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The possibility of noncommutative topological gravity arising in the same manner as Yang-Mills theory is
explored. We use the Seiberg-Witten map to construct such a theory based on aSL(2,C) complex connection,
from which the Euler characteristic and the signature invariant are obtained. Finally, we speculate on the
description of noncommutative gravitational instantons, as well as noncommutative local gravitational anoma-
lies.
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I. INTRODUCTION

The idea of the noncommutative nature of space-time
ordinates is quite old@1#. Many authors have studied it ex
tensively from the mathematical@2# as well as the field the
oretical point of view~for a review, see, for instance,@3,4#!.

Recently, noncommutative gauge theory has attracte
lot of attention, especially in connection with M~atrix! @5#
and string theory@6#. In particular, Seiberg and Witten@6#
have found noncommutativity in the description of the lo
energy excitations of open strings~possibly attached to
D-branes! in the presence of a Neveu-Schwarz const
backgroundB field. Moreover, they have observed that, d
pending on the regularization scheme of the two-dimensio
correlation functions, Pauli-Villars or point splitting, ord
nary and noncommutative gauge fields can be induced f
the same worldsheet action. Thus, this procedure tells us
there is a relation of the resulting theory of noncommutat
gauge fields, deformed by the Moyal star product or Ko
sevich star product for systems with general covariance, w
a gauge theory in terms of the usual commutative fields. T
relation is the so-called Seiberg-Witten map.

In string theory, gravity and gauge theories are realized
very different ways. The gravitational interaction is asso
ated with a massless mode of closed strings, while Ya
Mills theories are more naturally described in open strings
in heterotic string theory. Furthermore, as mentioned, n
commutative Yang-Mills theories should arise from stri
theory. Thus the question emerges of whether a noncom

*Electronic address: compean@fis.cinvestav.mx
†Permanent address: Instituto de Fı´sica de la Universidad de Gua

najuato, P.O. Box E-143, 37150 Leo´n Gto., Mexico. Electronic ad-
dress: octavio@ifug3.ugto.mx

‡Permanent address: Facultad de Ciencias Fı´sico Matema´ticas,
Universidad Auto´noma de Puebla, P.O. Box 1364, 72000 Pueb
Mexico. Electronic address: cramirez@fcfm.buap.mx

§Electronic address: msabido@ifug3.ugto.mx
0556-2821/2003/68~4!/045010~9!/$20.00 68 0450
-

a

t
-
al

m
at

e
-
th
is

in
-
g-
r
-

u-

tative description of gravity would arise from it. This is
difficult question and it will not be addressed here. Howev
in a recent paper@7#, gravitation on noncommutative
D-branes has been discussed.

In this context, recently Chamseddine has made sev
proposals for noncommutative formulations of Einstein
gravity @8–10#, where a Moyal deformation is done. More
over, in @9,10#, he gives a Seiberg-Witten map for the vie
bein and the Lorentz connection, which is obtained start
from the gauge transformations, ofSO(4,1) in the first work
and ofU(2,2) in the second one. However, in both cases
actions are not invariant under the full noncommutat
transformations; namely, in@9# the action does not have
definite noncommutative symmetry, and in@10# the Seiberg-
Witten map is obtained forU(2,2), but the action is invarian
under the subgroupU(1,1)3U(1,1). These actions de
formed by the Moyal product, with a constant noncommu
tivity parameter, are not diffeomorphism invariant. Howev
as pointed out in this work,@9,10#, they could be made dif-
feomorphism invariant, substituting the Moyal *M product
by the Kontsevich *K product. A more recent proposal for
noncommutative deformation of the Einstein-Hilbert L
grangian in four dimensions is given in@11#. For other pro-
posals for noncommutative gravity, see@12–20#.

Further, as shown in@21–25#, starting from the Seiberg
Witten map, noncommutative gauge theories with ma
fields based on any gauge group can be constructed. In
way, a proposal for the noncommutative standard mo
based on the gauge group productSU(3)3SU(2)3U(1)
has been constructed@26#. In these developments, the ke
argument is that no additional degrees of freedom have to
introduced in order to formulate noncommutative gau
theories. That is, although the explicit symmetry of the no
commutative action corresponds to the enveloping algebr
the limiting symmetry group of the commutative theory, it
also invariant with respect to the proper group of this co
mutative theory, a fact made manifest by the Seiberg-Wit
map.

In this paper, following these results, we present a p

,
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posal for a noncommutative topological quadratic theory
gravity in four dimensions, from which the noncommutati
topological invariants of Riemannian manifolds, correspo
ing to the Euler characteristic and the signature, can be
tained. We then explore, in this context of noncommutat
gravity, the notion of the gravitational instanton, which
expected to be classified by these invariants, as in the c
mutative case. Other possible global aspects of noncom
tative gravity like gravitational anomalies will be briefly ad
dressed as well. It is important to note that these la
considerations of Sec. V, on noncommutative instantons
anomalies, are of rather a speculative character, so they
not on the same footing with our main proposal and res
of Sec. IV.

The paper is organized as follows. In Sec. II we quick
review noncommutative gauge theories. In Sec. III the m
features of topological quadratic gravity are introduced,
the SO(3,1) gauge group, by means of a complex formu
tion based on self-dual topological quadratic gravity. In S
IV we present noncommutative topological gravity, with e
plicit results up to orderu3. In Sec. V, based on a study o
the global properties of the noncommutative version of
Lorentz and diffeomorphism groups, we explore the pos
bility of a definition of noncommutative gravitational insta
tons, as well as local gravitational anomalies for a theory
gravity. Finally, Sec. VI contains our concluding remarks.

II. NONCOMMUTATIVE GAUGE SYMMETRY AND THE
SEIBERG-WITTEN MAP

We start this section with the conventions and proper
of noncommutative spaces for future reference. For a re
review, see, e.g.,@27#. Noncommutative spaces can be und
stood as generalizations of the usual quantum mechan
commutation relations, by the introduction of a linear ope
tor algebraA, with a noncommutative associative produc

@ x̂m,x̂n#5 iumn, ~1!

where x̂m are linear operators acting on the Hilbert spa
L2(Rn) and umn52unm are real numbers. The Wey
Wigner-Moyal correspondence establishes~under certain
conditions! an isomorphic relation betweenA and the alge-
bra of functions onRn, the last with an associative and no
commutative! product, the Moyal product, given by

f ~x!!g~x![FexpS i

2
umn

]

]«m

]

]hnD f ~x1«!

3g~x1h!G
«5h50

. ~2!

In order to avoid causality problems we will takeu0n50.
Due to the fact that we will be working with non-Abelia

groups, we must also include matrix multiplication, so a
product will be used as the matrix multiplication with the!
product. Inside integrals, this product has the prope
Tr* f 1* f 2* f 3* •••* f n5Tr* f n* f 1* f 2* f 3* •••* f n21. In par-
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ticular, the trace of the integral of the product of two fun
tions has the property that Tr* f 1* f 25Tr* f 1f 2.

Let us consider a gauge theory with a Hermitian conn
tion, invariant under the symmetry Lie groupG, with gauge
fields Am ,

dlAm5]ml1 i @l,Am#, ~3!

wherel5l iTi , andTi are the generators of the Lie algeb
G of the groupG, in the adjoint representation. These tran
formations are generalized for the noncommutative theory

dlÂm5]mL̂1 i @L̂ ,* Âm#, ~4!

where the noncommutative parametersL̂ have some depen
dence onl and the connectionA. The commutators@A ,* B#
[A* B2B* A have the correct derivative properties wh
acting on products of noncommutative fields.

Due to noncommutativity, commutators like@L̂ ,* Âm# take
values in the enveloping algebra ofG in the adjoint represen
tation U(G,ad). Therefore,L̂ and the gauge fieldsÂm will
also take values in this algebra. In general, for some re
sentationR, we will denote asU(G,R) the corresponding
section of the enveloping algebraU(G). Let us write, for
instance, asL̂5L̂ ITI and Â5ÂITI ; then

@L̂ ,* Âm#5$L̂ I
,* Âm

J %@TI ,TJ#1@L̂ I
,* Âm

J #$TI ,TJ%, ~5!

where$A,* B%[A* B1B* A is the noncommutative anticom
mutator. Thus all the products of the generatorsTI will be
needed in order to close the algebraU(G,ad). Its structure
can be obtained by successive computation of commuta
and anticommutators starting from the generators ofG, until
it closes,

@TI ,TJ#5 i f IJ
K TK , $TI ,TJ%5dIJ

K TK .

The field strength is defined asF̂mn5]mÂn2]nÂm

2 i @Âm,* Ân#; hence it also takes values inU(G,ad). From
Eq. ~4! it turns out that

dlF̂mn5 i ~L̂* F̂mn2F̂mn* L̂ !. ~6!

We see that these transformation rules can be obtained
the commutative ones, just by replacing the ordinary prod
of smooth functions by the Moyal product, with a suitab
product ordering. This allows construction of invariant qua
tities in a simple way.

If the components of the noncommutativity parameteru
are constant, then Lorentz invariance is spoiled. In orde
recover it@9,10,23# one should change the Moyal star pro
uct to the Kontsevich star product *K @28#. However, as a
result of the diffeomorphism invariance, for an even dime
sional~symplectic! space-timeX, there exists a local coordi
nate system~which coincides with Darboux’s coordinate sy
tem! in which umn is constant. Therefore, without loss o
generality, the Kontsevich product can be reduced to
Moyal one, which will be used from now on.
0-2
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The fact that the observed world is~up to the presen
experimental evidence! commutative means that it must b
possible to obtain it from the noncommutative one by tak
the limit u→0. Thus the noncommutative fieldsÂ are given
by a power series expansion inu, starting from the commu-
tative onesA,

Â5A1umnAmn
(1)1umnursAmnrs

(2) 1•••. ~7!

The terms of this expansion are determined by the Seib
Witten map, which states that the symmetry transformati
of Eq. ~7!, given by Eq.~4! are induced by the symmetr
transformations of the commutative fields~3!. In order that
these transformations be consistent, the transformation
rameterL̂ must satisfy@22#

dlL̂~h!2dhL̂~l!2 i @L̂~l! ,* L̂~h!#5L̂~2 i @l,h#!.
~8!

Similarly, the terms in Eq.~7! are functions of the com
mutative fields and their derivatives, and are determined
the requirement thatÂ transforms as Eq.~4! @25#.

The fact that the noncommutative gauge fields take va
in the enveloping algebra has the consequence that they
a bigger number of components than the commutative o
unless the enveloping algebra coincides with the Lie alge
of the commutative theory, as is the case forU(N). How-
ever, the physical degrees of freedom of the noncommuta
fields can be related one to one to the physical degree
freedom of the commutative fields by the Seiberg-Witt
map @6#, a fact used in Refs.@21–25# to construct noncom-
mutative gauge theories, for any Lie group in principle.

In order to obtain the Seiberg-Witten map to first ord
the noncommutative parameters are first obtained from
~8! @6,21–25#,

L̂~l,A!5l1
1

4
umn$]ml,An%1O~u2!. ~9!

Then, from Eqs.~4! and ~7!, the following solution is
obtained:

Âm~A!5Am2
1

4
urs$Ar ,]sAm1Fsm%1O~u2!, ~10!

and for the field strength it turns out that

F̂mn5Fmn1
1

4
urs~2$Fmr ,Fns%2$Ar ,DsFmn1]sFmn%!

1O~u2!. ~11!

The higher terms in Eq.~7! can be obtained from the
observation that the Seiberg-Witten map preserves the op
tions of the commutative function algebra; hence the follo
ing differential equation can be written@6#:

dumn
]

]umn
Â~u!5dumnÂmn

(1)~u!, ~12!
04501
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whereÂmn
(1) is obtained fromAmn

(1) in Eq. ~7!, by substituting
for the commutative fields with the noncommutative on
under the * product.

Let us take the generatorsTi of the Lie algebraG to be
Hermitian; then the generatorsTI of the corresponding en
veloping algebra can be chosen to be also Hermitian,
instance, if they are given by the symmetrized produ
:Ti 1Ti 2

•••Ti n:. Further, the noncommutative transformatio
parametersL̂(l,A) are functions whose arguments are m
trices. Let us now substitute the matrix products ins
L̂(l,A), by MN→ 1

2 $M ,N%2 i /2(i @M ,N#), for any two ma-
tricesM andN. HenceL̂(l,A) can be understood as a fun
tion whose nonlinear part of depends polynomially, w
complex numerical coefficients, on anticommutators$•,•%
and commutatorsi @•,•#, of l, A, and their derivatives. With
this understanding, we will continue to write it asL̂(l,A),
and we have

@L̂~l,A!#†5L̂†~l†,A†!, ~13!

whereL̂† is obtained by complex-conjugating the mention
numerical coefficients.

Let us now consider the Hermitian conjugation of t
transformation law~3!, (dlAm)†5]ml†1 i @l†,Am

† #. From it
and Eq.~8!, taking into account Eq.~13!, we get,

dl†L̂†~l†,A†!2dh†L̂†~l†,A†!2 i @L̂†~l†,A†! ,* L̂†~h†,A†!#

5L̂†~2 i @l†,h†#,A†!. ~14!

Comparing this equation with Eq.~8!, with the mentioned
convention, it can be seen that the noncommutative par
eters satisfy@L̂(l,A)#†5L̂(l†,A†). From the transforma-
tion law ~4!, a similar conclusion can be obtained for th
noncommutative connection@Âm(A)#†5Âm(A†), as well for
the field strength@ F̂mn(A)#†5F̂mn(A†). By this means, if we
have a group with real parameters and Hermitian genera
with a Hermitian connection, then the noncommutative co
nection and the noncommutative field strength will also
Hermitian.

III. TOPOLOGICAL GRAVITY

In this section we briefly shortly review four-dimension
topological gravity. LetR be the field strength correspondin
to a SO(3,1) connectionv,

Rmn
ab5]mvn

ab2]nvm
ab1vm

acvn c
b 2vm

bcvn c
a , ~15!

and letR̃ be the dual ofR with respect to the group~not with
respect to space-time! given by

R̃mn
ab52

i

2
«ab

cdRmn
cd . ~16!

We start from the followingSO(3,1) invariant action:
0-3
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I TOP5
QG

P

2p
TrE

X
R`R1 i

QG
E

2p
TrE

X
R`R̃, ~17!

where X is a four-dimensional closed pseudo-Riemann
manifold and the coefficients are the gravitational analog
of the Q vacuum in QCD@29–31#.

In this action, the connection satisfies the first Car
structure equation, which relates it to a given tetrad. T
action can be written as the integral of a divergence, and
variation of it with respect to the tetrad vanishes; hence i
metric independent and therefore topological.

The action ~17! arises naturally from the MacDowell
Mansouri type action@32#. A similar construction can be
done for (211)-dimensional Chern-Simons gravity@33#.
Keeping this philosophy in mind, the action~17! can be re-
written in terms of the self-dual and anti-self-dual par
R65 1

2 (R6R̃) of the Riemann tensor as follows:

I TOP5TrE
X
~tR1`R11 t̄R2`R2!

5TrE
X
~tR1`R11 t̄R̄1`R̄1!, ~18!

wheret5(1/2p)(QG
E1 iQG

P), and the overbar denotes com
plex conjugation. In local coordinates onX, this action can
be rewritten as

I TOP52ReS tE
X
d4x«mnrsRmn

1 abRrsab
1 D . ~19!

Therefore, it is enough to study the complex action,

I 5E
X
d4x «mnrsRmn

1 abRrsab
1 . ~20!

Further, the self-dual Riemann tensor satisfi
«ab

cdRmn
1 cd52iRmn

1 ab. This tensor has the useful proper
that it can be written as a usual Riemann tensor, but in te
of the self-dual components of the spin connection,vm

1ab

5 1
2 @vm

ab2( i /2)«ab
cdvm

cd#, as

Rmn
1ab5]mvn

1ab2]nvm
1ab1vm

1acvnc
1b2vm

1bcvnc
1a .

~21!

In this case, the action~19! can be rewritten as

I 5E
X
d4x«mnrs@2Rmn

0i ~v1!Rrs0i~v1!

1Rmn
i j ~v1!Rrs i j ~v1!#. ~22!

Now, we definevm
i 5 ivm

10i , from which we obtain, by
means of the self-duality properties,vm

1 i j 52« i j
kvm

k . Then
it turns out that

Rmn
oi ~v1!52 i ~]mvn

i 2]nvm
i 12« jk

i vm
j vnc

k !52 iR mn
i ~v!

~23!
04501
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Rmn
i j ~v1!5]mvn

1 i j 2]nvm
1 i j 22~vm

ivn
j 2vn

ivm
j !

52«k
i j R mn

k ~v!. ~24!

This amounts to a decomposition between the real ortho
nal Lie groupSO(3,1) and the product of two complex Li
groups SL(2,C) given by the isomorphismSO(3,1)
>SL(2,C)3SL(2,C), such thatvm

i is a complexSL(2,C)
connection. If we choose the algebras,(2,C) to satisfy
@Ti ,Tj #52i« i j

kTk and Tr(TiTj )52d i j , then we can write

I 5TrE
X
R̃`!R̃5TrE

X
d4x«mnrsRmn~v!Rrs~v!,

~25!

whereRmn5]mvn2]nvm2 i @vm ,vn# is the field strength,
! is the usual Hodge star operation with respect to the
derlying space-time metric,R is the two-form field strength,
andR̃ is the dual ofR with respect to the group. This actio
is invariant under theSL(2,C) transformationsdlvm5]ml
1 i @l,vm#.

In the case of a Riemannian manifoldX, the signature and
the Euler topological invariants ofX, are the real and imagi
nary parts of Eq.~25!:

s~X!52
1

24p2
ReS TrE

X
d4x«mnrsRmn~v!Rrs~v! D ,

~26!

x~X!5
1

32p2
ImS TrE

X
d4x«mnrsRmn~v!Rrs~v! D .

~27!

IV. NONCOMMUTATIVE TOPOLOGICAL GRAVITY

We wish to have a noncommutative formulation of t
SO(3,1) action~17!. Its first term can be straightforwardl
made noncommutative, in the same way as for the us
Yang-Mills theory,

TrE
X
R̂`R̂. ~28!

If the SO(3,1) generators are chosen to be Hermitian,
example, in the spin1

2 representation given bygmn, then
from the discussion at the end of Sec. II, it turns out thatR̂mn

is Hermitian and consequently Eq.~28! is real.
If we now turn to the second term of Eq.~17!, such an

action cannot be written, because it involves the Levi-Civ`
symbol, an invariant Lorentz tensor, but which is not inva
ant under the full enveloping algebra. However, as m
tioned at the end of the preceding section, this term can
obtained from Eq.~25!.

Thus, in general we will consider as the noncommutat
topological action of gravity theSL(2,C) invariant action

Î 5TrE
X
d4x«mnrsR̂mnR̂rs , ~29!
0-4
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whereR̂mn5]mv̂n2]nv̂m2 i @v̂m ,* v̂n#, is theSL(2,C) non-
commutative field strength. This action does not depend
the metric of X. Indeed, as well as the commutative one, i
given by the divergence

Î 5TrE
X
d4x«mnrs]mS v̂n* ]rv̂s1

2

3
v̂n* v̂r* v̂sD . ~30!

Thus, a variation of Eq.~29! with respect to the noncom
mutative connection will vanish identically because of t
noncommutative Bianchi identities,

dv̂ Î 58TrE «mnrsdv̂m* D̂nR̂rs[0, ~31!

whereD̂m is the noncommutative covariant derivative.
At this stage, we can make use of the first Cartan struc

equation; then theSO(3,1) connection, and thus itsSL(2,C)
projectionvm

i , can be written in terms of the tetrad and t
torsion. Furthermore, from the Seiberg-Witten map, the n
commutative connection can be written as well asv̂(e).
Therefore, a variation of the action~29! with respect to the
tetrad of the action can be written as

deÎ 58TrE «mnrsdev̂m~e!* D̂nR̂rs[0; ~32!

hence it is topological, like the commutative one.
As we will show later, the explicit expansion of the actio

~29! in the noncommutative parameteru gives terms that one
does not expect to vanish identically. Thus, we see from
~30! that, in au power expansion of the action, each one
the resulting terms will be independent of the metric a
04501
n
s

re

-

q.
f
d

they will be given by a divergence. Therefore, these ter
will be topological.~For the case of the Euler characterist
compare with the noncommutative nontrivial generalizat
of it given by Connes in pp. 64–69 of Ref.@2#.!

Furthermore, the whole noncommutative action, e
pressed in terms of the commutative fields by the Seibe
Witten map, is invariant under theSO(3,1) transformations.
Thus, each term of the expansion will also be invariant a
these terms will be topological invariants.

The action~29! is not real, nor is the limiting commuta
tive action. Hence, it is not obvious that the signature~28!
will be precisely its real part. In this case we could not s
that x̂(X) is given by its imaginary part. In fact we coul
only say thatx̂(X) could be obtained from the difference o
Eqs.~29! and~28!. However, the real and the imaginary par
of Eq. ~29! are invariant underSL(2,C) and consequently
underSO(3,1), and thus they are the natural candidates
ŝ(X) and x̂(X), as in Eqs.~26! and ~27!. In order to write
down these noncommutative actions as an expansion inu,
we will take as generators for the algebra ofSL(2,C) the
Pauli matrices. In this case, to second order inu, the
Seiberg-Witten map for the Lie algebra valued commutat
field strengthRmn5R mn

i (v)s i is given by

R̂mn5Rmn1uabR mnab
(1) 1uabugdR mnabgd

(2) 1•••, ~33!

where, from Eq.~11! we get

ursR mnrs
(1) 5

1

2
urs@2R mr

i Rns i2vr
i ~]sRmn i1DsRmn i !#1,

~34!

where1 is the unity 232 matrix. Further, by means of Eq
~12!, we get
r,
ursutuR mnrstu
(2) 5

1

4
ursutuS « jk

i @ i ]tR mr
j ]uR ns

k 1]tvr
j ]u~]s1Ds!R mn

k #2vr
i ]tvs

j ]uRmn j

1R mr
i @2R nt

j Rsu j2vt
j ~]u1Du!Rns j #2R nr

i @2R mt
j Rsu j2vt

j ~]u1Du!Rms j #

1
1

2
vt

j ~]uvr j1Rur j !~]s1Ds!R mn
i 22vr

i $2]sR mt
j Rnu j2]s@vt

j ~]u1Du!Rmn j #% Ds i . ~35!

Therefore, to second order inu, the action~29! will be given by

Î 5TrE
X
d4x«mnrs@RmnRrs12utqRmnR rstq

(1) 1utuuqz~2RmnR rstuqz
(2) 1R mntu

(1) R rsqz
(1) !#. ~36!

Taking into account Eq.~34!, we get that the first order term is proportional to Tr(s i) and thus vanishes identically. Furthe
using Eq.~35!, we finally get
0-5
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Î 5E
X
d4x «mnrsH 2R mn

i Rrs i1
1

4
utuuqzS 2« i jkRmn

i @]qRrt
j ]zRsu

k 2]qvt
j ]z~]u1Du!Rrs

k #1FRmt
i Rnu i2

1

2
vt

i ~]u1Du!RimnG
3FRrq

j Rsz j2
1

2
vq

j ~]z1Dz!Rrs j G1Rmn
i H Risu@2Rrq

j Rtz j2vq
j ~]z1Dz!Rrt j #1

1

4
~]u1Du!Rrs ivq

j ~]zvt j1Rzt j !

1vu iF]t~Rrq
j Rsz j !2

1

2
]tvq

j ~]z1Dz!Rrs j G J 2
1

2
Rmn

i vt i]qvu
j ]zRrs j D J , ~37!
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where the second order correction does not identically v
ish.

Similarly to the second order term~35!, the third order
term forR̂ can be computed by means of Eq.~12!. The result
is given by a rather long expression, which, however, is p
portional to the unity matrix1, like Eq. ~34!. Thus the third
order term in Eq.~36!, given by

2ut1u1ut2u2ut3u3TrE
X
«mnrs~RmnR rst1u1t2u2t3u3

(3)

1R mnt1u1

(1) R rst2u2t3u3

(2) !, ~38!

vanishes identically, becauseR (2) is proportional tos i .
Thus, Eq.~37! is valid to third order. In fact, it seems that a
its odd order terms vanish.

V. TOWARD NONCOMMUTATIVE GRAVITATIONAL
INSTANTONS AND ANOMALIES

A. Toward noncommutative gravitational instantons

In the Euclidean signature, the action~17!, with local Lor-
entz groupSO(4), is proportional to a linear combination o
integer valued topological invariants, the Eulerx(X) and the
signatures(X), which characterize the gravitational insta
tons. In fact,s(X) andx(X) are the analogue of the instan
ton numberk of SU(2) Yang-Mills instantons, which is a
manifestation of the gauge group topology, throughk
Pp3„SU(2)…. These topological invariantsx ands should
of course include the corresponding boundary a
h-invariant terms. Gravitational instantons are finite act
solutions of the self-dual Einstein equations, which are
ymptotically Euclidean@34#, or asymptotically locally Eu-
clidean~ALE! @35#, at infinity ~for a review, see@36#!. Then
one would ask about the possibility of getting gravitation
instanton solutions in noncommutative gravity. The fi
natural step would be to analyze the positive action con
ture@37#, in the context of noncommutative gravity, althoug
it would require a more complete version of noncommutat
gravity. However, it is possible to give some generic arg
ments, and we will focus on the description of the glob
aspects by analyzing the invariantsx ands in the noncom-
mutative context. In order to do that, we concentrate on
spin connection dependence, leaving the explicit metrics
later analysis.

In the previous section, from explicit computations of t
noncommutative corrections~in the noncommutative param
04501
n-

-

d
n
s-

l
t
c-

e
-
l
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eter u) of the topological invariants@see Eq.~37!#, we got
that they do not vanish atO(u2); hence the classical topo
logical invariants are clearly modified. Thus, the use of
Seiberg-Witten map for the Lorentz group leads to ess

tially modified invariantsx̂ andŝ, which would characterize
‘‘noncommutative gravitational instantons.’’ Further, the co
responding deformed equation under the Seiberg-Witten m

R̂mn
1 50, does admit an expansion inu with the term at the

zero order beingRmn
1 . Thus these corrections should be a

sociated with theu corrections of the self-duality equatio
Rmn

1 50. Furthermore, we could expect for the gravitation
instantons similar effects as for the case of Yang-Mills
stantons@6,38#, where the singularities of moduli space a
resolved by the noncommutative deformations. We alre
know from models of the minisuperspace in quantum c
mology that noncommutative gravity leads to a version
noncommutative minisuperspace@39#. Thus, one would ex-
pect some new physical effects from the moduli space
metrics of a noncommutative gravity theory, which may he
to resolve space-time singularities.

This description of noncommutative gravitational insta
tons is, of course, not conclusive. They deserve further stu
also in the context of a noncommutative dynamical theory
gravity ~for a proposal, see@40#!.

B. Comments on gravitational anomalies
in noncommutative spaces

1. A brief survey of gravitational anomalies

The study of topological invariants leads us also to ot
nontrivial topological effects, like anomalies, in our gravit
tional case. Gravitational anomalies, as well as ga
anomalies, are classified into local and global anomalies
this paper we will mainly focus on local anomalies, where
global anomalies will be mentioned as a reference for fut
work.

Local anomalies are associated with the lack of invaria
of the quantum one-loop effective action, under infinitesim
local transformations. There are different types of loc
gravitational anomalies, depending on the type of trans
mation, like the Lorentz~or automorphism! anomaly and the
diffeomorphism anomaly.

Let G 0
L be the group of vertical automorphisms of th

frame bundle over the space-timeX. In a local trivialization,
the frame bundleG 0

L can be identified with the set of con
tinuous maps fromX to SO(4), which approach the identity
0-6
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at infinity, i.e. G 0
L[Map0„X,SO(4)…[$g:X

→SO(4),g continuous%. Let W be the space of gauge fiel
configurations, which consists of all spin connectionsvm

ab(x)
with appropriate boundary conditions, and letB5W/G 0

L .
The automorphism groupG 0

L acts onW in such a way that
one can construct the gauge bundle:G 0

L→W→
p

B. For the
case of the realn-sphere, i.e.,X5Sn of n5dimX52m di-
mensions, the existence of the local Lorentz gravitatio
anomaly is associated with the nontriviality of the nontors
part of the homotopy of B, i.e., p2(B)>p1(G 0

L)
5p2m11„SO(2m)…Þ1. For the specific case ofS4, we get
the pure topological torsion p1(G 0

L)>p5„SO(4)…
5p5„SU(2)3SU(2)…5Z2% Z2. Thus, in four dimensions
there is no local Lorentz anomaly. However, inn54k12
dimensions, fork50,1, . . . , itcertainly exists.

For local diffeomorphism transformations, the mod
space involves a richer phase space structure, given by
quotient space of a generalized Teichmu¨ller space and the
generalized mapping class group. These anomalies can
only for n54k12 dimensions fork50,1,2, . . . . However,
mixed local Lorentz and diffeomorphism anomalies can e
in 2k12 dimensions@41#.

Global gravitational Lorentz anomalies arise from the f
that Lorentz transformations are disconnected, which is
lated to the nontrivial topology of the groupG `

L 5G L/G 0
L ,

where G L is the set of local Lorentz transformations th
have a limit at infinity. In particular forX5S4, p0(G `

L )
>p4„SO(4)…5p4„SU(2)3SU(2)…5Z2% Z2, and a non-
trivial global Lorentz anomaly arises. Similarly, the glob
gravitational diffeomorphism anomalies are related to
disconnectedness of the mapping class groupG`

1 , i.e.,
p0(G`

1)Þ1 @42#.

2. Noncommutative local Lorentz anomalies

Let us turn to the noncommutative side. The noncomm
tative version of the Lorentz group will be denoted
SO(4)̂, and it is defined in terms of some suitable opera
algebra on areal Hilbert space. Here and in the following
unless otherwise stated, the noncommutative spaces
groups corresponding to the ones in the preceding sec
will be denoted by carets. Following@43#, we propose that
SO(4)̂ will be given by the set of compact orthogonal o
eratorsOcpt(H), defined on the separable real Hilbert spa
H.1 The compactness property avoids the Kuiper theor
which states that the set of pure orthogonal operatorsO(H)
has trivial homotopy groups@44#. However, the restriction to
subalgebras of normed orthogonal operatorsOp(H)5$aua
511K% has very important consequences. HereK stands for
a compact, finite rank, trace class, and Hilbert-Schmidt
erator. By a mathematical result@45#, the family of normed
operator algebras (Op(H),uu•uup), with theLp norm given by
uuDuup5(TruDup)1/p, together with the set„Ocpt(H),uu•uu`…,

1We are aware that this proposal is not necessarily the natura
and various candidates are possible; for instance, one of t
would be the consideration of a suitable Hopf algebra.
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have exactly the same stable homotopy groups asSO(`)
~defined through the Bott periodicity theorem!. Further, the
stable homotopy groups ofSO(`), p j„SO(`)…, are given
by Z2 for j 50, Z2 for j 51, Z for j 53, and 1 otherwise.
Also these groups have Bott periodicity mod 8, i.
pn„SO(`)…5pn18„SO(`)…. Thus, the stable homotop
groups of SO(4)ˆ 5Ocpt(H) are in general nontrivial, and
new topological effects in noncommutative gravity theor
are possible.

Let us turn now to the noncommutative analogue of
local Lorentz anomaly. It is determined by the nontrivi
nontorsion part of homotopy groups of a suitable nonco
mutative version of the Lorentz groupĜ0

L , which could be

defined as the setĜ0
L[Map0„X,Ocpt(H)…. The noncommu-

tative local Lorentz anomaly is detected by the homoto
group p2(B̂)5p1(Ĝ0

L)5p j„Ocpt(H)…Þ1 for j 50,1,3 mod
8. For j 50,1 we havep j„Ocpt(H)…5Z2, while for j 53,
p j„Ocpt(H)…5Z. Thus for j 53 a nontorsion part is de
tected, and therefore the existence of a local Lore
anomaly.

Finally, in the global perspective, the Seiberg-Witten m
can be regarded as a mapSW:B→B̂, which preserves the
infinitesimal Lorentz transformation~the gauge equivalenc
relation!, and thus the locally Lorentz invariant observabl
of the theory. The Seiberg-Witten map is not well defin
globally since both spacesB and B̂ are different, and their
corresponding topologies can be different as well. Howev
in some specific cases the operator representation of
Seiberg-Witten map is quite useful to define the Seibe
Witten map globally@46#.

Finally, it is important to emphasize that the consid
ations in the present section are not conclusive and they
serve further study in order to clarify some of them.

VI. CONCLUDING REMARKS

In this section we summarize the main results of the pa
and separately we make further comments and remarks
more speculative character.

In this paper, we propose a noncommutative version
topological gravity with quadratic actions. Our proposal
based on the complex action~29!, in terms of the self-dual
and anti-self-dual connections, and from which, we found
Sec. IV, that the noncommutative natural generalization
the signature~26! and Euler~27! topological invariants can
be extracted. More precisely, it is shown that the correspo
ing noncommutative versions of the signature and Euler
pological invariants are given by the real and imaginary pa
of Eq. ~29!, respectively. This proposed action can be writt
as anSL(2,C) action, whose noncommutative counterpa
can be obtained in the same way as in the Yang-Mills ca
by means of the Seiberg-Witten map. We compute this ac
up to thirdu order, and we obtain that the first and the thi
order vanish, but the second order is different from zero. T
action to this order is given by Eq.~37!. It seems that all odd
u orders vanish identically. Thus we found that these natu
generalizations for the topological invariants are modifi
nontrivially by the noncommutative deformation.

ne
m

0-7
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Now, some comments are in order. On a~commutative!
Riemannian manifold, the signature and Euler topologi
invariants characterize gravitational instantons. Thus
study of noncommutative topological invariants should all
us, through the Seiberg-Witten map, to deform gravitatio
instantons into noncommutative versions of them. In orde
make explicit computations, specific gravitational~noncom-
mutative! metrics have to be chosen. In this context, it wou
be very interesting to give a noncommutative formulation
dynamical gravity, following the lines of this work. Thi
analysis was reported in@40#, where based on the self-du
formulation of gravity we obtain a noncommutative defo
mation of Einstein gravity in four dimensions.

Similarly to the gauge theory case, one could speculate
a definition of noncommutative local gravitational Loren
anomaly, by a suitable definition of the noncommutative L
entz groupSO(4)̂ in compact space-time of an Euclidea
signature. The application of these ideas to the diffeom
phism transformations connected with the identity might p
dict new nontrivial noncommutative gravitational effec
which should be computed explicitly as a noncommutat
correction to the gravitational contribution to the chir
anomaly. The usual gravitational correction was compu
for the standard commutative case in Refs.@41,47#. More-
over, this effect can also be regarded as a noncommuta
gravitational correction of the local chiral anomaly in no
commutative gauge theory. This latter case of the pure n
commutative gauge field was discussed recently in R
rg

J.
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@48#. It would be very interesting to pursue this method a
compare it with the results given recently by Perrot@49#.

Regarding noncommutative global Lorentz anomalies
order to understand them, we would need to specify the c
nected components of the corresponding groupĜ`

L . In this

case one would have to computep1(Ŵ/Ĝ`
L )5p0(Ĝ`

L )Þ1.

Of course, to get it, a suitable operator definition ofĜ`
L is

necessary, as in the case of the local Lorentz anomaly. Th
a difficult open problem.

Finally, the ALE gravitational instantons are an importa
case of gravitational instantons. They can be obtained
smooth resolutions ofA-D-E orbifold singularitiesC2/G,
with G being anA-D-E finite subgroup ofSU(2). These
gravitational instantons are classified through the Kron
imer construction@50#, which is the analogue of the Atiyah
Drinfeld, Hitchin, and Manin~ADHM ! construction of Yang-
Mills instantons. There is a proposal to extend the ADH
construction to the noncommutative case@38#. Thus, it would
be interesting to give the noncommutative analogue of
Kronheimer construction of ALE instantons.
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