topological information about the world_—
sheet embedding in target space, but it is still essential for th&(Z,W)
complete determination of Yukawa couplings in a general

model with intersecting branes. 1
- _,&X(Z) ﬂX(W)UV(Xl)O-fv(XZ) (TV(XS)G-* V(X4)
o

A. Evaluation of quantum amplitude (0,(X1) 0, (X2) T,(X3) 07— ,(X4))

We shall employ the stress tensor meti@8,30,323 to ®
evaluate the quantum amplitude of four twist operators. Foand
oriented theories the twist operators live on the boundary of

the disk and change the boundary conditions as we movi(z,w)
along the boundary. The boundary conditions are specified

by the D-brane configuration in target spdsee Fig. 1. We 1

concentrate on a singl@ and D1-branes wrapping one- ——,f?X(Z)@X(W)UV(Xl)UV(Xz)UV(Xs)UV(X4)>
cycles. The amplitude for branes wrapping factorizable  _ @

three-cycles ofT® is then the product of the amplitudes for (0,(X1) T (X2) T, (X3) 0 ,(Xa))

the threeT? factors. (9
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@ ) d(X—X)=0. (17)
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FIG. 3. World-sheet contours. The contos and C, [Fig.
3(a)] are the two topologically inequivalent contours leading to two\nhen inserted into the four twist field correlation functions
independent conditions. The contours in Fi¢h)3efine the global h lead d diti for th latoE.
monodromy conditions used in Sec. Ill. these ‘ea to monodromy CO.rT 'tlonS.‘ or.t e correlatpi,

h, andh. For example, conditioil7) implies
The OPE4Y5) together with the conditions

de[g(z,W)—E(z,W)]ﬂLf dzZh(z,w)—h(z,w)]=0.
Co Co
(18

g(z,w)~(z—w)~2,  h(z,w)~regular (10)

asz—Ww uniquely determine _ _
Now, using relationg14) we can tradér andh for g andg.
9(zW)=w;1- (2w, (W) Moreover,z can be traded foz by integrating along the
mirror image of contouC, about the real axis, call it con-

Z—X1)(Z—X3)(W—Xp) (W—X ~ —
( J( 3)( 2)( 4 tour C,. Taking into account the phases @indg on each

X|(1—v)

(Z—W)2 of the contours one sees
(Z=X)(Z—X4) (W—X7)(W—X3)
T (—w)? +A({Xi})] EZdzg(z,w)— fczdzg(z,w), (19
(11 B B
and fazdzg(z,w)= CZdzg(z,w), (20
h(z,w) =~ 0,(2)o,(W)B({X}), (120 and hence
where f dg(zw)—9(zw)]=0. 21)
C2

®,(2)=(2=X1) (2= X%2)" " H(z—X3) " "(z2— %) .
(13 Similarly we derive

Here A({x;}) and B({x;}) are functions of the twist field , o
positions to be determined. The boundary conditions and ho- J dze'™g(z,w)—e '"""g(z,w)]=0. (22)
lomorphicity imply G

— — Invoking SL(2,R) invariance we fixx;=0, X,=X, X3
h(zw)=-g(zw), g(zw)=-h(zw). (4 1 yx, .. Dividing then byw,(w) and lettingw— = we

In order to determine the functio’s and B we impose ap- get

propriate monodromy conditions which will ensure that the
quantum fluctuationX,, are local. This is guaranteed if

_ 9(zwW)—~B(X)0,(2), (24
f dX=j dX=0 (15
Ci Ci where A(x) and B(x) have been redefined appropriately to

i . absorb the singularity arising fromy— o and
whereC; is any nontrivial world-sheet contour. In the case at

hand there are two topologically inequivalent conto@s 0, (2)=(2—x1) (2= X5)" " Hz—x3) " (25)
joining the intervals X,,x3) and (—<°,X;) and C, joining

the intervals k3,x4) and (x;,x,) [see Fig. 8a)]. One can Conditions(22) and(21) then give

save some effort, however, by noticing that the contours can

be analytically continued to the world-sheet boundary along ~ ~

which only one particular linear combination of target space VJ’CZdZ(Z_X)wl {2) +AX) jczdzle(Z)_ B(X)
fields satisfies Neumann boundary conditions and can there-
fore have nontrivial displacemefdlong the boundary of the
world sheed=drd, and hence the fields satisfying Dirichlet
boundary conditions give no contributipriThe nontrivial
conditions are and

9(z,W)—=[v(z—X)+A(X) w1 ,(2) (23)

xf dzw,(2)=0 (26)
C,
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VJ dz(z—x)Zol,V(z)+A(x)J dzw,_ ,(2)
Cy Cy

—e’Z”‘”B(x)f dzw,(2)=0. (27)
C1
Evaluating the contour integrals we find

fd P =x(1 df dza
—v ¢ Az=X)w1-,(2) =X(1=X) . w1 ,(2),

(28)
f61d251y(z)=F(x), (29
and
Czdzful,v(z)zei”F(l—x), (30)
where
F(X)=B(»,1- »)F(v,1- ;1;x)
= foldyy’ "(1-y)" " H1=xy) " (3D

B(v,1—v) is the Euler beta function ané(a,b;c;x) is the
hypergeometric function. Solving fak(x) we finally obtain

A(x)=%x(l—x)&xlog[F(x)F(l—x)]. (32

The quantum contributioZ,(x) to the four twist field cor-
relation function can now be extracted from the OPE

(z—x)?

asz—xX. Evaluating the left-hand side by taking the lirait
—X in the expression

1
+ ;axlogzqu(x)+ -

(T(2))= (33

=

_ A({xi})
(Z=X)(Z=X)(Z=X3)(Z— X4)
X( 1 . 1 . 1 . 1 )2
(z=X1) (Z=X2) (Z=X3) (Z=X4)] '

(34)

(T(2))=lim ( 9(z,w)—

W—2Z

+1 1
EV( v)

we obtain

Zqu(X) = 1im [xo| """, (0)o_ (X) o, (1)o_ ,(X4))

Xg—*

B const
X)) F(1-x) 1Y

(39

PHYSICAL REVIEW D 68, 046001 (2003

B. Evaluation of the classical contribution

The path integral over the target space fietdsncludes a
sum over topologically inequivalent configurations from
strings wrapping around the compact directions of the torus.
The main contribution comes from configuratioky satis-
fying the classical equations of motion while the effect of
fluctuations about these classical configurations is encoded in
Xqu and was calculated in the previous section using confor-
mal field theory techniques.

In this section we first determine the classical configura-
tions satisfying the equation of motion subject to the bound-
ary conditions(4), dictated by the D-brane setup. This is a
straightforward boundary value problem for the Laplace op-
erator in two dimensions and the solutions can be expressed
in terms of holomorphic or antiholomorphic maps from the
disk onto the target space manifold. We then evaluate the
on-shell action and sum over the toroidal lattice to obtain the
world-sheet instanton contribution to the four-point function.

The solutions to the above boundary value problem are

IX(z)=aw;_(2)=ae” ' "w;_(2),
IX(2)=—aw;_ (2)=—ae'"w;_,(2),
IX(2)=bw,(2)=be ™" Vg (2),

IX(2)=—bo,(2)=-be """ Vo,(2), (36
where the coefficienta andb are the only free parameters to
be determined. These parameters reflect the freedom in
specifying the length of the two independent sides of the
parallelogram. The classical contribution to the path integral
is then

Zg=e i, (37)
where
S,= j 22 XX+ IXIX)
Adma’Je,
1 ) _~ o~
=— sin(7v)F(X)F(1—x)(a%+b?) (38
2ma’
where we have used
eI R e
Cy Cy
=2sinm7v)F(X)F(1—x). (39

To determine the coefficienta and b we impose the
monodromy conditiorfs

2We assume for simplicity that the branes wrap cycles along the
two-torus lattice vectors.
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L . zlnr;f:)l Cds=2n27-rR2. 40 Z(x)=consX[x(1—x)] " "C""[F(x)F(1—x)] %2
1 2
X >, exp— -sin(mv)F(X)F(1-x)
SinceX2= cot(mv)X* alongC, f1.r2 2ma
rilq 2 rolo
1 \2 XH ) +( — ) , (46)
d32=(dX1)2+(dX2)2=(Si:(:(TV)) S @ FeAFE=x)

whereL; are the lengths of the corresponding one-cycles and

can be expressed in terms of the wrapping numbers and the

radii of the torus asL;=2m(n;R;)*+(MR,)?. On the

other hand, sinfr) can be reexpressed in terms of invariant

guantities such as the intersection numblge=n;m,

~=i77'( niRy N NzR; ) —n,m, and the length& ;, L, of the one-cycles as
sinfmv)F(x) F(1-x))’

Similarly, ds?=(dX?)? along C,. A similar calculation as
for the quantum monodromy conditions then gives

, (2m)2115R1R, l12x
sin(wv)= =

MR MaRe (42) Likz VnZ+ x2m? g+ y?m3
sin(mv)F(x) F(1—-Xx)

=i

(47)

where y=R,/R; is the complex structure modulus. As ex-
pected, the angle is insensitive to the overall scale, and de-
pends only on the wrapping numbers and the complex struc-
niR, 2 ture modulus.
(m) It i; _straightforward to generaIiZ(_a this res_,u!t ta 2ow\_/ith a
nontrivial complex structure-. In this case it is efficient to

27
Ser=—sin(7v)F(X)F(1-X)
o
n,R, |2 parametrize the wrapping numbers in termsmf>m,=m,
+ F(1-X) +7n; (see, for exampld,13]). The complete result takes the
form (46), but with m;’s replaced withm; .
The full amplitude is now of the form 2nOf cgursze, a generalization of the amplitude to the case of
T"=T*XT#* .. (we assume the Kder structure to be a
product of the Kaler structures of eacli?) is straightfor-
ward. In this case each twist field is just a product of indi-
vidual twist fields for eaciT?, and the four-twist amplitude
B (M) is a product of individual twist amplitude@6). The most
_unmzm2 e e, (44) interesting examples where the above calculations can be
v applied are cases of type A string theory ®A=T?x T?
. . ) X T? with intersecting D6-branes wrapping a product of
whereZ,, is determined in Eq(36) [up to an overall con-  pree one-cycles associated with ed@h
stant andS;, is defined in Eq(43)]. For the purpose of performing complete string amplitude
Note, in the limitR;, R,— calculations it is instructive to write down the complete ver-
tex operators for physical bosonic stajesind y* which in
the (—1) conformal ghost ¢) picture3

Hence,

: (43

Z(X)E Ilm |X4| V(17V)<0'v(0)0-17 V(X)O-v(l)a-lfu(x4)>

X4~>oc

> e Samma)_ g (45)
myp,my 3
V—l'X=e7¢H O-J;L_ el(l*vl)Hlelk#XIJ‘,
and hence the four twist amplitude receives no instanton cor- =1
rections as expected. 3

Vo1 =e’¢H ol e 1A rHjgik X" (48)
C. Canonical form of the amplitude and generalizations =1

The above calculation was performed for the amplitude ofwvhereH; corresponds to the bosonized world-sheet fermion
two intersecting branes wrapping two canonical homologyy' (world-sheet superpartner of théh toroidal coordinate
cycles[a] and[b], respectively, of th&? with the complex X'). Here we chose to write explicitly the complete vertex
structure specified by. We can, however, reexpress this
amplitude in terms of a four-point twist amplitude for two
branes wrapping two general cycles specified by the wrap-3Here for clarity we have denoted the bosonic antitwist operators
ping numbers if;,m;) and (,,m,) on T2 with the trivial by o,_, modifying the notatiorr_ , which was used before for the
complex structure, first, as same operators.
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operator for the bosonic states in four dimensions; they ap—0 or x—1 in which the four-point amplitude reduces to a
pear in the internal space at the intersection of D6-braneproduct of the two three-point amplitudes. Namely, in these
wrapping a product of three one-cycles @¥=T?XxT? limits, the four-point amplitude contains a dominant contri-
X T2. In the case of supersymmetry the intersection anglesution from the exchanges of the intermediate open string
satisfy the conditiorj13] Ef:lm/i=2w which ensures that winding states around the compact directions. In the effec-
these vertex operators correspond to massless bosonic statées field theory description the zero winding states corre-
which now become superpartners of massless fermionigpond to the exchange of gauge bosons living on the brane
states with the following € 1/2) superconformal ghost pic- along the cycle which is not collapsed by the limiting pro-
ture vertex operatorgr]: cess. Asx—0 brane 2 contributes while as—1 brane 1
. contributes.
S _ For the sake of concreteness we shall focus on a four-
V—1/2:x:e"/”25aﬂl ol @Ak, X dimensional example with D6-branes wrapping a product of
= three-cycles. The physical states at the intersections are rep-
3 resented by the vertex operat@#s) and(49). For that pur-
V71/2'X*:e7¢/2§a1_[ o) g 11W2)~ vl gik, X" (490 Ppose we shall evaluate the four-point disk amplitude
’ j=1 Su(kq,ky,ks,k,) of two bosonic stateg and twox* at the
intersections. We shall relate this amplitude to the product of
Here S,=e™(V2M=(2M2 gnd'S =e* (V2M7 (2% repre-  two three-point function$s(k; ko ;ks) of x and y* states,
sent the spin fields with respective positive and negativeand the gauge bosoh, via the unitarity condition:

chirality. [~e™.2 are bosonized world-sheet fermiong
4

with a the four-dimensionalcomplexified indices] Note 0 a2

that in the case of supersymmetry the vertex operd@fs Sa(ky,kz2,K3,Ka) =i[gyw] (2m)

for x and x* have the N=2 world-sheet chargeH

=33 H;, +1 and —1, respectively, and t_hus correctly Sa(Ky, Ko 1K) Sa(Ks, Ky —K)
represent the vertex operators for the bosonic component of X . (50

2 .
the chiral superfield and its complex conjugate, respectively ke

[34]. Similarly, the world-sheet chargd for the fermionic

Valy— L 1 i , o _
vertex operator$49) are, respectively- 3 and 3, again in With these preliminaries we now proceed with the calcu-

accordance withN=2 world-sheet supersymmetry repre- |a4qng of the physical string amplitudes. The three-point am-
senting the fermionic components of the chiral superfield an%litude takes the form

its complex conjugate, respectively.
In the above expressions we have suppressed the Chan-
Paton factors; however, they are straightforward to incorpo- Sa(ky K ka)=(V_1.,V_1.xVon )
! ! M

rate. The states transform a¥®M under the U(N)

. . 3
XU (M) gauge symmetry of the two intersecting brafeese, _ Cngg )
e.g.,[13] for details. N (2m)* 6™ 21 ki | ' (ki—k,)- €.
The orientifold projection of type IIA theory involves
along with the world-sheet parity projection also the mirror (51

symmetry projection, say along the horizontalplane of

T2". Note that this projection restricts the value oto be This is th dard th . litud . h
either 0 or}. Since each brane now also has an orientifold' 'S 'S the standard three-point amplitude, since we have

. btained b ~ ~ taken into account thato,(0)o;_,(1))=1, and that in the
Image, obtaine y_amapi(,mi)—>(ni ’_mi)_' onecan Now - hietre changing procedure of the gauge-boson vertex the
consider four amplitudes of states appearing at the interseg

i fab denoted bi d h denoted b nternal part of the fermionic stress energy tensor does not
.',?n of a braneé, denotec by and another ane, denated by contribute. We have introduced the disk coupli@g, and
j*, that is an orientifold image of a brane denoted bifote

- ; the couplingg, of each vertex operator. The additional factor
that the calculation of the four amplitudes proceeds analo(-)f (2a')"2is due to the picture changing procedure of the

g?nuﬁ!%/ :jies ;‘bt(?]\ée.stgtéz goszgla toatc?rllgu.lﬁttgrstgit.gonuzfos'ggauge—ﬁeld vertex. The gauge-field polarization vector is de-
phtu ppearing ; ’ ’ oted bye, . [For simplicity we calculated the amplitude

branei, with its own orientifold image*. Such states can only for the U(1) gauge field: generalization to(N) is

appear as symmetric or antisymmetric representations of th&raightforward} The factorization of the four-point gauge

along the sam lines. Inthe folloiing we shall determine ind 00N aMPIide onto the prodct of two three-point gauge
crucial normalization. constant of the quantum part of th:boson amplitudes y|eI2ds the standard _relatlo_nsh|p_ between
correlation function Co2 and_go: Cp,=1/(gga’). Note that_thls relationship also
' automatically ensures that on both sides of &) the de-
pendence o, drops out; namely,Cp,95]>=Cp,g5/a’.

We have chosen,=e®? which allows one to write the
The overall normalization of the four-point amplitude can effective kinetic energy action for the gauge fields with the

be determined by factorizing the amplitude in the limits prefactor lﬂgﬁ’,M]2 and the kinetic energy for thg fields to

D. Normalization of the amplitude
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be canonical. Herg?(,\,I is defined in terms of the full gauge The prefactors 2a'/L, from each of theZ; contribution
coupling for the specific brane ‘as combine precisely intpg?,1%/27 for brane Zsee Eq(52)].
Therefore the contribution af?,, on both sides of Eq(50)
0 1o w2 3 . cancels. Evaluating the four-point amplitude near0
[gyml"=e QYMZZTFH 2ma’L; . (520 vyjelds a pole associated withchannel exchange of the cor-
=t responding gauge field. Equating the LHS and RHS of Eq.

L i ) (50) in turn then determines
Thus the unitarity conditiof50) appears with an extra factor

[gﬁ’(,\,,]2 on the right-hand sidéRHS) of the equation. 3 \/5
When evaluating the four-point amplitude we chose to const=27[ | —77_ (55)
picture change the vertex operators for bgtfields, which =1 \sin(mv))

in turn ensures that there is no contribution from the internal

part of the fermionic stress energy contribution. The upshot The limit x—1 gives a contribution from thé channel

is the following form of the amplitude: exchange of gauge bosons associated with brane 1. In this
case the resummation is over in Eq. (46) which again

_ Cngg 4 factorizes tci[gﬁ’(,\,,]2 associated with brane 1 in the four-point
34(k1,k2,k3,k4)=|T(ZW)%“) > ki |4a'?ky kg amplitude (53) and thus cancels the same gauge coupling

“« =1 contribution on the RHS of Eq50). Of course the rest of the

calculation is consistent with the values of const in &).

X

1
f dxx @57 1(1—x)~«'t"1
° E. Generalization of the lattice summation
In the amplitudg46) we assumed that the four twist fields
were coming from thesameintersection and therefore the
summation over all possible parallelograms reduced simply
to a sum over multiples of the lengths, andL,, of the two
cycles the branes wrap. We would like to generalize this
where theZ; is the four-twist amplitude defined in EG46)  amplitude to four twist fields coming from more than just
with v=v; while s,t are the Mandelstam variables. one intersection.
In order to compare the left-hand sifeHS) and the RHS First let us consider the correlation function of a twist-
of Eq. (50) and thus determine the constant we shall evaluat@ntitwist pair from intersection and a twist-antitwist pair
the amplitude(46) in the limit x—0 first. Asx—0, F(X)  from intersectionj. Obviously, the fields coming from the
~B(v,1-v) and F(1-Xx)~ —log(x/d), where logi=2/(1) = same intersection must be separated by a lattice translation
—i(v)—y(1-v) and y(z)=d logI'(2)/dz Therefore, to take and therefore the distance between them is again a multiple
the limit x—0 we must do a Poisson resummation ovgr  of the length of one of the two cycles, namely, or L.
This gives However, the minimum distance between fields from differ-
ent intersections is not zero. In particular, it depends on the
mJ2a'  const total number ;, of intersections between the two branes and
[x(l_x)]—v(l—V)F(x)—l the lengths of the one-cycles they wrap as we show next.
Lo Vsin(mv) By translating the one-cycles by all possible lattice vec-
) tors in the covering spacé of T? one observes that along
( myl g ) one complete cycle each fixed point appears only once and

3
XH 1[X(1—x)]”i(1’ ”i)Zj(x)+s<—>t)
=

(53

Z(x)=

F(1—x)
X lemz exp— F 0

that the one-cycle is divided iniq, equal intervals of length
L/1,,, whereL stands for eithet; or L, depending on the
Trmz\/g) 2 ] cycle under consideration. Therefore, the minimum distance

m\2a'

between two different intersections is generally an integer
multiple of L, /14, or L,/1;,. One must first decide on the
labelling of thel, intersections. There are obviously two
277\/; constX vsin(wv) evident but equivalent labellings, namely, we can index the
~ x (=) intersections in increasing order, starting from 0, along cycle
Lo \/577 1 or cycle 2. Let us, for concreteness, label them along cycle
1. The minimum distance between intersectioremdj on
cycle 1 is then obvious, but the minimum distance between
the same intersections on cycle 2 is not because the intersec-
tion points are ordered differently along this cycle. So one
(54) must first determine how the fixed points are ordered along
the second cycle.
To this end consider the cyclic group of ordéy,,
4See, for exampld;35] Vol. II, Eq. (13.3.25. namely,

Xsin(wv)+

L, sin(mv)

x >

mq,my

X [(mqLsin(mv)/mN2a" )2+ (rmyV2a’ IL,)?]
1)

046001-8
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0

FIG. 4. The fundamental domain for a brane with wrapping
numbers(3,1) (solid line) and a brane with wrapping numbefs?2)

(broken ling. There are five intersection points labeled in increas-
ing order starting from 0 along the solid brane. Starting from 0 and

moving along the second brafleroken ling one first meets fixed
point 2. This is the integek that generates the automorphi$g®)
in this example.

7, =f{ec,.c? ... clielcle=¢}, (56)

PHYSICAL REVIEW D 68, 046001 (2003

numberk by drawing the cycles in the fundamental domain
of the torusk is given by the fixed point closest to 0 along
cycle 2(see Fig. 4.

The four-point function with twist fields from intersec-
tionsi andj gets contributions from the two lattice configu-
rations in Fig. 5. Ifdq(i,j)ocL /11, andd,(i,j)<L,/14, are
the minimal distances between fixed pointgnd j along
cycles 1 and 2, respectively, the four-point amplitude takes
the form

Cngé
2a’

4
Sa(ky Ky, Kg,kg) =i (277)45(4)(2 ki)4a’2kl.k3
=1

X

1 ’ ’

f dxxfa S*l(l_x)fa t—1
0

3

X Hl [x(1— X)]Vj(l*Vj)ZJ(l)(x)
j=

1
l
0

3
T [x(1-%)110"Z2B(x) |, (59
j=1

dXX—a/t—l(l_X)—a's—l

wherec is the generator of the group. To each fixed point we
can uniquely associate an element of this group by the rulgynere

jecl

(57)

ZM(x)=constx [x(1—x)] " I[F(x)F(1—x)]"?

It can then be shown that the ordering of the fixed points

along cycle 2 is given by the automorphism

g|_>gk' Vg€Z|12, (58)

wherek is an integer between 1 ang,—1 which depends

sin(mv)F(X)F(1—Xx)

I

X > exp—

r1.,ro

|

2ma’

rilq)\2
F )+(

dy(i,j)+roly
F(1—-x)

(60)

on the wrapping numbers of the two cycles. For this map to

be an automorphism obviouskymust not dividd ;, for then
the map is not injective. A general expression foas a
function of the four wrapping numbers has proved difficult to

find so far apart for special cases of wrapping numbers. We

and

Z@)(x)=constx [x(1—x)] " I[F(x)F(1—x)] 1?2

emphasize that whatever this expression might be it must

guarantee thak does not dividel ;,=n;m,—n,m;. Until

such an expression is known one can always determine this

(b)

@)

FIG. 5. The two configurations for a twist-antitwist pair at in-
tersection and a twist-antitwist pair at intersectipnBoth configu-
rations must be included in the string amplitude.

04600

XE exp— sin(mv)F(X)F(1—Xx)

r.ro 27a’

(dl(i,j)+f1|-1)2 ( raLo )2
% F(0) =) (61

The summation of these two lattice contributions in the
case ofi=] gives the two terms in the amplitudg9). For
distincti andj, however, there is néchannel massless ex-
change since twist fields from different intersections do not
couple. This can be seen explicitly from the string amplitude.
As x—0 or x—1 only one of the terms gives a massless
exchange after Poisson resummation. In particular, for the
X—0 limit one needs to do a Poisson resummatiom.irio
see that only th@®) term survives in this limit. The second

1-9
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term, which containsgl,(i,j), goes to zero even far, =0 in I(x)=(1—x)1" "N B(v,\)F1(1—X)Ky(X)
this limit. Analogously, only thez(?) term contributes in the
x—1 limit. TB(1-v,1-MF(1-x)Ky(X)]. (64)

To determine the overall normalization of the amplitude
we proceed as in the previous section. Instead of twd3(v,\) is the Euler beta function anfé;, K; are hypergeo-
s-channel poles and twbchannel poles from gauge bosons metric functions defined in the Appendix.
living, respectively, on branes 1 and 2, we now get in the From the boundary conditiori§2) we determine the clas-
amplitude(53) just twos-channel poles, one for each type of sical solutions
gauge bosons. The normalization constant is still given by
Eqg. (55), however. IX(2)=aw;_,\(2)=2e"* "V, (2)
One can ask if similar results hold for four-point ampli- ' '
tudes of twist fields coming from more than two intersec-

. . . o . . () = — Ne= _ Aa—im(A—1)7 N
tions. Clearly an amplitude of a twist-antitwist pair from in- IX(2)=—aw;_,\(2)=—ae " Vo, _,,\(2)
tersectioni with a twist from intersectionn and an antitwist

from intersectionk is not possible since the fields coming 5?(2):bwv'lfx(z)E'Be*iﬂ};vvlﬂ(z)

from intersection must be separated by a lattice translation

which forcesk=j. However, four-point amplitudes of fields — — — =i~ —

coming from four different intersections are possible. In this IX(2)=—=bw,1\(2)=—be'™w,; \(2). (65
case there will be a minimum nonzero distance between each

pair of twist fields which will depend on the particular brane  Again the parameters andb are arbitrary and reflect the
configuration. At most one lattice configuration exists for afreedom in specifying the lengtlel andd, of the four-sided
given set of twist fields all coming from different intersec- polygon. However, to obtain a three-point amplitude one
tions. The necessary and sufficient condition for a nonvanmust take the limitx,—xs. Unless t-v—A=0, which is
ishing amplitude of two twist fields from intersectionand  precisely the case of one independent angle considered
j and two antitwist fields from intersectiomsand| isi—k  above, one of the two linearly independent solutions be-
=|—j. Such amplitudes do not contain massless exchangegpmes singular in this limit. For 2v—\>0, as we will
though, and so their overall normalization cannot be deterassume without loss of generality,, ; (2) =(z—x;) "(z
mined directly by the above method. Nevertheless, this nor=Xz)"~*(z—x3)* ~*(z—x,) ~* develops a nonintegrable sin-
malization constant is part of the quantum amplitude, whicrgularity atz=xz in the limit x,—X3. Therefore, the four-

is independent of the global effects of the lattice, and hencgoint amplitude that reduces to the three-point amplitude

it must be also given by Ed55). must haveb=0. This is to be expected since the distadge
cannot be an independent parameter if one wants to get a
lll. FOUR- AND THREE-POINT FUNCTIONS WITH TWO ]Ehree_'po'”} ‘Zmp“tgde' '”J_"’“r’]t # 'Sdset to zeral, becomes a
INDEPENDENT ANGLES unction of d; and x, which tends to zero ag,—X3 as

required. To keep the discussion general, though, we first
The above method can be directly applied to the problentonsider the problem with arbitragyandb.
of a four-point amplitude with two independent ang(ég. The classical action is given by
2). The boundary conditions now read

IX+ 9X= 0, Ser=— ,
4o

2| dlo, @
Cy

IX+9X=0, on (—%,X1)U(Xz,X3)U(Xg,+), +Bzf d?2|®, 1 1\ (2)]2
Cy ne

e™oX+e 19X =0, 10
X) ~ ~
by -[a%+(1—x) 27 Vb2, (66)

e*iﬂ'V&Y_‘_ ei’fTV;X:O, on (XlIXZ)a

e ™ X+ el ™ aX =0 where the integrals have been evaluated using the method of
' [36] to factorize closed string amplitudes into a product of

open string amplitudes. To determine the coefficienasdb

i\ 9% —iTN 9y
emaX+e MaX=0, on (XgXa). 62 e impose the global monodromy conditions
In the Appendix we evaluate the quantum amplitude
(0,(x1) (%) 7\ (X5) o5 (xa)). The result is f dx2=d,, j dx2=d,, (67)
C )

Zgu(¥)=consxx "I (1-x) "M (x) "M, (83
where the contour€; and C; are shown in Fig. &). The
where two other lengths of the polygon are automatically deter-

046001-10



CONFORMAL FIELD THEORY COUPLINGS F@®& . .. PHYSICAL REVIEW D 68, 046001 (2003

mined and no other contours provide any additionalpendent angle. We specialize T8 since the amplitude of
information® Solving these conditions fa andb we obtain ~ Most interest is the one involving factorizable three-cycles

on T8, We find
S=il(1—x)~ (A== _
a=i[(1—x) B(v,\)F1(1—x)d; const 16752 75
+B(1—v,1-N)F5(1—x)d5]/I(X) (68
The limit x— 1 of the four-point amplitude produces the full
and expression for the three-point amplitude. In particular, since
the conformal weights of the twist fields satisfy,+h,
b=i[B(v,\)F1(1—x)dy+ (1—x)2" 7N —h,.,= v\, the latter contains the correct singularity in this
limit in agreement with the operator product expansion
XB(1—v,1-N)F,y(1—x)d,]/I(X), (69
where @i(zl)oj(z2)~§k) ClOUz)(z— ) NN (76)

J)=(1=x) " V[B(rMF(1-x)]? _ .
One can then show that the full three-point amplitude for

+(1-x)E"""N[B(1—v,1-N)Fx(1—x)]% branes wrapping factorizable three-cycles Bh takes the
(70) form
3
Although the general four-point amplitude with arbitrary 4mB(vj,1-v)) Aj(m)
N era Z;=2x]] > exp-
d, andd, is interesting itself, we want to evaluate the three- =1 VB(y \)B(rj, 1= vj=\)F 2o

point amplitude which gives the instanton corrections to the
Yukawa couplingsb then must be set to zero and the mono- 3
=27TH \/
i=1

A7l (1—v) I'(1-N)T(vj+1)

dromy conditions give instead

~ id,
BT 0 (r S exp. M, a
m 2ma’
while d, is x dependent
whereA,(m) is the area of the triangle formed by the three
dy(x)=dy (1= )1~ A B(1-\1-v)Fa(1-X) . intersecting branes on thj¢h torus. Note that the amplitude
2 1 B(\,v)F1(1—Xx) is completely symmetric in all three angles of the triangle as
(72) it should.

) ) The above three-point correlation function of bosonic
asx—1, which therefore correctly produces a three-pointyist fields (78) is the key contribution to the physical
amplitude in this limit. The on-shell action becomes Yukawa coupling of two fermionic and one bosonic field.
The full three-point amplitude of these fields can be deter-

=M( dy 2 (73 ~ Mined by employing the normalization factor for the disk
< 40 | B(r,N)F1(1—x) amplitude,Cp,=1/(g5e’), and the bosonic string vertex op-
erator in —1 picture[Eq. (48)], go, as determined in Sec.

and the complete four-point amplitude takes the form IID. In addition, the normalization factor of the fermionic

vertex operators in the- 1/2 picture[Eq. (49)] turns out to
Z,(x)=const<x™ "(171(1—x) "M (x) 12 be 2V4/a’g,. (This normalization can be determined from
q ) the string amplitudes of fermionic fields to gauge vector
« E exp— m 1(m) ) e bosons, along the same lines as described for the correspond-

m 4a" \B(v,N)F1(1—X) ing bosonic fields in Sec. Il D Thus the final expression for

the physical Yukawa couplings is given k2g,x Zs.
Hered,;(m)=Ly+ mL is the most general form the distance A comprehensive analysis of the triangles that contribute
d, can take when the polygon is embedded in a lattige. to this amplitude for a given set of intersections in diverse
and the cycle length will generically depend on the lattice brane configurations and including the effect of nontrivial
and the D-brane configuration. The overall normalizationcomplex structure or Wilson lines has been dong3ig.
constant can be determined by the same method used to fix
the normalization of the four-point amplitude with one inde- IV. CONCLUSIONS

We have applied conformal field theory techniques to ob-

5Note, however, that these two conditions become linearly deperfain three-point and four-point correlation functions of twist
dent when T v—\=0 becausel,=d,. In that case, which is the fields from D-branes wrapping factorizabtecycles of T2"
problem of one independent angle discussed earlier, one should take T>X T2- - - and intersecting at points in the interied".

the contours of Fig. @). The method allows for a complete determination of the
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amplitude, including the quantum contribution. Its most in- ( P(z,w)
teresting application is to the three-point function calculation  g(z,w)=w;_, (2)®, 1 ,(W)
of intersecting D6-branes wrapping factorizable three-cycles ' ’ (z—w)?
of T8, which in turn gives the complete Yukawa coupling of (A2)
two four-dimensional chiral fermions to the Higgs field. o o

The method also applies to the study of the three-point h(zzw)=w, 1 \(2)®,1-,B(X), (A3)
and four-point twist field correlation functions in models
with orientifold and orbifold projections, as discussed in Secwhere
[I C. Due to the mirror symmetry projection along aiplane
in T?" the branes can now intersect with an orientifold image
of another brane. However, the amplitude calculation for
states at the intersection proceeds analogously. As for the
Z,X Z, orbifold projection, we mention that the combined gnd the condition
orbifold and orientifold action maps cycles into themselves;
thus each intersection is accompanied by a combination of g(z,w)~(z—w) 2 (A5)
the orientifold and orbifold images that have to be carefully
taken into account. We hope to return to the detailed discusjetermines all coefficienta;; except foragy, a3, andag,
sion of these contributions in the future work. for which it provides two linear equations. Solving these for

The formalism can be applied to the calculation of threea , anda,; we find
and four fermion couplings of classes of type Il orientifold

+A({Xi}))

2
P(z,w)=.20 a;w'z (A4)
ij=

compactifications with intersecting D-branes. Among them 1
the four-dimensional type IIA orientifold compactification (T(z))=lim| g(z,w)— 5
with intersecting D6-branes is interesting; supersymmetric w—z (z=w)

compactifications of this type are directly relatedde com-

2
pactification of M theory. In addition to the Yukawa cou- __ AGXiD+Z7 852+ ag + }v(l—v)
plings, the four-point amplitude of chiral fermions can pro- (Z=x)(Z=X2) (2= X3) (2= %g) 2
vide low energy corrections to the effective four-fermion 1 1 2 1
coupling and may be of phenomenological interest. We plan X - +=N(1—\)
to address further these effects in concrete semirealitic (z=x1)  (z27%g) 2
=1 supersymmetric models, such as those constructed in, 1 1 2 v 1—p
.0.,[12,13,17,18 x( - ) —( +
e0-1 %9 (g \zx) (%)
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and using SL(2,R) invariance to setx;=0, Xo=X, X3

APPENDIX: EVALUATION OF QUANTUM FOUR-POINT -
=1, x4— we find

AMPLITUDE WITH TWO INDEPENDENT ANGLES

Here we evaluate the four-point correlation function 1(1-»=N) v(A-») (A-»A-N)

(o, (X)) o_,(X2)o_\(X3)o\(X4)). The calculation closely aXun(x)zz x—1 X x—1
parallels the calculation for closed string amplitudes on orbi-
folds [37,38]. As before we introdu_ce the auxiliiry correla- n A(X) (A8)
tors g(z,w), g(z,w), h(z,w)=-g(z,w) and h(z,w)= X(x—=1)’
—g(z,w) as defined in Sec. Il A. In terms of
where
(5 —V(y__ v—=1/5__ —N(>__ A—1
wV’)\(Z)—(Z X1) (2= Xy) (Z—X3) " M(Z—Xq) (A1) A(X)= lim —X;1A({Xi}) (A9)
X4—>30

these take the form and
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Zgu(¥)= lim XN ,(0)o_ (X)o_\(1)ay(X,)).
Xg4—

(A10)

As before A(x) is determined by imposing the quantum

monodromy conditions

f dX= f dX=0,
G G

leading again to condition®2) and (21). We insert

(A11)

g(z,w)—{;(l—v—)\)x+(1—)\)(z—x)+A(x)F)1_V'x(z)
(A12)

9(zW)—=B(X)®,1 \(2) (A13)

and arrive at the two equations

%(l— v—N)X+A(X)

| o, @+
X f dz(z—X)@;_,\(2)—€ 27"B(x)
Cy

X | dzw; ,\(2)=0
Cy1

(A14)

and

1
E(l— v—N)X+A(X)

f dzioy -, \(2)+(1-N)
Cs

X | dz(z—x)@1_,\(2)—B(X) Jc dzw; ,,\(2)=0.
2

Ca
(A15)
To solve these we need the integrals
dzw; ,\(2)=€"1"""MB(1,1- v)Ky(X),
C1
(A16)
J dzw; ,\(2)=e""MB(1-\,1- )
Ca
X(1=x)1 "M Fy(x),  (AL7)

PHYSICAL REVIEW D 68, 046001 (2003

where
Ki(X)=F(v,A;1X), (A18)
Ko(X)=F(1—v»,1-X\;1;X), (A19)
Fi(xX)=F(v,\;v+X\,X), (A20)
and
Fo(X)=F(1—v,1-\;2—v—X\,X). (A21)
One also needs the following identities:
(1=-v)(1-MF(r,\;2X)=(1—v—N)K(X)
+(1-x)dxK1(x),
(A22)
(1-=v)(1-NF(1=N1-v;3—v—\;1-X)
=—(2—v—N\)dFy(1—x), (A23)
B(1—v»,1—\)(1—x)1 """ F,(1—x)
=B(»,\)Fy(1—x)—B(1—»,1—)\)
XB(v,\)(1—v—N)K;(X), (A24)
and
K1(X)=(1=x)1 """ Ky(x). (A25)

After some algebra we arrive at the desired result

2A(X)=X(1—x)dylog[B(v,\)F1(1—x)K5(X)
+B(1—v,1-N)F(1—x)K(X)]. (A26)

Hence
Zqu(x)=const<x " (1—x) "M (x) T2 (A27)

where
L(X)=(1=x)*"""MB(r,M)F1(1-x)Kz(X)
+B(1—v,1-N)F,(1—x)K4(X)]. (A28)

For completeness let us also give the result Bix),
namely,

1,
B(x)= e 2™ x(1-x)#" Nl

. B(v,\)F1(1—X)K,(X)+B(1—,1— \)Fo(1—x)K(X)

A29
K 2(X))2 (A29)
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