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Gauged dimension bubbles
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Some of the peculiar electrodynamical effects associated with gauged “dimension bubbles” are presented.
Such bubbles, which effectively enclose a region of 5D spacetime, can arise from a 5D theory with a compact
extra dimension. Bubbles with thin domain walls can be stabilized against total collapse by the entrapment of
light charged scalar bosons inside the bubble, extending the idea of a neutral dimension bubble to accommo-
date the case of a gauged1ly symmetry. Using a dielectric approach to the 4D dilaton-Maxwell theory, it is
seen that the bubble wall is almost totally opaque to photons, leading to a new stabilization mechanism due to
trapped photons. Photon dominated bubbles very slowly shrink, resulting in a temperature increase inside the
bubble. At some critical temperature, however, these bubbles explode, with a release of radiation.
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[. INTRODUCTION energy due to a gravitational effecThere is, however, an-
other way to stabilize the bubble which does not require a
An inhomogeneous higher dimensional spacetime comsingular scalar field at the center of the geometry. The stabi-
pactified to four dimension$4D) can contain pockets, or, lization can be achieved if the inside of the bubble is filled
what may be referred to as “dimension bubbles,” where thewith scalar bosons described by a complex scalar fielf].
extra dimensional scale factor becomes large enough that the Previously, it was assumed that tidield only possessed
spacetime has an effective dimensionality within the pocket globalU (1) symmetry[6] giving rise to a conserved num-
that is higher than in the surrounding four dimensionalber chargeQ. Here, we consider the case where the scalar
spacetime outside of [t1,2]. Here we consider a dimension field y has alocal U(1) symmetry, i.e., dJ(1) “gauged
bubble, arising from the dimensional reduction of a 5Ddimension bubble.” Because the extra dimensional scale fac-
theory, which encloses a 5D region and is surrounded by gr B(x) can take drastically different values inside and out-
region that is effectively 4D, i.e., the extra dimensional scaleside of the bubble, the effective “dielectric function” of
factor changes rapidly from the interior of the bubble to thethese two regions can also have drastically different values.
exterior. The two regions are, from a 4D perspective, sepaAs a result, there are nontrivial electromagnetic effects asso-
rated by a domain wall generated by a scalar field associataglated with the bubble wall and its 5D interior. In particular,
with the scale factor of the extra space dimension. Such ghe EM contribution to the madd of the bubble is reduced
domain wall can result from a Rubin-Roth potent[@]  from what would be expected if the bubble interior were also
(which includes bosonic as well as fermionic Casimir4D, that is, if the dilaton associated with the scale fa@&or
energies—which can stabilize the compact extra dimensiowere constant everywhere. In addition, the bubble wall is
from collapsing due to the gravitational Casimir eff¢dt)  found to be almost perfectly reflecting to photons, so that
along with a cosmological constafi], or, in the case of photons cannot pass through the wall from either direction.
more than one extra dimension, from higher dimensionaEntrapped photons can themselves stabilize a bubble from
Maxwell fields[5] or their generalizationfsl]. For simplicity,  total collapse. The effects of the extra dimension therefore
we take the 4D spacetime to be Minkowski and the extramake the gauged dimension bubble an object that is quite
space dimension to be toroidally compact, so that the SRiifferent from other purely 4D nontopological solitofig],
spacetime has the topology ®,xS". (In this sense, the such as gauged Q bal[8—10], charged vacuum bubbles
dimension bubbles studied here are simplifications of “gravi-{11], and Fermi ball§12—15, that have been studied previ-
tational bags,” previously analyzed by Davidson and Guen-ously.
delman[1], which have an associated nontrivial spacetime We first present the dielectric approach to the study of
geometry. Although gravitational bags are static solutions electromagnetic effects of dimension bubbles, considering a
where the surface tension pushing the bubble wall inward i$ubble with a 5D interioemerging from a 5D theory di-
equilibrated with a nontrivial pressure from the scalar fieldmensionally reduced to 4las a specific prototype. This di-
inside, the scalar field inside suffers from a singular behavioelectric approach is then applied to the case of a charged
at the center of the geometfplthough there is still finite bubble having a conserved numb@rof chargedy bosons
trapped inside the bubble. Upon evaluating the various con-
tributions to the bubble’s energy, the bubble’s equilibrium
*Email address: guendel@bgumail.ac.il radiusR and mass$vl can be obtained. We shall also make a
"Email address: jmorris@iun.edu couple of simplifying assumptions. First, we assume a thin
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walled bubble, i.e., the wall thicknes$<R, so that in a The 4D Jordan frame metric@,,, the wv part of the 5D
simplifying limit we may take the inner radiu8_ and outer  \oicy A 4D Einstein frame metrig,,, can be defined
radiusR. of the wall to coincideR_, Ry —R. Itis within by QMVZBaﬂu:e“mKN‘PaW and the line element in Eq2)

the wall that the scale factdB(x) varies rapidly, and we : : : ) ;
assume thaB takes on different constant values in the inte- 2" be rewritten in terms of the Einstein frame metric and

rior and exterior regions, with the interior value being much®tra dimensional scale factor as
greater than the exterior onB;,>B,,. This allows for an _p-1 P S

efficient mechanism of trapping thg bosons inside the ds’=B 9,.,dx“dx" =B dy

bubble, since the boson masmA(ocB‘l/z), assumed to be = Beneg  dxtdx?—e2PBnedy2, (4)
small inside, becomes very large outsidg,;,<m, o, and a

a boson therefore experiences an enormous fdFee Using Eq.(4), a dimensional reduction of the action given by
—Vm, exerted on it by the wall, keeping it in the interior of Eqg. (1) gives the effective 4D Einstein frame action

the bubble.

1 1
_ 4 _ T - 2
Il. THE MODEL S‘f d*x g[zKﬁ R+5(Ve)

A. Metric ansatz and dimensional reduction
} 5
1

5522 > f d5x@{~R5—2A+2K§,(5)£5} (1) whereR=g*'R,, is the 4D Ricci scalar built from the 4D
Kn(s) Einstein frame metrig,, andg=detg,,, .

1
L—=A

KN

We begin with a 5D action of the general form +e 2Rane

that is defined on a 5D spacetime with a metric described by o ) )
B. 4D (Einstein frame) effective Lagrangian
ds?=gyndxMdxN=1g,,,dx*dx"+gssdy>. 2 Consider a Lagrangian from the 5D theory ofUg1)
gauged scalar fielg,
Here, xM=(x*,y) is the set of coordinates on a 5D space-
time with topology ofM ,x St that has a toroidally compact L= (27R) Lem — 1|~:,MNT:,
spacelike extra dimensiox®=y, which is assumed to be a =(2mR)Ls=~7 MN
linear coordinate lying within the rangey<27R. We use _ _
the indicesM, N=0, . . .,3,5 to label the coordinates of the +(DMx)* (Dux) = V(x| (6)
5D spacetime and the indicesv=0, . . . ,3 tolabel the co-
ordinates of the noncompact 4D spacetime. A zero mod&hich gives rise to an effective 4DEF) LagrangianZ,
Kaluza-Klein ansatz is assumed where the fields and metrie B~ 1L, and

are independent of®, i.e., gyn=9gwn(x*) depends only on - , , o
the 4D coordinates withisgyy=0. We also assume that the Fun=dmAn—nAM, Dux=(WmtiecAy)x  (7)
metric factorizes so tha#SZO. A dimensionless scale fac-

tor B(x*), with gss= —B?, is associated with the extra di-
mension, along with an associated scalar figlthat is re-

with eq and Ay, being the charge parameter and gauge field
potential, respectively, appearing in the original 5D Lagrang-
ian, and tildes remind us that indices are raised and lowered

lated toB by with the metric gyn, so that DMy)*(Dwx)
1 3 =g"N(Dyx)*(Dnx). It is assumed thatisy=0 so that
(P_K_N\[Eln B. (3 Dsy=iesALyx. We then have, with the assumption that
36A,=0,

The constantky is related to the 4D Planck mads, by L . L

_ — -1 ; i o
Kn=V87TG= \/8'7TM P Th%Bextra dimensional scale factor ~_ ~g/mn Flun=— 2 B2F/# !+ ZB Y (grALIAL).
can then be written aB=e"**N?, 4 4 )

Determinants of the 4D and 5D parts of the original met- ®
ric guy are denoted by=detg,,, andgs=detgyy , respec-

- = = Using g“*=Bg*”, g°°= — B2, the scalar field kinetic term
tively, so thatV|gs|=v—gV|gsg. In the action given by g gi\?e% by g9
Ed. (1), xn)= V87Gs represents a 5D gravitational con-

stant,Rs=g""NRyy is the 5D Ricci scalar built frongyy, DMN* (D0 v) = (DEyv)* (D 5% (D

Ls is a Lagrangian of the 5D theory, ardis a 5D cosmo- (D207 (Pux) = (DEx)™(B,x) + (D)7 (Psx)
logical constant. In order to pass to an effective 4D theory =B|D,x|?—eiB 2A{% |2 9
we defineL=(27R)Ls and definexys) in terms of ky by

KRs)=(2TR) K§ . The 4D EF effective Lagrangiafi,=B £ then becomes
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L4=—7BF'*"F, +3B7%(0A;)*+|D x|

—efB A x|~ B~ V(|x]). (10

The ¢-dependent potentidl (¢) (which contains, e.g., the

Rubin-Roth potentialVrgr, and cosmological constant,
terms, along with theg kinetic term % (d¢)? and gravita-

tional term (1/2<§) R can be added to get a total 4D effective

Lagrangian
1 1
Lei=Ls+ —— R+ 5(d¢)*—U
2KN 2
=L Rt lp-teEE
_Z_Krz\n 509" =7 v

1
+ =B 2(9AH)?+|D x>~ W

. (1D
where we define a total effective potential
W=U(¢)+B V(|x)+efB°AZx% (12

C. Dielectric approach

The 4D Einstein frame effective Lagrangidh; above

contains a Maxwell term-:BF’#” F;w and a gauge cova-

riant derivativeDMX=(&M+ie0Al’L)X. Let us define a res-

caled gauge field\y,=B}?A;,, whereB, (or Bs) denotes
the value ofB in a region of 4D(or 5D) spacetime outside

(or inside of a dimension bubble, so that in a region of 4D
spacetime the Maxwell term is properly normalized and as-

sumes a canonical form; 3B,F'# F/ = —zF*'F ,,, with
Fu=0,A,—d,A,,
A,=Bi?A,, As=BA;. (13

The gauge covariant derivative operampz(&MﬂLieoAl’L)
can be written as

D,=(d,+ieoB; A,)=(d,+ieA,) (14)

where we have defined the 4D effective, or physical, charge

e=B, Y%,. (15)
We also define the “dielectric function”
B(x*)
K(x*)= (16)
Ba
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Lotim =S R+ 2 (9g)2— = kF 5"
eff—z—K'zq 5(3<P) 2%Fur

1
+ Sk 2B, %(9As)?+|D x> - W

5 17

where
W=U(¢)+k B, V(|x|)+e*« 2B, *AZ|x|%. (18

The functionk is seen to play the role of a dielectric func-
tion, except that in this case it arises as a consequence of the
possible position dependence of the extra dimensional scale
factorB. Thus, from a 4D perspective, a region of effectively
5D spacetime is viewed as being endowed with a dielectric
property described by. We also note that in a 4D region
k—1, and thatks=Bg/B,>1, and, in particular, we as-
sume thatks>1. Using the familiar results of electrostatics,
we have that the normal component of the “displacement”

field D=«E and the tangential components of the electric

field E are continuous at an interface between two media
with different dielectric constants.

D. Effective potential, vacuum, andy boson mass

The total effective potentidlV of the 4D theory is given
by Eq.(18). The vacuum state is obtained by minimizivg
with respect top (or ), x, andAs:

oW U
E:ﬁ_ BZlKizv_ 3eZBZSK74A§|X|2= 0,
WV

=B, '« aX*+eZB;3K*3A§X:o, (19)

ax

A
Frve 2e%B; 3k 3Ag|x|?=0.
These equations are solved =0, dV/dx* =0, and
Ul Ik — B;1K*2V=0. (Later we will consider the case for
which V= u2x* x, giving x=0, V=0, dU/dk=0, with Ag
undetermined, and we will assume ti#gj=0.)

The 5D mass parameter for thefield is denoted bwg
=(0°VIdx* 9x)|,ac, SO that the effectivee boson mass in
the 4D effective(EF) theory is given by

IPW

=[B 'ug+e’B, *k *Allac. (20

vac

m:

Ix* dx
Assuming the vacuum value &f; to vanish, we have simply
m)(: B—l/ZMOZ K_l/Z/.L4 (21)

where we defingu,=B; *?u,. In this effective 4D dilaton-
Maxwell system, the effects of the scale factor dilaton¢)
become manifest in the 4D mass parameter. In the 5D

In terms of physical 4D quantities, the effective 4D La- region of a dimension bubble interior, whete>1, the mass

grangian in Eq(11) now assumes the form

Ks 1/2,u4 becomes very small or negligible in comparison to
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the massu, in the 4D region outside the bubble. This effec- By .
tive mass dependence o, upon« gives rise to the entrap- K5:B_4’ inside, (r<R) (24)
ment of y bosons inside the bubble.
1, outside, (r>R)
lll. GAUGED DIMENSION BUBBLE We therefore haveV~I5=j°=p, where D= «E, and by
Consider the case where a domain bubble forms, entragzauss’ law the radial displacement field is##)D=qep
ping a conserved numbé&p of y bosons.(For definiteness, =[ypdV, and ge,=Qene, Where Qg is the number of
we take the electromagnetic chai@e to be positive and the bosons enclosed within the volurive The radial component

potentialV is taken to be given by= u3x* x.) The simpli-  of the displacement field is therefore

fied situation is assumed to exist for which the bosons are

nearly massless inside the bubble, so that a gas of ultrarela- Oen(r) Qepn(r)e

tivistic particles exists inside, and the bosons are massive D=«xE(r)= Ar2 = amr2 (25

outside, with the boson mass being We assume that the
bubble takes a spherical shape at equilibrium. The inner su
face of the bubble wall lies at a radil®_ and the outer
surface is located &, . We will use a thin wall approxima-
tion, in which caseR_~R, ~R.

fhside the bubble we approximate the charge density as a
constant so thap=Qe/(% 7R, and

The massM of the bubble gets contributions from the Q_e;S (r<R)
kinetic energye, of the y bosons, the energy of the domain den(r)=9 R*° . (26)
wall forming the bubble surface,,=47R?s, and the elec- Qe, (r=R)

tromagnetic(EM) energy due to the entrapped bosons,

Eem- In addition, there is a contribution from the e therefore obtain the displacement field
¢-dependent potentidl (¢) in the interior of the bubble.

This arises from the fact that we are considering the f@ke Q

whereU(¢)—0 in the 4D vacuum region and(¢)>0 in KsEs5= 7R3 (r<R)

the 5D vacuum region of the bubble’s interior, whereas- D= (27)
sumes a large, but finite, value. Denoting the valu® &) E :E (r>R)

in the bubble’s interior by\, a constant in our approxima- 4 42

tion, we have the corresponding volume tefip= 3 mAR3

contributing to the masM of the bubble. The bubble mass WhereEs (E,) denotes the electric field insideutside the

can therefore be written as bubble. The displacemeBt is continuous at the bubble walll,
but with our thin wall approximation with an infinitely thin
M=E& +EmtEwtéy. (22)  domain wall, the value of the electric field jumps up by a

factor of k5 on the outer surface of the bubble. The interior

The first term&, in this expression for the mass can be of the bubble appears as a dielectric with an enormous di-
estimated easily. For the ground state kinetic energy of aelectric constanks>1.
ultrarelativistic y boson trapped inside a bubble of radRis
we take the boson wavelength to be roughly equal to the B. Electromagnetic energy&er,
bubble diameter\ ,~2R. Then the kinetic energy iy, . . .
~2m/\, ~wIR. The kinetic energy ofQ bosons in the We calculate the EM energy associated W|tr1 thﬁe configu-
ground state is then approximatefy=Q/R. For the EM  ration by integrating the EM energy density=;D - E over
energy we need to integrate the electromagnetic energy dedl! space. From Eq27)

sity u=1D-E=1«E? over all space, Q%a| 12
B | R TR
SemzfudVZZﬂ-f <E2r2dr. (23) U=V Q% 1 (28)
0 =7, r>R)
( 8w ) r4

A. Electric and displacement fields

The EM field satisfies the field equatidv,(«F*")=j"
=eJ’, whereJ* is the current per unit charge that generates
the y boson number density, so th@t=J°dV. As a sim-
plifying approximation we assume thBtand x=B/B, take
on constant values inside and outside the bubble: _s JR 2.2 J

=2m | ksEgredr+2m

wherea=e?/47. The EM configuration energy

Sem=j udrr2dr
0

Edradr (29)
Bs, inside, (r<R) :

N B,, outside, (r>R)|’ is then given by
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Q% 1\ Q% 1B, 5 Qac||¥
o |15 2R | 1T 5E,)r GO M %9
For ks> 1, the contribution t&,,, from the interior region is (ii) Negligible Volume Terng,, . For the second case we

negligible in comparison to the contribution from the exte-assume thafy, <&, + &y and&y<&y, which can be rewrit-
rior region. If the dielectric constant inside the bubble wereteén as the conditions
unity, the EM energy would b&(Q?a/R), so that the effect

i i ion i i 3o 3 aC
of a macroscopic extra dimension is a reduction of the EM A< \< Q 14 Q . 37
energy of the bubble. R 4R 2m

C. Bubble mass and radius The bubble mass in this case is approximatdly-&, + &

+ &y, and we get for the equilibrium radid® and equilib-

Equation(22) for the bubble mass gives, approximately, fium massM, respectively

Qm

Qac 1 c\ 123
4
+4moRe+ AR (3p and
QaC 2/3
1 1B, 37Q/  Qac
CcC= 1+5_K5)_<1+§B_5) (32) —W(lﬁ'?) (39

The equilibrium radius is obtained by minimizing the expres-Using Eq.(38) we find that the conditions of Eq37) are
sion forM with respect taR, holding the chargé) fixed. The  approximately satisfied for
equilibrium mass of a bubble at its equilibrium radius can

then be obtained. We consider two limiting cases allowing us )\<03/A[Q 1+ %) 1 (40)
to obtain analytical expressions for the bubble’s equilibrium 27
mass and radiugi) the surface terndyy is negligible andii) . )
the volume terne,, is negligible. We can notice that the ratio
(i) Negligible Surface Termg,,. For the first case we as- < Qac  Qa 1
sume thaty <&, + & and&yw <€y, which can be rewritten em_ " _( 1 _> (41)
as the conditions & 2w 2w 5ks
40R3 3o indicates that, dominatest,y, for Q<2#/« and vice versa
” Qac <1, )\R<1_ (33 for Q>27/ .
Q 2m IV. PHOTON OPACITY AND PHOTON
STABILIZED BUBBLES
In this case the bubble mass is approximately- &, + e, _
+&,. We get for the equilibrium radiuR and equilibrium A. Bubble wall opacity
massM, respectively, An interesting effect associated with the difference in

Ua space dimensionalities inside and outside of a dimension

1+ Qac bubble is the opacity of the bubble wall to electromagnetic

Q 2 radiation. From the Lagrangian for the EM fiefd,, , given

R=l——— (34 by Eq. (17), we have the field equation§,(<F*")=j",
which represents Maxwell's equations in terms of the dis-

and placement fieldD=eE=«E and the magnetic fieldH

» =B/u=«B. We then identify the permittivitg, permeabil-

M= (40 of 1+ Qac ity u, index of refractionn=\/ex, and “impedance”’z

2 =/ ul e of a region of space as
M g p
mQ Qac 1 1
_?<l ?) (35) 6=;=K, n=\/6/.L=1, Z=\/,lL/ =;. (42)

Using Eq.(34) we find that the conditions of Eq33) are  The reflectivity and transmissivity of light at an interface
approximately satisfied for between two dielectrics with indices,,u, and er,ut,
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wherel, T represent the incident and transmitting media, rethat depends upon the transmission coefficiERtO (ks b,
spectively, can be obtained from classical electrodynamicaJsing Poynting’s theorem relating the Poynting flux through
For example, light impinging upon an interface between twothe bubble wall to the rate of energy decrease inside the
media with impedance®, andZ; has an associated reflec- pubble, we estimate that the bubble loses energy at a rate
tion ratio givert by [16]

Er 1-(Z1/Z) dM _ >
R TI£ (43) WN_ST(‘]'WR) (47)

T E 1+(Zy/Z)

. L : where S;=7S,.=7p, is the Poynting flux transmitted
:;Zrl d“eggtr 'L?é)lggtlgi%eur\);/)en ;23 @k)'lﬁ)lile Ovﬁll,{;owml etvhhtzrethe through the bubble wall7 is the transmission coefficient,
1 ~4i 5 ~ 4,

Ks 1=B,/Bs<1. Therefore the bubble wall is almost totally i’;TLS:t(h:Z/Eg;/-FT?Sg tfrzléx F;rr:gltgin:e#srg; :jheensvi\gnlvﬁen?hen
opaque to EM radiation, and photons inside the bubble reRave. from Eqs(46) and (47) '
main effectively trapped inside the bubble. Photon radiation ' '
pressure therefore serves as yet another means of stabilizing dM dR
a dimension bubble against collapse. TN —(TaT4)(477R2)~24770RE (48
B. Photon stabilized bubble . .

which gives

A dimension bubble may contain a bath of photon radia-
tion in addition to the charged bosons in its interior. Let us 1
focus on a limiting case in which essentially all the energy at —T~—-0(xs"). (49)
density of the bubble’s contents is due to photons. The pho-

ton energy densityis p, = (7?/15)T*=aT*, so that the en- At time t a bubble has a radilR~ Ro— 7t, and the lifetime

ergy of the bubble is of the bubble is
4
M=E&,+ &y 3 mp,R*+4moR e~ ?O~O(K5) Ro. (50)
77.3
= —— T*R%+4m0oR2 (44) A remark is in order for the case of a dimension bubble

45 . S ; . .
with a 5D interior, whose domain wall arises, in part, from

The bubb'e, after it formS, will adjust its radius to reach anthe low temperature Rubin-Roth pOtential contribution to the
equilibrium with an adiabati¢isentropi¢ expansion or con- effective potentiall(¢). In this case the local minimum of
traction. The photon entropy density $3~T°, and if we  U(¢) disappears at high temperatures, so that the domain
assume that the bubble adjusts its radius to reach equilibriutyall itself disappears, or “bursts,” at some temperatiige

on a very small time scale so that essentially no energy is lostherefore the photon temperature of the bubb(6B) inte-

from the bubble during equ”ibraﬂon’ we have that rior must be restricted to ValUé—S$TC. At a temperatur@
~T. the bubble would burst, releasing all of its radiation.
RT=const. (45) From Eq.(46) we see that as the bubble shrinks, the photon

temperature increases. When the temperature rea€hes
Using these expressions, a minimization of the mass function- T, the bubble explodes, so that the bubble lifetime is
gives an equilibrium radiuR and an equilibrium mass! of  actually 7<O(«s5)R,.

_900

— —, M=1270R% (46) V. SUMMARY
71_2 T4

The dimension bubble scenario has been extended to in-

(One could also obtain these results by balancing the photoffude Maxwell fields and sources. Beginning with a 5D
pressure with the pressure associated with the tension in tHdaxwell theory with sources, the reduction to four dimen-
domain wall) sions leads to an effective 4D dilaton-Maxwell system that,

To estimate the lifetime of such a bubble, we use the facth the dielectric approach, leads to an interpretation of the

that photons slowly leak out through the bubble wall at a rateextra dimensional scale fact@(x) as a dielectric function
k(X)=B(x)/B, that takes drastically different valuess

>1 in the interior of a bubble and=1 in the exterior. One
This result for the reflection rati® is true for all angles of ~esult of this is that the electromagnetic energy associated
incidence. This follows from Snell’'s law and the fact that the index With charged scalar bosons confined to the bubble’s interior
of refraction is unity everywhere. is reduced from what would be the case for a 4D interior.
2In keeping with our Kaluza-Klein zero mode ansatz, we assumd his is due to the fact that the electromagnetic energy density
that there are essentially no nonzero momentum states in the direb= 3 kE>=D?/2« is greatly suppressed in a 5D interior with
tion of the extra dimension. dielectric constanis.

045008-6



GAUGED DIMENSION BUBBLES PHYSICAL REVIEW D68, 045008 (2003

Another, somewhat striking, result is that the bubble wallcritical temperaturd . above which the domain wall disap-
possesses a near total reflectivity feg>1, making it pears and an existing bubble would burst. A bubble filled
opaque to photons incident upon it from either side. Photonsiith photons slowly decreases in size, with a resulting life-
that are trapped within the bubble at its time of formationtime 7<O(«5)R,. As the bubble shrinks, the temperatdre
cannot easily escape, so that a dimension bubble can be hettside increases until it reaches a critical temperaiyreat
in a metastable state, supported by entrapped photons alonehich time the bubble explodes, releasing its radiation con-
The photon temperature, however, must remain below theéents.
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