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Conservation laws in ‘‘doubly special relativity’’
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Motivated by various theoretical arguments that the Planck energy (EPlanck;1019 GeV) should herald de-
partures from Lorentz invariance, and the possibility of testing these expectations in the not too distant future,
two so-called ‘‘doubly special relativity’’ theories have been suggested—the first by Amelino-Camelia~DSR1!
and the second by Smolin and Magueijo~DSR2!. These theories contain two fundamental scales—the speed of
light and an energy usually taken to beEPlanck. The symmetry group is still the Lorentz group, but in both cases
acting nonlinearly on the energy-momentum sector. Since energy and momentum are no longer additive
quantities, finding their values for composite systems~and hence finding appropriate conservation laws! is a
nontrivial matter. Ultimately it is these possible deviations from simple linearly realized relativistic kinematics
that provide the most promising observational signal for empirically testing these models. Various investiga-
tions have narrowed the conservation laws down to two possibilities per DSR theory. We derive unique exact
results for the energy momentum of composite systems in both DSR1 and DSR2, and indicate the general
strategy for arbitrary nonlinear realizations of the Lorentz group.
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BACKGROUND

Observations of very high energy cosmic rays, above
expected ‘‘Greisen-Zatsepin-Kuz’min~GZK! cutoff’’ due to
the interaction with microwave background radiation@1,2#,
have precipitated a surge of interest in possible violations
Lorentz invariance. Encouragingly it appears that this p
nomenon may furnish experimental tests of some sugge
theories of quantum gravity@3–8#. For a review, see@9#. One
type of Lorentz violating theory is known as ‘‘doubly speci
relativity’’ ~DSR! after Amelino-Camelia@10#, who has sug-
gested a specific example of a DSR theory~DSR1! @11#.
Smolin and Magueijo have suggested another theory~DSR2!
@12# in a paper in which they argued that any DSR transf
mation groupmustbe a nonlinear realization of the Loren
group—because that is the only suitable 6 parameter ex
sion of SO~3!—the group of spatial rotations. Unlike ord
nary special relativity, in DSR the transformation propert
of energy and momentum need not be the same as thos
the space-time coordinates. Many investigations have b
limited to the energy-momentum sector@10,11#. One ap-
proach that deals with space-time as well~it is presently
unclear if there are others! is in terms of thek-Poincare´
algebra—a deformation of the Poincare´ algebra@13,14#. The
algebras obeyed by the DSR1 and DSR2 Lorentz genera
are known to be just such nonlinear deformations@12,15,16#
of the k-Lorentz subalgebra—DSR1 corresponding to
so-called ‘‘bi-crossproduct basis.’’ Because there is still so
controversy and uncertainty regarding the issue of whe
or not all DSR theories arenecessarilyk-Poincare´ theories,
we will stay in momentum space and deal only with gene
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features of arbitrary nonlinear representations of the Lore
group @17#.

To find conservation laws, two distinct approaches ha
been used. One method@15,16# is to investigate the nature o
the nonlinear realization of the symmetry group instantia
by the DSR transformations and use its properties as c
straints on the conservation laws for composite systems.
alternative@10,11# is to work directly with the transformation
equations and to apply physically intuitive restrictions to d
duce the laws. Through a combination of these two te
niques, the number of possible conservation laws for DS
and DSR2 has been reduced to two. We continue along
lines of the second method, and find that it is possible
uniquely identify the conservation laws forany DSR theory
by applying seemingly reasonable physical principles.
give exact results for the total energy and momentum o
composite system in both DSR1 and DSR2. Because th
formulas implicitly control particle production threshold
they are critically important in assessing phenomenolog
attempts to place observational constraints on the DSR th
ries @9,18–21#.

GENERAL RULES

Since a DSR symmetry group is simply a nonlinear re
ization of the Lorentz group@12,15,16#, we can find func-
tions of the physical energy momentumP45(E,p) which
transform like a Lorentz 4-vector. These we will call th
pseudo-energy-momentumP45(e,p), but it should not be
thought that these necessarily have immediate physical
nificance. We have

P45F~P4!, P45F21~P4!. ~1!

The functionF and its inverseF21 are in general compli-
cated nonlinear functions fromR4 to R4, but both of course
©2003 The American Physical Society01-1
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reduce to the identity in the limit where energies and m
menta are small compared to the DSR scale. The Lore
transformations act on the auxiliary variables in the norm
linear manner: (e8;p8)5L (e;p), whereL is the usual Lor-
entz transformation, boosting from the unprimed coordina
to the primed coordinates. The boost operator for the ph
cal energy and momentum (E,p) we call L, and is given by
the composition:

P485L~P4!5@F+L+F21#~P4!. ~2!

Now L and F uniquely determine the nonlinear Loren
transformationL; however,L andL @more precisely,L(L)]
do not uniquely determine the functionF—there is an over-
all multiplicative ambiguity which must be dealt with usin
the dispersion relation:

@e~E,p!#22@p~E,p!#25m0
2 . ~3!

Herem0 is simply the Lorentz invariant constructed frome
and p ~the Casimir invariant!; not to be confused with the
rest energy. In terms of the rest energym0, obtained by going
to a Lorentz frame in which the particle is at rest,m0
5e(m0,0). The combination ofL(L) and m0(m0) is now
sufficient to pin downF completely.

In the linear representation, kinematic quantities such
total energy can be defined in the usual fashion

P 4
tot5(

i
P 4

i . ~4!

Calculating the total physical 4-momentum is then straig
forward:

P4
tot5FS (

i
F21~P4

i ! D . ~5!

This is the quantity that will be conserved in collisions. C
culating it is simply a matter of findingF and its inverse.

VARIANT CONSERVATION LAWS

The choice in Eq.~4!, and so implicitly in Eq.~5!, can be
uniquely characterized by saying that the general comp
tion of 4-momenta is based on iterating an associative s
metric binary function.

If the general composition law were not based on iterat
a binary function, then one would need to postulate an i
nite tower of distinct composition laws for 2,3,4, . . . ,n, . . .
particles. Such a situation would create serious difficulties
the interpretation of quantum field theories: For instan
energy-momentum conservation at each vertex of a Feyn
diagram would now depend in an essentially arbitrary w
on a particular time-slice through the diagram and
energy-momenta of all other particles in the diagram as t
cross that time-slice. Perhaps worse, every time a dre
particle were to either emit or absorb a virtual particle o
would have to completely recalculate the energy-momen
for the entire virtual cloud.

If the binary function were not symmetric, one cou
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~simply by changing the order in which one chooses to
the particles! construct symmetric and anti-symmetric com
binations, leading to two separate conservation laws
would over-constrain the collision~unless, of course, the
anti-symmetric law happens to be trivial—but that implies
symmetric binary function!.

Finally, if the binary function were not associative, the
the energy-momentum of a composite system would dep
not only on the constituents of the system, but also on
manner in which the system is aggregated out
subsystems—an option that is at best extremely unnatur

The initial investigations into energy and momentum
composite systems in DSR@11# proceeded only on the re
quirement that the law of energy-momentum conservat
had to be covariant with respect to the DSR transformati
The insufficiency of this requirement is manifest when w
consider that the following definition:

P 4
tot5(

i
n iP 4

i , ~6!

produces a covariant conservation law forarbitrary n i .
Symmetry, which is required to prevent over-determining
energy-momentum in a collision, implies that:

P 4
tot5n(

i
P 4

i . ~7!

If this is to arise from iterating a two-particle compositio
law we needP 4

$12%5n(P 4
11P 4

2). But now for a three-
particle system, associativity implies

n@n~P 4
11P 4

2!1P 4
3#5n@P 4

11n~P 4
21P 4

3!#. ~8!

Thereforen5n2, implying eithern51 or n50. This argu-
ment gives the same result as that used by Lukierski
Nowicki @16# to reduce the number of possible laws to tw
In fact, their ‘‘symmetric’’ and ‘‘non-symmetric’’ laws are
just then51 andn50 cases, respectively. Then51 solu-
tion is clearly unproblematic. However, what is not evide
from the group theoretic analysis of@16#, and is evident from
the current approach, is the rather odd nature of the c
wheren50. Taken straightforwardly, it must be false, im
plying that for any number of particles

P 4
tot50W , P4

tot5F~0W !. ~9!

Thusn50 is clearly unphysical and we are forced to ado
the intuitive choice ofn51.

We feel that more drastic possibilities@17#, based on
abandoning notions of an iterated associative symmetric
nary composition law are strongly disfavored, and we w
not pursue such options in this paper.

DSR2

This model@12# is completely characterized by the equ
tion
1-2
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P4[~e;p!5F21~P4!5
~E;p!

12lE
. ~10!

~In model building one typically takesl51/EPlanck; but we
will leave l as an arbitrary parameter with dimensio
@E#21.! The inverse mapping is easily established to be

P4[~E;p!5F~P4!5
~e;p!

11le
. ~11!

The total physical 4-momentum is easily calculated. F
observe that for the pseudomomenta

e tot5(
i

Ei

12lEi
, p tot5(

i

pi

12lEi
. ~12!

Then

Etot5

(
i

Ei /~12lEi !

11l(
i

Ei /~12lEi !

~13!

and

ptot5

(
i

pi /~12lEi !

11l(
i

Ei /~12lEi !

. ~14!

Within the framework of DSR2 this result isexactfor all
l. To first order inl:

Etot5(
i

Ei2l(
iÞ j

EiEj1O~l2!, ~15!

ptot5(
i

pi2l(
iÞ j

piEj1O~l2!. ~16!

For the case of two particles, the above formulas reduc
the so-called ‘‘mixing laws’’—one of the possibilities men
tioned by Amelino-Cameliaet al. @10#.

We also mention in passing that the exact dispersion r
tion for DSR2 is

E22p2

~12lE!2 5m0
25

m0
2

~12lm0!2 . ~17!

This can be rearranged as

p25E22m0
2S 12lE

12lm0
D 2

. ~18!

Solving the quadratic forE, and choosing the physical roo

E5
A~122lm0!@m0

21~12lm0!2p2#1l2m0
42lm0

2

122lm0
.

~19!
04500
t
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DSR1

For DSR1 the basic principles are the same but the a
bra is somewhat messier. It is convenient to consider a
ticle at rest, with rest energym0, and then boost using a
rapidity parameterj. The defining relationships for DSR
can then be put in the form@11#

elE5elm0$11sinh~lm0!e2lm0@coshj21#%, ~20!

and

p5
1

l

sinh~lm0!e2lm0 sinhj

11sinh~lm0!e2lm0@coshj21#
. ~21!

~These expressions are equivalent to knowing the nonlin
Lorentz transformationsL as a function of rapidityj.! This
can easily be inverted to give expressions for the rapidity

coshj5
elE2cosh~lm0!

sinh~lm0!
, sinhj5

lpelE

sinh~lm0!
.

~22!

Making use of the identity cosh2 j2sinh2 j51 gives the
DSR1 dispersion relation in the particularly nice form

cosh~lE!5cosh~lm0!1
1

2
l2p2elE. ~23!

Comparison with the standard form of the dispersion relat
now fixes the rest energy in terms of the Casimir invarian

cosh~lm0!511
1

2
l2m0

2 ,

m05
2 sinh~lm0/2!

l
. ~24!

This now fixes the linear representation completely. In ter
of the physical energy-momenta

e5m0 coshj5
elE2cosh~lm0!

l cosh~lm0/2!
, ~25!

and

p5m0 sinhj5
pelE

cosh~lm0/2!
. ~26!

Conversely, the inverse mappings yielding physical ener
momenta in terms of auxiliary energy-momenta are

E5
1

l
ln@le cosh~lm0/2!1cosh~lm0!#

5
1

l
lnF11leA11

l2m0
2

4
1

l2m0
2

2 G

1-3
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5
1

l
lnF11leA11

l2~e22p2!

4

1
l2~e22p2!

2 G , ~27!

and

p5p cosh~lm0/2!e2lE

5
pA11 l2m0

2/4

11leA11 l2m0
2/41 l2m0

2/2

5
pA11 l2~e22p2!/4

11leA11 l2~e22p2!/41 l2~e22p2!/2
. ~28!

To calculate the total energy and momentum of a collect
of particles we now first calculate auxiliary quantities

e tot5(
i

elEi2cosh~lm0,i !

l cosh~lm0,i /2!
, ~29!

p tot5(
i

pie
lEi

cosh~lm0,i /2!
, ~30!

and then use these to calculate the physical quantities

Etot5
1

l
lnF11le totA11

l2~e tot
2 2p tot

2 !

4

1
l2~e tot

2 2p tot
2 !

2 G , ~31!

ptot5
p totA41l2~e tot

2 2p tot
2 !

21le totA41l2~e tot
2 2p tot

2 !1l2~e tot
2 2p tot

2 !
.

~32!
n-

-
le

04500
n

These formulas provide explicit~albeit complicated! expres-
sions for the total physical energies and momenta in
DSR1 model in terms of the individual physical energie
momenta, and rest energies; note that the formulas areexact
for arbitraryl.

To first order

Etot5(
i

Ei2
1

2
l(

iÞ j
pipj1O~l2!, ~33!

ptot5(
i

pi2l(
iÞ j

piEj1O~l2!. ~34!

For two particles, these too reduce to equations already in
literature@11,16#.

DISCUSSION

The key result of this paper is the identification of appr
priate laws of conservation of energy and momentum in
neric DSR theories, embodied in the general formula~5!,
together with the specific applications to DSR2 in Eqs.~13!
and ~14!, and to DSR1 in Eqs.~29!–~32!. Ultimately the
general formula~5! is more important: There are many way
of distorting the Lorentz group, and this formula applies
all of them—this makes it clear that the distortion of dispe
sion relations, the existence of unexpected thresholds,
the somewhat unexpected subtleties hiding in the conse
tion laws are generic to all nonlinear realizations of the L
entz group, no matter how they are obtained. It is these p
sible deviations from simple linearly realized relativist
kinematics that provide the most promising observatio
signal for empirically testing these models@9,18,19#.
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