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Quantum corrections to the mass of the supersymmetric vortex

D. V. Vassilevich*
Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10, 04109 Leipzig, Germany

~Received 6 May 2003; published 14 August 2003!

We calculate quantum corrections to the mass of the vortex in theN52 supersymmetric Abelian Higgs
model in 211 dimensions. We put the system in a box and apply zeta function regularization. The boundary
conditions inevitably violate a part of the supersymmetries. The remaining supersymmetry is, however, enough
to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A nonzero correction to the mass
of the vortex comes from finite renormalization of couplings.
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I. INTRODUCTION

The Abrikosov-Nielsen-Olesen~ANO! vortices @1# play
an important role in modern particle physics@2#. In particu-
lar, supersymmetric ANO vortices are essential for und
standing monopole condensation~see, e.g.,@3# and refer-
ences therein!. In 211 dimensions the relation betwee
extendedN52 supersymmetry and the Bogomol’nyi-Prasa
Sommerfield~BPS! bound has been demonstrated in@4# fol-
lowing a more general discussion of@5#.

Quantum corrections to the mass of the supersymme
ANO vortex1 in 211 dimensions were calculated in@7#; the
Chern-Simons terms were included in@8#. Both papers@7,8#
give a zero result for the mass shift. The authors used a
ments similar to that of Imbimbo and Mukhi@9#2 based on
the nonlocal index theorem of@10# and its generalization by
Weinberg@11#. Roughly speaking, the line of reasoning
@7,8# was as follows. The index theorem was used to sh
that

rB~v!2rF~v!}d~v!, ~1!

whererB,F are the spectral densities in the bosonic and
mionic sectors, respectively. Then the mass shift was ide
fied as

DE}E dv v@rB~v!2rF~v!#. ~2!

Due to Eq.~1! the mass shift~2! should be zero. In this way
the authors@7,8# avoided explicit use of any regularization
There is, however, a loophole in this kind of argument. F

*Also at V. A. Fock Institute of Physics, St. Petersburg Univers
198904 St. Petersburg, Russia. Email addre
dmitri.vassilevich@itp.uni-leipzig.de

1Since no analytic form for the profile functions of the ANO vo
tex is available, calculations of the mass shift in a nonsupers
metric case is a rather complicated problem. Recently the fermi
contribution to the vacuum energy was calculated in a toy mo
closely resembling the Abelian Higgs model@6#.

2Note that the authors@9# used these arguments to show saturat
of the Bogomol’nyi bound~i.e., to estimate the difference betwee
quantum corrections to the mass and to the central charge! rather
than to calculate the mass shift itself.
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of all, it is assumed that there is a regularization which s
ports the mode-by-mode cancellations needed to apply
~2!. Such regularizations are indeed available. One of them
the zeta function regularization@12#. However, it requires
transition to the discrete spectrum at least at intermed
steps. In other words, one has to put the system in a box
impose some boundary conditions. There is noa priori guar-
antee that these boundary conditions can be chosen in su
way to preserve the index theorem arguments. Besides, w
out regularizing the whole theory with arbitrary, not on
BPS background, fields one cannot control finite renorm
ization of charges which are present in the model.

Quantum corrections to (211)-dimensional solitons
should have been reconsidered already some time ago.
cent years have seen a considerable increase of intere
quantum effects around supersymmetric solitons in 111 di-
mensions, initiated by the papers@13#, which resulted in
some very interesting developments in this field~see@14# for
a literature survey!.

In this paper we recalculate quantum corrections to
mass of the supersymmetric vortex using the method@15#
applied previously to the supersymmetric kink. We put t
vortex in a box with a circular boundary and impose t
boundary condition which preserves as many symmetrie
possible. We find that one-half of the supersymmetries of
vortex is inevitably broken at the boundary.3 This is, how-
ever, enough to ensure coincidence of the eigenfrequen
of the bosonic and fermionic fluctuations. We then conclu
that the total energy of the vortex and the boundaries is z
At the next step, we define the energy associated with
boundaries and find that it is also zero. Therefore the wh
mass shift of the vortex is due to the finite renormalization
couplings.4 It is not zero and is given by Eq.~70! below.

Formally the zero point energy can be represented as

DE5DEB2DEF , DEB,F5
1

2 (
vB,F

vB,F , ~3!

,
:

-
ic
el

n

3BPS states preserve half of the supersymmetries of the the
Since boundaries break another half, we have a quarter of the o
nal N52 supersymmetry.

4I am grateful to R. Wimmer for pointing out the importance
the finite renormalization effects.
©2003 The American Physical Society05-1
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D. V. VASSILEVICH PHYSICAL REVIEW D 68, 045005 ~2003!
wherevB,F are eigenfrequencies of bosonic and fermio
fluctuations. The sums in Eq.~3! are divergent and must b
regularized. We use the zeta function regularization@12#:

DEB,F
reg 5

1

2 (
vB,FÞ0

vB,F
122s , ~4!

wheres is the regularization parameter. Note that zero f
quencies@which do not contribute to Eq.~3! anyhow# should
be explicitly excluded.

This paper is organized as follows. In the next section
describe properties of classical solutions and define the
erators acting on quantum fluctuation in the Abelian Hig
model without boundaries. In Sec. III we define gauge
variant boundary conditions which ensure that all nonz
eigenfrequencies in fermionic and bosonic sectors coinc
In Sec. IV we analyze the supersymmetry of these bound
conditions and find that one-half of the superinvariancies
the vortex are broken. Section V is devoted to the calcula
of the mass shift. Some concluding remarks are given in S
VI. Technical details of the calculations related to the bou
ary supersymmetries are presented in the Appendix.

II. THE MODEL

This section is devoted to some known properties of
supersymmetric vortices on manifolds without boundari
Here we mostly follow@8,16#.

A. Classical theory

The Lagrangian of aN52 supersymmetric Abelian Higg
model in 211 dimensions reads:

L5LB1LF , ~5!

LB52
1

4
FmnFmn2uDmfu22

1

2
~]mw!22

e2

2
~ ufu22v2!2

2e2w2ufu2, ~6!

LF5 i c̄gmDmc1 i x̄gm]mx2 iA2e~ c̄xf2x̄cf* !

1ewc̄c, ~7!

wherew (f) is a real~complex! scalar,c and x are two-
component complex spinors.v is a constant. The signature o
the metricgmn is (211). As usual,Fmn5]mAn2]nAm is
the field strength.Dm is gauge covariant derivative,Dmf
5(]m2 ieAm)f. The action~5! is invariant under the super
symmetry transformations

dAm5 i ~ h̄gmx2x̄gmh!,

df5A2h̄c, dw5 i ~ x̄h2h̄x!,

dx5gmhS ]mw1
i

2
emnlFnlD1 ih~eufu22ev2!,

dc52A2~ igmhDmf2hewf! ~8!
04500
-

e
p-
s
-
o
e.
ry
f
n
c.
-

e
.

with complex constant spinor parameterh. emnr is the Levi-
Civita tensor,e01251. The gamma matrices

g05S 1 0

0 21D , g15S 0 1

21 0D , g25S 0 i

i 0D ~9!

satisfy the equation

gmgn52gmn2 i emnrgr . ~10!

We shall mark the upper~lower! components of all spinors
with the subscript ‘‘1 ’’ ~‘‘ 2 ’’ !, so that

h5S h1

h2
D , ~11!

for example.
Consider now static bosonic field configurations such t

A05w50. Such configurations are invariant with respect
one-half of the supersymmetry transformations~8! corre-
sponding toh150 if and only if

~D11 iD 2!f50, ~12!

F121e~ ufu22v2!50. ~13!

These are just the Bogomol’nyi@17# self-duality equations.
The classical vortices

f5 f ~r !einu, eAj5e jk

xk

r 2
@a~r !2n# ~14!

satisfy Eqs.~12! and ~13! if

1

r

d

dr
a~r !5e2

„f 2~r !2v2
…,

r
d

dr
ln f ~r !5a~r !. ~15!

In these equationsnPN is vorticity ~which we assume to be
positive!, j ,kP$1,2%, e1251, andr, u are usual polar coor-
dinates on the plane. The functionsf (r ) anda(r ) satisfy the
conditions

f ~0!50, f ~`!5v, ~16!

a~0!5n, a~`!50. ~17!

The classical energy of this configuration reads~see, e.g.,
@8#!:

Ecl52pnv2. ~18!

B. Quantum fluctuations

Let us now turn to quantum fluctuations about the ba
ground~14!. We shift f→f1w and Am→Am1am , where
w andam are the fluctuations. Since all other fields are ze
5-2
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QUANTUM CORRECTIONS TO THE MASS OF THE . . . PHYSICAL REVIEW D 68, 045005 ~2003!
on the background, we do not need to introduce more n
tions. It is convenient to use the background gauge fix
term5

Lgf52
1

2
@]mam2 ie~w* f2wf* !#2, ~19!

which generates the following action for the complex gho
s:

Lghost5s* ~]m]m22e2ff* !s. ~20!

Next we expand the action~6! about the classical back
ground. The terms linear in fluctuations vanish due to
equations of motion. In the next, quadratic, order we have
the bosonic sector:

L B
21Lgf52

1

2
am~h22e2f* f!am2~Dmw!~Dmw!*

2e2ww* ~3ff* 2v2!22ieam~w* Dmf

2wDmf* !2
1

2
~]mw!22e2w2ufu2, ~21!

where the covariant derivativeDm depends on the back
ground gauge potentialAm ; h5]m]m.

The quadratic part of the fermionic action coincides w
Eq. ~7! where all bosonic fields take their background valu
~so thatw50, for example!. Therefore, the equation whic
defines eigenfrequenciesvF in the fermionic sector reads:

vFS c

x
Dª i ]0S c

x
D 52 ig0S g jD j , 2A2ef

A2ef* , gk]k
D S c

x
D .

~22!

By taking the square of this equation one obtains@8#:

vF
2 S U

V D 5S DFDF
† , 0

0, DF
†DF

D S U

V D , ~23!

where

U5S c1

x2
D , V5S c2

x1
D ~24!

and

DF5S D1 , 2A2ef

2A2ef* , ]2
D ,

2DF
†5S D2 , A2ef

A2ef* , ]1
D . ~25!

In this equation we have used holomorphic and antiholom
phic components of two-dimensional differential operator

5This gauge condition belongs to the so-calledRj family @18#.
04500
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D6ªD16 iD 2 , ]6ª]16 i ]2 . ~26!

Let us now return to the bosonic fluctuation. As one c
see from Eq.~21!, the equations fora0 and forw decouple
from the rest of the bosonic modes. Moreover, the squa
eigenfrequencies of these fields are given by the eigenva
of the operator

Dw52] j] j12e2ufu2. ~27!

The same operator also defines the ghost eigenfrequen
Therefore contributions of all these fields to the vacuum
ergy cancel~provided they all satisfy the same bounda
conditions!.

A very important observation regarding the rest of t
bosonic perturbations was made by Lee and Min@8#. They
demonstrated that the eigenfrequencies forw anda j follow
from the equation

vB
2S w

ia1A2
Dª2]0

2S w

ia1A2
D 5DF

†DS w

ia1A2
D , ~28!

wherea15a11 ia2. One can check this statement by a d
rect calculation using the Bogomol’nyi equations~12! and
~13! for the background fields.

For the sake of completeness we give here explicit
pressions forDFDF

† andDF
†DF :

DF
†DF52S D j

22e2~3ufu22v2!, 2A2e~D2f!

2A2e~D1f* !, ] j
222e2ufu2 D ,

~29!

DFDF
†52S D j

22e2~ ufu21v2!, 0

0, ] j
222e2ufu2D .

~30!

We stress that these formulas are valid only if the ba
ground satisfies the Bogomol’nyi equations.

III. BOUNDARY CONDITIONS

The aim of this section is to define the boundary con
tions which support the factorization properties of the eig
frequency equations~23! and~28!. We like to keep as much
symmetry between the bosonic and fermionic fluctuation
possible.

Let us put the system in a spherical shell with the bou
ary at r 5R ~the time coordinatex0 remains, of course, un
restricted!. The relation

u65e6 iuS ur6
i

r
uuD ~31!

between complex and angular representations of an arbit
two-vectoruj will be useful in this and subsequent section

We start with gauge invariant boundary conditions foram
and s. By gauge invariance we understand the followi
property @19#. Let B [a] and B [s] be boundary operator
which define boundary conditions fora ands, respectively:
5-3
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D. V. VASSILEVICH PHYSICAL REVIEW D 68, 045005 ~2003!
B [a]amu]M50, B [s]su]M50, ~32!

where]M is the boundary of the manifold.6 This system is
gauge invariant if

B [a]]msu]M50. ~33!

This property simply means that space defined by Eq.~32! is
invariant under the gauge transformations.

There are only two sets of gauge-invariant local bound
conditions for the Maxwell field.7 Let us take one of them:8

a0u]M50, auu]M50, S ] r1
1

r Da rU
]M

50, su]M50.

~34!

Obviously, if s satisfies Dirichlet boundary conditions,]0s
and]us also satisfy Dirichlet boundary conditions since]0
and ]u act in tangential directions to the boundary. A b
more work is needed to show that the condition fora r is also
gauge invariant. Gauge transformation of the boundary c
dition ~34! for a r reads:

S ] r1
1

r D ] rs5@2Dws#1F2
1

r 2
]u

212ff* Gs, ~35!

where we added and subtracted several terms such tha
first bracket contains the operator~27! which defines eigen-
frequencies in the ghost sector. We can expands in a sum
over eigenfrequencies:s5(ksk so thatDwsk5vk

2sk and
eachsk satisfies Dirichlet boundary conditions as requir
by Eq. ~34!. Therefore

@2Dws#u]M52(
k

vk
2skU

]M

50. ~36!

This proves that the first term on the right-hand side of E
~35! vanishes on the boundary. The second term there is
zero on the boundary since it does not contain normal
rivatives acting ons. We conclude that the boundary cond
tions ~34! are indeed gauge invariant.

Eigenfrequencies ofs, a0, andw are defined by the sam
operatorDw . Therefore it is natural to impose onw the same
~Dirichlet! boundary conditions:

wu]M50. ~37!

Radial and angular components ofa can be expresse
througha1 :

6For Dirichlet boundary conditions the operatorB is just the iden-
tity operator, so thatBfu]M50 simply meansfu]M50. For Neu-
mann boundary conditionsB contains a normal derivative (] r in our
case!. More complicated boundary operators will be introduced
low.

7This point is discussed in the monographs@20,21#, see also@22#.
8Calculations for the other~dual! set of boundary conditions go in

a similar manner.
04500
y

n-

the

.
so
e-

a r5R~e2 iua1!, au5rI~e2 iua1!. ~38!

The operator DF
†DF acts on the bosonic fluctuation

(w,ia1 /A2) as well as on the fermionic componentsV @cf.
Eq. ~24!#. Hence we impose the same boundary conditio
on the lower componentV25x1 as we have already define
for ia1 /A2. Namely,9

R~e2 iux1!u]M50, S ] r1
1

r DI~e2 iux1!U
]M

50. ~39!

To fix boundary conditions on the rest of the fields w
shall use intertwining relations betweenDF

†DF and DFDF
† .

Let U(v) and V(v) be solutions of Eq.~23! with vF5v.
We can write formally:

V~v!5v22DF
†U~v!, ~40!

U~v!5v22DFV~v! ~41!

for vÞ0. We are looking for boundary conditions compa
ible with Eqs.~40! and ~41!. Such boundary conditions wil
ensure that the operatorsDF

†DF andDFDF
† have coinciding

nonzero eigenvalues.
Let us consider the first line in Eq.~41! which reads:

U1~v!5v22~D1V1~v!2A2efV2~v!!. ~42!

Let us suppose that the boundary conditions for all com
nentsU1 , U2 , V1 , V2 are mutually independent. This tech
nical requirement will simplify the calculations below, bu
will not affect our main result. Let us takeV150 first. Then
the first equation in Eq.~39! yields

R~e2 iuf* U1!u]M5R~e2 iuf* c1!u]M50. ~43!

Note that we are not allowed to take the normal derivative
Eq. ~42! after we have putV150 in order to get further
conditions onU1 since] r

2V1 is related toV2 by the equations
of motion, and, therefore, cannot be considered as an in
pendent quantity on the boundary. Instead, we take the o
component of Eq.~41!:

U2~v!5v2~]2V22A2ef* V1!. ~44!

The boundary conditions~39! immediately give

I~U2!u]M50, I~f* V1!u]M50. ~45!

Next we return to Eq.~42! and put thereV250 to see that

@] r22~] r ln f* !#R~f* V1!u]M50 ~46!

-
9Strictly speaking, eigenfrequencies of (w,ia1 /A2) and (V1 ,V2)

are the same even if we identify respective boundary conditions
to a common constant phase factor. This freedom will be discus
in Sec. IV.
5-4
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QUANTUM CORRECTIONS TO THE MASS OF THE . . . PHYSICAL REVIEW D 68, 045005 ~2003!
as a consequence of Eqs.~43! and ~45!. Again, we identify
the boundary conditions forV1 with those for the first com-
ponent of the boson doublet (w,ia1 /A2):

I~f* w!u]M50, @] r22~] r ln f* !#R~f* w!u]M50.
~47!

Similarly, we use Eq.~40! to fix the boundary conditions fo
U15c1 andU25x2 :

] rR~x2!u]M50, S ] r1
1

r DI~e2 iuf* c1!U
]M

50.

~48!

We have found a set of the boundary conditions wh
guarantees coincidence of nonzero eigenfrequencies
bosons and for fermions. We summarize the results of
section in Tables I and II.

IV. SUPERSYMMETRY BREAKING AT THE BOUNDARY

In the previous section we have constructed bound
conditions which support isospectrality of the operators a
ing in the bosonic and fermionic sectors. This suggests th
certain degree of supersymmetry still remains in the prob
even in the presence of boundaries. Due to the vortex, in
N52 supersymmetry~8! is broken to the transformation
with h150. However, the other complex componenth2 of
the parameterh remains unrestricted. In this section w
show that in the presence of boundaries supersymmetr
broken to a real subgroup.

Let us consider theh2 transformation ofa1 :

da152ih2* x1 . ~49!

From this equation we see that ifh2 is an arbitrary complex
parameter, it is not possible to impose different supersy
metric boundary conditions on real and imaginary parts
a1 . For example, ifI(re2 iua1)5au satisfies Dirichlet
boundary conditions~as in our case!, then because of Eq
~49! both real and imaginary parts ofx1 should also satisfy
Dirichlet boundary conditions. This, in turn, yields Dirichle
boundary conditions forR(e2 iua1)5a r contradicting
gauge invariance of the boundary value problem.

However, if we require

R~h2!50 ~50!

TABLE I. Summary of the boundary conditions for ghosts a
bosons.

Field s a w w

Equation ~34! ~34! ~37! ~47!

TABLE II. Summary of the boundary conditions for spinors.

Field c15U1 c25V1 x15V2 x25U2

Equation ~43!, ~48! ~45!, ~46! ~39! ~45!, ~48!
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the boundary conditions obtained in the previous section
come invariant under the supersymmetry transformations
the boson fields@i.e., boundary conditions are compatib
with first three variations in Eq.~8!#. This statement can be
checked by direct and rather elementary calculations.10 For
example, compatibility of Eq.~49! is obvious sincea1 and
ix1 satisfy the same boundary conditions.

Supertransformations~8! of the fermions are also compa
ible with our boundary conditions ifR(h2)50. Proof of
this statement~which is more involved than in the case of th
bosons! is sketched in the Appendix.

One can change the residual supersymmetry by using
freedom mentioned above in footnote III. Since multiplic
tion by a constant phase factor commutes with all opera
and preserves normalization of the eigenfunctions, one
replace the spinor fieldF5(U,V) by Fk5eikF in the
boundary conditions derived in Sec. III. However, this pha
factor can be absorbed in a redefinition of the supersymm
transformation parameter:h→hk5eikh. Then the super-
symmetry transformations~8! remain the same in terms o
Fk ,hk . Supersymmetry of the new transformed bounda
condition would therefore requireRhk250.

Let us stress that the remaining supersymmetry is eno
to achieve isospectrality of relevant operators in the boso
and fermionic sectors. Of course, there is no guarantee
such cancellations will occur at higher loops as well. To u
derstand the situation from the nonperturbative point of vi
one has to modify the Witten–Olive construction@24# ac-
cordingly.

V. QUANTUM CORRECTIONS TO THE MASS
OF THE VORTEX

In the one-loop approximation the renormalized ma
shift of the vortex consists of three terms:

DEren5DE~V1B!ren2DE~B!ren1DEf.r., ~51!

where the first term is the zero point energy in for the vor
in the spherical box, the second term is the energy associ
with the boundaries of the box, and the third term is a co
tribution from finite renormalization of charges in the clas
cal expression for the mass of the vortex.

In Sec. III we have found such boundary conditions th
all nonzero eigenfrequencies in the bosonic sector coinc
with nonzero eigenfrequencies in the fermionic sect
Therefore for a sufficiently larges @cf. Eq. ~4!#,

DEB
reg5

1

2 (
vBÞ0

vB
122s5

1

2 (
vFÞ0

vF
122s5DEF

reg. ~52!

10One has to take into account that complex conjugation of
Grassmann variables also changes order in their products. Fo
ample, (h2* x2)* 5x2* h2 . Therefore the product of two real Gras
mann variables is imaginary. Forgetting this property one would
I(h2)50 instead of Eq.~50! and a contradiction with superinvari
ance of the boundary conditions for fermions.
5-5
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D. V. VASSILEVICH PHYSICAL REVIEW D 68, 045005 ~2003!
If now we analytically continue Eq.~52! to s50 we find that
both divergent and finite parts of the vacuum energy for
vortex in the box are zero,

DE~V1B!ren50. ~53!

This equation is, of course, valid for arbitrary radiusR of the
box.

A. Quantum energy of the boundaries

Here we calculate the vacuum energy of the boundary
the box in the limitR→`. First we have to show that be
tween some characteristic radiusR1 ~which is defined essen
tially by the size of the vortex! and R the theory may be
approximated by free massive fields.

As r goes to infinity both profile functions of the vortexf
and a go exponentially fast to their asymptotic values~16!,
~17!. Therefore near the boundary we can assume thata and
f are constants and neglect their derivatives. Conseque
the operatorDw which defines the eigenfrequencies ofw, a0
and of the ghostss can be approximated by

D̃52] j
212e2v2. ~54!

To understand what happens with the rest of the fields
r→` one has to analyze the operators~29! and ~30!. The
Bogomol’nyi equation~12! yields

] rf52
i

r
Duf. ~55!

Consequently,

~D2f!5e2 iu2] rf→0 ~56!

as r→`. The same is true for (D1f* ), and both functions
are approaching zero exponentially fast. This means tha
large r the off-diagonal terms in Eq.~29! can be neglected
The operators~29! and ~30! contain the background vecto
potential~14! which does not vanish sufficiently fast at th
infinity. This potential can be, however, transformed away
the following unitary change of variables for charged qua
tum fluctuations:

w̃5eib(r )uw, c̃5eib(r )uc, ~57!

where the phaseb(r ) is chosen in such a way thatb(r )5
2n for r .R1 and b(r )→0 inside the vortex. It is easy to
see that in terms of new fieldsw̃ and c̃ in the asymptotic
region the eigenfrequencies are defined by the free ope
~54! up to exponentially small terms.

One can easily show that not only the operators, but a
the boundary conditions, are identical in the bosonic a
fermionic sectors up to exponentially small terms. Inde
the fieldsw, a0, ands satisfy Dirichlet boundary conditions
Therefore their contributions to the vacuum energy can
also in the effective theory near the boundary. The fie
ia1 , x1 , andc̃1 satisfy
04500
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S ] r1
1

r DI~e2 iu~ ia1 ,x1 ,c̃1!!U
]M

50,

R~e2 iu~ ia1 ,x1 ,c̃1!!u]M50. ~58!

To derive the effective boundary conditions forc̃1 we have
used thate2 ib(r )uf* goes exponentially fast to a consta
when r→`. Similarly we have

] rR„~ w̃,c̃2 ,x2!…u]M50,

I„~ w̃,c̃2 ,x2!…u]M50. ~59!

Taking into account a relative factor of 1/2 in the contrib
tions of spinors to the vacuum energy, we see that the t
quantum energy associated with the effective field the
near the boundary is zero. This is true for arbitrary values
the regularization parameter, and, therefore

DE~B!ren50. ~60!

B. Finite renormalization

As usual the renormalization is performed in the topolo
cally trivial sector. We putf5const and calculate the effec
tive potential. We shall not need other background fields.
use again the zeta function regularization as in Eq.~4!. A real
bosonic field with the massm contributes to the regularize
effective potential

Wm~s!5
1

2 ( v~m!122s5
1

2
zmS s2

1

2D , ~61!

where zm is the zeta function for the operatorDm52] j
2

1m2. It can be expressed through the corresponding h
kernel:

zmS s2
1

2D5GS s2
1

2D 21E d2xE
0

`

dt ts21/221K~ t,x!.

~62!

The heat kernel reads

K~ t,x!5^xue2tDmux&5~4pt !21e2m2t. ~63!

The integral overx in Eq. ~62! is divergent due to the trans
lational invariance of the background. Therefore it is conv
nient to consider the densityW: *d2xW5W. The integra-
tion overt can be easily performed. The subsequent anal
continuation tos50 yields a finite result,

Wm52
m3

12p
. ~64!

By collecting the contributions from all elementary exc
tations on this background we obtain

W 1-loop52
e3

6p
@~3ufu22v2!3/22~2ufu2!3/2#. ~65!
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Although the effective potential~65! is convergent in 2
11 dimensions, there are finite renormalization effe
which shift classical values ofe andv. To fix these shifts we
consider

W tot5W cl~e1\de,v1\dv !1\W 1-loop, ~66!

where we have reinserted the\ dependence. The first term
on the right-hand side is just the classical potential

W cl~e,v !5
e2

2
~ ufu22v2! ~67!

with shifted values ofe and v. We require that to the firs
order in\ the potentialW tot has a minimum atufu5v ~‘‘no
tadpole’’ condition!. This condition yields

dv52
e

4A2p
. ~68!

To fix de one also needs another normalization conditi
but for our purposes Eq.~68! is already enough.

The shift ~68! induces a shift in the vacuum energy:

DEf.r.5\~dv !
dEcl

dv
52

evn\

A2
. ~69!

Since other contributions~53! and ~60! vanish,

DEren52
evn\

A2
. ~70!

This completes the calculation of the mass shift of the sup
symmetric vortex.

VI. CONCLUSIONS

In this paper we have recalculated one-loop quantum
rections to the mass of the supersymmetric ANO vortex.
put the system into a box with a circular boundary and
plied the zeta function regularization. We have demonstra
that boundaries violate a part of the supersymmetries, bu
remaining invariances are enough to guarantee coincide
of the eigenfrequencies in the bosonic and fermionic sect
Therefore contributions from the bosons and the fermion
the vacuum energy cancel each other both in the full the
~vortex in a box! and in the effective theory near the boun
ary. Up to this point we agree with the previous works@7,8#
~though our conclusion is based on somewhat more relia
grounds!. There is, however, a contribution~70! to the
vacuum energy which comes from finite renormalization
the couplings in the classical mass of the vortex.11 Such a
contribution was neglected in the approach of@7,8#.12 To see

11This situation is similar to the BPS black hole mass shift d
cussed in@25#.

12It was pointed out to the present author by R. Wimmer that fin
renormalizations will lead to a nonvanishing correction.
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what happens with the BPS bound one has to calculate
quantum corrections to the central charge.

Let us now give some comments on the vortex mass c
rections in a pure bosonic theory. These comments are
tivated by the discussion@26# on renormalization of the Ca
simir energy. In the supersymmetric case it was essential
the bosonic and fermionic contributions are cancelled mo
by-mode. In purely bosonic theory no such cancellation m
appear and the vacuum energy will be, in gene
divergent.13 There are two types of divergences which a
given by volume or by boundary integrals. Normally, boun
ary divergences are the same in the full theory and in
effective theory defined near the boundary whenR→`.
Therefore@DE(V1B)2DE(B)# will contain volume diver-
gences only which can be removed by some standard re
malization procedure. However, to defineDE(V1B) or
DE(B) separately one has to introduce new surface coun
terms which are absent in the original model.
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APPENDIX: SUPERTRANSFORMATION
AND BOUNDARY CONDITIONS

In this appendix we show how one can prove compatib
ity of our boundary conditions with the supersymmet
transformations of the spinor fields with pure imaginaryh2 .
Let us consider the supertransformation ofx2 :

dx252h2„]0w1 i eo jk]
jak22ieR~f* w!…. ~A1!

We are going to prove thatdx2 satisfies the same bounda
conditions asx2 if R(h2)50. The condition~45! on U2
5x2 can be checked easily:

I~dx2!u]M;2]0wu]M50, ~A2!

where we have used the boundary condition~37!. Let us now
check the boundary condition~48!:

05] rR~dx2!u]M;] r„2eo jk]
jak12eR~f* w!…u]M .

~A3!

Consider the term on the right-hand side of Eq.~A3! which
containsa:

-

e

13In the zeta function regularization the one-loop divergences
defined by the heat kernel coefficients. For the~mixed! boundary
conditions used in this work the heat kernel expansion can be fo
in @27#.
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2] reo jk]
jaku]M5

1

r F S ] r2
1

r D ] rau1
1

r
]ua r2] r]ua r GU

]M

5
1

r F2~Da!u2S ] r1
1

r D ]ua r2
1

r 2
]u

2auGU
]M

52
1

r
~Da!uU

]M

, ~A4!

where we first reexpressed the left-hand side througha r and
au , then we used the vector Laplacian in the polar coor
nates~cf., e.g.,@23#!:

2~Da!r5S ] r
21

1

r
] r1

1

r 2
]u

22
1

r 2D a r2
2

r 3
]uau ,

2~Da!u5S ] r
22

1

r
] r1

1

r 2
]u

2D au1
2

r
]ua r . ~A5!
en

04500
i-

Finally, to obtain the last line of Eq.~A4! we made use of the
boundary conditions~34!. The equations of motion forau
yield:14

2
1

r
~Da!u52

1

r
v2au22e~w* ] rf1w] rf* !. ~A6!

Now we collect all contributions to see

] rR~dx2!u]M;F2
1

r
v2au1eR~f* ] rw2w] rf* !GU

]M

50

~A7!

due to Eqs.~34! and ~47!.
Calculations for other components of the spinor fields c

be done in a similar manner.

14More precisely, the equation to follow is obtained by varyin
Eq. ~21! with respect toau and then using the Bogomol’nyi equa
tion ~12! for the backgroundf.
D.
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