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Zk string fluxes and monopole confinement in non-Abelian theories
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Recently we consideredN52 super Yang-Mills theory with aN52 mass breaking term and showed the
existence of Bogomol’nyi-Prasad-Sommerfield~BPS! Zk string solutions for arbitrary simple gauge groups
which are spontaneously broken to non-Abelian residual gauge groups. We also calculated their string tensions
exactly. In doing so, we have considered in particular the hypermultiplet in the same representation as that of
a diquark condensate. In the present work, we analyze some of the different phases of the theory and find that
the magnetic fluxes of the monopoles are multiples of the fundamentalZk string flux, allowing for monopole
confinement in one of the phase transitions of the theory. We also calculate the threshold length for string
breaking. Some of these confining theories can be obtained by adding a deformation term to theN52 or N
54 superconformal theories.
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I. INTRODUCTION

It has long been believed that quark confinement wo
be dual to a non-Abelian generalization of the Meissner
fect, as proposed by ’t Hooft and Mandelstam many ye
ago@1#. Following their ideas, important progress was ma
by Seiberg and Witten@2#, who starting from anN
52 SU(2) supersymmetric theory, obtained an effectiveN
52 U(1) super QED with anN52 mass breaking term
associated with the point in moduli space where a monop
becomes massless. In this effective theory, theU(1) group is
broken to a discrete subgroup. As it happens, the theory
velops~solitonic! string solutions and monopole confineme
occurs, with these monopoles being identified with elec
charges. After that, much interesting work appeared@3#, ana-
lyzing various aspects ofN52 SU(Nc) supersymmetric
QCD with N52 U(1)Nc21 theory with an N52 mass
breaking term as the effective theory. These effective th
ries also have string solutions when the gauge group is
ken by the Higgs mechanism. These string solutions con
monopoles and carry topological charges in the gro
P1@U(1)Nc21/ZNc21#5ZNc21. On the other hand, recentl
we considered@4# N52 super Yang-Mills theory with anN
52 mass breaking term, with an arbitrary simple gau
groupG which in general is broken to a non-Abelian residu
gauge group. One spontaneous symmetry breaking is
duced by a complex scalarf that could be in the symmetri
part of the tensor product ofk fundamental representation
with k>2. In particular, ifk52, this is the same represen
tation as that of a diquark1 condensate, and therefore th
scalar can be thought as being itself the diquark conden
~or the monopole condensate in the dual theory!. Therefore,
whenk52, we can consider this theory as being an effect

*Email address: kneipp@cbpf.br
1By ‘‘quark’’ we mean a fermion in a fundamental representatio
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theory, as the Abelian-Higgs is an effective theory for BC
theory. In addition to the fact that our ‘‘effective’’ theory ha
a non-Abelian gauge groupG, another interesting feature i
that it has solitonic monopoles which are solutions of t
equations of motion, unlike the Dirac monopoles that usua
appear in the Abelian theories. When the scalarf acquires
an expectation value it breaks the gauge groupG into Gf ,
such thatP1(G/Gf)5Zk , allowing the existence ofZk

string solutions. We showed the existence of Bogomol’n
Prasad-Sommerfield~BPS! Zk string solutions for these theo
ries ~for arbitrary k>2)and calculated their string tension
exactly. In the present work, we analyze some other featu
of these theories. In Sec. II we show that by continuou
varying a mass parameterm we can pass from an unbroke
phase to a phase with free monopoles and then to a p
with Zk strings and confined monopoles. In Sec. III we an
lyze the phase that has solitonic BPS monopole solutio
which we call the ‘‘free-monopole phase.’’ These monopo
solutions are expected to fill irreducible representations
the dual unbroken gauge group@5#. In this phase,N52 su-
persymmetry is recovered and we show that some of th
theories are conformal. In Sec. IV we analyze the magn
fluxes of the BPS strings that appear in the superconduc
phase. We show that the magnetic fluxes of the magn
monopoles are multiples of the fundamental string flux a
therefore the monopoles can become confined. We also
tain the threshold length for a string to break into a n
monopole-antimonopole pair. These results are obtained
sidering the theory in the weak coupling regime since, in
‘‘dual Meissner effect picture’’ for confinement, one wants
map a theory in the weak coupling regime with monopo
confinement to a theory in the strong coupling regime w
quark confinement, through a duality transformation. T
general topological aspects for monopole confinement du
a phase transition have been given in@6# ~see also@7#!. Our
aim here is to analyze the monopole confinement in our s
cific theory. We conclude with a summary of the results..
©2003 The American Physical Society09-1
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II. PHASES OF THE THEORY

As is quite well known, in the broken phase of th
Abelian-Higgs theory in 311 dimensions, there exist strin
solutions with string tension satisfying the inequality

T>
qf

2
a2uFstu, ~1!

wherea is a breaking parameter which appears in the pot
tial, Fst is the string’s magnetic flux, which satisfies th
quantization condition

Fst5
2pn

qf
, nPZ, ~2!

andqf is the electric charge of the scalar field. Consider
thatf† is a condensate of electron pairs, then2 qf52e. Fol-
lowing ’t Hooft and Mandelstam’s@1# idea, if one considers
a Dirac monopole-antimonopole system in the Abelia
Higgs theory, the magnetic lines cannot spread over sp
but must rather form a string which gives rise to a confin
potential between the monopoles. That is only possible
cause the Dirac monopole magnetic flux isFmon5g
52p/e, which is twice the fundamental string’s magne
flux, allowing one to attach to the monopole two strings w
n51.

One of our aims in this work is to generalize some
these ideas on monopole confinement to non-Abelian ga
theories. For simplicity let us consider a gauge groupG
which is simple, connected, and simply connected, and ad
the same conventions as in@4#. Following our previous work,
we shall consider a Yang-Mills theory with a complex sca
S in the adjoint representation and a complex scalarf in
another particular representation. We consider a scalar in
adjoint representation because in a spontaneous symm
breaking it can produce an unbroken gauge group wit
U(1) factor, which allows the existence of monopole so
tions. Additionally, another motivation for having a scalar
the adjoint representation is because with it we can form
N52 vector supermultiplet and, as in the Abelian-Hig
theory, the BPS string solutions appear naturally in a the
with N52 supersymmetry and anN52 mass breaking term
Moreover, in a theory with the field content ofN52, the
monopole spin is consistent with quark-monopole dua
@10#, which is another important ingredient in ’t Hooft an
Mandelstam’s ideas. In order to have monopole confinem
we need also to have string solutions. A necessary cond
for the existence of a~topological! string is to have a non
trivial first homotopy group of the vacuum manifold. On
way to produce a spontaneous symmetry breaking satisf
this condition is to introduce a complex scalarf in a repre-
sentation that contains the weight stateuklf& @8#, wherek is
an integer greater than or equal to 2, andlf a fundamental
weight. For an arbitrary gauge groupG there are at leas
three possible representations which have this weight s

2Considering that\515c.
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One is to considerf in the representation withklf as high-
est weight, which we shall denoteRklf

. We can also con-

sider f to be in the direct product ofk fundamental repre-
sentations with fundamental weightlf , which we shall
denoteRklf

^ . Finally, a third possibility would be to conside

f in the symmetric part ofRklf

^ , calledRklf

sym , which always

containsRklf
. This last possibility has the extra physic

motivation that, ifk52, it corresponds to the representatio
of a condensate of two massless fermions~in the microscopic
theory! in the fundamental representation with fundamen
weight lf , which we shall loosely call quarks. Therefor
for k52, we could interpretf as being this diquark conden
sate. In this case, whenf takes a nontrivial expectation
value, it also gives rise to a mass term for these quarks
order to haveN52 supersymmetry we need another co
plex scalar to be in the same hypermultiplet asf. For sim-
plicity’s sake, however, we shall ignore it, setting it to zer
Note that, for the gauge groupSU(n), the scalarS in the
adjoint representation could also be interpreted as a bo
state of quark-antiquark, for the quark in then-dimensional
representation.

Let us consider the Lagrangian used in@4#,

L52
1

4
Ga

mnGamn1
1

2
~DmS!a* ~DmS!a

1
1

2
~Dmf!†Dmf2V~S,f! ~3!

with

V~S,f!5
1

2
~Ya

21F†F !>0 ~4!

where

Ya5
e

2 H ~f†Taf!1Sb* i f bcaSc2mS Sa1Sa*

2 D J , ~5!

F5eS S†2
m

e Df. ~6!

Ta are the orthogonal Lie algebra generators which satis

Tr~TaTb!5xfc2dab , ~7!

wherexf is the Dynkin index off ’s representation andc2 is
the length squared of the highest root, which we shall take
be 2. This Lagrangian is the bosonic part ofN52 super
Yang-Mills theory with one flavor~with one of the aforemen-
tioned scalars of the hypermultiplet put equal to zero! and an
N52 breaking mass term.3 The parameterm gives a bare
mass tof and m gives a bare mass to thereal part of S
which therefore breaksN52 to N50. This breaking is dif-

3One can check that easily by comparing with the Lagrangian
N52 super Yang-Mills theory written in the Appendix of@4#.
9-2
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ferent from the one considered by Seiberg and Witten@2#,
which breaksN52 to N51. We shall consider that thi
theory is in the weak coupling regime.

The vacua are solutions to the equationV(S,f)50,
which is equivalent to the conditions

Ya505F. ~8!

In order for topological string solutions to exist, we look f
vacuum solutions of the form

fvac5auklf&, ~9!

Svac5blf•H, ~10!

where a is a complex constant,b is a real constant, and
uklf& is a weight state withlf being an arbitrary fundamen
tal weight andk being an integer greater than or equal to 2
aÞ0, this configuration breaksG→Gf in such a way that
@8# P1(G/Gf)5Zk , which is a necessary condition for th
existence ofZk strings. Let us consider thatm.0. Following
@4#, from the vacuum conditions~8! one can conclude that

uau25
mb

k
,

S kblf
2 2

m

e Da50.

There are three possibilities.
~i! m,0. If aÞ0, then b5m/lf

2 ke.0, which would
imply uau2,0. Therefore we must havea505b and the
gauge groupG remains unbroken.

~ii ! m50. Thena50 andb can be an arbitrary constan
In this case, consideringbÞ0, Svac breaks@8#

G→GS[@K3U~1!#/Zl , ~11!

where k is the subgroup ofG associated with the algebr
whose Dynkin diagram is given by removing the dot cor
sponding tolf from that ofG. TheU(1) factor is generated
by lf•H andZl is a discrete subgroup ofU(1) andk. The
order l of Zl is equal topfuZ(K)u/uZ(G)u whereuZ(G)u and
uZ(K)u are, respectively, the orders of the centers of
groupsG and K, and pf is the smallest integer such th
pf2lf /af

2 is in the coroot lattice@9#.
~iii ! m.0. Besides the solutiona505b, we can have

uau25
mm

k2elf
2

, ~12!

b5
m

kelf
2

, ~13!

andG is further broken to@8#

G→Gf[~K3Zkl!/Zl.GS . ~14!

In particular, fork52, we can have, for example, the sym
metry breaking patterns,
04500
f

-

e

Spin~10!→@SU~5!3Z10#/Z5 ,

SU~3!→@SU~2!3Z4#/Z2 .

Therefore by continuously changing the value of the para
eter m we can produce a symmetry breaking patte
G→GS→Gf . It is interesting to note that, unlike th
Abelian-Higgs theory, in our theory the bare massm of f is
not required to satisfym2,0 in order to have spontaneou
symmetry breaking. Therefore in the dual formulation, whe
one could interpretf as being the monopole condensate,
do not need to have a monopole mass satisfying the p
lematic conditionMmon

2 ,0 mentioned by ’t Hooft@11#.
Let us analyze the last two phases in more detail.

III. THE mÄ0 OR FREE-MONOPOLE PHASE

When m50, N52 supersymmetry is restored. In th
phasea50 andb is an arbitrary constant, which we sha
consider to be given by Eq.~13!, in order to have the sam
value as in the case whenm,0. The vacuum configuration
Svac defines theU(1) direction inGS , Eq. ~11!, and one can
define the correspondingU(1) charge as@12#

Q[e
Svac

uSvacu
5e

lf•H

ulfu
. ~15!

Since in this phaseP2(G/GS)5Z, Z magnetic monopoles
can exist. These solutions can be written in the followi
form @13#: for each roota, such that 2aV

•lfÞ0 ~where
av[a/a2), we can define the generators

T1
a5

Ea1E2a

2
, T2

a5
Ea2E2a

2i
, T3

a5
a•H

a2
~16!

which satisfy theSU(2) algebra

@Ti
a ,Tj

a#5 i e i jkTk
a .

Using spherical coordinates we define the group elemen

gp
a~u,f![ exp~ ipwT3

a! exp~ iuT2
a! exp~2 ipwT3

a!,

pPZ. ~17!

Let S5M1 iN, whereM and N are real scalar fields. The
asymptotic form for the scalars of theZ monopole are ob-
tained by performing a gauge transformation on the vacu
solution ~9!,~10! by the above group elements. The result
r→` is

M ~u,f!5gp
av•H~gp

a!21, ~18!

N~u,f!50,

f~u,f!50, ~19!

wherev[blf . The U(1) magnetic charge of these mon
poles is@13#

g[
1

uvu E dSiM
aBi

a5
4p

e

pv•av

uvu
~20!
9-3
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whereBi
a[2e i jkGjk

a /2 are the non-Abelian magnetic field
Due to theN52 supersymmetry, these must be BPS mo
poles satisfying the mass formula

mmon5uvuugu. ~21!

Not all of these monopoles are stable. The stable or fun
mental BPS monopoles are those withp51 and 2aV

•lf5
61 @14#. From now on we shall consider only these fund
mental monopoles, which are believed to fill representati
of the gauge subgroupK @5#.

It is interesting to note that, for the particular case wh
the gauge group isG5SU(2) andf is in the symmetric part
of the tensor product of two fundamental representatio
that correspond to the adjoint representation, the supers
metry of the theory is enhanced toN54, and the theory has
a vanishingb function. There are other examples of vanis
ing b functions whenm50. In order to see that we mus
recall that theb function of N52 super Yang-Mills theory
with a hypermultiplet is given by

b~e!5
2e3

~4p!2
@hV2xf#

where hV is the dual Coxeter number ofG and xf is the
Dynkin index of f ’s representation~7!. If f belongs to
R2lf

sym ,

xf5xlf
~dlf

12!,

wherexlf
and dlf

are, respectively, the Dynkin index an
the dimension of the representation associated with the
damental weightlf . On the other hand, iff belongs to the
direct product of two fundamental representations,R2lf

^ ,

xf52dlf
xlf

,

Therefore forSU(n) ~which hashV5n), if f is in the
tensor product of the fundamental representation of dim
sion dln21

5n with itself ~which has Dynkin indexxln21

51/2), thenxf5n and theb function vanishes. Therefore i
this phase the theory isN52 superconformal~if we takem
50)and SU(n) is broken to U(n21);@SU(n21)
^ U(1)#/Zn21.

IV. THE mÌ0 OR SUPERCONDUCTING PHASE

In the ‘‘m.0’’ phase, theU(1) factor ofGS @eq. ~11!# is
broken and, as in Abelian-Higgs theory, the magnetic fl
lines associated with thisU(1) factor cannot spread ove
space. SinceG is broken in such a way thatP1(G/Gf)
5Zk , these flux lines may form topologicalZk strings. We
indeed showed in@4# the existence of BPSZk strings in the
limit m→01 and m→`, with mm5const. We shall show
now that, as in the Abelian-Higgs theory, theU(1) magnetic
flux Fmon of the above monopoles is a multiple of the fu
damentalZk string magnetic flux, and therefore theseU(1)
04500
-
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-
s

e
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-

n-

n-

x

flux lines coming out of the monopole can be squeezed
Zk strings, which gives rise to a confining potential.

A. Zk string magnetic flux

From Eqs.~9! and ~15! it follows that

Qfvac5ekulfu fvac,

and therefore theU(1) electric charge offvac is

qf5ekulfu. ~22!

On the other hand, the string tension satisfies the bound@4#

T>
me

2
U E d2xMaB3

aU5 meuvu
2

uFstu5
qf

2
uau2uFstu,

~23!

where Bi
a[2e i jkGai j /2 is the non-Abelian magnetic field

and

Fst[
1

uvu E d2xMaB3
a ~24!

is theU(1) string magnetic flux, with the integral taken ov
the plane perpendicular to the string. This flux definition
gauge invariant and consistent with the flux definition for t
monopole~20!. One notes that Eq.~23! is very similar to the
Abelian result~1!, but hereqf anda are given by Eqs.~22!
and ~12!, respectively. Let us use the string ansatz in@4#:

f~w,r!5 f ~r!eiwLnauklf&,

mS~w,r!5h~r!kuau2eiwLnlf•He2 iwLn,

Wi~w,r!5g~r!Ln

e i j x
j

er2
,

i , j 51,2→B3~w,r!5
Ln

er

]g

]r
,

W0~w,r!5W3~w,r!50, ~25!

with the boundary conditions

f ~`!5g~`!5h~`!51,

f ~0!5g~0!50,

and considering

Ln5
n

k

lf•H

lf
2

, nPZk .

Then, using the BPS conditions obtained in@4#, which are
valid in the limit m→0 andm→`, gives the result that the
functions f (r) and g(r) satisfy the same differential equa
tions as the BPS strings in theN52 Abelian-Higgs theory.
However, that fact does not mean that BPSZk strings are
solutions of theN52 Abelian-Higgs theory, since in this
limit our theory continues to be non-Abelian. Moreove
from the asymptotic configuration we obtain that the ‘‘top
9-4
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logical classes’’ are determined by the first homotopy gro
P1(G/Gf), which is different from that of the Abelian
Higgs theory.

From the BPS conditionD6S50 together with the
boundary conditions, we geth(r)51. Therefore we obtain
that for the BPSZk strings

Fst5 R dliAi5
2pn

qf
, nPZk , ~26!

whereAi[Wi
aMa/uvu, i 51,2. This flux quantization condi

tion is also very similar to the Abelian result~2!, but different
due to the value of the electric chargeqf given by Eq.~22!.
This result generalizes, for example, the string magnetic
for SU(2) @15# and forSO(10) @16# ~up to a factor ofA2).
In @17#, the magnetic fluxes for theSU(n) theory are also
calculated, but with the gauge group completely broken to
center and a different definition of string flux, which is n
gauge invariant. We can also rewrite the above result as

Fstqf52pn, nPZk ,

which is similar to the magnetic monopole charge quanti
tion condition.

Let us now check that the magnetic fluxFmon of the
monopoles in theU(1) direction generated bylf•H is a
multiple of Fst . From Eq.~20!, using Eq.~22! and the fact
that

aV5 (
i 51

r

mia i
V , a i

V[
a i

a i
2

, miPZ,

wherea i are simple roots, it then follows that

Fmon5g5
2pkmfp

qf
.

Therefore, for the fundamental monopoles, which havep
51 andmf51, Fmon is equal to the fluxFst of the string
with n5k or k strings withn51. This can be interpreted a
meaning that for one fundamental monopole one can at
kZk strings withn51. This is consistent with the fact that
set of kZk strings withn51 belongs to the trivial first ho-
motopy of the vacuum manifold and therefore can termin
in a magnetic monopole, which also belongs to the triv
first homotopy group. It is important to stress the fact th
being in the trivial topological sector does not mean that
set ofkZk strings withn51 has vanishing fluxFst.

B. Monopole confinement

In the m.0 phase, it is expected@6# that the monopoles
produced in them50 phase develop a flux line or string an
become confined. Naively, we could see this fact in the
lowing way. As usual, in order to obtain the asymptotic s
lar configuration of a monopole, starting from the vacuu
04500
p

x

ts
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ch

e
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configuration~9!and ~10!, one performs the gauge transfo
mation ~17! and obtains that at4 r→`

S~u,w!5gp
ablf•H~gp

a!21, ~27!

f~u,w!5gp
aauklf&. ~28!

However, f(u,w) is singular. In order to see this, let u
consider for simplicityp51, k52, anda to be those posi-
tive roots such that 2lf•aV51. In this case, the orthonor
mal weight states

u2lf&, u2lf2a&, u2lf22a&

form a spin 1 irreducible representation of thesu(2) algebra
~16!, and the orthonormal states

u6&[
1

2
~ u2lf&6 iA2u2lf2a&2u2lf22a&), ~29!

u0&[
1

A2
~ u2lf&1u2lf22a&), ~30!

satisfy

T2
au6&56u6&,

T2
au0&50.

We can then write

u2lf&5
1

2
~ u1&1u2&1A2u0&).

Then, Eq.~28! can be written as

f~u,w!5aH cos2
u

2
u2lf&2

A2

2
sinue2 iwu2lf2a&

1 sin2
u

2
e22iwu2lf22a&J .

Therefore atu5p

f~p,w!5ae22iwu2lf22a&,

which is singular. This generalizes Nambu’s result@18# for
theSU(2)3U(1) case. In order to cancel the singularity w
should attach a string on thez,0 axis with a zero at the
core, similar to our string ansatz~25!. One could construct an
ansatz forf(r ,u,f) by multiplying the above asymptotic
configuration by a functionF(r ,u) such thatF(r ,p)50.

Since our theory has solitonic monopoles with mas
given by Eq.~21!, we can obtain a bound for the thresho
length for a string to break, producing a new monopo
antimonopole pair in the following way. From Eqs.~23! and

4Note that when we takem50 ⇒ a50 we recover the
asymptotic scalar field configuration for theZ monopole in the
‘‘ m50 phase’’~18!,~19!.
9-5
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~26!, it follows that the string tension for a string withn
5k or k strings withn51 satisfies5 the bound

T>k
meuvu

2

2p

qf
.

Using the monopole masses~21!, the threshold lengthdth for
a string breaking can be derived form the relation

2uvu
2pk

qf
5Eth5Tdth>k

meuvu
2

2p

qf
dth,

which results in

dth<
4

me
.

V. SUMMARY AND CONCLUSIONS

In this work we have extended to non-Abelian theor
some of the ideas of ’t Hooft and Mandelstam on qua
confinement. In addition to the fact that our theory has
unbroken non-Abelian gauge group, another interesting
ture is that it has solitonic monopoles instead of the Di
monopoles that appear in Abelian theories. We have con
eredN52 super Yang-Mills theory with an arbitrary simp

5As in the Abelian-Higgs theory, it is expected that wh
V(f S)>Ya

2/2, as we are considering, the tension of a string w
n5k should be greater than or equal to the tension ofk strings with
n51.
7

.
nd

;
, J

04500
s
k
n
a-
c
d-

gauge group, with one flavor, and with anN52 mass break-
ing term. We have shown that, by continuously varying t
mass breaking parameterm, we can pass from an unbroke
phase to a phase with free monopoles and then to a p
with Zk strings. This last phase occurs due to the fact that
scalarf acquires a nonvanishing expectation value. Wh
k52, f can be interpreted as a diquark condensate.
showed that the magnetic flux of the monopoles is a multi
of the fundamentalZk string flux and therefore the mono
poles can undergo confinement. We also obtained a bo
for the threshold length for a string to break into a ne
monopole-antimonopole pair. Following the ideas of ’t Hoo
and Mandelstam, one might expect that, in the dual the
with f being a monopole condensate, quark-antiquark c
finement will occur.

We have seen that some of our confining theories
obtaining by adding a deformation toU(N) superconformal
theories, which breaks the gauge group further to@SU(N)
^ Z2#/Z2N . It is expected that a confining theory obtained
a deformation of superconformal gauge theory in four
mensions should satisfy gauge/string correspondence@19#
~which would be a kind of deformation of the conform
field theory/AdS correspondence@20#!. In gauge/string cor-
respondence confining gauge theories withSU(N) or U(N)
completely broken to a discrete group are usually conside
Therefore, it would be interesting to know if those theori
also satisfy some gauge/string correspondence.
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