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Recently we considereN=2 super Yang-Mills theory with & =2 mass breaking term and showed the
existence of Bogomol'nyi-Prasad-SommerfiéBPS Z, string solutions for arbitrary simple gauge groups
which are spontaneously broken to non-Abelian residual gauge groups. We also calculated their string tensions
exactly. In doing so, we have considered in particular the hypermultiplet in the same representation as that of
a diquark condensate. In the present work, we analyze some of the different phases of the theory and find that
the magnetic fluxes of the monopoles are multiples of the fundam2ptstring flux, allowing for monopole
confinement in one of the phase transitions of the theory. We also calculate the threshold length for string
breaking. Some of these confining theories can be obtained by adding a deformation ternNteZher N
=4 superconformal theories.
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[. INTRODUCTION theory, as the Abelian-Higgs is an effective theory for BCS
theory. In addition to the fact that our “effective” theory has
It has long been believed that quark confinement woulda non-Abelian gauge grou@, another interesting feature is
be dual to a non-Abelian generalization of the Meissner efthat it has solitonic monopoles which are solutions of the
fect, as proposed by 't Hooft and Mandelstam many yeargquations of motion, unlike the Dirac monopoles that usually
ago[1]. Following their ideas, important progress was madeappear in the Abelian theories. When the scalaacquires
by Seiberg and Witten[2], who starting from anN an expectation value it breaks the gauge gr@umto G,
=2 SU(2) supersymmetric theory, obtained an effectNe such thatll,(G/G,)=Z,, allowing the existence oZ
=2 U(1) super QED with alN=2 mass breaking term string solutions. We showed the existence of Bogomol'nyi-
associated with the point in moduli space where a monopol@rasad-SommerfielPS Z, string solutions for these theo-
becomes massless. In this effective theory,ulié) group is  ries (for arbitrary k=2)and calculated their string tensions
broken to a discrete subgroup. As it happens, the theory dexxactly. In the present work, we analyze some other features
velops(solitonig) string solutions and monopole confinement of these theories. In Sec. Il we show that by continuously
occurs, with these monopoles being identified with electricvarying a mass parameter we can pass from an unbroken
charges. After that, much interesting work appedfidana- phase to a phase with free monopoles and then to a phase
lyzing various aspects oN=2 SU(N.) supersymmetric with Z, strings and confined monopoles. In Sec. Ill we ana-
QCD with N=2 U(1)Ne"! theory with anN=2 mass lyze the phase that has solitonic BPS monopole solutions,
breaking term as the effective theory. These effective theowhich we call the “free-monopole phase.” These monopole
ries also have string solutions when the gauge group is bresolutions are expected to fill irreducible representations of
ken by the Higgs mechanism. These string solutions confinéhe dual unbroken gauge gro{ip]. In this phaseN=2 su-
monopoles and carry topological charges in the groupersymmetry is recovered and we show that some of these
I1,[U(1)Ne"1/ZNem1]=ZNe"1, On the other hand, recently theories are conformal. In Sec. IV we analyze the magnetic
we considered4] N=2 super Yang-Mills theory with ah  fluxes of the BPS strings that appear in the superconducting
=2 mass breaking term, with an arbitrary simple gaugephase. We show that the magnetic fluxes of the magnetic
groupG which in general is broken to a non-Abelian residualmonopoles are multiples of the fundamental string flux and
gauge group. One spontaneous symmetry breaking is preherefore the monopoles can become confined. We also ob-
duced by a complex scal@r that could be in the symmetric tain the threshold length for a string to break into a new
part of the tensor product & fundamental representations, monopole-antimonopole pair. These results are obtained con-
with k=2. In particular, ifk=2, this is the same represen- sidering the theory in the weak coupling regime since, in the
tation as that of a diquatkcondensate, and therefore this “dual Meissner effect picture” for confinement, one wants to
scalar can be thought as being itself the diquark condensataap a theory in the weak coupling regime with monopole
(or the monopole condensate in the dual thgofyerefore, confinement to a theory in the strong coupling regime with
whenk=2, we can consider this theory as being an effectivequark confinement, through a duality transformation. The
general topological aspects for monopole confinement during
a phase transition have been giver @i (see alsqd7]). Our
*Email address: kneipp@chbpf.br aim here is to analyze the monopole confinement in our spe-
1By “quark” we mean a fermion in a fundamental representation. cific theory. We conclude with a summary of the results.
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[l. PHASES OF THE THEORY One is to conside® in the representation witk\ 4 as high-

As is quite well known, in the broken phase of the est weight, which we shall denot%k)\(b. We can also con-

Abelian-Higgs theory in 31 dimensions, there exist string Sider ¢ to be in the direct product of fundamental repre-

solutions with string tension satisfying the inequality sentations with fundamental weight,, which we shall
denoteR,%gb. Finally, a third possibility would be to consider
. . ® sym i
T= %32@54, 1 ¢ in the symmetric part oIRkM, calledeM, which always

containstM. This last possibility has the extra physical

h . Ki hich in th motivation that, ifk=2, it corresponds to the representation
wherea is a breaking parameter which appears in the poteng 5 ¢ondensate of two massless fermiéinghe microscopic

tial, @ is the string's magnetic flux, which satisfies the o4y in the fundamental representation with fundamental

quantization condition weight A ,, which we shall loosely call quarks. Therefore,
for k=2, we could interpret) as being this diquark conden-
2mn te. In thi heth tak trivial tati
=" nez (2) sate. In this case, w eh takes a nontrivial expectation
. Ay value, it also gives rise to a mass term for these quarks. In

order to haveN=2 supersymmetry we need another com-
andq, is the electric charge of the scalar field. Consideringplex scalar to be in the same hypermultipletgasFor sim-
that¢' is a condensate of electron pairs, tﬁqg=2e. Fol-  plicity’s sake, however, we shall ignore it, setting it to zero.
lowing 't Hooft and Mandelstam’$1] idea, if one considers Note that, for the gauge groupU(n), the scalarS in the
a Dirac monopole-antimonopole system in the Abelian-adjoint representation could also be interpreted as a bound
Higgs theory, the magnetic lines cannot spread over spacstate of quark-antiquark, for the quark in thalimensional
but must rather form a string which gives rise to a confiningrepresentation.
potential between the monopoles. That is only possible be- Let us consider the Lagrangian used 4,
cause the Dirac monopole magnetic flux ®,,,=9
=2m/e, which is twice the fundamental string’s magnetic
flux, allowing one to attach to the monopole two strings with
n=1.

One of our aims in this work is to generalize some of
these ideas on monopole confinement to non-Abelian gauge
theories. For simplicity let us consider a gauge grdep
which is simple, connected, and simply connected, and adoptith
the same conventions as[#]. Following our previous work,
we shall consider a Yang-Mills theory with a complex scalar
S in the adjoint representation and a complex scafain
another particular representation. We consider a scalar in the
adjoint representation because in a spontaneous symmetwhere
breaking it can produce an unbroken gauge group with a

1 1
L=~ 7G4 Gyt 5(D 9)%(D,S),

1
+§(D”¢)TD#¢—V(S,¢) ()

V(S ¢)=5(Y2+FTF)>O (4)
bl 2 a

U(1) factor, which allows the existence of monopole solu- € . Sa+S;

tions. Additionally, another motivation for having a scalar in Ya= 5[ (6 Tad) + KifpeaSe—m 2 - ®
the adjoint representation is because with it we can form an

N=2 vector supermultiplet and, as in the Abelian-Higgs m

theory, the BPS string solutions appear naturally in a theory er( s'- A2 (6)

with N=2 supersymmetry and a=2 mass breaking term.

Moreover, in a theory with the field content 8f=2, the  T_ are the orthogonal Lie algebra generators which satisfy
monopole spin is consistent with quark-monopole duality

[10], which is another important ingredient in 't Hooft and Tr(TaTb)=X¢¢25ab: 7
Mandelstam’s ideas. In order to have monopole confinement

we need also to have string solutions. A necessary conditiowherex,, is the Dynkin index of)'s representation and? is
for the existence of @opologica) string is to have a non- the length squared of the highest root, which we shall take to
trivial first homotopy group of the vacuum manifold. One be 2. This Lagrangian is the bosonic part &2 super
way to produce a spontaneous symmetry breaking satisfyingang-Mills theory with one flavo(with one of the aforemen-
this condition is to introduce a complex scatfiin a repre-  tioned scalars of the hypermultiplet put equal to zenad an
sentation that contains the weight stht® ;) [8], wherekis ~ N=2 breaking mass termThe parametey gives a bare
an integer greater than or equal to 2, angla fundamental mass to¢ and m gives a bare mass to ttreal part of S
weight. For an arbitrary gauge group there are at least which therefore breaksl=2 to N=0. This breaking is dif-
three possible representations which have this weight state.

30ne can check that easily by comparing with the Lagrangian of
2Considering that =1=c. N=2 super Yang-Mills theory written in the Appendix pf].
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ferent from the one considered by Seiberg and Wift2h Spin(10)—[SU(5) X Z 0]/ Zs,
which breaksN=2 to N=1. We shall consider that this
theory is in the weak coupling regime. SU3)—[SU(2) X Z,4]/Z5.
The vacua are solutions to the equatidiiS,¢)=0, ) ]
which is equivalent to the conditions Therefore by continuously changing the value of the param-
eter m we can produce a symmetry breaking pattern
Y,=0=F. (8) G—Gg—G,. It is interesting to note that, unlike the

Abelian-Higgs theory, in our theory the bare massf ¢ is

In order for topological string solutions to exist, we look for ot required to satisfyx2<0 in order to have spontaneous
vacuum solutions of the form symmetry breaking. Therefore in the dual formulation, where

#2=alk\,) 9 one could interpret) as being the monopole qondensate, we

¢/ do not need to have a monopole mass satisfying the prob-
Se=p) ;- H, (10) lematic conditionM?2,,<0 mentioned b)_/ 't Hoof(ll]..
Let us analyze the last two phases in more detalil.

where a is a complex constanty is a real constant, and
[k\ 4) is a weight state with , being an arbitrary fundamen- . THE m=0 OR FREE-MONOPOLE PHASE
tal weight andk being an integer greater than or equal to 2. If

a#0, this configuration break6— G, in such a way that When m=0, N=2 supersymmetry is restored. In this

N S " phasea=0 andb is an arbitrary constant, which we shall
[8]. r,{Il(G/Gg) _tz.k’ WTC? IS a ne%esstakl]ry c%ndlétlcl)ln fqr the consider to be given by Eql13), in order to have the same
existence ok, strings. Let us consider that>0. Following value as in the case when<0. The vacuum configuration

[4], from the vacuum condition&@) one can conclude that S¥a¢ defines theJ (1) direction inGs, Eq. (11), and one can

mb define the correspondind(1) charge a$12]
2=,
=e =e .
M S2q 7 [Ny
(kbxf,,— —|a=0.
e Since in this phasél,(G/Gg)=2Z, Z magnetic monopoles

can exist. These solutions can be written in the following
form [13]: for each roota, such that 2xV-)\¢¢O (where
a'=ala?), we can define the generators

There are three possibilities.
(i) m<0. If a#0, thenb=pu/\7ke>0, which would
imply |a]?<0. Therefore we must hava=0=b and the

gauge groufs remains unbroken. . E,+E_, E,~E_, a-H
(i) m=0. Thena=0 andb can be an arbitrary constant. szT, TZZT’ TS5= 5 (16)
In this case, considerinig# 0, S'2 breaks[ 8] : a
GHGSE[KXU(].)]/Z| ’ (11 which satisfy thESU(Z) algebra

wherek is the subgroup ofs associated with the algebra [T Til=leipTi-

whose Dynkin diagram is given by removing the dot corre-\yging spherical coordinates we define the group elements
sponding ta\ 4 from that of G. TheU(1) factor is generated

by A4-H andZ, is a discrete subgroup &(1) andk. The gp(0,¢)=exp(ipeTs) exp(i 0T3) exp(—ipeTs),
orderl of Z, is equal top 4| Z(K)|/|Z(G)| where|Z(G)| and
|Z(K)| are, respectively, the orders of the centers of the peZ. (17

groupsG andK, andp, is the smallest integer such that
P42\ 4/ a7 is in the coroot latticd9].
(iil) m>0. Besides the solutioa=0=b, we can have

Let S=M +iN, whereM andN are real scalar fields. The
asymptotic form for the scalars of tt¥ monopole are ob-
tained by performing a gauge transformation on the vacuum

M solution (9),(10) by the above group elements. The result at

al?=——, 12 r—o is
|a| er (12) ) -
-£ (13 N(6,¢)=0,
keny
#(0,¢)=0, (19
andG is further broken td8] )
wherev=Db\ 4. The U(1) magnetic charge of these mono-
G—>G¢E(KXZK|)/Z|DGS (14) p0|eS |S[13]

In particular, fork=2, we can have, for example, the sym- zij dSMaBa:Af_Tr pu-a’ 20
metry breaking patterns, 9= [v] e |y
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whereB?= e”kGJk/Z are the non-Abelian magnetic fields. flux lines coming out of the monopole can be squeezed into
Due to theN 2 supersymmetry, these must be BPS mono-Z strings, which gives rise to a confining potential.
poles satisfying the mass formula

A. Z, string magnetic flux

Mmnon= [v|/g]- (21 From Egs.(9) and(15) it follows that

Not all of these monopoles are stable. The stable or funda- Qd)vaczekl)\ | ¢V
mental BPS monopoles are those with:1 and V- Ny=

+1 [14]. From now on we shall consider only these funda and therefore th&J(1) electric charge ot is
mental monopoles, which are believed to fill representations —eki\,| 22)
of the gauge subgroulg [5]. 99 -

It is interesting to note that, for the particular case whereon the other hand, the string tension satisfies the b¢dhd
the gauge group iI6§=SU(2) and¢ is in the symmetric part

of the tensor product of two fundamental representations, me d2xMag3| = mefv ||q> ,J=%|a|2|<b |
that correspond to the adjoint representation, the supersym- st 2 st
metry of the theory is enhanced kb=4, and the theory has (23
a vanishingB function. There are other examples of vanish- aij
ing B functions whenm=0. In order to see that we must Where Bi'=—€iG*/2 is the non-Abelian magnetic field
recall that theg function of N=2 super Yang-Mills theory &nd
with a hypermultiplet is given by 1
b= f d?xM2B3 (24)
3 |v]
Ble)= (4 )2[h Xyl is theU (1) string magnetic flux, with the integral taken over

the plane perpendicular to the string. This flux definition is
wherehV is the dual Coxeter number & and x., is the 9auge invariant and consistent with the flux definition for the

Dynkin index of ¢'s representation7). If ¢ belongs to monopole(20). One notes that Eq23) is very similar to the

RSYym Abelian result(1), but hereq, anda are given by Eqs(22)
2y and(12), respectively. Let us use the string ansat{4h
X¢=X)\¢(d)\¢+2), ¢(€D,P):f(P)ei¢L"a|k)\¢>:

wherex, andd,  are, respectively, the Dynkin index and mS¢,p)=h(p)k|al?e'?'n\ ;- He'¢n,
the dimension of the representation associated with the fun- e xl

damental weighh ,. On the other hand, i$ belongs to the Wi((P,P)Zg(p)Ln]—,

direct product of two fundamental representatidﬁggb, 2

J
Xy= 20y Xy, i,j=1,2-Bs(¢,p)= — =

ep dp

Therefore forSU(n) (which hashV=n), if ¢ is in the W, —W. -0 25

tensor product of the fundamental representation of dimen- ol @:p)=Ws(.p) =0, 9
sion dxnflzn with itself (which has Dynkin indexxxrH with the boundary conditions

=1/2), thenx ,=n and theg function vanishes. Therefore in _ _ _
this phase the theory =2 superconformalif we take u f(e)=g(*)=h(=)=1,
=0)and SU(n) is broken to U(n—1)~[SU(h—1) f(0)=g(0)=0,
QU(L)/Z,-1.

and considering

IV. THE m>0 OR SUPERCONDUCTING PHASE nx.H
o

In the “m>0" phase, theU(1) factor ofGs [eq. (11)] is b= 2+ N
broken and, as in Abelian-Higgs theory, the magnetic flux ¢
lines associated with thi§)(1) factor cannot spread over Then, using the BPS conditions obtained[#], which are
space. SinceG is broken in such a way thdil,(G/G,) valid in the limit m—0 andu—<, gives the result that the
=Zy, these flux lines may form topologicd strings. We  functionsf(p) andg(p) satisfy the same differential equa-
indeed showed iffi4] the existence of BP@, strings in the tions as the BPS strings in ti¢=2 Abelian-Higgs theory.
limit m—0, and u—o, with mu=const. We shall show However, that fact does not mean that BRSstrings are
now that, as in the Abelian-Higgs theory, tb€1) magnetic  solutions of theN=2 Abelian-Higgs theory, since in this
flux @ o, Of the above monopoles is a multiple of the fun- limit our theory continues to be non-Abelian. Moreover,
damentalZ, string magnetic flux, and therefore thed¢l)  from the asymptotic configuration we obtain that the “topo-
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logical classes” are determined by the first homotopy groupconfiguration(9)and (10), one performs the gauge transfor-
I1,(G/G,), which is different from that of the Abelian- mation(17) and obtains that Ar—oo
Higgs theory.

From the BPS conditionD.S=0 together with the S(6,¢)=gpb\4-H(gp) ™, (27)
boundary conditions, we gét(p)=1. Therefore we obtain N
that for the BPSZ, strings #(0,0)=gpalkhy). (28)

However, ¢(6,¢) is singular. In order to see this, let us
D= % d|iAi:2Ln, nez., (26) consider for simplicityp=1, k=2, anda to be those posi-
Uy tive roots such that - aV=1. In this case, the orthonor-
mal weight states
where Ai=WM?/|v|, i=1,2. This flux quantization condi-
tion is also very similar to the Abelian resuf), but different
due to the value of the electric chargg given by Eq.(22).
This result generalizes, for example, the string magnetic flu
for SU(2) [15] and forSO(10) [16] (up to a factor ofy/2).
In [17], the magnetic fluxes for thEU(n) theory are also 1 .
calculated, but with the gauge group completely broken to its |+)= §(|2>\¢>>i ! \/§|2)\¢_ a)— |2>\¢—2a>), (29
center and a different definition of string flux, which is not
gauge invariant. We can also rewrite the above result as

form a spin 1 irreducible representation of & 2) algebra
)616), and the orthonormal states

1
IO)ET(|2>\¢>+|2>\¢—26¥>), (30)
Oqy=2mn, nelZ, 2
o _ _ satisfy
which is similar to the magnetic monopole charge quantiza-
tion condition. Tl =)= =|=x),
Let us now check that the magnetic fluk,,,, of the
monopoles in thdJ(1) direction generated by, -H is a T5|0)=0.
multiple of ®4,. From Eq.(20), using Eq.(22) and the fact .
that We can then write
: “ 200 = 5 (1) +1)+ 2o,
aV= 2 miaiv, aiVE I m;eZ, 2
i=1

aiz Then, Eq.(28) can be written as
where «; are simple roots, it then follows that b(00)—a cos’-—0|2)\ . Esinee*iﬂzx o)
2mkmyp | 2 ’ 2 ’
Pmon=0 d¢ + sir?—ee*2i¢|2)\ —2a)
2 ¢ '

Therefore, for the fundamental monopoles, which have
=1 andmy=1, ¥, is equal to the fluxd; of the string
with n=k or k strings withn=1. This can be interpreted as b(m,0)=ae 2¢2) 4~ 2a),

meaning that for one fundamental monopole one can attach

kZ, strings withn=1. This is consistent with the fact that a which is singular. This generalizes Nambu'’s regd#] for

set ofkZ, strings withn=1 belongs to the trivial first ho- theSU(2)XU(1) case. In order to cancel the singularity we
motopy of the vacuum manifold and therefore can terminateshould attach a string on the<0 axis with a zero at the

in a magnetic monopole, which also belongs to the trivialcore, similar to our string ansat25). One could construct an
first homotopy group. It is important to stress the fact thatansatz for¢(r,6,¢) by multiplying the above asymptotic
being in the trivial topological sector does not mean that theconfiguration by a functio(r, ) such that=(r,#)=0.

set ofkZ, strings withn=1 has vanishing fluxb;. Since our theory has solitonic monopoles with masses
given by Eq.(21), we can obtain a bound for the threshold
length for a string to break, producing a new monopole-
antimonopole pair in the following way. From Eq&3) and

Therefore at9=

B. Monopole confinement

In the m>0 phase, it is expectdd] that the monopoles
produced in then=0 phase develop a flux line or string and
become confined. Naively, we could see this fact in the fol- 4Note that when we takem=0 = a=0 we recover the

lowing way. As usual, in order to obtain the asymptotic sca-asymptotic scalar field configuration for the monopole in the
lar configuration of a monopole, starting from the vacuum“m=0 phase”(18),(19).
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(26), it follows that the string tension for a string with
=k or k strings withn=1 satisfie3 the bound

mev| 27
2 dy4

Using the monopole massézl), the threshold lengtd™" for
a string breaking can be derived form the relation

T=k

2k
2| —=E"=Td"=k—— —d",
Ude
which results in

dth$ i
me’

V. SUMMARY AND CONCLUSIONS

PHYSICAL REVIEW D68, 045009 (2003

gauge group, with one flavor, and with Bir=2 mass break-

ing term. We have shown that, by continuously varying the
mass breaking parametet, we can pass from an unbroken
phase to a phase with free monopoles and then to a phase
with Z, strings. This last phase occurs due to the fact that the
scalar ¢ acquires a nonvanishing expectation value. When
k=2, ¢ can be interpreted as a diquark condensate. We
showed that the magnetic flux of the monopoles is a multiple
of the fundamental, string flux and therefore the mono-
poles can undergo confinement. We also obtained a bound
for the threshold length for a string to break into a new
monopole-antimonopole pair. Following the ideas of 't Hooft
and Mandelstam, one might expect that, in the dual theory,
with ¢ being a monopole condensate, quark-antiquark con-
finement will occur.

We have seen that some of our confining theories are
obtaining by adding a deformation td(N) superconformal
theories, which breaks the gauge group furthef $aJ(N)
®Z,]1Z, . Itis expected that a confining theory obtained by

In this work we have extended to non-Abelian theories . : .
. ) a deformation of superconformal gauge theory in four di-

some of the ideas .OT t Hooft and Mandelstam on quarkmensions should satisfy gauge/string correspondé¢hé¢
confinement. In addition to the fact that our theory has an(which would be a kind of deformation of the conformal

unbroken non-Abelian gauge group, another interesting fea- . :
ture is that it has solitonic monopoles instead of the Diraifleld theory/AdS correspondeng¢g0)). In gauge/string cor

monopoles that appear in Abelian theories. We have consic{?SpolndelnCs cl?nfmmg O%auge theories vﬂuU(N)”or U(N.)d q
eredN=2 super Yang-Mills theory with an arbitrary simple complete y broxen toa . |screte_ group are usuatly consiaered.
Therefore, it would be interesting to know if those theories

also satisfy some gauge/string correspondence.

5As in the Abelian-Higgs theory, it is expected that when
V(¢ S)>Y§/2, as we are considering, the tension of a string with
n=Kk should be greater than or equal to the tensiok sifings with
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