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The possibility of noncommutative topological gravity arising in the same manner as Yang-Mills theory is
explored. We use the Seiberg-Witten map to construct such a theory base®lL¢n,@) complex connection,
from which the Euler characteristic and the signature invariant are obtained. Finally, we speculate on the
description of noncommutative gravitational instantons, as well as noncommutative local gravitational anoma-
lies.
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[. INTRODUCTION tative description of gravity would arise from it. This is a
difficult question and it will not be addressed here. However,
The idea of the noncommutative nature of space-time comn a recent paper[7], gravitation on noncommutative
ordinates is quite old1]. Many authors have studied it ex- D-branes has been discussed.
tensively from the mathematicg2] as well as the field the- In this context, recently Chamseddine has made several
oretical point of view(for a review, see, for instancfg3,4]). proposals for noncommutative formulations of Einstein’s
Recently, noncommutative gauge theory has attracted @ravity [8—10], where a Moyal deformation is done. More-
lot of attention, especially in connection with (&trix) [5]  over, in[9,10], he gives a Seiberg-Witten map for the vier-
and string theon|6]. In particular, Seiberg and Wittef6]  bein and the Lorentz connection, which is obtained starting
have found noncommutativity in the description of the low from the gauge transformations, f)(4,1) in the first work
energy excitations of open stringpossibly attached to and ofU(2,2) in the second one. However, in both cases the
D-brane$ in the presence of a Neveu-Schwarz constanéctions are not invariant under the full noncommutative
backgroundB field. Moreover, they have observed that, de-transformations; namely, if9] the action does not have a
pending on the regularization scheme of the two-dimensionalefinite noncommutative symmetry, and[it0] the Seiberg-
correlation functions, Pauli-Villars or point splitting, ordi- Witten map is obtained fdd(2,2), but the action is invariant
nary and noncommutative gauge fields can be induced frorander the subgroupgJ(1,1)xU(1,1). These actions de-
the same worldsheet action. Thus, this procedure tells us th&armed by the Moyal product, with a constant noncommuta-
there is a relation of the resulting theory of noncommutativetivity parameter, are not diffeomorphism invariant. However,
gauge fields, deformed by the Moyal star product or Kont-as pointed out in this work9,10], they could be made dif-
sevich star product for systems with general covariance, witfieomorphism invariant, substituting the Moya, *product
a gauge theory in terms of the usual commutative fields. Thi®y the Kontsevich ¥ product. A more recent proposal for a
relation is the so-called Seiberg-Witten map. noncommutative deformation of the Einstein-Hilbert La-
In string theory, gravity and gauge theories are realized irgrangian in four dimensions is given fdl]. For other pro-
very different ways. The gravitational interaction is associ-posals for noncommutative gravity, sge2—-20.
ated with a massless mode of closed strings, while Yang- Further, as shown ifi21-25, starting from the Seiberg-
Mills theories are more naturally described in open strings oiWitten map, noncommutative gauge theories with matter
in heterotic string theory. Furthermore, as mentioned, nonfields based on any gauge group can be constructed. In this
commutative Yang-Mills theories should arise from stringway, a proposal for the noncommutative standard model
theory. Thus the question emerges of whether a noncommusased on the gauge group prod@&t(3)xXSU(2)xU(1)
has been constructd@6]. In these developments, the key
argument is that no additional degrees of freedom have to be
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posal for a noncommutative topological quadratic theory ofticular, the trace of the integral of the product of two func-
gravity in four dimensions, from which the noncommutative tions has the property that fIf,* f,=Tr[f,f,.
topological invariants of Riemannian manifolds, correspond- Let us consider a gauge theory with a Hermitian connec-
ing to the Euler characteristic and the signature, can be oliion, invariant under the symmetry Lie gro@ with gauge
tained. We then explore, in this context of noncommutativefields A, ,
gravity, the notion of the gravitational instanton, which is
expected to be classified by these invariants, as in the com- HAL= I NFI[N AL ()]
mutative case. Other possible global aspects of noncommu- . ]
tative gravity like gravitational anomalies will be briefly ad- Wherex=\'T;, andT; are the generators of the Lie algebra
dressed as well. It is important to note that these latteF/ Of the groupG, in the adjoint representation. These trans-
considerations of Sec. V, on noncommutative instantons antprmations are generalized for the noncommutative theory as
anomalies, are of rather a speculative character, so they are R . o
not on the same footing with our main proposal and results SAL=d, A+I[ATA,] (4)
of Sec. IV. R

The paper is organized as follows. In Sec. Il we quicklywhere the noncommutative parametdrdiave some depen-
review noncommutative gauge theories. In Sec. lll the mairdence om\ and the connectioA. The commutator§A* B]
features of topological quadratic gravity are introduced, for=A* B—B* A have the correct derivative propertieé when
the SO(3,1) gauge group, by means of a complex formula-acting on products of noncommutative fields.
tion based on self-dual topological quadratic gravity. In Sec.  pye to noncommutativity, commutators lik& * A,] take
IV we present noncommutative topological gravity, with ex- 51ues in the enveloping algebra@in the adjoirit represen-

plicit results up to ordeg®. In Sec. V, based on a study of __.. A L a .
the global properties of the noncommutative version of thetaltlon u(g,ad). Theref_ore/\ and the gauge fielda,, will
) : -also take values in this algebra. In general, for some repre-
Lorentz and diffeomorphism groups, we explore the possi-

bility of a definition of noncommutative gravitational instan- sen;tgtlonlf?,ﬂ:/ve will ldenote ?‘Q]’gg’ 2) trlie tcorrese{onc:mg
tons, as well as local gravitational anomalies for a theory o{sec lon ot the eAzrlwe oping aAgl’e t(q). Let us write, for
gravity. Finally, Sec. VI contains our concluding remarks. instance, as\=A'T, andA=A'T,; then

A*A T—TA AJ A AJ
Il. NONCOMMUTATIVE GAUGE SYMMETRY AND THE [ATA = AT AT THIATART Toh - 6

EIBERG-WITTEN MAP : : :
S G where{A* B}=A*B+B*A is the noncommutative anticom-

We start this section with the conventions and propertiesnutator. Thus all the products of the generatdrswill be
of noncommutative spaces for future reference. For a recemteeded in order to close the algeldféG,ad). Its structure
review, see, e.g[27]. Noncommutative spaces can be under-can be obtained by successive computation of commutators
stood as generalizations of the usual quantum mechanicahd anticommutators starting from the generator§,afintil
commutation relations, by the introduction of a linear opera-t closes,
tor algebraA, with a noncommutative associative product

o [Ty :TJ]:ifETKv {m -TJ}:erTK-
[x*,x"]=i6"", (1) ~ R R
The field strength is defined a§&,,=d,A,—d,A,
where X* are linear operators acting on the Hilbert space—i[AMfAy]; hence it also takes values i(G,ad). From
L2(R" and #*'=—@"* are real numbers. The Weyl- Eq. (4) it turns out that
Wigner-Moyal correspondence establishemder certain

conditions an isomorphic relation betwees and the alge- 8\F,,=i(A*F,,—Fx A). (6)
bra of functions orR", the last with an associative and non-
commutativex product, the Moyal product, given by We see that these transformation rules can be obtained from
the commutative ones, just by replacing the ordinary product
i Jd 0 of smooth functions by the Moyal product, with a suitable
f(x)xg(x)= exp( > 0"”(98—M 0—77V) f(x+e) product ordering. This allows construction of invariant quan-

tities in a simple way.
If the components of the noncommutativity parameter
(2)  are constant, then Lorentz invariance is spoiled. In order to
recover it[9,10,23 one should change the Moyal star prod-
uct to the Kontsevich star produci *28]. However, as a
In order to avoid causality problems we will takd”=0. result of the diffeomorphism invariance, for an even dimen-
Due to the fact that we will be working with non-Abelian sional (symplecti¢ space-timeX, there exists a local coordi-
groups, we must also include matrix multiplication, so a * nate systentwhich coincides with Darboux’s coordinate sys-
product will be used as the matrix multiplication with tke  tem) in which #*” is constant. Therefore, without loss of
product. Inside integrals, this product has the propertygenerality, the Kontsevich product can be reduced to the
Trffoxfoxfor. . % f =Tr[f xfxfoxfox...*f _;. In par- Moyal one, which will be used from now on.

Xg(x+n)

e=n=0
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The fact that the observed world (sip to the present whereA(") is obtained fromA(l) in Eq. (7), by substituting

experimental evidengecommutative means that it must be for the commutative fields with the noncommutative ones
possible to obtain it from the noncommutative one by takingnder the * product.

the limit 9—0. Thus the noncommutative fieldsare given Let us take the generatof® of the Lie algebrag to be

by a power series expansion éh starting from the commu- Hermitian; then the generatofié of the corresponding en-

tative onesA, veloping algebra can be chosen to be also Hermitian, for
R instance, if they are given by the symmetrized products
A=A+ 0+ A+ 0nror AR 4 (7)  :TaT'2...T'n:. Further, the noncommutative transformation

. . . . arameters\ (\,A) are functions whose arguments are ma-
The terms of this expansion are determined by the Seiberg- (A.A) 9

. . .~ drices. Let now titute the matrix pr ts insi
Witten map, which states that the symmetry transformations. ces. Let us now substitute the ma products inside

. o
of Eq. (7), given by Eq.(4) are induced by the symmetry A.O"A)' by MN—3{M,N}—i/2(i[M,N]), for any two ma-
transformations of the commutative fiel@®). In order that tricesM andN. HenceA (\,A) can be understood as a func-

these transformations be consistent, the transformation p4on whose nonlinear part of depends polynomially, with
rameterA must satisfy[22] complex numerical coefficients, on anticommutatérs- }

and commutatorq -,- ], of A, A, and their derivatives. With

5@(,7)_57][1()\)_i[]\()\)*]\(,7)]:ﬁ(_i[)\,,?])_ this understanding, we will continue to write it ag\,A),
' (8) and we have

Similarly, the terms in Eq(7) are functions of the com- [AA)TT=ATA\T AT, (13)
mutative fields and their derivatives, and are determined by
the requirement tha transforms as Ed4) [25]. whereA T is obtained by complex-conjugating the mentioned

The fact that the noncommutative gauge fields take values merical coefficients.
in the enveloping algebra has the consequence that _they have | et us now consider the Hermitian conjugation of the
a bigger number of components than the commutative ONe$ansformation lan3), (5,A,)T=a \T+i[nt AT] From it
’ 122 M 1 ud

unless the enveloping algebra coincides with the Lie aIgebrgnd Eq.(8). taking into account Eq13). we get
of the commutative theory, as is the case fbfN). How- 9.(8), taking i u ql13), we get,

ever, the physical degrees of freedom of the noncommutative, ;¢ At t Aty ARt t Atk Rt oAt
fields can be related one to one to the physical degrees VA TN AD = S A TN AD —I[ATNLADTA (77,AT)]
freedom of the commutative fields by the Seiberg-Witten — _ 2+ _ .-\t +7 At

map|[6], a fact used in Ref§21-25 to construct noncom- AL 7' LAY, (14

mutative gauge theories, for any Lie group in principle. . . . . . .
In order to obtain the Seiberg-Witten map to first Order’Comparlng this equation with Eg8), with the mentioned

the noncommutative parameters are first obtained from quonventlc?n, 'tAcan be seen that the noncommutative param-

®) [6,21—-23, eters satisfif A(\,A)]T=A (AT, A"). From the transforma-

tion law (4), a similar conclusion can be obtained for the

noncommutative connectidih ,(A)]"=A ,(A"), as well for

the field strengthiF ,,(A)]"=F ,,(A"). By this means, if we

) ~ have a group with real parameters and Hermitian generators,
Then, from Egs.(4) and (7), the following solution is ith a Hermitian connection, then the noncommutative con-

obtained: nection and the noncommutative field strength will also be

Hermitian.

. 1
A()\,A)=)\+Ze"”{&M)\,AV}+O(02). (9)

. 1
A (A=A~ 7 0°7{A, ,0,A,+F, 1 +0(67), (10
I1l. TOPOLOGICAL GRAVITY

and for the field strength it turns out that In this section we briefly shortly review four-dimensional
topological gravity. LeR be the field strength corresponding

A 1 ;
Fu=F.+ Zap(r(z{[: Fool—{A,.D,F .+ d,F ) to aSO(3,1) connectionw,

mp

ab _ ab ab ac, b bc a
R = 0,0, = 0,0, t 0, 0,0, o, (15

+0O(6?). (12)

The higher terms in Eq(7) can be obtained from the and letR be the dual oR with respect to the groufmot with
observation that the Seiberg-Witten map preserves the opereespect to space-timgiven by
tions of the commutative function algebra; hence the follow-

ing differential equation can be writtd6]: - i
Ro=— 5% %R0 (16)
J

v A — spuvA(l)
60 070’“’A(0) o6 AMV(G), (12

We start from the followingSO(3,1) invariant action:
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P E
H G

G . ~
|TOP:ETerRAR+| 27TTrJXR/\R, (17)

- e e o o
RLJW(wJ’):&MwV g —(?Va)’u”—Z(wM'wJV— wV'wJ”)

=—&)RY (). (24)

where X is a four-dimensional closed pseudo-RiemannianThis amounts to a decomposition between the real orthogo-
manifold and the coefficients are the gravitational analoguegy) Lie groupSO(3,1) and the product of two complex Lie
of the ©® vacuum in QCD{29-31]. o _ groups SL(2,C) given by the isomorphismSQ(3,1)
In this action, the connection satisfies the first CartanESL(z C)xSL(2,C), such thatw, is a complexSL(2,C)
) ) 1 IJ' ’

structure equation, which relates it to a given tetrad. Thig. nection. If we choose the algebsd(2,C) to satisfy
action can be written as the integral of a divergence, and ther —1_._ « Th—9s. ' ;
variation of it with respect to the tetrad vanishes; hence it isFT' Til=2ie; T and Tr(TiT))=24;;, then we can write

metric independent and therefore topological. L

The action(17) arises naturally from the MacDowell- |=Trf R/\*R=TYJ d*xe*"P" R, (@) Ryl w),
Mansouri type actio{32]. A similar construction can be X X
done for (2+1)-dimensional Chern-Simons gravif{33]. (25
Keeping this philosophy in mind, the acti¢h?7) can be re- \yhere R =d,0,—d,w,—i[w, ,] is the field strength,
written in terms of the self-dual and anti-self-dual parts,, is the lasuafLHodge Star opgration with respect to the un-
R*=3(R+R) of the Riemann tensor as follows: derlying space-time metridz is the two-form field strength,

and7R is the dual ofR with respect to the group. This action
lTop= Trf (rTR*ART+7R™/AR") is invariant under th&sL(2,C) transformationss) w, = d,\
X +i[N,w,].
In the case of a Riemannian manifofgthe signature and
:Trf (7R*/AR* + 7R*/AR™), (18)  the Euler topological invariants of, are the real and imagi-
X nary parts of Eq(25):

wherer=(1/27)(®§+i0®2), and the overbar denotes com- 1 ,
plex conjugation. In local coordinates o this action can o(X)=— Re( Tffxd XS“”""RW(G))RW(M),

. 24r?
be rewritten as (26)
ltop=2Re| 7 f d*xgh"PoRY @PRF 1. (19 1
Top ( X wy  Tpoab x(X)= Im| Tr f d*xe#"PTR (@) Ryl @) | .
327? X
Therefore, it is enough to study the complex action, (27)
| = f d*x SMVPUR;VabR;Uab' (20) IV. NONCOMMUTATIVE TOPOLOGICAL GRAVITY
X

We wish to have a noncommutative formulation of the
Further, the self-dual Riemann tensor satisfiesso(a’l) action(17). !ts fir_st term can be straightforwardly
sabcdR;V°d=2iR;Vab. This tensor has the useful property made noncommutative, in the same way as for the usual

that it can be written as a usual Riemann tensor, but in term\sfam‘:]"vIIIIS theory,

of the self-dual components of the spin connectitmtf{,"’lb

= w2~ (i/2)6?°,q0%], as Tr f X?%/\R (28)
+ab_ +ab__ +ab +ac,_+b__ +bc +a
wr — Ou®@y v®pu w @i w @ o1 e ,1) generators are chosen to be Hermitian, for
Ruy =000, "= 0,0, H 0, 0,0~ 0 If the SO(3,1 t hosen to be Hermitian, f
(1) example, in the spirg representation given by*’, then
In this case, the actiofl9) can be rewritten as from the discussion at the end of Sec. Il, it turns out fhg,t
is Hermitian and consequently E@®8) is real.

4o pvporop0i |+ . If we now turn to the second term of E(L7), such an

I= xd xe""PI[2R,,, (@ )Ryp0i(@7) action cannot be written, because it involves the Levi-Civita

) symbol, an invariant Lorentz tensor, but which is not invari-

+R) (0" )R,ij(0™)]. (220 ant under the full enveloping algebra. However, as men-

tioned at the end of the preceding section, this term can be

Now, we definew,=iw;%, from which we obtain, by obtained from Eq/(25).

means of the self-duality propertiezs;;” = _eijkwl;. Then Thus, in general we will consider as the noncommutative
it turns out that topological action of gravity th&L(2,C) invariant action
, _ . . . o A o
RO (") =—i(d,0},—d,0),+ 2} 0l0') = =R, () T=Tr j d*xe# PR R (29
23) % mv’tp

045010-4



NONCOMMUTATIVE TOPOLOGICAL THEORIES OF GRAVITY PHYSICAL REVIEW D68, 045010(2003

wherefz,w:a w,—d a’,u_i[‘:’u*,‘:’v]' is theSL(2,C) non-  they will be given by a divergence. Therefore, these terms

commutative field strength. This action does not depend oMill be topological.(For the case of the Euler characteristic,
the metric of X. Indeed, as well as the commutative one, it i€ompare with the noncommutative nontrivial generalization
given by the divergence of it given by Connes in pp. 64—69 of RéR].)

Furthermore, the whole noncommutative action, ex-

5 pressed in terms of the commutative fields by the Seiberg-
IA=Trf dixe4rroy (&,*(9 w,t s0*0*o,|. (300  Witten map, is invariant under tH8Q(3,1) transformations.
X More 3 rr Thus, each term of the expansion will also be invariant and
these terms will be topological invariants.

Thus, a variation of Eq(29) with respect to the noncom-  The action(29) is not real, nor is the limiting commuta-
mutative connection will vanish identically because of thetive action. Hence, it is not obvious that the signat(8)
noncommutative Bianchi identities, will be precisely its real part. In this case we could not say

that y(X) is given by its imaginary part. In fact we could

- oo kA B only say that)}(X) could be obtained from the difference of
o =8Trf et"P76w,D,R,;=0, (81  Egs.(29) and(28). However, the real and the imaginary parts
of Eq. (29 are invariant undeSL(2,C) and consequently
underSQ(3,1), and thus they are the natural candidates for

whereD , is the noncommutative covariant derivative. - - . .
M
At this stage, we can make use of the first Cartan structurg(x) andx(X), as in Eqs(26) and(27). In order to write

. . . own these noncommutative actions as an expansiafy in

equation; then th&Q(3,1) connection, and thus i8L(2,C .
quatio i X ). . (2.C) we will take as generators for the algebra®f(2,C) the
projectionw,, , can be written in terms of the tetrad and the i . hi d order éin th
torsion. Furthermore, from the Seiberg-Witten map, the nonPa.u' matr_|ces. In this case, to second order 6 the .
T T ) 2 Seiberg-Witten map for the Lie algebra valued commutative

commutative connection can be written as well @&). field strengthR =R (w) o, is given by
Therefore, a variation of the actid®9) with respect to the my TRy '

tetrad of the action can be written as

> — a 1 @ ) 2
Ruv=Runt 0PR D) s+ 0*PO°RC) o s+, (39
5eT:8Tff e""P7 5.0, (€)* D ,R,,=0; (32 where, from Eq(11) we get
hence it is topological, like the commutative one. poR (1) =16”‘T IR R —w(0R +D. R
As we will show later, the explicit expansion of the action rpr =3 0" LR Ruoi = 000 Runi + Do Rpui) 11,
(29) in the noncommutative paramet@gives terms that one (34)

does not expect to vanish identically. Thus, we see from Eq.
(30) that, in af power expansion of the action, each one ofwherel is the unity 2x2 matrix. Further, by means of Eg.
the resulting terms will be independent of the metric and(12), we get

1 o . o
HPUGTGREEBP,,TQIZ epgeﬁ 8}k[|&7RLpaﬂR5¢r+ﬁfwi)ﬁﬁ(arr—’_D(r)R!;y]_w:o&rwjrr&ﬂR,uvj

+ R [2R] Ry gi— 035+ D) Rygi] =R [2R L, Ry gi— 039+ D) R i

1 . : . .
+ EwL(angJ+R0pj)(aU+ D)R,,—201{20,R),Rygj— dol @' (gt D) Ryyil} |oi. (35
Therefore, to second order i the action(29) will be given by
nvr

1=Tr f xd4Xs‘“”"’[RwRPa+ 207" R, R+ 070" (2R, RE) 4+ R R 1. (36)

Taking into account Eq.34), we get that the first order term is proportional to &) and thus vanishes identically. Further,
using Eq.(35), we finally get
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) 1 .
R,.Ruoi— Ewlf(aa"‘ DyRi

(§73%

- : 1 : . .
I=Ld4x swp”[ 2R, R +Zafﬂaﬁi(—ei,-kR'W[aﬁRinagRﬁ,e— Iy 034+ D RS, ]+

poi

1 :
X ]"’Z(é(f"D(;)Rpoiwjﬁ(&éwfi—i_R{Ti)

_ 1
RLoRas) = 5 @y(9 DR

poi| T Ruul Rigol 2R, 5R, 1= (3, + D )R,

+w0i

: 1 : 1 .
‘97( R;JﬁRO'{j) - E aTwJﬁ( ag”—‘r D{) Rpo’j} ] - E Riuvai aﬁwJH&{Rpo’j ) } ' (37)

where the second order correction does not identically vaneter ) of the topological invariantgsee Eq.(37)], we got

ish. that they do not vanish a®(6%); hence the classical topo-
Similarly to the second order tert85), the third order logical invariants are clearly modified. Thus, the use of the

term for R can be computed by means of Ej2). The result ~ Seiberg-Witten map for the Lorentz group leads to essen-

is given by a rather long expression, which, however, is protjally modified invariantsy ando, which would characterize
portional to the unity matri¥, like Eq.(34). Thus the third  «noncommutative gravitational instantons.” Further, the cor-

order term in Eq(36), given by responding deformed equation under the Seiberg-Witten map
Q;V=O, does admit an expansion thwith the term at the
2971919720207303Trfx8“""”(7%v73Sﬁr)rlelfzazfs% zero order bein@R,,,. Thus these corrections should be as-
sociated with thef corrections of the self-duality equation
+ R, 0 R o0 (38)  R;,=0. Furthermore, we could expect for the gravitational
instantons similar effects as for the case of Yang-Mills in-
vanishes identically, becausg (?) is proportional too;. stantong 6,38], where the singularities of moduli space are
Thus, Eq.(37) is valid to third order. In fact, it seems that all resolved by the noncommutative deformations. We already
its odd order terms vanish. know from models of the minisuperspace in quantum cos-
mology that noncommutative gravity leads to a version of
V. TOWARD NONCOMMUTATIVE GRAVITATIONAL noncommutative minisuperspaf®9]. Thus, one would ex-
INSTANTONS AND ANOMALIES pect some new physical effects from the moduli space of
metrics of a noncommutative gravity theory, which may help
A. Toward noncommutative gravitational instantons to resolve space-time singularities.
In the Euclidean signature, the actitiv), with local Lor- This description of noncommutative gravitational instan-

entz groupSO(4), is proportional to a linear combination of tons is, of course, not conclusive. They deserve further study,
integer valued topological invariants, the EujgiX) and the ~ also in the context of a noncommutative dynamical theory of
signatures(X), which characterize the gravitational instan- gravity (for a proposal, sep40]).
tons. In fact,o(X) and y(X) are the analogue of the instan-
ton numberk of SU(2) Yang-Mills instantons, which is a B. Comments on gravitational anomalies
manifestation of the gauge group topology, throulgh in noncommutative spaces
e m3(SU(2)). These topological invariantg and o should
of course include the corresponding boundary and
p-invariant terms. Gravitational instantons are finite action The study of topological invariants leads us also to other
solutions of the self-dual Einstein equations, which are ashontrivial topological effects, like anomalies, in our gravita-
ymptotically Euclidean34], or asymptotically locally Eu- tional case. Gravitational anomalies, as well as gauge
clidean(ALE) [35], at infinity (for a review, se¢36]). Then anomalies, are classified into local and global anomalies. In
one would ask about the possibility of getting gravitationalthis paper we will mainly focus on local anomalies, whereas
instanton solutions in noncommutative gravity. The firstglobal anomalies will be mentioned as a reference for future
natural step would be to analyze the positive action conjecwork.
ture[37], in the context of noncommutative gravity, although ~ Local anomalies are associated with the lack of invariance
it would require a more complete version of noncommutativeof the quantum one-loop effective action, under infinitesimal
gra\/ity_ However, it is possib|e to give some generic arguJOC&l transformations. There are different types of local
ments, and we will focus on the description of the globalgravitational anomalies, depending on the type of transfor-
aspects by analyzing the invariangsand o in the noncom-  mation, like the Lorent£or automorphistmnanomaly and the
mutative context. In order to do that, we concentrate on théliffeomorphism anomaly.
spin connection dependence, leaving the explicit metrics for Let Gg be the group of vertical automorphisms of the
later analysis. frame bundle over the space-titfeln a local trivialization,

In the previous section, from explicit computations of thethe frame bundlej§ can be identified with the set of con-
noncommutative correctior(@ the noncommutative param- tinuous maps fronX to SO(4), which approach the identity

1. A brief survey of gravitational anomalies
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at infinity, ie. ggEMapo(x,so(A,))E{g;x have exactly the same stable homotopy groupss @)
—S0(4),g continuou}. Let W be the space of gauge field (defined through the Bott periodicity theorénh‘-urther,_ the
configurations, which consists of all spin connectia8(x) ~ Stable homotopy groups EQ(), m;(SX(«)), are given
with appropriate boundary conditions, and BeWIg5. Py Zzfor j=0, Z, for j=1, Z for j=3, and 1 otherwise.
The automorphism groug'() acts onWV in such a way that Also these groups have Bott periodicity mod 8, i.e.,
one can construct the gauge bundjdsewll?. For the Ta(SA))= 7o 5(SA)). Thgs, the stable hgmotopy
case of the reah-sphere, i.e.X=5" of n=dimX=2m di- groups OfSQ(A'):OCPt(ﬂ) are n ge”er?" nontr|.V|aI, anq
mensions, the existence of the local Lorentz gravitational'®/ toPological effects in noncommutative gravity theories

anomaly is associated with the nontriviality of the nontorsionareLgfss'tile' o th tati | f1h
part of the homotopy of B, ie., my(B)=my(G5) us turn now to the noncommutative analogue of the

. local Lorentz anomaly. It is determined by the nontrivial
= 1ms1(SO(2m))+# 1. For the specific case &, we get X . i
the pure  topological torsion wl(gg)zws(SOM)) nontorsion part of homotopy groups of a suitable noncom

= m5(SU(2)X SU(2))=2Z,&Z,. Thus, in four dimensions mutative version of the Lorentz groug;, which could be

there is no local Lorentz anomaly. However, rin=4k+2  defined as the sel;=Mapo(X,0cp(H)). The noncommu-
dimensions, fok=0,1, . .., itcertainly exists. tative local Lorentz anomaly is detected by the homotopy
For local diffeomorphism transformations, the moduli group wz(l%’)=7-rl(@g)=ﬂ-j(Ocpt(H))aﬁl for j=0,1,3 mod
space involves a richer phase space structure, given by ti& For j=0,1 we haver;(Ocp(H))=2Z,, while for j=3,
quotient space of a generalized Teichi®uspace and the m(Ocp(H))=Z. Thus for j=3 a nontorsion part is de-
generalized mapping class group. These anomalies can exiglicted, and therefore the existence of a local Lorentz

only for n=4k+2 dimensions fok=0,1,2 ... . However, anomaly.
mixed local Lorentz and diffeomorphism anomalies can exist  Finally, in the global perspective, the Seiberg-Witten map
in 2k+2 dimensiong41]. can be regarded as a m&\: B— B, which preserves the

Global gravitational Lorentz anomalies arise from the factnfinjtesimal Lorentz transformatiotthe gauge equivalence
that Lorentz transformations are disconnected, WLh'CT IS Terelation), and thus the locally Lorentz invariant observables
lated to the nontrivial topology of the group..=G~/G5,  of the theory. The Seiberg-Witten map is not well defined

L , -
\évheregr I‘?t th;a'sfejt _tOf Ilocal Ltgrelntz ftrz;rzfgmatlon:ls_ that g1onally since both space8 and B are different, and their
ave a limit at infinity. -In_particuiar for, » m(9=2)  corresponding topologies can be different as well. However,
=7y (SA(4))=7m,(SU(2)XSU(2))=Z,8Z,, and a non- iy some specific cases the operator representation of the
trivial global Lorentz anomaly arises. Similarly, the global Seiberg-Witten map is quite useful to define the Seiberg-
gravitational diffeomorphism anomalies are related to thepjiten map globally[46].
disconnectedness of the mapping class grdup, i.e., Finally, it is important to emphasize that the consider-
mo(l'2) #1 [42]. ations in the present section are not conclusive and they de-
serve further study in order to clarify some of them.

2. Noncommutative local Lorentz anomalies

Let us turn to the noncommutative side. The noncommu- V1. CONCLUDING REMARKS

tative version of the Lorentz group will be denoted by |n thjs section we summarize the main results of the paper
SO(4), and it is defined in terms of some suitable operatorand separately we make further comments and remarks of a
algebra on aeal Hilbert space. Here and in the following, more speculative character.
unless otherwise stated, the noncommutative spaces and In this paper, we propose a noncommutative version of
groups corresponding to the ones in the preceding sectiofgpological gravity with quadratic actions. Our proposal is
will be denoted by carets. Followingt3], we propose that based on the complex actig®9), in terms of the self-dual
SO(4) will be given by the set of compact orthogonal op- and anti-self-dual connections, and from which, we found in
eratorsO.(’H), defined on the separable real Hilbert spaceSec. 1V, that the noncommutative natural generalization of
H.! The compactness property avoids the Kuiper theorenthe signaturg26) and Euler(27) topological invariants can
which states that the set of pure orthogonal operad{ry) be extracted. More precisely, it is shown that the correspond-
has trivial homotopy groupgl4]. However, the restriction to  ing honcommutative versions of the signature and Euler to-
subalgebras of normed orthogonal operaog§H)={a|a  pological invariants are given by the real and imaginary parts
=1+K} has very important consequences. Hérgtands for  of Eq. (29), respectively. This proposed action can be written
a compact, finite rank, trace class, and Hilbert-Schmidt opas anSL(2,C) action, whose noncommutative counterpart
erator. By a mathematical resyi#5], the family of normed can be obtained in the same way as in the Yang-Mills case,
operator algebrasd,(H).||-||,), with theLP norm given by by means of the Seiberg-Witten map. We compute this action
||D|[,=(Tr|D|P)*P, together with the setO.p(H),||-||),  up to third 6 order, and we obtain that the first and the third
order vanish, but the second order is different from zero. The
action to this order is given by E¢37). It seems that all odd
YWe are aware that this proposal is not necessarily the natural on@ orders vanish identically. Thus we found that these natural
and various candidates are possible; for instance, one of thegeneralizations for the topological invariants are modified
would be the consideration of a suitable Hopf algebra. nontrivially by the noncommutative deformation.
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Now, some comments are in order. Or(mmutativé  [48]. It would be very interesting to pursue this method and
Riemannian manifold, the signature and Euler topologicatompare it with the results given recently by Peffia].
invariants characterize gravitational instantons. Thus the Regarding noncommutative global Lorentz anomalies, in
study of noncommutative topological invariants should alloworder to understand them, we would need to specify the con-

us, through the Seiberg-Witten map, to deform gravitationahected components of the corresponding grébp In this

instantons into noncommutative versions of them. In order 1Qase one would have to computg WIGE) = mo(Gh) # 1
make explicit computations, specific gravitatiofiabncom- . : R
mutative metrics have to be chosen. In this context, it would©Of COUrSe, to get it, a suitable operator definitiond5f is o
be very interesting to give a noncommutative formulation for"€c€ssary, as in the case of the local Lorentz anomaly. This is
dynamical gravity, following the lines of this work. This & difficult open problem. _ ,
analysis was reported i#0], where based on the self-dual Finally, the_AL_E gray|tat|onal instantons are an important
formulation of gravity we obtain a noncommutative defor- €@S€ Of gravitational instantons. They can be obtzalned as
mation of Einstein gravity in four dimensions. sr_nooth re_solutlons OA-E_)—_E orbifold singularitiesC</T,
Similarly to the gauge theory case, one could speculate ofith I' being anA-D-E finite subgroup ofSU(2). These
a definition of noncommutative local gravitational Lorentz 9ravitational instantons are classified through the Kronhe-
anomaly, by a suitable definition of the noncommutative Lor-Mer constructior{50], which is the analogue of the Atiyah,
entz groupSO(A) in compact space-time of an Euclidean Drinfeld, Hitchin, and Manir(ADHM) construction of Yang-

signature. The application of these ideas to the diffeomorlvIIIIS instantons. There is a proposal to extend the ADHM

phism transformations connected with the identity might pre-COnStrUCtlon to the noncommutative c488]. Thus, it would

dict new nontrivial noncommutative gravitational effects, be interesting to give the noncommutative analogue of the

which should be computed explicitly as a noncommutativeKronhe'rm:’r construction of ALE instantons.

correction to the gravitational contribution to the chiral
anomaly. The usual gravitational correction was computed
for the standard commutative case in R¢#l,47. More- It is a pleasure to thank Nicolas Grandi for very useful
over, this effect can also be regarded as a noncommutativiliscussions and comments. This work was supported in part
gravitational correction of the local chiral anomaly in non- by CONACyYT Mexico Grants No. 37851E and No. 33951E,
commutative gauge theory. This latter case of the pure noras well as by the sabbatical grants 0202Q1R.) and 020331
commutative gauge field was discussed recently in Refg0.0,).

ACKNOWLEDGMENTS

[1] H. Snyder, Phys. Rew1, 38 (1947. [18] V.P. Nair, Nucl. PhysB651, 313(2003.

[2] A. ConnesNoncommutative Geometfjicademic Press, Lon- [19] S. Cacciatori, D. Klemm, L. Martucci, and D. Zanon, Phys.
don, 1994. Lett. B 536, 101 (2002.

[3] M.R. Douglas and N.A. Nekrasov, Rev. Mod. Phys, 977 [20] S. Cacciatori, A.H. Chamseddine, D. Klemm, L. Martucci,
(2002. 2/\2/.6%28abra, and D. Zanon, Class. Quantum Gre. 4029

[4] R.J. Szabo, Phys. Rep78 207 (2003.

. . ,S. Sch I, P. Sch , and J. Wess, Eur. Phys. J. C
[5] A. Connes, M.R. Douglas, and A. Schwarz, J. High Energy[21] J- Madore chram chupp. an eSS, EUr. Fhys

16, 161 (2000.

Phys.QZ, 003 (1998. . . [22] B. Jurco, S. Schraml, P. Schupp, and J. Wess, Eur. Phys. J. C
[6] N. Seiberg and E. Witten, J. High Energy Phy9, 032 17, 521 (2000.
(1999. [23] B. Jurco, P. Schupp, and J. Wess, Nucl. PHy604 148

[7] F. Ardalan, H. Arafaei, M.R. Garousi, and A. Ghodsi, Int. J. (2001).

Mod. Phys. A18, 1051(2003; S.I. Vacaru, ({Non) Commu-  [24] J. Wess, Commun. Math. Phy&19, 247 (2001).
tative  Finsler ~ Geometry  from  String/M-Theory,” [25] B. Jurco, L. Moller, S. Schraml, P. Schupp, and J. Wess, Eur.

hep-th/0211068. Phys. J. C21, 383(2002.

[8] A.H. Chamseddine, Commun. Math. Ph24.8 283 (2001). [26] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M. Wohlgenannt,

[9] A.H. Chamseddine, Phys. Lett. B4, 33 (2001). Eur. Phys. J. @3, 363(2002.

[10] A.H. Chamseddine, J. Math. Phy&4, 2534(2003. [27] C.K. Zachos, Int. J. Mod. Phys. &7, 297 (2002.

[11] M.A. Cardella and D. Zanon, Class. Quantum Gr2@, L95 [28] M. Kontsevich, “Deformation Quantization of Poisson Mani-
(2003. folds I,” g-alg/9709040.

[12] A.H. Chamseddine, Commun. Math. Phy&5 205 (1993. [29] S. Deser, M.J. Duff, and C.J. Isham, Phys. L&38B, 419

[13] W. Kalau and M. Walze, J. Geom. Phyis, 327 (1995. (1980.

[14] A. Connes, Commun. Math. Phy482 155 (1996; A.H. [30] A. Ashtekar, A.P. Balachandran, and So Jo, Int. J. Mod. Phys.
Chamseddine and A. Connes, Phys. Rev. [7tt4868(1996. A 4, 1493(1989.

[15] J.W. Moffat, Phys. Lett. B491, 345(2000; 493 142 (2000. [31] L. Smolin, J. Math. Phys36, 6417(1995.

[16] M. Banados, O. Chandy N. Grandi, F.A. Schaposnik, and [32] J.A. Nieto, O. Obrego, and J. Socorro, Phys. Rev. B0,
G.A. Silva, Phys. Rev. 34, 084012(2002. R3583(1994).

[17] H. Nishino and S. Rajpoot, Phys. Lett. 382, 334(2002. [33] H. Garca-Compén, O. Obrega, C. Ramiez, and M. Sabido,

045010-8



NONCOMMUTATIVE TOPOLOGICAL THEORIES OF GRAVITY PHYSICAL REVIEW D68, 045010(2003

Phys. Rev. D61, 085022(2000. Phys. Rev. D(to be publishey] hep-th/0302180.
[34] S.W. Hawking, Phys. Lett60A, 81 (1977). [41] L. Alvarez-Gaumeand E. Witten, Nucl. PhysB234 269
[35] T. Eguchi and A.J. Hanson, Phys. Let4B, 249(1978; G.W. (1983.
Gibbons and S.W. Hawkingbid. 78B, 430 (1978. [42] E. Witten, Commun. Math. Phy400, 197 (1985.
[36] T. Eguchi and A.J. Hanson, Ann. Phy#l.Y.) 120, 82 (1979; [43] J.A. Harvey, “Topology of the Gauge Group in Noncommuta-
T. Eguchi, P.B. Gilkey, and A.J. Hanson, Phys. Ré6,. 213 tive Gauge Theory,” hep-th/0105242.

(1980; in Euclidean Quantum Gravityedited by G.W. Gib-  [44] N.H. Kuiper, Topology3, 19 (1965.
bons and S.W. HawkingWorld Scientific, Singapore, 1993 [45] R.S. Palais, Topolog®, 271 (1965.
[37] G.W. Gibbons, S.W. Hawking, and M.J. Perry, Nucl. Phys.[46] P. Kraus and M. Shigemori, J. High Energy Ph$6, 034

B138 141 (1978; G.W. Gibbons and C.N. Pope, Commun. (2002; A.P. Polychronakos, Ann. PhysgN.Y.) 301, 174

Math. Phys.66, 267 (1979; R. Schoen and S.T. Yau, Phys. (2002.

Rev. Lett.42, 547 (1979; E. Witten, Commun. Math. Phys. [47] R. Delbourgo and A. Salam, Phys. Le#0B, 381 (1972; T.

80, 381(1981). Eguchi and P.G.O. Freund, Phys. Rev. L8, 1251(1976.
[38] N. Nekrasov and A. Schwarz, Commun. Math. PHy38 689 [48] F. Ardalan and N. Sadooghi, Int. J. Mod. Phys.18, 3151

(1998. (2002; J.M. Gracia-Bondia and C.P. Martin, Phys. Lett. B
[39] H. Garéa-Compén, O. Obrega, and C. Rarmez, Phys. Rev. 479 321(2000.

Lett. 88, 161301(2002. [49] D. Perrot, J. Geom. Phy89, 82 (200J).

[40] H. Garca-Compéa, O. Obrega, C. Ramiez, and M. Sabido, [50] P.B. Kronheimer, J. Diff. GeonR9, 665(1989.

045010-9



