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Gauged dimension bubbles
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Some of the peculiar electrodynamical effects associated with gauged ‘‘dimension bubbles’’ are presented.
Such bubbles, which effectively enclose a region of 5D spacetime, can arise from a 5D theory with a compact
extra dimension. Bubbles with thin domain walls can be stabilized against total collapse by the entrapment of
light charged scalar bosons inside the bubble, extending the idea of a neutral dimension bubble to accommo-
date the case of a gauged U~1! symmetry. Using a dielectric approach to the 4D dilaton-Maxwell theory, it is
seen that the bubble wall is almost totally opaque to photons, leading to a new stabilization mechanism due to
trapped photons. Photon dominated bubbles very slowly shrink, resulting in a temperature increase inside the
bubble. At some critical temperature, however, these bubbles explode, with a release of radiation.
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I. INTRODUCTION

An inhomogeneous higher dimensional spacetime co
pactified to four dimensions~4D! can contain pockets, or
what may be referred to as ‘‘dimension bubbles,’’ where
extra dimensional scale factor becomes large enough tha
spacetime has an effective dimensionality within the poc
that is higher than in the surrounding four dimension
spacetime outside of it@1,2#. Here we consider a dimensio
bubble, arising from the dimensional reduction of a 5
theory, which encloses a 5D region and is surrounded b
region that is effectively 4D, i.e., the extra dimensional sc
factor changes rapidly from the interior of the bubble to t
exterior. The two regions are, from a 4D perspective, se
rated by a domain wall generated by a scalar field associ
with the scale factor of the extra space dimension. Suc
domain wall can result from a Rubin-Roth potential@3#
~which includes bosonic as well as fermionic Casim
energies—which can stabilize the compact extra dimens
from collapsing due to the gravitational Casimir effect@4#!
along with a cosmological constant@2#, or, in the case of
more than one extra dimension, from higher dimensio
Maxwell fields@5# or their generalizations@1#. For simplicity,
we take the 4D spacetime to be Minkowski and the ex
space dimension to be toroidally compact, so that the
spacetime has the topology ofM43S1. ~In this sense, the
dimension bubbles studied here are simplifications of ‘‘gra
tational bags,’’ previously analyzed by Davidson and Gu
delman@1#, which have an associated nontrivial spaceti
geometry.! Although gravitational bags are static solutio
where the surface tension pushing the bubble wall inwar
equilibrated with a nontrivial pressure from the scalar fie
inside, the scalar field inside suffers from a singular behav
at the center of the geometry~although there is still finite
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energy due to a gravitational effect!. There is, however, an
other way to stabilize the bubble which does not requir
singular scalar field at the center of the geometry. The st
lization can be achieved if the inside of the bubble is fill
with scalar bosons described by a complex scalar fieldx @6#.

Previously, it was assumed that thex field only possessed
a globalU(1) symmetry@6# giving rise to a conserved num
ber chargeQ. Here, we consider the case where the sca
field x has alocal U(1) symmetry, i.e., aU(1) ‘‘gauged
dimension bubble.’’ Because the extra dimensional scale
tor B(x) can take drastically different values inside and o
side of the bubble, the effective ‘‘dielectric function’’ o
these two regions can also have drastically different valu
As a result, there are nontrivial electromagnetic effects as
ciated with the bubble wall and its 5D interior. In particula
the EM contribution to the massM of the bubble is reduced
from what would be expected if the bubble interior were a
4D, that is, if the dilaton associated with the scale factoB
were constant everywhere. In addition, the bubble wall
found to be almost perfectly reflecting to photons, so t
photons cannot pass through the wall from either directi
Entrapped photons can themselves stabilize a bubble f
total collapse. The effects of the extra dimension theref
make the gauged dimension bubble an object that is q
different from other purely 4D nontopological solitons@7#,
such as gauged Q balls@8–10#, charged vacuum bubble
@11#, and Fermi balls@12–15#, that have been studied prev
ously.

We first present the dielectric approach to the study
electromagnetic effects of dimension bubbles, considerin
bubble with a 5D interior~emerging from a 5D theory di-
mensionally reduced to 4D! as a specific prototype. This di
electric approach is then applied to the case of a char
bubble having a conserved numberQ of chargedx bosons
trapped inside the bubble. Upon evaluating the various c
tributions to the bubble’s energy, the bubble’s equilibriu
radiusR and massM can be obtained. We shall also make
couple of simplifying assumptions. First, we assume a t
©2003 The American Physical Society08-1
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walled bubble, i.e., the wall thicknessd!R, so that in a
simplifying limit we may take the inner radiusR2 and outer
radiusR1 of the wall to coincide,R2 , R1→R. It is within
the wall that the scale factorB(x) varies rapidly, and we
assume thatB takes on different constant values in the in
rior and exterior regions, with the interior value being mu
greater than the exterior one,Bin@Bout . This allows for an
efficient mechanism of trapping thex bosons inside the
bubble, since the boson mass (mx}B21/2), assumed to be
small inside, becomes very large outside,mx,in!mx,out , and
a boson therefore experiences an enormous forceFW ;
2¹mx exerted on it by the wall, keeping it in the interior o
the bubble.

II. THE MODEL

A. Metric ansatz and dimensional reduction

We begin with a 5D action of the general form

S55
1

2kN(5)
2 E d5xAg̃5$R̃522L12kN(5)

2 L5% ~1!

that is defined on a 5D spacetime with a metric described

ds25g̃MNdxMdxN5g̃mndxmdxn1g̃55dy2. ~2!

Here,xM5(xm,y) is the set of coordinates on a 5D spac
time with topology ofM43S1 that has a toroidally compac
spacelike extra dimensionx55y, which is assumed to be
linear coordinate lying within the range 0<y<2pR. We use
the indicesM, N50, . . .,3,5 to label the coordinates of th
5D spacetime and the indicesm,n50, . . . ,3 tolabel the co-
ordinates of the noncompact 4D spacetime. A zero m
Kaluza-Klein ansatz is assumed where the fields and me
are independent ofx5, i.e., g̃MN5g̃MN(xm) depends only on
the 4D coordinates with]5g̃MN50. We also assume that th
metric factorizes so thatg̃m550. A dimensionless scale fac
tor B(xm), with g̃5552B2, is associated with the extra d
mension, along with an associated scalar fieldw that is re-
lated toB by

w5
1

kN
A3

2
ln B. ~3!

The constantkN is related to the 4D Planck massM P by
kN5A8pG5A8pM P

21 . The extra dimensional scale facto
can then be written asB5eA2/3kNw.

Determinants of the 4D and 5D parts of the original m
ric g̃MN are denoted byg̃5detg̃mn andg̃55detg̃MN , respec-

tively, so thatAug̃5u5A2g̃Aug̃55u. In the action given by
Eq. ~1!, kN(5)5A8pG5 represents a 5D gravitational con
stant,R̃55g̃MNR̃MN is the 5D Ricci scalar built fromg̃MN ,
L5 is a Lagrangian of the 5D theory, andL is a 5D cosmo-
logical constant. In order to pass to an effective 4D the
we defineL5(2pR)L5 and definekN(5) in terms ofkN by
kN(5)

2 5(2pR)kN
2 .
04500
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The 4D Jordan frame metric isg̃mn , themn part of the 5D
metric g̃MN . A 4D Einstein frame metricgmn can be defined
by gmn5Bg̃mn5eA2/3kNwg̃mn and the line element in Eq.~2!
can be rewritten in terms of the Einstein frame metric a
extra dimensional scale factor as

ds25B21gmndxmdxn2B2dy2

5e2A2/3kNwgmndxmdxn2e2A2/3kNwdy2. ~4!

Using Eq.~4!, a dimensional reduction of the action given b
Eq. ~1! gives the effective 4D Einstein frame action

S5E d4xA2gH 1

2kN
2

R1
1

2
~¹w!2

1e2A2/3kNwFL2
1

kN
2

LG J ~5!

whereR5gmnRmn is the 4D Ricci scalar built from the 4D
Einstein frame metricgmn andg5detgmn .

B. 4D „Einstein frame… effective Lagrangian

Consider a Lagrangian from the 5D theory of aU(1)
gauged scalar fieldx,

L5~2pR!L552
1

4
F̃8MN F̃MN8

1~D̃Mx!* ~D̃Mx!2V~ uxu! ~6!

which gives rise to an effective 4D~EF! LagrangianL4
5B21L, and

F̃MN8 5]MAN8 2]NAM8 , DMx5~¹M1 ie0AM8 !x ~7!

with e0 andAM8 being the charge parameter and gauge fi
potential, respectively, appearing in the original 5D Lagran
ian, and tildes remind us that indices are raised and lowe
with the metric g̃MN , so that (D̃Mx)* (D̃Mx)
5g̃MN(DMx)* (DNx). It is assumed that]5x50 so that
D5x5 ie0A58x. We then have, with the assumption th
]5Am8 50,

2
1

4
F̃8MN F̃MN8 52

1

4
B2F8mn Fmn8 1

1

2
B21~]mA58]mA58!.

~8!

Using g̃mn5Bgmn, g̃5552B22, the scalar field kinetic term
is given by

~D̃Mx!* ~D̃Mx!5~D̃mx!* ~D̃mx!1~D̃5x!* ~D̃5x!

5BuDmxu22e0
2B22A58

2uxu2. ~9!

The 4D EF effective LagrangianL45B21L then becomes
8-2
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L452 1
4 BF8mn Fmn8 1 1

2 B22~]A58!21uDmxu2

2e0
2B23A58

2uxu22B21V~ uxu!. ~10!

The w-dependent potentialU(w) ~which contains, e.g., the
Rubin-Roth potential,VRR, and cosmological constant,L,
terms!, along with thew kinetic term 1

2 (]w)2 and gravita-
tional term (1/2kN

2 )R can be added to get a total 4D effectiv
Lagrangian

Le f f5L41
1

2kN
2

R1
1

2
~]w!22U

5
1

2kN
2

R1
1

2
~]w!22

1

4
BF8mn Fmn8

1
1

2
B22~]A58!21uDmxu22W ~11!

where we define a total effective potential

W5U~w!1B21V~ uxu!1e0
2B23A58

2uxu2. ~12!

C. Dielectric approach

The 4D Einstein frame effective LagrangianLe f f above
contains a Maxwell term2 1

4 BF8mn Fmn8 and a gauge cova
riant derivativeDmx5(]m1 ie0Am8 )x. Let us define a res

caled gauge fieldAM5B4
1/2AM8 , whereB4 ~or B5) denotes

the value ofB in a region of 4D~or 5D! spacetime outside
~or inside! of a dimension bubble, so that in a region of 4
spacetime the Maxwell term is properly normalized and
sumes a canonical form,2 1

4 B4F8mn Fmn8 52 1
4 FmnFmn , with

Fmn5]mAn2]nAm ,

Am5B4
1/2Am8 , A55B4

1/2A58 . ~13!

The gauge covariant derivative operatorDm5(]m1 ie0Am8 )
can be written as

Dm5~]m1 ie0B4
21/2Am!5~]m1 ieAm! ~14!

where we have defined the 4D effective, or physical, cha

e5B4
21/2e0 . ~15!

We also define the ‘‘dielectric function’’

k~xm!5
B~xm!

B4
. ~16!

In terms of physical 4D quantities, the effective 4D L
grangian in Eq.~11! now assumes the form
04500
-

e

Le f f5
1

2kN
2

R1
1

2
~]w!22

1

4
kFmnFmn

1
1

2
k22B4

23~]A5!21uDmxu22W ~17!

where

W5U~w!1k21B4
21V~ uxu!1e2k23B4

23A5
2uxu2. ~18!

The functionk is seen to play the role of a dielectric func
tion, except that in this case it arises as a consequence o
possible position dependence of the extra dimensional s
factorB. Thus, from a 4D perspective, a region of effective
5D spacetime is viewed as being endowed with a dielec
property described byk. We also note that in a 4D regio
k→1, and thatk55B5 /B4.1, and, in particular, we as
sume thatk5@1. Using the familiar results of electrostatic
we have that the normal component of the ‘‘displaceme
field DW 5kEW and the tangential components of the elect
field EW are continuous at an interface between two me
with different dielectric constants.

D. Effective potential, vacuum, andx boson mass

The total effective potentialW of the 4D theory is given
by Eq. ~18!. The vacuum state is obtained by minimizingW
with respect tow ~or k), x, andA5:

]W

]k
5

]U

]k
2B4

21k22V23e2B4
23k24A5

2uxu250,

]W

]x*
5B4

21k21
]V

]x*
1e2B4

23k23A5
2x50, ~19!

]W

]A5
52e2B4

23k23A5uxu250.

These equations are solved byA550, ]V/]x* 50, and
]U/]k2B4

21k22V50. ~Later we will consider the case fo
which V5m0

2x* x, giving x50, V50, ]U/]k50, with A5

undetermined, and we will assume thatA550.!
The 5D mass parameter for thex field is denoted bym0

2

5(]2V/]x* ]x)uvac , so that the effectivex boson mass in
the 4D effective~EF! theory is given by

mx
25S ]2W

]x* ]x
D

vac

5@B21m0
21e2B4

23k23A5
2#vac . ~20!

Assuming the vacuum value ofA5 to vanish, we have simply

mx5B21/2m05k21/2m4 ~21!

where we definem45B4
21/2m0. In this effective 4D dilaton-

Maxwell system, the effects of the scale factor~or dilatonw)
become manifest in the 4D mass parametermx . In the 5D
region of a dimension bubble interior, wherek@1, the mass
k5

21/2m4 becomes very small or negligible in comparison
8-3
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the massm4 in the 4D region outside the bubble. This effe
tive mass dependence ofmx uponk gives rise to the entrap
ment ofx bosons inside the bubble.

III. GAUGED DIMENSION BUBBLE

Consider the case where a domain bubble forms, ent
ping a conserved numberQ of x bosons.~For definiteness,
we take the electromagnetic chargeQe to be positive and the
potentialV is taken to be given byV5m0

2x* x.! The simpli-
fied situation is assumed to exist for which the bosons
nearly massless inside the bubble, so that a gas of ultra
tivistic particles exists inside, and the bosons are mas
outside, with the boson mass beingm. We assume that the
bubble takes a spherical shape at equilibrium. The inner
face of the bubble wall lies at a radiusR2 and the outer
surface is located atR1 . We will use a thin wall approxima-
tion, in which caseR2'R1'R.

The massM of the bubble gets contributions from th
kinetic energyEx of the x bosons, the energy of the doma
wall forming the bubble surface,EW54pR2s, and the elec-
tromagnetic~EM! energy due to the entrappedx bosons,
Eem. In addition, there is a contribution from th
w-dependent potentialU(w) in the interior of the bubble.
This arises from the fact that we are considering the case@6#
whereU(w)→0 in the 4D vacuum region andU(w).0 in
the 5D vacuum region of the bubble’s interior, wherew as-
sumes a large, but finite, value. Denoting the value ofU(w)
in the bubble’s interior byl, a constant in our approxima
tion, we have the corresponding volume termEV5 4

3 plR3

contributing to the massM of the bubble. The bubble mas
can therefore be written as

M5Ex1Eem1EW1EV . ~22!

The first termEx in this expression for the mass can
estimated easily. For the ground state kinetic energy of
ultrarelativisticx boson trapped inside a bubble of radiusR,
we take the boson wavelength to be roughly equal to
bubble diameter,lx'2R. Then the kinetic energy isEkin
'2p/lx'p/R. The kinetic energy ofQ bosons in the
ground state is then approximatelyEx5Qp/R. For the EM
energy we need to integrate the electromagnetic energy
sity u5 1

2 DW •EW 5 1
2 kE2 over all space,

Eem5E udV52pE
0

`

kE2r 2dr. ~23!

A. Electric and displacement fields

The EM field satisfies the field equation¹m(kFmn)5 j n

5eJn, whereJm is the current per unit charge that genera
the x boson number density, so thatQ5*J0dV. As a sim-
plifying approximation we assume thatB andk5B/B4 take
on constant values inside and outside the bubble:

B5H B5 , inside, ~r ,R!

B4 , outside, ~r .R!
J ,
04500
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k5H k55
B5

B4
, inside, ~r ,R!

1, outside, ~r .R!
J . ~24!

We therefore have¹•DW 5 j 05r, where DW 5kEW , and by
Gauss’ law the radial displacement field is (4pr 2)D5qen
5*VrdV, and qen5Qene, where Qen is the number of
bosons enclosed within the volumeV. The radial componen
of the displacement field is therefore

D5kE~r !5
qen~r !

4pr 2
5

Qen~r !e

4pr 2
. ~25!

Inside the bubble we approximate the charge density a

constant so thatr5Qe/( 4
3 pR3), and

qen~r !5H Qer3

R3 , ~r<R!

Qe, ~r>R!
J . ~26!

We therefore obtain the displacement field

D5H k5E55
Qer

4pR3 , ~r ,R!

E45
Qe

4pr 2 , ~r .R!
J ~27!

whereE5 (E4) denotes the electric field inside~outside! the
bubble. The displacementDW is continuous at the bubble wal
but with our thin wall approximation with an infinitely thin
domain wall, the value of the electric field jumps up by
factor of k5 on the outer surface of the bubble. The interi
of the bubble appears as a dielectric with an enormous
electric constantk5@1.

B. Electromagnetic energyEem

We calculate the EM energy associated with the confi
ration by integrating the EM energy densityu5 1

2 DW •EW over
all space. From Eq.~27!

u5H S Q2a

8p D r 2

k5R6 , ~r ,R!

S Q2a

8p D 1

r 4 , ~r .R!
J ~28!

wherea5e2/4p. The EM configuration energy

Eem5E
0

`

u4pr 2dr

52pE
0

R

k5E5
2r 2dr12pE

R

`

E4
2r 2dr ~29!

is then given by
8-4
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Eem5
Q2a

2R S 11
1

5k5
D5

Q2a

2R S 11
1

5

B4

B5
D . ~30!

For k5@1, the contribution toEem from the interior region is
negligible in comparison to the contribution from the ex
rior region. If the dielectric constant inside the bubble we
unity, the EM energy would be35 (Q2a/R), so that the effect
of a macroscopic extra dimension is a reduction of the E
energy of the bubble.

C. Bubble mass and radius

Equation~22! for the bubble mass gives, approximately

M5Ex1Eem1EW1EV5
Qp

R S 11
Qac

2p D
14psR21

4

3
plR3 ~31!

where

c5S 11
1

5k5
D5S 11

1

5

B4

B5
D . ~32!

The equilibrium radius is obtained by minimizing the expre
sion forM with respect toR, holding the chargeQ fixed. The
equilibrium mass of a bubble at its equilibrium radius c
then be obtained. We consider two limiting cases allowing
to obtain analytical expressions for the bubble’s equilibriu
mass and radius:~i! the surface termEW is negligible and~ii !
the volume termEV is negligible.

(i) Negligible Surface TermEW . For the first case we as
sume thatEW!Ex1Eem andEW!EV , which can be rewritten
as the conditions

4sR3

QS 11
Qac

2p D !1,
3s

lR
!1. ~33!

In this case the bubble mass is approximatelyM5Ex1Eem
1EV . We get for the equilibrium radiusR and equilibrium
massM, respectively,

R5FQS 11
Qac

2p D
4l

G 1/4

~34!

and

M5p~4l!1/4FQS 11
Qac

2p D G3/4

5
pQ

R S 11
Qac

2p D . ~35!

Using Eq. ~34! we find that the conditions of Eq.~33! are
approximately satisfied for
04500
-
e

-

s

s!Fl3QS 11
Qac

2p D G1/4

. ~36!

(ii) Negligible Volume TermEV . For the second case w
assume thatEV!Ex1Eem andEV!EW , which can be rewrit-
ten as the conditions

l!
3s

R
, l!

3Q

4R4 S 11
Qac

2p D . ~37!

The bubble mass in this case is approximatelyM5Ex1Eem
1EV , and we get for the equilibrium radiusR and equilib-
rium massM, respectively,

R5
1

2 FQ

s S 11
Qac

2p D G1/3

~38!

and

M53ps1/3FQS 11
Qac

2p D G2/3

5
3pQ

2R S 11
Qac

2p D . ~39!

Using Eq. ~38! we find that the conditions of Eq.~37! are
approximately satisfied for

l!s3/4FQS 11
Qac

2p D G21/3

. ~40!

We can notice that the ratio

Eem

Ex
5

Qac

2p
5

Qa

2p S 11
1

5k5
D ~41!

indicates thatEx dominatesEem for Q!2p/a and vice versa
for Q@2p/a.

IV. PHOTON OPACITY AND PHOTON
STABILIZED BUBBLES

A. Bubble wall opacity

An interesting effect associated with the difference
space dimensionalities inside and outside of a dimens
bubble is the opacity of the bubble wall to electromagne
radiation. From the Lagrangian for the EM fieldFmn , given
by Eq. ~17!, we have the field equations¹m(kFmn)5 j n,
which represents Maxwell’s equations in terms of the d
placement fieldDW 5eEW 5kEW and the magnetic fieldHW

5BW /m5kBW . We then identify the permittivitye, permeabil-
ity m, index of refractionn5Aem, and ‘‘impedance’’Z
5Am/e of a region of space as

e5
1

m
5k, n5Aem51, Z5Am/e5

1

k
. ~42!

The reflectivity and transmissivity of light at an interfac
between two dielectrics with indicese I ,m I and eT ,mT ,
8-5
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whereI ,T represent the incident and transmitting media,
spectively, can be obtained from classical electrodynam
For example, light impinging upon an interface between t
media with impedancesZI andZT has an associated refle
tion ratio given1 by @16#

R5
ER

EI
5

12~ZT /ZI !

11~ZT /ZI !
. ~43!

For light impinging upon the bubble wall from either th
inside or the outside, we haveuRu'12O(k5

21)'1, where
k5

215B4 /B5!1. Therefore the bubble wall is almost total
opaque to EM radiation, and photons inside the bubble
main effectively trapped inside the bubble. Photon radiat
pressure therefore serves as yet another means of stabi
a dimension bubble against collapse.

B. Photon stabilized bubble

A dimension bubble may contain a bath of photon rad
tion in addition to the charged bosons in its interior. Let
focus on a limiting case in which essentially all the ener
density of the bubble’s contents is due to photons. The p
ton energy density2 is rg5(p2/15)T45aT4, so that the en-
ergy of the bubble is

M5Eg1EW5
4

3
prgR314psR2

5
4p3

45
T4R314psR2. ~44!

The bubble, after it forms, will adjust its radius to reach
equilibrium with an adiabatic~isentropic! expansion or con-
traction. The photon entropy density issg;T3, and if we
assume that the bubble adjusts its radius to reach equilib
on a very small time scale so that essentially no energy is
from the bubble during equilibration, we have that

RT5const. ~45!

Using these expressions, a minimization of the mass func
gives an equilibrium radiusR and an equilibrium massM of

R5
90

p2

s

T4
, M512psR2. ~46!

~One could also obtain these results by balancing the ph
pressure with the pressure associated with the tension in
domain wall.!

To estimate the lifetime of such a bubble, we use the f
that photons slowly leak out through the bubble wall at a r

1This result for the reflection ratioR is true for all angles of
incidence. This follows from Snell’s law and the fact that the ind
of refraction is unity everywhere.

2In keeping with our Kaluza-Klein zero mode ansatz, we assu
that there are essentially no nonzero momentum states in the d
tion of the extra dimension.
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that depends upon the transmission coefficientT;O(k5
21).

Using Poynting’s theorem relating the Poynting flux throu
the bubble wall to the rate of energy decrease inside
bubble, we estimate that the bubble loses energy at a ra

dM

dt
'2ST~4pR2! ~47!

where ST5TSinc5Trg is the Poynting flux transmitted
through the bubble wall,T is the transmission coefficient
Sinc is the Poynting flux incident upon the wall, andrg
5aT45(p2/15)T4 is the photon energy density. We the
have, from Eqs.~46! and ~47!,

dM

dt
'2~TaT4!~4pR2!'24psR

dR

dt
~48!

which gives

dR

dt
'2T;2O~k5

21!. ~49!

At time t a bubble has a radiusR'R02Tt, and the lifetime
of the bubble is

t'
R0

T ;O~k5!R0 . ~50!

A remark is in order for the case of a dimension bubb
with a 5D interior, whose domain wall arises, in part, fro
the low temperature Rubin-Roth potential contribution to t
effective potentialU(w). In this case the local minimum o
U(w) disappears at high temperatures, so that the dom
wall itself disappears, or ‘‘bursts,’’ at some temperatureTc .
Therefore the photon temperature of the bubble’s~5D! inte-
rior must be restricted to valuesT<Tc . At a temperatureT
;Tc the bubble would burst, releasing all of its radiatio
From Eq.~46! we see that as the bubble shrinks, the pho
temperature increases. When the temperature reacheT
;Tc , the bubble explodes, so that the bubble lifetime
actuallyt&O(k5)R0.

V. SUMMARY

The dimension bubble scenario has been extended to
clude Maxwell fields and sources. Beginning with a 5
Maxwell theory with sources, the reduction to four dime
sions leads to an effective 4D dilaton-Maxwell system th
in the dielectric approach, leads to an interpretation of
extra dimensional scale factorB(x) as a dielectric function
k(x)5B(x)/B4 that takes drastically different valuesk5
@1 in the interior of a bubble andk51 in the exterior. One
result of this is that the electromagnetic energy associa
with charged scalar bosons confined to the bubble’s inte
is reduced from what would be the case for a 4D interi
This is due to the fact that the electromagnetic energy den
u5 1

2 kE25D2/2k is greatly suppressed in a 5D interior wit
dielectric constantk5.
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Another, somewhat striking, result is that the bubble w
possesses a near total reflectivity fork5@1, making it
opaque to photons incident upon it from either side. Phot
that are trapped within the bubble at its time of formati
cannot easily escape, so that a dimension bubble can be
in a metastable state, supported by entrapped photons a
The photon temperature, however, must remain below
ys

s.

w
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e

critical temperatureTc above which the domain wall disap
pears and an existing bubble would burst. A bubble fill
with photons slowly decreases in size, with a resulting li
time t&O(k5)R0. As the bubble shrinks, the temperatureT
inside increases until it reaches a critical temperatureTc , at
which time the bubble explodes, releasing its radiation c
tents.
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