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Conformal field theory couplings for intersecting D-branes on orientifolds
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We present a conformal field theory calculation of four-point and three-point correlation functions for the
bosonic twist fields arising at the intersections of D-branes wrapping~supersymmetric! homology cycles of
type II orientifold compactifications. Both the quantum contribution from local excitations at the intersections
and the world-sheet disk instanton corrections are computed. As a consequence we obtain the complete
expression for the Yukawa couplings of chiral fermions with the Higgs fields. The four-point correlation
functions in turn lead to the determination of the four-point couplings in the effective theory, and may be of
phenomenological interest.
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I. INTRODUCTION

In recent years, the intersecting D-brane configurati
have played an important role in several areas. The m
prominent one is the construction of four-dimensional so
tions @1–5# of type II string theory, compactified on orient
folds. In particular the appearance of the chiral matter@6,7#
at the brane intersection provides a promising starting p
to construct models with potential particle physics implic
tions @6,7#.

The model building with intersecting branes was dev
oped in a series of papers. In particular, nonsupersymm
@1–5# ~and subsequently explored in@8–11#! and more re-
cently, supersymmetric@12–18# constructions with quasire
alistic features of the standardlike and grand-unified mod
have been given. One has tremendous freedom in the
structions of nonsupersymmetric models, since the Ramo
Ramond tadpole cancellation conditions can be satisfied
many brane configurations leading to the standard-mo
gauge group and three families of quarks and leptons. H
ever, the fact that the theory is nonsupersymmetric in
duces the Neveu-Schwarz–Neveu-Schwarz uncancelled
poles as well as the radiative corrections of the string sc
~For the constructions with intersecting D6-branes the str
scale is necessarily of the order of the Planck scale. H
ever, examples@19# with intersecting D5-branes have bee
given, where the string scale can be as low as the TeV sc!

On the other hand, supersymmetric intersecting D-br
constructions are extremely constraining. Nevertheless s
supersymmetric constructions with intersecting D6-bran
which have the standardlike@12,13,15,17# and grand-unified
model spectra@13,18#, have recently been constructed.
particular, these models have an additional quasi-hid
gauge sector that is typically confining which may have
teresting implications for the supersymmetry breaking@20#.
Note, however, that these models typically suffer from ad

*On sabbatic leave from the University of Pennsylvania.
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tional exotics@21#. Both supersymmetric and nonsupersym
metric constructions have adjoint matter associated with e
brane configuration, since the toroidal cycles wrapped by
branes arenot rigid. Interestingly, the embedding of supe
symmetric four-dimensional models with intersecting D
branes has a lift@13,14# into M theory that corresponds to th
compactification of M theory on a singularG2 holonomy
manifold @12,13,22–24#.

While phenomenology of both nonsupersymmet
@6,11,25# and supersymmetric@20,21,26# models has been
addressed, the actual string calculations of the coupling
this theory have been limited. While the tree-level gau
couplings are relatively easy to determine and their featu
have been studied, see, e.g.,@21# and references therein. A
calculation of gauge coupling threshold corrections@27# is
also of interest, since it could be compared to the stro
coupling limit of M-theory compactified on the correspon
ing G2 holonomy space@28#.

An important set of tree level calculations involves t
open-sector states that appear at the brane intersect
These states include the chiral matter. In the supersymm
constructions the appearance of the full massless chiral
permultiplet is ensured there. The couplings of most inter
are the three linear superpotential couplings, such as the
pling of quarks and leptons to the Higgs fields. On the ot
hand, the four-point couplings are also of interest, since t
indicate the appearance of potentially other higher or
terms in the effective Lagrangian.

The calculations of couplings of states~tachyons! appear-
ing at the nonsupersymmetric intersections of branes also
interesting implications in the study of tachyon potential a
the phenomenon of tachyon condensation. In particular,
specificT-dual models of@p2(p12)# bound state configu-
rations the four-point calculations have been addresse
@29–31#.

The purpose of this paper is to perform explicit strin
calculations of the four-point and three-point correlati
functions associated with the states appearing at the inter
tions of branes that wrap cycles of the internal tori. T
©2003 The American Physical Society01-1
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nontrivial part of the calculation involves the evaluation
the correlation functions of four~three! bosonic twist fields,
which signify the fact that the states at the intersection a
from the sector with twisted boundary conditions on t
bosonic~and fermionic! string degrees of freedom.~For su-
persymmetric cycles the physical massless states at the i
section correspond to the chiral supermultiplets.! We employ
the techniques of conformal field theory, which are related
the study of bosonic twist fields of the closed string theo
on orbifolds@32#. Similar techniques were employed in th
study of type II string theory for boundstates ofp2(p12)
brane sectors@29–31#.

Specifically, we focus on intersecting D-branes wrapp
factorizableN cycles ofT2N5T23T2

•••. Thus, in eachT2

the D-branes wrap one-cycles, and the problem reduces
calculation of correlation functions of bosonic twist field
associated with the twisted sectors at intersections
D-branes on a generalT2. Thus the final answer is a produ
of contributions from each correlation function on eachT2.

We provide a general result for

^sn~x1!s2n~x2!sn~x3!s2n~x4!&, ~1!

which corresponds to the bosonic twist field correlation fu
tion of states appearing at the intersection of two pairw
parallel branes with intersection anglepn ~see Fig. 1!.

In the case of the twist fields appearing at the same in
section, our result is interpreted in terms of the volume of
torus, the lengths of the one-cyclesL1 andL2 that each set of
branes wrap and the intersection numbersI.1 We also address
the case when the twist fields are associated with diffe
intersections of the two branes. In particular we addres
detail the summation over the instanton sectors for such g
eral cases.

1This is a special case, when the branes wrap the canonical c
of a torus with the complex structuren. A T-dual interpretation of
this correlation function is that of the bosonic twist fields for D0-D
brane with the magnetic fluxB5cot(pn).

FIG. 1. Target space: the intersection of two parallel bra
separated by respective distancesd1 and d2 and intersecting at
anglespn @Fig. 1~a!#. World sheet: a disk diagram of the four twis
fields located atx1,2,3,4 @Fig. 1~b!#. The calculation involves a map
from the world sheet to target space.
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The next calculation that we set out to do is that of t
four-point correlation function:

^sn~x1!s2n~x2!s2l~x3!sl~x4!&, ~2!

which corresponds to the bosonic twist field correlation fun
tion of states appearing at the intersection of two branes
tersecting at respective anglespn andpl with the third set
of parallel branes~see Fig. 2!. This correlation function is
specifically suited for taking the limit ofx2→x3 which fac-
torizes to a three-point function associated with the inters
tion of three branes. This latter result is particularly intere
ing since it provides a key element in the calculation of t
Yukawa coupling.

In this set of calculations we determineboth the classical
part and the quantum partof the amplitude and thus obtai
the exact answer for the calculation. In particular, the cal
lation of the quantum part depends only on the angles~and is
thus insensitive to the scales of the internal space!. On the
other hand, the classical part carries information on the
tual separation among the branes and the overall volum
T2 as well.

In particular the full expression~both classical and quan
tum part! for the Yukawa couplings for branes wrapping fa
torizable cycles ofT6 is written as

Y5A2g02p)
j 51

3 A 4pB~n j ,12n j !

B~n j ,l j !B~n j ,12n j2l j !

3(
m

expS 2
Aj~m!

2pa8
D , ~3!

whereAj (m) is the area of the triangle formed by the thr
intersecting branes on thej th torus andg05eF/2, with F
corresponding to the type IIA dilaton. The coupling is b
tween two fermion fields and a scalar field, i.e., the mass
states appearing at the respective intersections, whose ki
energies are taken to be canonically normalized.

While we were in a process of completing this work t
paper@33# appeared where a comprehensive analysis of
classical part of the string contribution~disk instantons! to

les

s

FIG. 2. Target space: the intersection of two branes intersect
respectively, with the two parallel branes at anglespn and pl,
respectively@Fig. 2~a!#. World sheet: a disk diagram of the fou
twist fields located atx1,2,3,4 @Fig. 2~b!#. The calculation involves a
map from the world sheet to target space, allowing for factorizat
on a three-point function.
1-2
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CONFORMAL FIELD THEORY COUPLINGS FOR . . . PHYSICAL REVIEW D 68, 046001 ~2003!
the Yukawa coupling in models with intersecting branes
Calabi-Yau manifolds was given, and extensive explicit c
culations of the classical string contributions for models
intersecting branes on toroidal orientifolds were presente

Our work has a certain overlap with that of@33#. In par-
ticular, our work focuses only on models with branes wra
ping factorizableN-cycles ofT2N5T23T2

•••. We evaluate
the classical action contribution by explicitly solving for th
classical solutions of the bosonic string with the bound
conditions governed by the locations of the D-branes. For
special case of the three-point function we therefore a
derive the result of@33# that the classical string contributio
to the three-point coupling involves a summation over
exp(2A/2pa8), whereA corresponds to the area of the tr
angles associated with the intersections of the branes in
T2. On the other hand, we have also determined the quan
part of the correlation functions, thus obtaining the full e
pression for the couplings.

The paper is organized as follows. In Sec. II we determ
the correlation function~1!. In Sec. III we calculate~2! and
factorize it on a three-point function to determine the cor
sponding Yukawa coupling. Conclusions, which inclu
comments on generalizations of these calculations as we
physical implications, are given in Sec. IV.

II. FOUR-POINT FUNCTION WITH ONE
INDEPENDENT ANGLE

In order to evaluate the path integral for the partiti
function of open strings stretching between D-branes in
secting at an anglepn we split the embedding fieldsXi

5Xcl
i 1Xqu

i into a classical solution to the equation of m
tion, subject to the appropriate boundary conditions, an
quantum fluctuation. The mode expansion for the quan
fluctuation is not integer moded due to the boundary con
tions. The vacuum of theXi conformal field theory~CFT! is
then created by primary fieldssn acting on theSL(2,R)
invariant vacuum. The partition function naturally factoriz
into a classical contribution due to world sheet instanton s
tors and a quantum amplitude due to quantum fluctuatio
In contrast with the instanton contribution, the quantum a
plitude contains no topological information about the wo
sheet embedding in target space, but it is still essential for
complete determination of Yukawa couplings in a gene
model with intersecting branes.

A. Evaluation of quantum amplitude

We shall employ the stress tensor method@29,30,32# to
evaluate the quantum amplitude of four twist operators.
oriented theories the twist operators live on the boundary
the disk and change the boundary conditions as we m
along the boundary. The boundary conditions are speci
by the D-brane configuration in target space~see Fig. 1!. We
concentrate on a singleT2 and D1-branes wrapping one
cycles. The amplitude for branes wrapping factoriza
three-cycles onT6 is then the product of the amplitudes fo
the threeT2 factors.
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In terms of the complexified coordinatesX5X11 iX2,X̄
5X12 iX2 on T2 the boundary conditions read

]X1 ]̄X̄50, ]X̄1 ]̄X50, on

~2`,x1!ø~x2 ,x3!ø~x4 ,1`!,

eipn]X1e2 ipn]̄X̄50,

e2 ipn]X̄1eipn]̄X50, on ~x1 ,x2!ø~x3 ,x4!. ~4!

These conditions define the operator product expans
~OPEs! of the embedding fields with the twist operator
namely,

]X~z!sn~x!;~z2x!n21tn~x!1•••,

]X̄~z!sn~x!;~z2x!2ntn8~x!1•••,

]̄X~ z̄!sn~x!;2~ z̄2x!2ntn8~x!1•••,

]̄X̄~ z̄!sn~x!;2~ z̄2x!n21tn~x!1•••, ~5!

and similarly fors2n(x). To evaluate the correlation func
tion of four twist fields^sn(x1)s2n(x2)sn(x3)s2n(x4)& we
consider the correlators

g~z,w!

5

K 2
1

a8
]X~z!]X̄~w!sn~x1!s2n~x2!sn~x3!s2n~x4!L

^sn~x1!s2n~x2!sn~x3!s2n~x4!&
,

~6!

h~ z̄,w!

5

K 2
1

a8
]̄X~ z̄!]X̄~w!sn~x1!s2n~x2!sn~x3!s2n~x4!L

^sn~x1!s2n~x2!sn~x3!s2n~x4!&
,

~7!

ḡ~z,w!

5

K 2
1

a8
]X̄~z!]X̄~w!sn~x1!s2n~x2!sn~x3!s2n~x4!L

^sn~x1!s2n~x2!sn~x3!s2n~x4!&
,

~8!

and

h̄~ z̄,w!

5

K 2
1

a8
]̄X̄~ z̄!]X̄~w!sn~x1!s2n~x2!sn~x3!s2n~x4!L

^sn~x1!s2n~x2!sn~x3!s2n~x4!&
.

~9!
1-3
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The OPEs~5! together with the conditions

g~z,w!;~z2w!22, h~ z̄,w!;regular ~10!

asz→w uniquely determine

g~z,w!5v12n~z!vn~w!

3F ~12n!
~z2x1!~z2x3!~w2x2!~w2x4!

~z2w!2

1n
~z2x2!~z2x4!~w2x1!~w2x3!

~z2w!2
1A~$xi%!G

~11!

and

h~ z̄,w!52vn~ z̄!vn~w!B~$xi%!, ~12!

where

vn~z!5~z2x1!2n~z2x2!n21~z2x3!2n~z2x4!n21.
~13!

Here A($xi%) and B($xi%) are functions of the twist field
positions to be determined. The boundary conditions and
lomorphicity imply

h̄~z,w!52g~z,w!, ḡ~z,w!52h~z,w!. ~14!

In order to determine the functionsA andB we impose ap-
propriate monodromy conditions which will ensure that t
quantum fluctuationsXqu are local. This is guaranteed if

E
Ci

dX5E
Ci

dX̄50 ~15!

whereCi is any nontrivial world-sheet contour. In the case
hand there are two topologically inequivalent contoursC1
joining the intervals (x2 ,x3) and (2`,x1) and C2 joining
the intervals (x3 ,x4) and (x1 ,x2) @see Fig. 3~a!#. One can
save some effort, however, by noticing that the contours
be analytically continued to the world-sheet boundary alo
which only one particular linear combination of target spa
fields satisfies Neumann boundary conditions and can th
fore have nontrivial displacement~along the boundary of the
world sheetd5dt]t and hence the fields satisfying Dirichle
boundary conditions give no contribution!. The nontrivial
conditions are

FIG. 3. World-sheet contours. The contoursC1 and C2 @Fig.
3~a!# are the two topologically inequivalent contours leading to t
independent conditions. The contours in Fig. 3~b! define the global
monodromy conditions used in Sec. III.
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E
C1

d~eipnX2e2 ipnX̄!50, ~16!

E
C2

d~X2X̄!50. ~17!

When inserted into the four twist field correlation functio
these lead to monodromy conditions for the correlatorsg, ḡ,
h, andh̄. For example, condition~17! implies

E
C2

dz@g~z,w!2ḡ~z,w!#1E
C2

dz̄@h~ z̄,w!2h̄~ z̄,w!#50.

~18!

Now, using relations~14! we can tradeh and h̄ for g and ḡ.
Moreover, z̄ can be traded forz by integrating along the
mirror image of contourC2 about the real axis, call it con
tour C̃2. Taking into account the phases ofg and ḡ on each
of the contours one sees

E
C̃2

dzg~z,w!5E
C2

dzg~z,w!, ~19!

E
C̃2

dzḡ~z,w!5E
C2

dzḡ~z,w!, ~20!

and hence

E
C2

dz@g~z,w!2ḡ~z,w!#50. ~21!

Similarly we derive

E
C1

dz@eipng~z,w!2e2 ipnḡ~z,w!#50. ~22!

Invoking SL(2,R) invariance we fix x150, x25x, x3
51, x4→`. Dividing then byvn(w) and lettingw→` we
get

g~z,w!→@n~z2x!1A~x!#ṽ12n~z! ~23!

ḡ~z,w!→B~x!ṽn~z!, ~24!

whereA(x) and B(x) have been redefined appropriately
absorb the singularity arising fromx4→` and

ṽn~z!5~z2x1!2n~z2x2!n21~z2x3!2n. ~25!

Conditions~22! and ~21! then give

nE
C2

dz~z2x!ṽ12n~z!1A~x!E
C2

dzṽ12n~z!2B~x!

3E
C2

dzṽn~z!50 ~26!

and
1-4
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nE
C1

dz~z2x!ṽ12n~z!1A~x!E
C1

dzṽ12n~z!

2e22p inB~x!E
C1

dzṽn~z!50. ~27!

Evaluating the contour integrals we find

2nE
Ci

dz~z2x!ṽ12n~z!5x~12x!
d

dxECi

dzṽ12n~z!,

~28!

E
C1

dzṽ12n~z!5F~x!, ~29!

and

E
C2

dzṽ12n~z!5eipnF~12x!, ~30!

where

F~x![B~n,12n!F~n,12n;1;x!

5E
0

1

dyy2n~12y!n21~12xy!2n. ~31!

B(n,12n) is the Euler beta function andF(a,b;c;x) is the
hypergeometric function. Solving forA(x) we finally obtain

A~x!5
1

2
x~12x!]xlog@F~x!F~12x!#. ~32!

The quantum contributionZqu(x) to the four twist field cor-
relation function can now be extracted from the OPE

^T~z!&5
hs

~z2x!2
1

1

z2x
]xlogZqu~x!1 . . . ~33!

asz→x. Evaluating the left-hand side by taking the limitz
→x in the expression

^T~z!&5 lim
w→z

S g~z,w!2
1

~z2w!2D
5

A~$xi%!

~z2x1!~z2x2!~z2x3!~z2x4!
1

1

2
n~12n!

3S 1

~z2x1!
1

1

~z2x2!
1

1

~z2x3!
1

1

~z2x4! D
2

,

~34!

we obtain

Zqu~x!5 lim
x4→`

ux4un(12n)^sn~0!s2n~x!sn~1!s2n~x4!&

5
const

@x~12x!#n(12n)@F~x!F~12x!#1/2. ~35!
04600
B. Evaluation of the classical contribution

The path integral over the target space fieldsXi includes a
sum over topologically inequivalent configurations fro
strings wrapping around the compact directions of the tor
The main contribution comes from configurationsXcl

i satis-
fying the classical equations of motion while the effect
fluctuations about these classical configurations is encode
Xqu and was calculated in the previous section using con
mal field theory techniques.

In this section we first determine the classical configu
tions satisfying the equation of motion subject to the bou
ary conditions~4!, dictated by the D-brane setup. This is
straightforward boundary value problem for the Laplace o
erator in two dimensions and the solutions can be expres
in terms of holomorphic or antiholomorphic maps from t
disk onto the target space manifold. We then evaluate
on-shell action and sum over the toroidal lattice to obtain
world-sheet instanton contribution to the four-point functio

The solutions to the above boundary value problem a

]X~z!5av12n~z![ãe2 ipnṽ12n~z!,

]̄X̄~ z̄!52av12n~ z̄![2ãeipnṽ12n~ z̄!,

]X̄~z!5bvn~z![b̃eip(n21)ṽn~z!,

]̄X~ z̄!52bvn~ z̄![2b̃e2 ip(n21)ṽn~ z̄!, ~36!

where the coefficientsa andb are the only free parameters t
be determined. These parameters reflect the freedom
specifying the length of the two independent sides of
parallelogram. The classical contribution to the path integ
is then

Zcl5e2Scl, ~37!

where

Scl5
1

4pa8
E

C1

d2z~]X]̄X̄1]X̄]̄X!

52
1

2pa8
sin~pn!F~x!F~12x!~ ã21b̃2! ~38!

where we have used

E
C1

d2zuṽn~z!u25E
C1

d2zuṽ12n~z!u2

52 sin~pn!F~x!F~12x!. ~39!

To determine the coefficientsã and b̃ we impose the
monodromy conditions2

2We assume for simplicity that the branes wrap cycles along
two-torus lattice vectors.
1-5
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E
C1

ds5
2n1pR1

sin~pn!
, E

C2

ds52n2pR2 . ~40!

SinceX25cot(pn)X1 alongC1

ds25~dX1!21~dX2!25S dX1

sin~pn! D
2

. ~41!

Similarly, ds25(dX2)2 along C2. A similar calculation as
for the quantum monodromy conditions then gives

ã5 ipS n1R1

sin~pn!F~x!
1

n2R2

F~12x! D ,

b̃5 ipS n1R1

sin~pn!F~x!
2

n2R2

F~12x! D . ~42!

Hence,

Scl5
2p

a8
sin~pn!F~x!F~12x!F S n1R1

sin~pn!F~x! D
2

1S n2R2

F~12x! D
2G . ~43!

The full amplitude is now of the form

Z~x![ lim
x4→`

ux4un(12n)^sn~0!s12n~x!sn~1!s12n~x4!&

5Zqu (
m1 ,m2

e2Scl(m1 ,m2), ~44!

whereZqu is determined in Eq.~36! @up to an overall con-
stant andScl is defined in Eq.~43!#.

Note, in the limitR1 , R2→`

(
m1 ,m2

e2Scl(m1 ,m2)→1 ~45!

and hence the four twist amplitude receives no instanton
rections as expected.

C. Canonical form of the amplitude and generalizations

The above calculation was performed for the amplitude
two intersecting branes wrapping two canonical homolo
cycles@a# and@b#, respectively, of theT2 with the complex
structure specified byn. We can, however, reexpress th
amplitude in terms of a four-point twist amplitude for tw
branes wrapping two general cycles specified by the wr
ping numbers (n1 ,m1) and (n2 ,m2) on T2 with the trivial
complex structure, first, as
04600
r-

f
y

p-

Z~x!5const3@x~12x!#2n(12n)@F~x!F~12x!#21/2

3 (
r 1 ,r 2

exp2
1

2pa8
sin~pn!F~x!F~12x!

3F S r 1L1

F~x! D
2

1S r 2L2

F~12x! D
2G , ~46!

whereLi are the lengths of the corresponding one-cycles
can be expressed in terms of the wrapping numbers and
radii of the torus asLi52pA(niR1)21(miR2)2. On the
other hand, sin(pn) can be reexpressed in terms of invaria
quantities such as the intersection numberI 12[n1m2
2n2m1 and the lengthsL1 , L2 of the one-cycles as

sin~pn!5
~2p!2I 12R1R2

L1L2

5
I 12x

An1
21x2m1

2An2
21x2m2

2
,

~47!

wherex[R2 /R1 is the complex structure modulus. As e
pected, the angle is insensitive to the overall scale, and
pends only on the wrapping numbers and the complex st
ture modulus.

It is straightforward to generalize this result to aT2 with a
nontrivial complex structuret. In this case it is efficient to
parametrize the wrapping numbers in terms ofmi→m̃i[mi
1tni ~see, for example,@13#!. The complete result takes th
form ~46!, but with mi ’s replaced withm̃i .

Of course, a generalization of the amplitude to the case
T2n5T23T2

••• ~we assume the Ka¨hler structure to be a
product of the Ka¨hler structures of eachT2) is straightfor-
ward. In this case each twist field is just a product of in
vidual twist fields for eachT2, and the four-twist amplitude
is a product of individual twist amplitudes~46!. The most
interesting examples where the above calculations can
applied are cases of type IIA string theory onT65T23T2

3T2 with intersecting D6-branes wrapping a product
three one-cycles associated with eachT2.

For the purpose of performing complete string amplitu
calculations it is instructive to write down the complete ve
tex operators for physical bosonic statesx andx* which in
the (21) conformal ghost (f) picture:3

V21;x5e2f)
j 51

3

s12n
j ei (12n j )H jeikmXm

,

V21;x* 5e2f)
j 51

3

sn
j e2 i (12n j )H jeikmXm

, ~48!

whereHi corresponds to the bosonized world-sheet ferm
c i ~world-sheet superpartner of thei th toroidal coordinate
Xi). Here we chose to write explicitly the complete vert

3Here for clarity we have denoted the bosonic antitwist opera
by s12n modifying the notations2n which was used before for the
same operators.
1-6
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operator for the bosonic states in four dimensions; they
pear in the internal space at the intersection of D6-bra
wrapping a product of three one-cycles onT65T23T2

3T2. In the case of supersymmetry the intersection ang
satisfy the condition@13# ( j 51

3 pn i52p which ensures tha
these vertex operators correspond to massless bosonic s
which now become superpartners of massless fermio
states with the following (21/2) superconformal ghost pic
ture vertex operators@7#:

V21/2;x5e2f/2Sa)
j 51

3

s12n
j ei [(1/2)2n j ]H jeikmXm

,

V21/2;x* 5e2f/2S̃a)
j 51

3

sn
j e2 i [(1/2)2n j ]H jeikmXm

. ~49!

Here Sa5e6(1/2)H16(1/2)H2 and S̃a5e6(1/2)H17(1/2)H2 repre-
sent the spin fields with respective positive and nega
chirality. @;eH1,2 are bosonized world-sheet fermionsca

with a the four-dimensional~complexified! indices.# Note
that in the case of supersymmetry the vertex operators~48!
for x and x* have the N52 world-sheet chargeH
[( i 51

3 Hi , 11 and 21, respectively, and thus correct
represent the vertex operators for the bosonic componen
the chiral superfield and its complex conjugate, respectiv
@34#. Similarly, the world-sheet chargeH for the fermionic
vertex operators~49! are, respectively,2 1

2 and 1
2 , again in

accordance withN52 world-sheet supersymmetry repr
senting the fermionic components of the chiral superfield
its complex conjugate, respectively.

In the above expressions we have suppressed the C
Paton factors; however, they are straightforward to incor
rate. The states transform asN^ M̄ under the U(N)
3U(M ) gauge symmetry of the two intersecting branes~see,
e.g.,@13# for details!.

The orientifold projection of type IIA theory involve
along with the world-sheet parity projection also the mirr
symmetry projection, say along the horizontaln plane of
T2n. Note that this projection restricts the value oft to be
either 0 or 1

2 . Since each brane now also has an orientif
image, obtained by a map (ni ,m̃i)→(ni ,2m̃i), one can now
consider four amplitudes of states appearing at the inter
tion of a brane, denoted byi, and another one, denoted b
j * , that is an orientifold image of a brane denoted byj. Note
that the calculation of the four amplitudes proceeds an
gously as above. It is possible to calculate the four-po
amplitude of the states appearing at the intersection of,
branei, with its own orientifold imagei * . Such states can
appear as symmetric or antisymmetric representations o
U(Ni) ~for details see@13#!. Again, calculation proceed
along the same lines. In the following we shall determine
crucial normalization constant of the quantum part of
correlation function.

D. Normalization of the amplitude

The overall normalization of the four-point amplitude c
be determined by factorizing the amplitude in the limitsx
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→0 or x→1 in which the four-point amplitude reduces to
product of the two three-point amplitudes. Namely, in the
limits, the four-point amplitude contains a dominant cont
bution from the exchanges of the intermediate open str
winding states around the compact directions. In the eff
tive field theory description the zero winding states cor
spond to the exchange of gauge bosons living on the br
along the cycle which is not collapsed by the limiting pr
cess. Asx→0 brane 2 contributes while asx→1 brane 1
contributes.

For the sake of concreteness we shall focus on a fo
dimensional example with D6-branes wrapping a produc
three-cycles. The physical states at the intersections are
resented by the vertex operators~48! and ~49!. For that pur-
pose we shall evaluate the four-point disk amplitu
S4(k1 ,k2 ,k3 ,k4) of two bosonic statesx and twox* at the
intersections. We shall relate this amplitude to the produc
two three-point functionsS3(k1 ,k2 ;k3) of x andx* states,
and the gauge bosonAm via the unitarity condition:

S4~k1 ,k2 ,k3 ,k4!5 i @gY M
0 #2E d4k

~2p!4

3
S3~k1 ,k2 ;k!S3~k3 ,k4 ;2k!

2k21 i e
. ~50!

With these preliminaries we now proceed with the calc
lations of the physical string amplitudes. The three-point a
plitude takes the form

S3~k1 ,k2 ;k3![^V21;xV21;x* V0,Am
&

5 i
CD2g0

3

A2a8
~2p!4d (4)S (

i 51

3

ki Da8~k12k2!•e.

~51!

This is the standard three-point amplitude, since we h
taken into account that̂sn(0)s12n(1)&51, and that in the
picture changing procedure of the gauge-boson vertex
internal part of the fermionic stress energy tensor does
contribute. We have introduced the disk couplingCD2 and
the couplingg0 of each vertex operator. The additional fact
of (2a8)21/2 is due to the picture changing procedure of t
gauge-field vertex. The gauge-field polarization vector is
noted byem . @For simplicity we calculated the amplitud
only for the U(1) gauge field; generalization toU(N) is
straightforward.# The factorization of the four-point gaug
boson amplitude onto the product of two three-point gau
boson amplitudes yields the standard relationship betw
CD2 andg0 : CD251/(g0

2a8). Note that this relationship also
automatically ensures that on both sides of Eq.~50! the de-
pendence ong0 drops out; namely,@CD2g0

3#25CD2g0
4/a8.

We have choseng05eF/2 which allows one to write the
effective kinetic energy action for the gauge fields with t
prefactor 1/@gY M

0 #2 and the kinetic energy for thex fields to
1-7
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be canonical. HeregY M
0 is defined in terms of the full gaug

coupling for the specific brane as4

@gY M
0 #2[e2FgY M

2 52p)
i 51

3

2pAa8Li
21 . ~52!

Thus the unitarity condition~50! appears with an extra facto
@gY M

0 #2 on the right-hand side~RHS! of the equation.
When evaluating the four-point amplitude we chose

picture change the vertex operators for bothx fields, which
in turn ensures that there is no contribution from the inter
part of the fermionic stress energy contribution. The ups
is the following form of the amplitude:

S4~k1 ,k2 ,k3 ,k4!5 i
CD2g0

4

2a8
~2p!4d (4)S (

i 51

4

ki D 4a82k1•k3

3S E
0

1

dxx2a8s21~12x!2a8t21

3)
j 51

3

@x~12x!#n j (12n j )Zj~x!1s↔t D
~53!

where theZj is the four-twist amplitude defined in Eq.~46!
with n5n j while s,t are the Mandelstam variables.

In order to compare the left-hand side~LHS! and the RHS
of Eq. ~50! and thus determine the constant we shall evalu
the amplitude~46! in the limit x→0 first. As x→0, F(x)
;B(n,12n) and F(12x);2 log(x/d), where logd[2c(1)
2c(n)2c(12n) andc(z)[d logG(z)/dz. Therefore, to take
the limit x→0 we must do a Poisson resummation overr 2.
This gives

Z~x!5
pA2a8

L2

const

Asin~pn!
@x~12x!#2n(12n)F~x!21

3 (
m1 ,m2

exp2p
F~12x!

F~x!
F S m1L1

pA2a8
D 2

3sin~pn!1S pm2A2a8

L2
D 2

1

sin~pn!
G

;
2pAa8

L2

const3Asin~pn!

A2p
x2n(12n)

3 (
m1 ,m2

S x

d
D [(m1L1sin(pn)/pA2a8)21(pm2

A2a8/L2)2]

.

~54!

4See, for example,@35# Vol. II, Eq. ~13.3.25!.
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The prefactors 2pAa8/L2 from each of theZj contribution
combine precisely into@gY M

0 #2/2p for brane 2@see Eq.~52!#.
Therefore the contribution ofgY M

0 on both sides of Eq.~50!
cancels. Evaluating the four-point amplitude nearx50
yields a pole associated withs-channel exchange of the co
responding gauge field. Equating the LHS and RHS of
~50! in turn then determines

const52p)
j 51

3 A2p

Asin~pn j !
. ~55!

The limit x→1 gives a contribution from thet channel
exchange of gauge bosons associated with brane 1. In
case the resummation is overr 1 in Eq. ~46! which again
factorizes to@gY M

0 #2 associated with brane 1 in the four-poi
amplitude ~53! and thus cancels the same gauge coupl
contribution on the RHS of Eq.~50!. Of course the rest of the
calculation is consistent with the values of const in Eq.~55!.

E. Generalization of the lattice summation

In the amplitude~46! we assumed that the four twist field
were coming from thesameintersection and therefore th
summation over all possible parallelograms reduced sim
to a sum over multiples of the lengths,L1 andL2, of the two
cycles the branes wrap. We would like to generalize t
amplitude to four twist fields coming from more than ju
one intersection.

First let us consider the correlation function of a twis
antitwist pair from intersectioni and a twist-antitwist pair
from intersectionj. Obviously, the fields coming from the
same intersection must be separated by a lattice transla
and therefore the distance between them is again a mul
of the length of one of the two cycles, namely,L1 or L2.
However, the minimum distance between fields from diff
ent intersections is not zero. In particular, it depends on
total numberI 12 of intersections between the two branes a
the lengths of the one-cycles they wrap as we show nex

By translating the one-cycles by all possible lattice ve
tors in the covering spaceC of T2 one observes that alon
one complete cycle each fixed point appears only once
that the one-cycle is divided intoI 12 equal intervals of length
L/I 12, whereL stands for eitherL1 or L2 depending on the
cycle under consideration. Therefore, the minimum dista
between two different intersections is generally an inte
multiple of L1 /I 12 or L2 /I 12. One must first decide on th
labelling of the I 12 intersections. There are obviously tw
evident but equivalent labellings, namely, we can index
intersections in increasing order, starting from 0, along cy
1 or cycle 2. Let us, for concreteness, label them along cy
1. The minimum distance between intersectionsi and j on
cycle 1 is then obvious, but the minimum distance betwe
the same intersections on cycle 2 is not because the inte
tion points are ordered differently along this cycle. So o
must first determine how the fixed points are ordered alo
the second cycle.

To this end consider the cyclic group of orderI 12,
namely,
1-8
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ZI 12
[$e,c,c2, . . . ,cI 1221ucI 125e%, ~56!

wherec is the generator of the group. To each fixed point
can uniquely associate an element of this group by the r

j↔cj . ~57!

It can then be shown that the ordering of the fixed poi
along cycle 2 is given by the automorphism

g°gk, ;gPZI 12
, ~58!

wherek is an integer between 1 andI 1221 which depends
on the wrapping numbers of the two cycles. For this map
be an automorphism obviouslyk must not divideI 12 for then
the map is not injective. A general expression fork as a
function of the four wrapping numbers has proved difficult
find so far apart for special cases of wrapping numbers.
emphasize that whatever this expression might be it m
guarantee thatk does not divideI 125n1m22n2m1. Until
such an expression is known one can always determine

FIG. 4. The fundamental domain for a brane with wrappi
numbers~3,1! ~solid line! and a brane with wrapping numbers~1,2!
~broken line!. There are five intersection points labeled in incre
ing order starting from 0 along the solid brane. Starting from 0 a
moving along the second brane~broken line! one first meets fixed
point 2. This is the integerk that generates the automorphism~58!
in this example.

FIG. 5. The two configurations for a twist-antitwist pair at i
tersectioni and a twist-antitwist pair at intersectionj. Both configu-
rations must be included in the string amplitude.
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numberk by drawing the cycles in the fundamental doma
of the torus.k is given by the fixed point closest to 0 alon
cycle 2 ~see Fig. 4!.

The four-point function with twist fields from intersec
tions i and j gets contributions from the two lattice configu
rations in Fig. 5. Ifd1( i , j )}L1 /I 12 andd2( i , j )}L2 /I 12 are
the minimal distances between fixed pointsi and j along
cycles 1 and 2, respectively, the four-point amplitude ta
the form

S4~k1 ,k2 ,k3 ,k4!5 i
CD2g0

4

2a8
~2p!4d (4)S (

i 51

4

ki D 4a82k1•k3

3S E
0

1

dxx2a8s21~12x!2a8t21

3)
j 51

3

@x~12x!#n j (12n j )Zj
(1)~x!

1E
0

1

dxx2a8t21~12x!2a8s21

3)
j 51

3

@x~12x!#n j (12n j )Zj
(2)~x!D , ~59!

where

Z(1)~x!5const3 @x~12x!#2n(12n)@F~x!F~12x!#21/2

3 (
r 1 ,r 2

exp2
1

2pa8
sin~pn!F~x!F~12x!

3F S r 1L1

F~x! D
2

1S d2~ i , j !1r 2L2

F~12x! D 2G ~60!

and

Z(2)~x!5const3 @x~12x!#2n(12n)@F~x!F~12x!#21/2

3 (
r 1 ,r 2

exp2
1

2pa8
sin~pn!F~x!F~12x!

3F S d1~ i , j !1r 1L1

F~x! D 2

1S r 2L2

F~12x! D
2G . ~61!

The summation of these two lattice contributions in t
case ofi 5 j gives the two terms in the amplitude~59!. For
distinct i and j, however, there is not-channel massless ex
change since twist fields from different intersections do
couple. This can be seen explicitly from the string amplitu
As x→0 or x→1 only one of the terms gives a massle
exchange after Poisson resummation. In particular, for
x→0 limit one needs to do a Poisson resummation inr 2 to
see that only theZ(1) term survives in this limit. The secon

-
d

1-9
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term, which containsd1( i , j ), goes to zero even forr 150 in
this limit. Analogously, only theZ(2) term contributes in the
x→1 limit.

To determine the overall normalization of the amplitu
we proceed as in the previous section. Instead of
s-channel poles and twot-channel poles from gauge boso
living, respectively, on branes 1 and 2, we now get in
amplitude~53! just twos-channel poles, one for each type
gauge bosons. The normalization constant is still given
Eq. ~55!, however.

One can ask if similar results hold for four-point amp
tudes of twist fields coming from more than two interse
tions. Clearly an amplitude of a twist-antitwist pair from in
tersectioni with a twist from intersectionj and an antitwist
from intersectionk is not possible since the fields comin
from intersectioni must be separated by a lattice translati
which forcesk5 j . However, four-point amplitudes of field
coming from four different intersections are possible. In t
case there will be a minimum nonzero distance between e
pair of twist fields which will depend on the particular bra
configuration. At most one lattice configuration exists fo
given set of twist fields all coming from different interse
tions. The necessary and sufficient condition for a nonv
ishing amplitude of two twist fields from intersectionsi and
j and two antitwist fields from intersectionsk and l is i 2k
5 l 2 j . Such amplitudes do not contain massless exchan
though, and so their overall normalization cannot be de
mined directly by the above method. Nevertheless, this n
malization constant is part of the quantum amplitude, wh
is independent of the global effects of the lattice, and he
it must be also given by Eq.~55!.

III. FOUR- AND THREE-POINT FUNCTIONS WITH TWO
INDEPENDENT ANGLES

The above method can be directly applied to the prob
of a four-point amplitude with two independent angles~Fig.
2!. The boundary conditions now read

]X1 ]̄X̄50,

]X̄1 ]̄X50, on ~2`,x1!ø~x2 ,x3!ø~x4 ,1`!,

eipn]X1e2 ipn]̄X̄50,

e2 ipn]X̄1eipn]̄X50, on ~x1 ,x2!,

e2 ipl]X1eipl]̄X̄50,

eipl]X̄1e2 ipl]̄X50, on ~x3 ,x4!. ~62!

In the Appendix we evaluate the quantum amplitu
^sn(x1)s2n(x2)s2l(x3)sl(x4)&. The result is

Zqu~x!5const3x2n(12n)~12x!2nlI ~x!21/2, ~63!

where
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I ~x![~12x!12n2l@B~n,l!F1~12x!K2~x!

1B~12n,12l!F2~12x!K1~x!#. ~64!

B(n,l) is the Euler beta function andFi , Ki are hypergeo-
metric functions defined in the Appendix.

From the boundary conditions~62! we determine the clas
sical solutions

]X~z!5av12n,l~z![ãeip(l21)ṽ12n,l~z!

]̄X̄~ z̄!52av12n,l~ z̄![2ãe2 ip(l21)ṽ12n,l~ z̄!

]X̄~z!5bvn,12l~z![b̃e2 iplṽn,12l~z!

]̄X~ z̄!52bvn,12l~ z̄![2b̃eiplṽn,12l~ z̄!. ~65!

Again the parametersa andb are arbitrary and reflect the
freedom in specifying the lengthsd1 andd2 of the four-sided
polygon. However, to obtain a three-point amplitude o
must take the limitx2→x3. Unless 12n2l50, which is
precisely the case of one independent angle consid
above, one of the two linearly independent solutions
comes singular in this limit. For 12n2l.0, as we will
assume without loss of generality,vn,12l(z)5(z2x1)2n(z
2x2)n21(z2x3)l21(z2x4)2l develops a nonintegrable sin
gularity at z5x3 in the limit x2→x3. Therefore, the four-
point amplitude that reduces to the three-point amplitu
must haveb50. This is to be expected since the distanced2
cannot be an independent parameter if one wants to g
three-point amplitude. In fact ifb is set to zerod2 becomes a
function of d1 and x2 which tends to zero asx2→x3 as
required. To keep the discussion general, though, we
consider the problem with arbitrarya andb.

The classical action is given by

Scl52
1

4pa8
F ã2E

C1

d2zuṽ12n,l~z!u2

1b̃2E
C1

d2zuṽn,12l~z!u2G
52

I ~x!

4a8
@ ã21~12x!22(12n2l)b̃2#, ~66!

where the integrals have been evaluated using the metho
@36# to factorize closed string amplitudes into a product
open string amplitudes. To determine the coefficientsã andb̃
we impose the global monodromy conditions

E
C18

dX25d1 , E
C28

dX25d2 , ~67!

where the contoursC18 and C28 are shown in Fig. 3~b!. The
two other lengths of the polygon are automatically det
1-10
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mined and no other contours provide any additio
information.5 Solving these conditions forã andb̃ we obtain

ã5 i @~12x!2(12n2l)B~n,l!F1~12x!d1

1B~12n,12l!F2~12x!d2#/J~x! ~68!

and

b̃5 i @B~n,l!F1~12x!d21~12x!(12n2l)

3B~12n,12l!F2~12x!d1#/J~x!, ~69!

where

J~x![~12x!2(12n2l)@B~n,l!F1~12x!#2

1~12x!(12n2l)@B~12n,12l!F2~12x!#2.

~70!

Although the general four-point amplitude with arbitra
d1 andd2 is interesting itself, we want to evaluate the thre
point amplitude which gives the instanton corrections to
Yukawa couplings.b then must be set to zero and the mon
dromy conditions give instead

ã5
id1

B~n,l!F1~12x!
~71!

while d2 is x dependent

d2~x!5d1~12x!12n2l
B~12l,12n!F2~12x!

B~l,n!F1~12x!
→0

~72!

as x→1, which therefore correctly produces a three-po
amplitude in this limit. The on-shell action becomes

Scl5
I ~x!

4a8
S d1

B~n,l!F1~12x! D
2

~73!

and the complete four-point amplitude takes the form

Z4~x!5const3x2n(12n)~12x!2nlI ~x!21/2

3(
m

exp2
I ~x!

4a8
S d1~m!

B~n,l!F1~12x! D
2

. ~74!

Hered1(m)5L01mL is the most general form the distanc
d1 can take when the polygon is embedded in a lattice.L0
and the cycle lengthL will generically depend on the lattic
and the D-brane configuration. The overall normalizat
constant can be determined by the same method used t
the normalization of the four-point amplitude with one ind

5Note, however, that these two conditions become linearly dep
dent when 12n2l50 becaused15d2. In that case, which is the
problem of one independent angle discussed earlier, one should
the contours of Fig. 3~a!.
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pendent angle. We specialize toT6 since the amplitude of
most interest is the one involving factorizable three-cyc
on T6. We find

const516p5/2. ~75!

The limit x→1 of the four-point amplitude produces the fu
expression for the three-point amplitude. In particular, sin
the conformal weights of the twist fields satisfyhn1hl

2hn1l5nl, the latter contains the correct singularity in th
limit in agreement with the operator product expansion

Oi~z1!Oj~z2!;(
k

Ci j
k Ok~z2!~z22z1!hk2hj 2hi. ~76!

One can then show that the full three-point amplitude
branes wrapping factorizable three-cycles onT6 takes the
form

Z352p)
j 51

3 A 4pB~n j ,12n j !

B~n j ,l j !B~n j ,12n j2l j !
(
m

exp2
Aj~m!

2pa8

52p)
j 51

3 A4pG~12n j !G~12l j !G~n j1l j !

G~n j !G~l j !G~12n j2l j !

3(
m

exp2
Aj~m!

2pa8
, ~77!

whereAj (m) is the area of the triangle formed by the thr
intersecting branes on thej th torus. Note that the amplitud
is completely symmetric in all three angles of the triangle
it should.

The above three-point correlation function of boson
twist fields ~78! is the key contribution to the physica
Yukawa coupling of two fermionic and one bosonic fiel
The full three-point amplitude of these fields can be det
mined by employing the normalization factor for the di
amplitude,CD251/(g0

2a8), and the bosonic string vertex op
erator in 21 picture @Eq. ~48!#, g0, as determined in Sec
II D. In addition, the normalization factor of the fermioni
vertex operators in the21/2 picture@Eq. ~49!# turns out to
be 21/4Aa8g0. ~This normalization can be determined fro
the string amplitudes of fermionic fields to gauge vec
bosons, along the same lines as described for the corresp
ing bosonic fields in Sec. II D.! Thus the final expression fo
the physical Yukawa couplings is given byA2g03Z3.

A comprehensive analysis of the triangles that contrib
to this amplitude for a given set of intersections in diver
brane configurations and including the effect of nontriv
complex structure or Wilson lines has been done in@33#.

IV. CONCLUSIONS

We have applied conformal field theory techniques to o
tain three-point and four-point correlation functions of tw
fields from D-branes wrapping factorizablen-cycles ofT2n

5T23T2
••• and intersecting at points in the internalT2n.

The method allows for a complete determination of t

n-

ke
1-11
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amplitude, including the quantum contribution. Its most
teresting application is to the three-point function calculat
of intersecting D6-branes wrapping factorizable three-cyc
of T6, which in turn gives the complete Yukawa coupling
two four-dimensional chiral fermions to the Higgs field.

The method also applies to the study of the three-po
and four-point twist field correlation functions in mode
with orientifold and orbifold projections, as discussed in S
II C. Due to the mirror symmetry projection along ann-plane
in T2n the branes can now intersect with an orientifold ima
of another brane. However, the amplitude calculation
states at the intersection proceeds analogously. As for
Z23Z2 orbifold projection, we mention that the combine
orbifold and orientifold action maps cycles into themselv
thus each intersection is accompanied by a combinatio
the orientifold and orbifold images that have to be carefu
taken into account. We hope to return to the detailed disc
sion of these contributions in the future work.

The formalism can be applied to the calculation of thr
and four fermion couplings of classes of type II orientifo
compactifications with intersecting D-branes. Among th
the four-dimensional type IIA orientifold compactificatio
with intersecting D6-branes is interesting; supersymme
compactifications of this type are directly related toG2 com-
pactification of M theory. In addition to the Yukawa cou
plings, the four-point amplitude of chiral fermions can pr
vide low energy corrections to the effective four-fermio
coupling and may be of phenomenological interest. We p
to address further these effects in concrete semirealistiN
51 supersymmetric models, such as those constructed
e.g.,@12,13,17,18#.
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APPENDIX: EVALUATION OF QUANTUM FOUR-POINT
AMPLITUDE WITH TWO INDEPENDENT ANGLES

Here we evaluate the four-point correlation functi
^sn(x1)s2n(x2)s2l(x3)sl(x4)&. The calculation closely
parallels the calculation for closed string amplitudes on o
folds @37,38#. As before we introduce the auxiliary correla
tors g(z,w), ḡ(z,w), h(z,w)52ḡ(z,w) and h̄(z,w)5
2g(z,w) as defined in Sec. II A. In terms of

vn,l~z!5~z2x1!2n~z2x2!n21~z2x3!2l~z2x4!l21

~A1!

these take the form
04600
-
n
s

t

.

e
r
he

;
of

s-

e

ic

n

in,

,
.

,
f
-

5

i-

g~z,w!5v12n,l~z!vn,12l~w!S P~z,w!

~z2w!2
1A~$xi%!D

~A2!

h~ z̄,w!5vn,12l~ z̄!vn,12lB~xi !, ~A3!

where

P~z,w!5 (
i , j 50

2

ai j w
izj ~A4!

and the condition

g~z,w!;~z2w!22 ~A5!

determines all coefficientsai j except fora20, a11, anda02
for which it provides two linear equations. Solving these f
a02 anda11 we find

^T~z!&5 lim
w→z

S g~z,w!2
1

~z2w!2D
5

A~$xi%!1z21a21z1a20

~z2x1!~z2x2!~z2x3!~z2x4!
1

1

2
n~12n!

3S 1

~z2x1!
2

1

~z2x2! D
2

1
1

2
l~12l!

3S 1

~z2x3!
2

1

~z2x4! D
2

2S n

~z2x1!
1

12n

~z2x2! D
3S 12l

~z2x3!
1

l

~z2x4! D , ~A6!

wherea2152@(12n)x11nx21lx31(12l)x4#. The free-
dom in a20 does not affect the final result sinceA($xi%) will
be determined aftera20 is fixed. Fixing

a205
1

2
@~12n1l!x1x31~12n2l!x1x42~12n2l!x2x3

1~11n2l!x2x4# ~A7!

and using SL(2,R) invariance to setx150, x25x, x3
51, x4→` we find

]xZqu~x!5
1

2

~12n2l!

x21
2

n~12n!

x
2

~12n!~12l!

x21

1
A~x!

x~x21!
, ~A8!

where

A~x!5 lim
x4→`

2x4
21A~$xi%! ~A9!

and
1-12
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Zqu~x!5 lim
x4→`

ux4ul(12l)^sn~0!s2n~x!s2l~1!sl~x4!&.

~A10!

As before A(x) is determined by imposing the quantu
monodromy conditions

E
Ci

dX5E
Ci

dX̄50, ~A11!

leading again to conditions~22! and ~21!. We insert

g~z,w!→F1

2
~12n2l!x1~12l!~z2x!1A~x!G ṽ12n,l~z!

~A12!

ḡ~z,w!→B~x!ṽn,12l~z! ~A13!

and arrive at the two equations

F1

2
~12n2l!x1A~x!G E

C1

dzṽ12n,l~z!1~12l!

3E
C1

dz~z2x!ṽ12n,l~z!2e22p inB~x!

3E
C1

dzṽ12n,l~z!50 ~A14!

and

F1

2
~12n2l!x1A~x!G E

C2

dzṽ12n,l~z!1~12l!

3E
C2

dz~z2x!ṽ12n,l~z!2B~x!E
C2

dzṽ12n,l~z!50.

~A15!

To solve these we need the integrals

E
C1

dzṽ12n,l~z!5eip(12n2l)B~n,12n!K1~x!,

~A16!

E
C2

dzṽ12n,l~z!5eip(12l)B~12l,12n!

3~12x!12n2lF2~x!, ~A17!
04600
where

K1~x![F~n,l;1,x!, ~A18!

K2~x![F~12n,12l;1;x!, ~A19!

F1~x![F~n,l;n1l,x!, ~A20!

and

F2~x![F~12n,12l;22n2l,x!. ~A21!

One also needs the following identities:

~12n!~12l!F~n,l;2,x!5~12n2l!K1~x!

1~12x!]xK1~x!,

~A22!

~12n!~12l!F~12l,12n;32n2l;12x!

52~22n2l!]xF2~12x!, ~A23!

B~12n,12l!~12x!12n2lF2~12x!

5B~n,l!F1~12x!2B~12n,12l!

3B~n,l!~12n2l!K1~x!, ~A24!

and

K1~x!5~12x!12n2lK2~x!. ~A25!

After some algebra we arrive at the desired result

2A~x!5x~12x!]xlog@B~n,l!F1~12x!K2~x!

1B~12n,12l!F2~12x!K1~x!#. ~A26!

Hence

Zqu~x!5const3x2n(12n)~12x!2nlI ~x!21/2, ~A27!

where

I ~x![~12x!12n2l@B~n,l!F1~12x!K2~x!

1B~12n,12l!F2~12x!K1~x!#. ~A28!

For completeness let us also give the result forB(x),
namely,
B~x!5
1

2
e22p ilx~12x!(22n2l)]xlogFB~n,l!F1~12x!K2~x!1B~12n,12l!F2~12x!K1~x!

„K2~x!…2
G . ~A29!
1-13
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@4# L.E. Ibáñez, F. Marchesano, and R. Rabada´n, J. High Energy
Phys.11, 002 ~2001!.

@5# C. Angelantonj, I. Antoniadis, E. Dudas, and A. Sagnotti, Ph
Lett. B 489, 223 ~2000!.

@6# C. Bachas, hep-th/9503030.
@7# M. Berkooz, M.R. Douglas, and R.G. Leigh, Nucl. Phy

B480, 265 ~1996!.
@8# S. Förste, G. Honecker, and R. Schreyer, Nucl. Phys.B593,

127 ~2001!; J. High Energy Phys.06, 004 ~2001!.
@9# R. Blumenhagen, B. Ko¨rs, D. Lüst, and T. Ott, Nucl. Phys
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