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Quantum corrections to the mass of the supersymmetric vortex
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We calculate quantum corrections to the mass of the vortex ilfNth supersymmetric Abelian Higgs
model in 2+1 dimensions. We put the system in a box and apply zeta function regularization. The boundary
conditions inevitably violate a part of the supersymmetries. The remaining supersymmetry is, however, enough
to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A nonzero correction to the mass
of the vortex comes from finite renormalization of couplings.
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[. INTRODUCTION of all, it is assumed that there is a regularization which sup-
ports the mode-by-mode cancellations needed to apply Eq.
The Abrikosov-Nielsen-OlesetANO) vortices[1] play  (2). Such regularizations are indeed available. One of them is
an important role in modern particle physi&. In particu- the zeta function regularizatiofl2]. However, it requires
lar, supersymmetric ANO vortices are essential for undertransition to the discrete spectrum at least at intermediate
standing monopole condensatigsee, e.g.[3] and refer-  steps. In other words, one has to put the system in a box and
ences therein In 2+1 dimensions the relation between impose some boundary conditions. There isaariori guar-
extended\N =2 supersymmetry and the Bogomol'nyi-Prasad-antee that these boundary conditions can be chosen in such a
Sommerfield BPS bound has been demonstrated4hfol-  way to preserve the index theorem arguments. Besides, with-
lowing a more general discussion [¢]. out regularizing the whole theory with arbitrary, not only
Quantum corrections to the mass of the supersymmetriBPS background, fields one cannot control finite renormal-
ANO vortex in 2+1 dimensions were calculated [ifi]; the  ization of charges which are present in the model.
Chern-Simons terms were included[B)]. Both paper$7,8] Quantum corrections to (21)-dimensional solitons
give a zero result for the mass shift. The authors used argshould have been reconsidered already some time ago. Re-
ments similar to that of Imbimbo and Mukh®]?> based on cent years have seen a considerable increase of interest in
the nonlocal index theorem ¢10] and its generalization by quantum effects around supersymmetric solitons -nl1di-
Weinberg[11]. Roughly speaking, the line of reasoning in mensions, initiated by the papef&3], which resulted in
[7,8] was as follows. The index theorem was used to showsome very interesting developments in this fiedde[14] for
that a literature survey
In this paper we recalculate quantum corrections to the
pe(®) —pp(w)<d(w), (1) mass of the supersymmetric vortex using the methi
o ) applied previously to the supersymmetric kink. We put the
wherepg ¢ are the spectral densities in the bosonic and ferygrtex in a box with a circular boundary and impose the
mionic sectors, respectively. Then the mass shift was 'dem'boundary condition which preserves as many symmetries as
fied as possible. We find that one-half of the supersymmetries of the
vortex is inevitably broken at the bound&rfhis is, how-
AEocf do o[ pg(w)—pr(w)]. 2) ever, enough to ensure coincidence of the eigenfrequencies
of the bosonic and fermionic fluctuations. We then conclude
that the total energy of the vortex and the boundaries is zero.

Due to Eq.(1) the mass shift2) should be zero. In this way, ) ) ;
i -~ o At the next step, we define the energy associated with the
the authorq7,8] avoided explicit use of any regularization. boundaries and find that it is also zero. Therefore the whole

There is, however, a loophole in this kind of argument. I:IrStmass shift of the vortex is due to the finite renormalization of

couplings? It is not zero and is given by E¢70) below.

. ) . . Formally the zero point energy can be represented as
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ISince no analytic form for the profile functions of the ANO vor- AE=AEg—AEg, AEB,FZE E wgE, 3)
tex is available, calculations of the mass shift in a nonsupersym- “BF

metric case is a rather complicated problem. Recently the fermionic

contribution to the vacuum energy was calculated in a toy model

closely resembling the Abelian Higgs modél. 3BPS states preserve half of the supersymmetries of the theory.
2Note that the authorf®] used these arguments to show saturationSince boundaries break another half, we have a quarter of the origi-

of the Bogomol'nyi boundi.e., to estimate the difference between nal N=2 supersymmetry.

guantum corrections to the mass and to the central chaageer 4 am grateful to R. Wimmer for pointing out the importance of

than to calculate the mass shift itself. the finite renormalization effects.
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where wg ¢ are eigenfrequencies of bosonic and fermionicwith complex constant spinor parametgr e“”* is the Levi-
fluctuations. The sums in Eq3) are divergent and must be Civita tensor,e®*?>=1. The gamma matrices
regularized. We use the zeta function regularizafib?y:

1 - Y= PRI 2 Y=L
ABgE=5 2wt (4) 0 -1 10 i 0
wB F

. o satisfy the equation
wheres is the regularization parameter. Note that zero fre-

qguenciegwhich do not contribute to Ed3) anyhow| should yry'=—gt'—ietPy,. (10
be explicitly excluded.

This paper is organized as follows. In the next section we/Ve shall mark the uppeflower) components of all spinors
describe properties of classical solutions and define the opvith the subscript “” (* —"), so that
erators acting on quantum fluctuation in the Abelian Higgs
model without boundaries. In Sec. Ill we define gauge in- 7+
variant boundary conditions which ensure that all nonzero = 7,)’ (1D
eigenfrequencies in fermionic and bosonic sectors coincide.
In Sec. IV we analyze the supersymmetry of these boundarfor example.
conditions and find that one-half of the superinvariancies of Consider now static bosonic field configurations such that
the vortex are broken. Section V is devoted to the calculatiom\,=w=0. Such configurations are invariant with respect to
of the mass shift. Some concluding remarks are given in Se@ne-half of the supersymmetry transformatiof@ corre-
VI. Technical details of the calculations related to the bound-sponding toz, =0 if and only if
ary supersymmetries are presented in the Appendix.

(D1+iD3)¢=0, (12
Il. THE MODEL
. o . Fite(|¢|>—v?)=0. (13
This section is devoted to some known properties of the
supersymmetric vortices on manifolds without boundariesThese are just the Bogomol'nji 7] self-duality equations.
Here we mostly follow[8,16]. The classical vortices

A. Classical theory

k
. X
_ ing o _
The Lagrangian of &l=2 supersymmetric Abelian Higgs P=T)e™,  eA=ep rz[a(r) n] (14

model in 2+ 1 dimensions reads:
satisfy Eqs(12) and(13) if

£=£B+£F! (5)
1 1 e? Eia(r)=ez(f2(r)—vz),
Lo=— ZFuF*"=|D,dl2= 5 (3, w2~ = (| ¢[2-0?)? rdr
—e’w?|¢|?, (6) r%lnf(r)za(r). (15)

=idv* ivy*d y—i — *
Le=1y"Dudtixy"d,ux 2e(uxd=xue”) In these equations e N is vorticity (which we assume to be
+ew$<//, 7) positive, j,ke{1,2, €;,=1, andr, 6 are usual polar coor-
dinates on the plane. The functioh@) anda(r) satisfy the
wherew (¢) is a real(compley scalar,i and y are two-  conditions
component complex spinors.is a constant. The signature of

the metricg#” is (—+ +). As usualF,,=d,A,—d,A, is f(0)=0, f(*)=v, (16)
the field strengthD,, is gauge covariant derivative) , ¢
=(d,—ieA,) ¢. The action(5) is invariant under the super- a(0)=n, a(«)=0. 17

symmetry transformations . ) ] )
The classical energy of this configuration reddse, e.g.,

SAL=T (Y, X=X Vu7), [8)):
_ _ cl__ 2
8=N\2mp,  w=i(xn=nx), EY=2mno”. (8)

B. Quantum fluctuations

ox= 7”77( d,W+ 5 GM,,)\F’”‘

+in(el¢|?—ev?), .
(el 4| v9) Let us now turn to quantum fluctuations about the back-

ground(14). We shift — ¢+ ¢ andA,—A,+a,, where
oY= — \/E(i Y“nD, ¢— newdp) (8) ¢ ande,, are the fluctuations. Since all other fields are zero
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on the background, we do not need to introduce more nota- =D, *iD,, dii=d1%Fid,. (26)
tions. It is convenient to use the background gauge fixing
tern? Let us now return to the bosonic fluctuation. As one can

L see from Eq{(21), the equations for, and forw decouple
. from the rest of the bosonic modes. Moreover, the squared
- _ m__ * 4 *\12 f
Lot 2 Lopat—ie(e™ = od™)]%, (19 eigenfrequencies of these fields are given by the eigenvalues
of the operator
which generates the following action for the complex ghosts
o. AW:_O—'J(91+282|¢|2 (27)

Lghos= U*(aﬂaﬂ—2e2¢¢*)0_ (200  The same operator also defines the ghost eigenfrequencies.
Therefore contributions of all these fields to the vacuum en-
Next we expand the actio6) about the classical back- ergy cancel(provided they all satisfy the same boundary
ground. The terms linear in fluctuations vanish due to thesonditions.

equations of motion. In the next, quadratic, order we have in A very important observation regarding the rest of the

the bosonic sector: bosonic perturbations was made by Lee and [Mih They
1 demonstrated that the eigenfrequenciesgoand «; follow
L3+ Ly=— Ea“(m —262¢* ¢)at— (D ) (D e)* from the equation

—e%pe* (3pp* —v?)—2iea (¢*D, ¢

o ¢ ==—a2( ¢ )=DTD( ¢ ) (28)
Blia, V2 Nia 2/ " lia 2]

1
—¢D,¢*)— E(ﬁﬂW)2—32W2| #|?, (2)  wherea, =a;+ia,. One can check this statement by a di-
rect calculation using the Bogomol'nyi equatiofi?) and

where the covariant derivativ®, depends on the back- (13) for the background fields.

ground gauge potentid,,; =4, a“ For the sake of completeness we give here explicit ex-
The quadratic part of the fermionic action coincides with Pressions foDeD{ and DDk :

Eq. (7) where all bosonic fields take their background values > _

(so thatw=0, for example Therefore, the equation which D7 —e*(3|¢|*~v?), —\2e(D_¢)

) . G L ) DID.=—
defines eigenfrequencies- in the fermionic sector reads: FEFT _ \/Ee([hd)*), ﬁj2—282|¢|2 2
MECHEA i
w = = .
" Beg, i |\x R LT T
22 e 0, 7 -2e? 2]
By taking the square of this equation one obtdik (30)
U D.D} 0 U We stress that these formulas are valid only if the back-
2 _| FTF ground satisfies the Bogomol'nyi equations.
Wg + ) (23)
Y 0, DiDe/\V
IIl. BOUNDARY CONDITIONS
where
The aim of this section is to define the boundary condi-
1/ 7/ tions which support the factorization properties of the eigen-
U= ) V= N (24 frequency equation€23) and (28). We like to keep as much
N " symmetry between the bosonic and fermionic fluctuation as
and possible.
Let us put the system in a spherical shell with the bound-
D,, — \/§e¢ ary atr=R (the time coordinate® remains, of course, un-
) restricted. The relation
- \/Eed)* ' J- d
» i
DL . (25)
\/§e¢* ’ a-f—

between complex and angular representations of an arbitrary
In this equation we have used holomorphic and antiholomortwo-vectoru; will be useful in this and subsequent sections.
phic components of two-dimensional differential operators: ~ We start with gauge invariant boundary conditions dor
and o. By gauge invariance we understand the following
property [19]. Let B[® and B[’ be boundary operators
*This gauge condition belongs to the so-calRgdfamily [18]. which define boundary conditions farand o, respectively:
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B, |,m=0, Bl9g|,y=0, (32 a =R "), a,=rie a,). (39

whereJM is the boundary of the manifoftThis system is  The operator DDy acts on the bosonic fluctuations

gauge invariant if (¢,ia. /\/2) as well as on the fermionic componeMgcf.
Blelg o],,=0 33 Eqg. (24)]. Hence we impose the same boundary conditions
wTlom =5 (33 on the lower component,= y, as we have already defined

This property simply means that space defined by(88).is O 1@+ /\2. Namely]

invariant under the gauge transformations.
There are only two sets of gauge-invariant local boundary R(e )| u=0
conditions for the Maxwell field.Let us take one of therh: M

=0. (39
oM

1 i
ar‘*‘? J(e"x+)

To fix boundary conditions on the rest of the fields we
shall use intertwining relations betwe&{Dr and DD} .
(34 Let U(w) andV(w) be solutions of Eq(23) with wg= .
We can write formally:

1
aglm=0, agm=0, (9r+r a; =0, o|=0.

M

Obviously, if o satisfies Dirichlet boundary conditiongo

and d,o also satisfy Dirichlet boundary conditions singg V(w)= w*ZDEU(w), (40)
and g, act in tangential directions to the boundary. A bit

more work is needed to show that the conditiond@ris also U(w)=w 2DV() (41)
gauge invariant. Gauge transformation of the boundary con-

dition (34) for «; reads: for w#0. We are looking for boundary conditions compat-

ible with Egs.(40) and(41). Such boundary conditions will
ensure that the operatoBstDr and DD have coinciding
nonzero eigenvalues.

Let us consider the first line in E¢41) which reads:
where we added and subtracted several terms such that the
first bracket contains the operat@7) which defines eigen- Uy(w)=w 3(D,Vi(w)— \/§e¢v2(w)). (42
frequencies in the ghost sector. We can expanith a sum
over eigenfrequenciesr=3,0y So thatA, o= wig‘k and Let us suppose that the boundary conditions for all compo-

eachoy satisfies Dirichlet boundary conditions as requirednentsU;, U,, Vi, V, are mutually independent. This tech-
by Eq. (34). Therefore nical requirement will simplify the calculations below, but

will not affect our main result. Let us také; =0 first. Then
the first equation in Eq39) yields

o, (35

1 1,
gt o|do=[—Ayo]+ — gt 240"
r

[~ Awollm==2 iy =0. (36) | |
M R(e p*Uy)|m=R(e "¢* ¥ )[m=0. (43

Ighé)s vgr?i\;f}s(’esthoar: :22 S:)SJntg;T ?hghgetg:gﬁgm tsr:i?eoifs Ea?Note that we are not allowed to take the normal derivative of
Y- S@q. (42) after we have put,;=0 in order to get further

zero on the boundary since it does not contain normal de- " * " . o, .
rivatives acting onr. We conclude that the boundary condi- COﬂdItIQnS orl, sinced; Vy is related tov; b)_/ the equations
tions (34) are indeed gauge invariant of motion, and, therefore, cannot be considered as an inde-

Eigenfrequencies of, ap, andw are defined by the same pendent quantity on the boundary. Instead, we take the other

operatorA,,. Therefore it is natural to impose anthe same component of Eq(41):
(Dirichlet) boundary conditions:

Ua(w)=w’(d-Vo—2e¢*Vy). (44)
w|;=0. (37 . . . .
The boundary conditiong39) immediately give
Radial and angular components af can be expressed
througha., : J(U)|m=0, T(¢*Vy)|m=0. (45

Next we return to Eq(42) and put there/,=0 to see that

SFor Dirichlet boundary conditions the operafis just the iden-
tity operator, so thaB3e|,,,=0 simply meansp|,;=0. For Neu- [9r—2(d; In $*)IR($*V1)|[;m=0 (46)
mann boundary conditior$ contains a normal derivative)( in our
case. More complicated boundary operators will be introduced be-

low. 9Strictly speaking, eigenfrequencies af,{a, /y2) and V/1,V,)
This point is discussed in the monograf8,21], see alsd22]. are the same even if we identify respective boundary conditions up
8Calculations for the otheidua) set of boundary conditions go in to a common constant phase factor. This freedom will be discussed
a similar manner. in Sec. IV.
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TABLE I. Summary of the boundary conditions for ghosts and the boundary conditions obtained in the previous section be-

bosons. come invariant under the supersymmetry transformations of
: the boson fielddi.e., boundary conditions are compatible

Field o @ w ® with first three variations in Eq8)]. This statement can be

Equation (34) (34) 37) 47) checked by direct and rather elementary calculatt8rizor

example, compatibility of Eq(49) is obvious sincex, and
i x, satisfy the same boundary conditions.

as a consequence of Eqd3) and (45). Again, we identify Supertransformation@®) of the fermions are also compat-
the boundary conditions fov; with those for the first com- ible with our boundary conditions i#?(#_)=0. Proof of
ponent of the boson doublep(ia. /12): this statementwhich is more involved than in the case of the
bosons is sketched in the Appendix.
J(d* @) sm=0, [3,—2(d, In p*)R(d* ¢)|;m=0. One can change the residual supersymmetry by using the
(47) freedom mentioned above in footnote Ill. Since multiplica-

o ) - tion by a constant phase factor commutes with all operators
Similarly, we use Eq(40) to fix the boundary conditions for  5nq preserves normalization of the eigenfunctions, one can

Up=¢ andU=x_: replace the spinor fieldF=(U,V) by F,=€'“F in the
boundary conditions derived in Sec. Ill. However, this phase
L —i0 % factor can be absorbed in a redefinition of the supersymmetr
&rm()(f)bM:Ov o+ —|3(e" P y) =0. . h persy y
r oM transformation parametery— 7,=€'“%. Then the super-

(48) symmetry transformation&) remain the same in terms of
We have found a set of the boundary conditions _Whichfo“r;cﬁﬁ;,nsyvziﬁytmggeo:e;hﬁ,g,v:_iag .sformed boundary
guarantees commde_nce of nonzero .e|genfrequenC|es f_or Let us stress that the remaining supersymmetry is enough
bosqns _and for fermions. We summarize the results of th"?‘o achieve isospectrality of relevant operators in the bosonic
section in Tables I and II. and fermionic sectors. Of course, there is no guarantee that
such cancellations will occur at higher loops as well. To un-

IV. SUPERSYMMETRY BREAKING AT THE BOUNDARY derstand the situation from the nonperturbative point of view
In the previous section we have constructed boundar{"® has to modify the Witten—Olive constructig2d] ac-

conditions which support isospectrality of the operators actcordingly.
ing in the bosonic and fermionic sectors. This suggests that a

certain degree of supersymmetry still remains in the problem V. QUANTUM CORRECTIONS TO THE MASS

even in the presence of boundaries. Due to the vortex, initial OF THE VORTEX
N=2 supersymmetry8) is broken to the transformations o )
with 7, =0. However, the other complex component of In the one-loop approximation the renormalized mass

the parameter; remains unrestricted. In this section we Shift of the vortex consists of three terms:

show that in the presence of boundaries supersymmetry is

broken to a real subgroup. AE™"=AE(V+B)™®"-AE(B)™®"+ AE™, (51)
Let us consider they_ transformation ofx , :

where the first term is the zero point energy in for the vortex
in the spherical box, the second term is the energy associated

From thi tion w thatsif._is an arbitrary complex with the boundaries of the box, and the third term is a con-
t: ! tsreci]tu;':l cr)] t e Seiebl a;ryims a adiff frﬂr/ltco pf m'Eribution from finite renormalization of charges in the classi-
parameter, 1t 1S not possibie 10 IMPose diterent SUpersymz. ,, expression for the mass of the vortex.

metn(;‘:ct))rouer:((;arlrr]ylgor;?gté(r)gi(?n r)e_al anga;?;ﬁglsn%ﬁigagf of In Sec. Ill we have found such boundary conditions that
g‘* ' dar ndiFt)i ndas in f‘* _)eatah i ¢ £q all nonzero eigenfrequencies in the bosonic sector coincide
oundary co onsas in our casg then because of E4. -, honzero eigenfrequencies in the fermionic sector.

(49) both real and imaginary parts gf, should also satisfy s
Dirichlet boundary conditions. This, in turn, yields Dirichlet Therefore for a sufficiently largs [cf. Eq. (4)],

boundary conditions for%(e '?a.)=«, contradicting

Sa.=2in* x. . (49)

gauge invariance of the boundary value problem. AEreg:} 1,2525 1-25_ 4 preg .
However, if we require B o wéo wg 2 wzo W . (52
R(n-)=0 (50)

100ne has to take into account that complex conjugation of the
Grassmann variables also changes order in their products. For ex-
ample, (7* x_)* = x* n_ . Therefore the product of two real Grass-
mann variables is imaginary. Forgetting this property one would get
Equation (43), (49 (45), (46) (39 (45), (49 J(n_)=0 instead of Eq(50) and a contradiction with superinvari-
ance of the boundary conditions for fermions.

TABLE Il. Summary of the boundary conditions for spinors.

Field Y.=U; Y=V, X+=V; x-=U;
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If now we analytically continue Eq52) to s=0 we find that
both divergent and finite parts of the vacuum energy for the
vortex in the box are zero,

j(e_io(ia+v)(+ 7T//+)) =0,

1
g+~
r M

AE(V+B)®=0. (53) Re iay ,xi ¥4))|am=0. (58)

This equation is, of course, valid for arbitrary radRsefthe  To derive the effective boundary conditions . we have
box. used thate '#(N?%* goes exponentially fast to a constant

whenr—oo, Similarly we have
A. Quantum energy of the boundaries

R, ¥ . x-Nlm=0,
Here we calculate the vacuum energy of the boundary of o= XDlow
the box in the limitR—o. First we have to show that be- ~
il — 1 — :0- 59
tween some characteristic radidg (which is defined essen- Wt x Nl ®9

tially by the size of the vortgxand R the theory may be Taking into account a relative factor of 1/2 in the contribu-
approximated by free massive fields. tions of spinors to the vacuum energy, we see that the total
As 1 goes to infinity both profile functions of the vortéx  quantum energy associated with the effective field theory

anda go exponentially fast to their asymptotic valué$),  near the boundary is zero. This is true for arbitrary values of
(17). Therefore near the boundary we can assumeadl@td  the regularization parameter, and, therefore

f are constants and neglect their derivatives. Consequently,

the operaton\,, which defines the eigenfrequenciesvgfa, AE(B)"™"=0. (60)

and of the ghosts can be approximated by

- 8j2+ 2622, (54) B. Finite 'ren(.)rma'llization . .

As usual the renormalization is performed in the topologi-

To understand what happens with the rest of the fields agally trivial sector. We putp=const and calculate the effec-

r—o one has to analyze the operat¢®9) and (30). The tive potential. We shall not need other background fields. We

Bogomol'nyi equation(12) yields use again the zeta function regularization as in(EQ.A real

bosonic field with the mass contributes to the regularized

effective potential

i
O == Dyob. (55
1 1 1
Win(s)=5 2 w(m>1-25=§zm(s— 5l (6
Consequently,

; ; 2

D d)=e 924 -0 56 where ¢, is the zeta function for the operatdy,= —J;
(D-¢) ¢ (56) +m?. It can be expressed through the corresponding heat

asr—. The same is true forl{, #*), and both functions Kernet:

are approaching zero exponentially fast. This means that for 1 7\ -1 "
larger the off-diagonal terms in Eq29) can be neglected. (S )=F<s— _> f d2xj dt t5~ Y27 1K (t,x).
The operatorg29) and (30) contain the background vector 2 2 0

potential (14) which does not vanish sufficiently fast at the (62
infinity. This potential can be, however, transformed away by.
the following unitary change of variables for charged quan-The heat kernel reads

tum fluctuations:

K(t,X) = (x|e"m|x) = (4mt) " Le~™, 63
~ e~ s
p=ef0p, y=ePN0y, (57 The integral ovex in Eq. (62) is divergent due to the trans-
) ) lational invariance of the background. Therefore it is conve-
where the phas@(r) is chosen in such a way th@(r)= nient to consider the density: [d>x)V=W. The integra-

—n for r>R,; and B(r)—0 inside the vortex. It is easy 0 {jon gvert can be easily performed. The subsequent analytic

see that in terms of new fields and ¢ in the asymptotic  continuation tos=0 yields a finite result,

region the eigenfrequencies are defined by the free operator

(54) up to exponentially small terms. m
One can easily show that not only the operators, but also Wn=— 127" (64)

the boundary conditions, are identical in the bosonic and

fermionic sectors up to exponentially small terms. Indeed, By collecting the contributions from all elementary exci-

the fieldsw, «y, ando satisfy Dirichlet boundary conditions. tations on this background we obtain

Therefore their contributions to the vacuum energy cancel

also in the effective theory near the boundary. The fields

e3
ia,, x,. andy, satisfy W= — (3]~ 0?37 (2/$[)*?].  (65)
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Although the effective potentiale5) is convergent in 2  what happens with the BPS bound one has to calculate also
+1 dimensions, there are finite renormalization effectsquantum corrections to the central charge.

which shift classical values @& andv. To fix these shifts we Let us now give some comments on the vortex mass cor-

consider rections in a pure bosonic theory. These comments are mo-
tivated by the discussiof26] on renormalization of the Ca-

We=We(e+1ide,v+hsv)+hWH®, (66)  simir energy. In the supersymmetric case it was essential that

. . the bosonic and fermionic contributions are cancelled mode-
where we have reinserted thiedependence. The first term by-mode. In purely bosonic theory no such cancellation may

on the right-hand side is just the classical potential appear and the vacuum energy will be, in general,
o2 divergent'® There are two types of divergences which are
Wee,v)= ?(|¢|2_02) (67) given by volume or by boundary integrals. Normally, bound-

ary divergences are the same in the full theory and in the
effective theory defined near the boundary when-oo.
Thereforef AE(V+B) —AE(B) ] will contain volume diver-
gences only which can be removed by some standard renor-
malization procedure. However, to defineE(V+B) or
AE(B) separately one has to introduce new surface counter-

with shifted values o andv. We require that to the first
order in# the potentialV* has a minimum afg|=v (“no
tadpole” condition). This condition yields

Sv=— © . (6g)  terms which are absent in the original model.
4\/577
To fix de one also needs another normalization condition, ACKNOWLEDGMENTS
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AEY— (s dE® evnh 60
=h(00) ==~ (69
APPENDIX: SUPERTRANSFORMATION
Since other contribution&3) and (60) vanish, AND BOUNDARY CONDITIONS

In this appendix we show how one can prove compatibil-
. (70 ity of our boundary conditions with the supersymmetry
V2 transformations of the spinor fields with pure imagingry.

. . . Let us consider the supertransformationyaf:
This completes the calculation of the mass shift of the super-

symmetric vortex.

Sx—=—n_(IW+ieod o —2ieR($* ). (Al
VI. CONCLUSIONS

In this paper we have recalculated one-loop quantum cor/Vé &ré going to prove thafy  satisfies the same boundary

rections to the mass of the supersymmetric ANO vortex. weonditions asy_ if R(%-)=0. The condition(45) on U,
put the system into a box with a circular boundary and ap=X- ¢an be checked easily:

plied the zeta function regularization. We have demonstrated

that boundaries violate a part of the supersymmetries, but the I(Sx )| o~ — doW| ;m=0, (A2)
remaining invariances are enough to guarantee coincidence

of the eigenfrequencies in the bosonic and fermionic sectors.

Therefore contributions from the bosons and the fermions tavhere we have used the boundary conditi8n. Let us now
the vacuum energy cancel each other both in the full theorgheck the boundary conditio@8):

(vortex in a box and in the effective theory near the bound-
ary. Up to this point we agree with the previous wofKs3]
(though our conclusion is based on somewhat more reliable
grounds. There is, however, a contributiofir0) to the
vacuum energy which comes from finite renormalization of
the couplings in the classical mass of the vorfteguch a  Consider the term on the right-hand side of E43) which
contribution was neglected in the approaciB].12 To see  containsa:

0=, R(5x )| om~ 0 (— €08 "+ 28R(* ¢)) o -

UThis situation is similar to the BPS black hole mass shift dis- °n the zeta function regularization the one-loop divergences are

cussed in25]. defined by the heat kernel coefficients. For theixed) boundary
21t was pointed out to the present author by R. Wimmer that finiteconditions used in this work the heat kernel expansion can be found
renormalizations will lead to a nonvanishing correction. in [27].
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ik 1 1 1
—dr&jkd a |¢9M:F (?r_r ara(ﬁ'ra(}ar—araﬁar
JM

1
t?r'f‘F

1
—(Aa)y—

2
=— dpa, — —d%a
r Hrrzae

M

, (A4)
M

1
:_F(Aa)a

where we first reexpressed the left-hand side thramghand

ay, then we used the vector Laplacian in the polar coordi-

nates(cf., e.g.,[23]):

1 1 1 2
_(Aa)r:(ar2+ Fﬁr+r_20§_ I’_z) ar— r_350a'0a

2
CY(.,)+ F&gar. (AS)

11
—(Aa)9=(é’r2—Fé’r+ r—zﬁf,
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Finally, to obtain the last line of EqA4) we made use of the
boundary conditiong34). The equations of motion fox,
yield:'*

1 1
- ;(Aa)f - ;wzaa— 2e(¢* drp+ @d ™). (AB)
Now we collect all contributions to see
=0

oM
(A7)

1
FHR(Ox-)|om~| = TPyt eR(P* o= @i ™)

due to Eqs(34) and (47).
Calculations for other components of the spinor fields can
be done in a similar manner.

More precisely, the equation to follow is obtained by varying
Eq. (21) with respect tow, and then using the Bogomol'nyi equa-
tion (12) for the backgroundb.
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