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Asymptotic quasinormal modes of Reissner-Nordstro¨m and Kerr black holes
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According to a recent proposal, the so-called Barbero-Immirzi parameter of loop quantum gravity can be
fixed, using Bohr’s correspondence principle, from a knowledge of highly damped black hole oscillation
frequencies. Such frequencies are rather difficult to compute, even for Schwarzschild black holes. However, it
is now quite likely that they may provide a fundamental link between classical general relativity and quantum
theories of gravity. Here we carry out the first numerical computation of very highly damped quasinormal
modes~QNM’s! for charged and rotating black holes. In the Reissner-Nordstro¨m case QNM frequencies and
damping times show an oscillatory behavior as a function of charge. The oscillations become faster as the
mode order increases. At fixed mode order, QNM’s describe spirals in the complex plane as the charge is
increased, tending towards a well defined limit as the hole becomes extremal. Kerr QNM’s have a similar
oscillatory behavior when the angular indexm50. For l 5m52 thereal part of Kerr QNM frequencies tends
to 2V, V being the angular velocity of the black hole horizon, while the asymptotic spacing of theimaginary
parts is given by 2pTH .

DOI: 10.1103/PhysRevD.68.044027 PACS number~s!: 04.70.Bw, 04.60.Ds, 04.70.Dy
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I. INTRODUCTION

Quasinormal modes~QNM’s! play a fundamental role in
black hole physics. They are known to ‘‘carry the finge
prints’’ of a black hole, since their frequencies only depe
on fundamental black hole parameters such as mass, ch
and angular momentum. They determine the late-time ev
tion of fields in the black hole exterior. Even more impo
tantly, they may play a fundamental role in the newborn fi
of gravitational wave astrophysics; indeed, numerical sim
lations of stellar collapse and black hole collisions ha
shown that in the final stage of such processes~‘‘ringdown’’ !
QNM’s dominate the black hole response to any kind
perturbation. Therefore QNM’s have been extensively st
ied for more than 30 years~for comprehensive reviews se
Refs. @1,2#! with the aim to shed light on the strong-fie
behavior of classical general relativity.

Research was mainly focused on modes having sm
imaginary part for two main reasons: first, weakly damp
modes are expected to be dominant in gravitational w
radiation; second, numerical methods used to comp
QNM’s generally run into trouble when the modes’ imag
nary part grows, i.e., when the damping is high. Early inv
tigations of highly damped modes had motivations wh
were radically different from those of the present pap
Highly damped modes were seen as a good benchmark
the reliability of numerical methods. Their study could pr
vide hints~if not a formal proof! to whether or not QNM’s
are infinite in number. Finally, there was hope that their stu
could lead to a better understanding of the long-stand
issue of mode completeness. Applications of different me
ods yielded at first puzzling and contradictory results: WK
methods predicted that the asymptotic real part of the
quency,vR , should vanish for highly damped modes@3#,
while the continued-fraction methods developed by Lea
@4# seemed to suggest thatvR should be finite. An improve-
ment of the continued fraction technique devised by Nol
@5# finally showed thatvR is indeed finite and determined it
0556-2821/2003/68~4!/044027~11!/$20.00 68 0440
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value; these results were confirmed by Andersson@6# build-
ing on an improved WKB-type technique, the phase integ
method, previously developed in Ref.@7#.

More recently QNM’s, which are essentially related to t
classicaldynamical properties of a black hole, have beco
a subject of great interest for the quantum gravity comm
nity. This interest stems essentially from Hod’s proposal@8#
to apply Bohr’s correspondence principle to black hole ph
ics. By the Bekenstein-Hawking formula the surface area
a black hole is nothing but its entropy. In a quantum theo
of gravity the surface area should have a discrete spectr
and the eigenvalues of this spectrum are likely to be u
formly spaced. In order to give a prediction on the area sp
ing, Hod observed that the real parts of the asympto
~highly damped! quasinormal frequencies of a Schwarzsch
black hole of massM, as numerically computed by Noller
@5#, can be written as

vR5THln 3, ~1!

whereTH5(8pM )21 is the black hole Hawking tempera
ture ~here and in the following we use units such thatc
5G51). He then exploited Bohr’s correspondence pr
ciple, requiring that transition frequencies at large quant
numbers should equal classical oscillation frequencies
predict the spacing in the area spectrum for a Schwarzsc
black hole. It is worth stressing that in this quantum grav
context, as opposed to the study of QNM’s in the context
gravitational wave emission, relevant modes are those
which the imaginary part tends to infinity—that is, mod
which damp infinitely fast and donot radiate at all.

We point out that a dynamical interpretation of the Haw
ing effect through a semiclassical treatment of the quantu
mechanical uncertainty associated to QNM oscillations w
proposed long ago by York@9#. York’s dynamical treatment
could successfully be used to calculate the temperature
entropy of the hole. However, his proposal to relate class
black hole oscillations to the hole’s quantum-mechanical
©2003 The American Physical Society27-1
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havior is essentially different from Hod’s, in that the dynam
cal effects considered in Ref.@9# are dominated by slowly
damped QNM’s.

Following Hod’s suggestion, Bohr’s correspondence pr
ciple has recently been used by Dreyer to fix a free param
~the so-called Barbero-Immirzi parameter! appearing in loop
quantum gravity@10#. Supposing that transitions of a qua
tum black hole are characterized by the appearance or d
pearance of a puncture with lowest possible spinj min , and
that changesDM in the black hole massM, corresponding to
such a transition, are related to the asymptotic frequency~1!
by

DM5\vR, ~2!

Dreyer found that loop quantum gravity gives a correct p
diction for the Bekenstein-Hawking entropy ifj min51, con-
sequently fixing the Barbero-Immirzi parameter. Motivat
by the occurrence of an integer value forj min , Dreyer went
on to suggest that the gauge group of loop quantum gra
should be SO~3!, and not SU~2!. Such a proposal has re
cently been questioned in Refs.@11,12#. In the latter paper,
Hod’s proposal has also been used as an argument in fav
an equidistant black hole area spectrum. Evidence that
earlier formula for black hole entropy in loop quantum gra
ity still holds whenj min51 has been presented in Ref.@13#.

Numerical computations of gravitational QNM’s fo
higher-dimensional black holes are still lacking. Howev
Kunstatter@14# recently generalized Dreyer’s argument
give a prediction for the area spacing~and for the asymptotic
oscillation frequency! of d-dimensional black holes.

When Hod made his original proposal, the fact thatvR is
proportional to ln 3 was just a curious numerical coinciden
Further support to the aforementioned arguments came f
the analytical proof by Motl@15# that highly damped QNM
frequencies are indeed proportional to ln 3. More precis
choosing units such that 2M51, high-n mode frequencies
satisfy the relation

vSchw;
ln 3

4p
1

i ~n21/2!

2
1O~n21/2!. ~3!

Such an expression has recently been confirmed throu
different analytical approach in Ref.@16#, where it has also
been generalized to higher-dimensional black holes an
four-dimensional Reissner-Nordstro¨m ~RN! black holes. The
WKB approach used in Ref.@16# has later been exploited t
analytically compute reflexion and transmission coefficie
of multidimensional Schwarzschild black holes~and of four-
dimensional RN black holes! in the limit of large imaginary
frequencies@17#.

There are many important reasons to try to understand
behavior of highly damped QNM’s for general black hole
Let us consider charged, rotating black holes, having ang
momentum per unit massa5J/M and chargeQ. The black
hole’s ~event and inner! horizons are given in terms of th
black hole parameters byr 65M6AM22a22Q2. The
hole’s temperatureTH5(r 12r 2)/A, whereA54p(2Mr 1

2Q2) is the hole’s surface area, related to its entropyS by
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the relationA5S/4. Let us introduce the so-called ‘‘angula
velocity of the horizon’’V[4pa/A, and F[4pQr1 /A.
Applying the first law of black hole thermodynamics,

DM5THDS1VDJ1FDQ, ~4!

but dropping without justification theDQ term, andassum-
ing that the formula for the area spectrum derived for
Schwarzschild black hole still holds in this case, Hod con-
jectured@8# that the real parts of the asymptotic frequenc
for charged and rotating black holes are given by

vR5ṽR[THln 31mV, ~5!

wherem is the azimuthal eigenvalue of the field. In partic
lar, such a conjecture implies that QNM’s of extremal R
black holes would have avanishing asymptotic real part.
Unfortunately, numerical studies of asymptotic frequenc
of charged and rotating black holes have been lacking u
now. Hod@18# recently used the most systematic explorati
of Kerr black hole QNM’s, which was carried out a fe
years ago by Onozawa@19#, to lend qualitative support to
formula ~5!. However, in the following we will extend On
ozawa’s numerical calculations to larger imaginary pa
showing that the use of low-order frequencies to deduce
asymptotic behavior asv I→` is rather questionable.

Motl and Neitzke@16# recently obtained an analytic for
mula for the asymptotic frequencies of scalar a
electromagnetic-gravitational perturbations of a RN bla
hole:

ebv1213e2b Iv50. ~6!

For computational convenience, the authors fixed their u
in a somewhat unconventional way: they introduced a
rameter k related to the black hole charge and mass
Q/M52Ak/(11k), so thatb54p/(12k)51/TH is the in-
verse black hole Hawking temperature andb I52k2b is the
inverse Hawking temperature of the inner horizon. Howev
some features of their result are particularly puzzling.

~1! As emphasized~and partially justified with plausibility
arguments! in Refs. @16,17#, the predicted asymptotic RN
quasinormal frequencies do not reduce to the Schwarzsc
limit as the black hole chargeQ tends to zero.

~2! Quasinormal frequencies of a charged black hole,
cording to formula~6!, depend not only on the black hole
Hawking temperature, but also on the Hawking temperat
of the ~causally disconnected! inner horizon.

~3! The authors suggest that, should the black hole m
and charge acquire a small imaginary part~which in their
words ‘‘may not be an unreasonable thing to do,’’ since ‘‘t
black hole eventually evaporates’’!, their asymptotic RN fre-
quencies would be proportional to ln 2. This is in stark co
trast with the Schwarzschild results: should this be tr
Dreyer’s argument could be used to infer that the gau
group of loop quantum gravity is SU~2!.

~4! The result does not seem to agree with the conjectu
behavior predicted by formula~5!.

Therefore, their result cannot be considered conclus
and there are many issues to clarify. Furthermore,
7-2
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asymptotic frequencies for ‘‘generic’’ black holes depend
the hole’s charge and angular momentum, a relevant ques
is: how should arguments based on Bohr’s corresponde
principle be modified? A similar question was recently rais
by Cardoso and Lemos@20#. They studied the asymptoti
spectrum of Schwarzschild black holes in de Sitter spa
times and found that, when the black hole radius is com
rable to the cosmological radius, the asymptotic spectr
depends not only on the hole’s parameters, but also on
angular separation indexl.

For all these reasons, a numerical computation of hig
damped QNM’s is now needed more than ever. Such a
merical computation is technically challenging: even thou
the first overtones of the QNM spectrum have now be
studied for more than 15 years, we present here the
computation of this kind for RN and Kerr black holes.

We will present numerical results that generally supp
the calculations carried out in Refs.@15–17#. Indeed, a test-
able prediction of those analytical derivations is th
asymptotic frequencies forscalar perturbations should hav
the same value as gravitational frequencies; however, to
knowledge, asymptotic scalar modes have never been sh
in the published literature. We will extend Nollert’s calcul
tion to scalar modes, confirming the analytical predictio
Furthermore, our scalar mode calculation gives useful h
on leading order corrections to the asymptotic frequencie
Schwarzschild black holes.

The plan of the paper is as follows. In Sec. II we descr
our numerical method, extending Nollert’s technique to R
and Kerr black holes. In Sec. III we show our numeric
results, and put forward some conjectures on their impli
tions for the asymptotic behavior of the modes. The conc
sions and a discussion follow.

II. NUMERICAL METHOD

A first comprehensive analysis of the QNM spectrum
RN black holes was first carried out by Gunter@21#; then
Kokkotas and Schutz@22# verified and extended his resul
using numerical integrations and WKB methods. Unfor
nately, the standard WKB techniques cannot be applied
our case, since they become inaccurate in estimating
modes’ real part as the imaginary part increases, unless
resorts to more sophisticated phase-integral methods@7#. The
first few modes of the Schwarzschild and Kerr black ho
were studied by Leaver using a continued fraction techni
@4#, which was then extended to the RN case@23#. This tech-
nique is generally rather accurate for modes havingv I
;vR , but it eventually loses accuracy whenv I@vR . The
error is essentially introduced by a truncation of the pow
series solution to the radial equation at some largeN. For
largeN, Leaver has shown that this error can be written as
integral, which is rapidly convergent near the lower qua
normal frequencies~where uvRu.uv I u and uvu;1); how-
ever, the convergence becomes slower as the overtone i
increases@23#. That is why the problem of computing high
order overtones is so numerically challenging. An improv
ment of the continued fraction method was used by Nol
@5# to find the asymptotic behavior of the QNM frequenci
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for Schwarzschild black holes. In the following sections w
show how to generalize Nollert’s method to the charged a
rotating cases.

A. Reissner-Nordström black holes

In this section and the following we briefly describe th
computational procedure we used. More details are giv
e.g., in Refs.@5,4,23#. Let us introduce a tortoise coordina
r * , defined in the usual way by the relation

dr

dr*
5

D

r 2 , ~7!

whereD5r 222Mr 1Q2; after a separation of the angula
dependence and a Fourier decomposition, axial electrom
netic and gravitational perturbations of a RN metric are
scribed by a couple of wave equations

S d2

dr
*
2 1v2DZi

25Vi
2Zi

2 . ~8!

Polar perturbations can be obtained from the axial o
through a Chandrasekhar transformation@24#. In the limit
Q50, the potentialsV1

2 and V2
2 describe, respectively

purely electromagnetic and axial gravitational perturbatio
of a Schwarzschild black hole. Now, the radial equations
the perturbations can be solved using a series expan
around some suitably chosen point. The coefficientsan of the
expansion are then determined by a recursion relation.
Schwarzschild black holes the recursion relation has th
terms, i.e., it is of the form

a0a11b0a050,

a1a21b1a11g1a050, ~9!

anan111bnan1gnan211dnan2250, n52,3, . . .

where the recursion coefficientsan , bn andgn are functions
of the frequencyv and of l ~if we fix units such that 2M
51).

For RN black holes we actually have a four-term rec
sion relation~whose coefficients also depend on the cha
Q), but we can reduce it to the previous form using a Gau
ian elimination step. It turns out that the QNM bounda
conditions are satisfied when the following continue
fraction condition on the recursion coefficients holds:

05b02
a0g1

b12

a1g2

b22
••• ~10!

The nth quasinormal frequency is~numerically! the most
stable root of thenth inversion of the continued-fraction re
lation ~10!, i.e., it is the root of
7-3
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bn2
an21gn

bn212

an22gn21

bn222
•••

a0g1

b0

5
angn11

bn112

an11gn12

bn122
••• ~n51,2, . . .!. ~11!

The infinite continued fraction appearing in Eq.~11! can be
summed ‘‘bottom to top’’ starting from some large truncati
index N. Nollert has shown that the convergence of the p
cedure improves if such a sum is started using a wise ch
for the value of the ‘‘rest’’ of the continued fraction,RN .
This rest can be obtained solving the equation

RN5
gN11

bN112aN11RN11
, ~12!

and assuming that

RN5 (
k50

`

CkN
2k/2. ~13!

If we introducer[2 iv, and denote byr 1 the coordinate
radius of the black hole’s event horizon, it turns out that
first few coefficients in the series areC0521, C15
6A2r(2r 121), C25(3/422rr 1).

As first shown in Ref.@25# using WKB techniques and
then confirmed using different numerical methods in R
@26#, even for modes with moderate imaginary parts, R
QNM frequencies show a very peculiar behavior as
charge increases. Our numerical results agree with th
shown in Ref.@26#. Furthermore, we have checked that o
method yields Nollert’s asymptotic frequencies in t
Schwarzschild limit. Due to convergence reasons, calc
tions become more and more computationally intensive
the charge is increased. Indeed, because of the mergin
the inner and outer horizons, maximally charged black ho
yield radial equations for the perturbation variables wh
have a different singularity structure, and deserve a spe
treatment@27#. We plan to investigate the behavior of high
damped QNM’s for maximally charged black holes in t
future.

B. Kerr black holes

As we did for the charged black hole case, here we o
briefly sketch our computational procedure, referring
reader to Refs.@5,4,19# for more details. In the Kerr case, th
perturbation problem reduces to a couple of differen
equations—one for the angular part of the perturbations
the other for the radial part. In Boyer-Lindquist coordinat
definingu5cosu, the angular equation reads

@~12u2!Slm,u# ,u1F ~avu!222avsu1s1Alm

2
~m1su!2

12u2 GSlm50, ~14!

and the radial one is
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DRlm,rr 1~s11!~2r 21!Rlm,r1V~r !Rlm50, ~15!

where

V~r !5$~r 21a2!2v222amvr 1a2m21 is@am~2r 21!

2v~r 22a2!#%D211@2isvr 2a2v22Alm#. ~16!

In writing down these equation we have adopted, con
tently with what we did for the RN case, Leaver’s conve
tions. In particular, we chose units such that 2M51. The
parameter s50,21,22 for scalar, electromagnetic an
gravitational perturbations, respectively,a is the Kerr rota-
tion parameter (0,a,1/2), andAlm is an angular separa
tion constant. In the Schwarzschild limit the angular sepa
tion constant can be determined analytically, and is given
the relationAlm5 l ( l 11)2s(s11).

Boundary conditions for each equation translate into
couple of three-term continued fraction relations of the fo
~10!. Finding QNM frequencies is now a two-step procedu
for assigned values ofa, ,, m and v, first find the angular
separation constantAlm(v) looking for zeros of theangular
continued fraction; then replace the corresponding eig
value into theradial continued fraction, and look for its ze
ros as a function ofv. In principle, the convergence of th
procedure for modes with large imaginary parts can be
proved, as described earlier, by a wise choice of the rest,RN ,
of the radial continued fraction. Expanding this rest as
formula ~13! and introducingb[A124a2, we get for the
first few coefficients: C0521, C156A2rb, C25@3/4
2r(b11)2s#.

As for the RN case, we have checked that our res
agree with those shown in Refs.@4,19# for small values of
v I , and that we get Nollert’s asymptotic quasinormal fr
quencies in the nonrotating limit.

III. RESULTS

As a first step in the computation of asymptotic modes
charged and rotating black holes we have checked that
numerical methods reproduce known results in
Schwarzschild limit@28#. In particular, we have verified the
asymptotic behavior found by Nollert@5#. His main result
was that the real part of the asymptotic QNM frequenc
corresponding togravitational perturbations can be well fit
ted by a relation of the form

vR5v`1
ls,l

An
. ~17!

The leading-order fitting coefficient is independent ofl and
given byv`50.0874247, consistently~within numerical ac-
curacy! with the analytical formula~3!. Corrections of order
;n21/2, however, arel dependent. Furthermore, we will se
in a moment that they also depend on the spins of the per-
turbing field, and that is why we denoted them byls,l . For
gravitational perturbations (s522) Nollert found ~and we
verified to the same level of accuracy! that l22,250.4850,
l22,351.067,l22,653.97.
7-4
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Now, an important testable prediction of the recent de
vations of the ‘‘ln 3’’ asymptotic behavior is thatscalarblack
hole perturbations should lead to the same asymptotic Q
frequency, at leading order in an expansion in powers
n21/2 @15–17#. To check this prediction we have extend
our numerical calculations tos50. Using the procedure de
scribed in Ref.@5#, we found that our scalar QNM data a
well fitted by formula~17!. As n→`, the asymptotic fre-
quency for scalar modes is again given byv`50.0874247,
consistently with the analytic calculation. What changes
the numerical values of the leading-order correction coe
cientsl0,l ; namely, we findl0,050.0970,l0,150.679, l0,2
51.85.

Neitzke@17# recently suggested that leading-order corr
tions to the asymptotic frequency should be proportiona
@(s221)23l ( l 11)#. As an interesting byproduct of our ca
culation, we found that our numerical values forls,l ’s are
consistent with Neitzke’s conjecture; that the proportiona
constant is dependent ons,

ls,l5ks@~s221!23l ~ l 11!#, ~18!

and finally, we determined the proportionality constantsks to
be given byk22520.0323,k0520.0970. Recently Maas
sen van den Brink@29# derivedk22 analytically, finding

k2252
A2G~1/4!4

432p5/2
.20.0323356. ~19!

Notice that, within our numerical accuracy,k053k22. This
prediction may be helpful to analytically determinek0. We
shall say more about the importance of leading-order cor
tions to the frequencies in the following; now we turn to
discussion of our numerical results for RN and Kerr bla
holes.

A. Reissner-Nordström black holes

The numerical behavior of the first few overtones of a R
black hole was studied numerically by Andersson and O
ozawa @26#, who unveiled a very peculiar behavior as t
modes’ imaginary part increases. Our numerical codes ar
excellent agreement with their results. In comparing w
their paper note, however, that Andersson and Onoz
count modes starting fromn50, while we label the funda-
mental mode byn51, following Leaver~see Table 1 in Ref.
@4#!. The results we display refer to perturbations reducing
pure gravitational perturbations of Schwarzschild in the
charged limit. The trajectories described by the modes in
complex-v plane first show ‘‘closed loops,’’ as in the top le
panel of Fig. 1. Then they get a spiral-like shape, moving
of their Schwarzschild value and ‘‘looping in’’ towards som
limiting frequency asQ tends to the extremal value. Th
kind of behavior is shown in the top right panel of Fig. 1. W
have observed that such a spiralling behavior sets in
larger values of the modes’ imaginary part~i.e., larger values
of n) as the angular indexl increases. In other words, in
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creasingl for a given value of the mode indexn has the
effect of ‘‘unwinding’’ the spirals, as can be observed in t
two panels in the second row of Fig. 1. However, for eacl
the spiralling behavior is eventually observed whenn is large
enough; a typical example forl 56 is shown in the last plot
of Fig. 1.

Maybe a clearer picture of the modes’ behavior can
obtained looking separately at the real and imaginary part
the mode frequencies as function of charge. Let us focus
on the real parts. The corresponding numerical results
shown in Fig. 2, together with the predictions of the analy
formula ~6!. It is quite apparent that, as the mode ord
grows, the oscillating behavior as a function of charge s
earlier and earlier. Asn increases, the oscillations becom
faster, the convergence of the continued fraction meth
slower, and the required computing time gets longer. The
fore, when the imaginary part increases it becomes m
difficult to follow the roots numerically as we approach th
extremal valueQ51/2. That is why our data for large value
of n do not cover the whole range of allowed values forQ.
Despite these difficulties, we have many reasons to trust
numerics. We have carefully checked our results, using
double and then quadrupole precision in our Fortran co
~indeed, asn increases, we can obtain results for large valu
of the charge only using quadrupole precision!. As we have
shown earlier, our frequencies accurately reproduce Nolle
results in the Schwarzschild limit, so our numerics can
trusted for small values ofQ. Furthermore, the predictions o
the analytic formula exactly overlap with the oscillations w
observe for large values of the charge. Not only this do
give support to the asymptotic formula@17#, it also gives us
faith that the numerics are meaningful also for large char
where we don’t have any published results to confirm o
predictions.

Similar considerations apply to the imaginary parts. W
present a few plots illustrating the general trend for t
imaginary parts in Fig. 3, showing again excellent agreem
with the asymptotic formula~6! asn increases. Once again
the analytic formula shows deviations from our ‘‘exact’’ nu
merical results only for small values of the charge, proba
indicating that corrections of ordern21/2 should be taken into
account for small values ofQ. When we look at the mode
trajectories in the complex-v plane, the increasingly oscillat
ing behavior of the real and imaginary parts means that
number of ‘‘spirals’’ described by the mode before reachi
the extremal value increases roughly as the mode ordern.

Can we deduce something from the agreement of our
merical results with formula~6! at large values of the
charge? It would be extremely interesting to draw con
quences on the extremal RN case, for various reasons.
of all, the QNM spectrum for extremal RN black holes
characterized by an isospectrality between electromagn
and gravitational perturbations, which has been motivate
Ref. @30# as a manifestation of supersymmetry. Furthermo
topological arguments have been used to show that
entropy-area relation breaks down for extreme QNM’s@31#.
Therefore, we believe that some caution is required in cla
ing that the connection between QNM’s and the area sp
trum is still valid for extreme black holes, as recently adv
7-5
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FIG. 1. The top two panels show the behavior of then55 andn510 QNM frequencies in the complexv plane. Then510 mode
‘‘spirals in’’ towards its value in the extremal charge limit; the number of spirals described by each mode increases roughly as the m
n. The panels in the second row show how then510 spiral ‘‘unwinds’’ as the angular indexl is increased~in other words, the asymptotic
behavior sets in later for largerl ’s!. Finally, the bottom panel shows a high-l mode trajectory ‘‘pointing’’ to its limit as the charge become
extremal. In all cases, we have marked by an arrow the frequency corresponding to the Schwarzschild limit (Q50).
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cated in Ref.@32#. These problems may be connected w
our recent finding that extremally charged black holes i
~nonasymptotically flat! anti-de Sitter spacetime could b
marginally unstable@33#.

Our numerics seem to indicate that we can trust form
~6! in the large-charge regime. Then a very interesting c
clusion follows @17#: the real part of the frequency for ex
tremal RN black holes coincides with the Schwarzsch
value, i.e.
04402
a

a
-

vR
RN→ ln 3

4p
as Q→1/2. ~20!

However, it is quite difficult to check this prediction numer
cally. In the extremal RN case, due to the coalescence of
inner and outer horizons, the singularity structure of the
dial perturbation equations changes. Therefore one ha
apply a different~and slightly more involved! procedure,
7-6
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FIG. 2. Real part of the RN QNM frequencies as a function of charge forn55, 10, 30, 60, 5000, 10000, 100000. As the mode or
increases, the computation becomes more and more time consuming, the oscillations become faster, and a good numerical sampl
difficult to achieve; therefore in the last plot we use different symbols~small squares, circles and triangles! to display the actually computed
points. Forn55000, 10000, 100000 we also compare to the prediction of the analytic formula~6! derived by Motl and Neitzke@16#. The
oscillatory behavior is reproduced extremely well by their formula, but the disagreement increases for small charge: formula~6! does not
yield the correct Schwarzschild limit.
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which has been described in Ref.@27#. We have tried to
apply that procedure to get highly damped QNM’s. App
ently, the extremal RN QNM’s show a behavior which
rather similar to that of Schwarzschild QNM’s~see, e.g., Fig.
1 in Ref. @4#!: they have finite real part for small values
v I , approach the pure-imaginary axis asv I is increased, and
then the real part increases again. This would support
predictions of the asymptotic formula~6!. Unfortunately, we
have not yet managed to get stable numerical results for l
values ofv I . We plan to improve our codes and obtain mo
numerically stable results in the future.

If, supported by the agreement between our numerics
the analytical prediction, we assume that formula~20! holds,
an interesting result emerges: Hod’s conjecture~2! is incom-
patiblewith the ‘‘truncated’’ version of the first law of black
hole mechanics~4! obtaineddropping theDQ term @8#. In-
deed, formula~5! predicts that the real part of the asympto
frequencies in the extremal case should be zero. This d
not imply that Hod’s conjecture is wrong, but only thatdrop-
ping theDQ term to deduce formula~5! is not a valid as-
sumption.
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B. Kerr black holes

Quasinormal frequencies of Kerr black holes were fi
studied by Leaver using continued fraction techniques@4#
and subsequently investigated by other authors@34#.

A systematic exploration of the behavior of the first fe
overtones was carried out only some years ago, using Le
er’s continued fraction method, by Onozawa@19#, who found
some rather odd features as the mode damping increases
example, Detweiler@35# showed that the first few mode
having l 5m have vanishing imaginary part and real pa
equal tom as the black hole becomes extremal~in our units,
as a→1/2). He also showed analytically that there can
infinite solutions to the Teukolsky equation havinga51/2
andv5m, which led to the suspicion thatall modes having
l 5m should ‘‘cluster’’ on the real axis atv5m as the black
hole becomes extremal. An interesting outcome of Ono
wa’s investigation was that, for given values ofl andm5 l ,
there is at least one mode frequency which does not ten
m in the extremal limit. Onozawa also found that, whenn
;10, modes having negativem ~which for the first few over-
tones show a tendency to decrease in frequency as the ho
7-7
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FIG. 3. Imaginary part of the RN QNM frequencies as a function of charge forn510, 30, 60, 5000. Forn55000 we also display the
actually computed points, and compare to the prediction of the analytic formula~6!. As for the real part, the oscillations are reproduce
extremely well, but the disagreement with our numerical data increases for small charge.
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spun up! show instead a tendency to ‘‘turn around’’ and i
crease their frequency asa increases, sometimes showin
strange ‘‘loops’’ in the complex-v plane~see Figs. 3 and 4 in
Ref. @19#!.

We have confirmed Onozawa’s results, and extended t
to moderately highn. However, since one has to solve simu
taneously the angular and the radial continued fraction,
numerical problem turned out to be much more tricky th
the search of highly damped modes in the RN case. Com
ing Nollert’s technique and a standard summation of the c
tinued fraction using Gautschi’s algorithm@4#, we found out
that it is much harder to achieve a stable numerical com
tation of modes forn;50 or higher@36#. Because of these
convergence problems, even using Nollert’s method, we
not manage to push the numerical calculation to very la
values ofn. However, even moderately high values ofn shed
some light on what should be the asymptotic behavior
Kerr QNM’s.

Let us first consider Kerr perturbations havingm50. We
have been able to compute quite a few moderately hig
damped modes forl 52 andl 53, and in Fig. 4 we show two
of these modes. These plots should be compared to the
modes we have shown in Fig. 1: there is a similar ‘‘loopin
behavior, with the number of loops increasing as the dam
ing of the mode increases. We notice that a similar loop
04402
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f

ly

N
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g

behavior has recently been found by Glampedakis
Andersson forscalarperturbations of Kerr black holes, usin
a different method@37#. Figures 5 and 6 show the real an
imaginary parts~respectively! of some Kerr modes withm
50. It is useful to compare these plots with Figs. 2 and
the behavior is extremely similar, and asymptotically it c
probably be described by some formula reminiscent of
~6!. Of course, such a behavior is not even close to t
predicted by formula~5!.

Hod recently used Onozawa’s data, which to our know
edge are the only available published data for highly dam
Kerr modes, to show that the results predicted by formula~5!
agree with the numerically computations in Ref.@19# within
;5%, at least whenl 5m. We repeated Onozawa’s calcula
tions, finding excellent agreement with his results, and th
extended it to higher-order modes. We found that, asn in-
creases, the formula conjectured by Hod does not seem
provide a good fit to the asymptotic modes. As shown in F
7, the proposed formula disagrees quite badly in the sm
rotation rate regime even for the low-lying modes whi
were used for comparison by Hod. In any event, this is to
expected and does not contradict Hod’s claim, since i
known from previous calculations in the Schwarzschild lim
@4# that modes withn,10 have real parts of the QNM fre
quencies which are not close enough to their asympt
7-8
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value. However, if formula~5! really holds in the asymptotic
limit, one would expect the agreement with numerical cal
lations to get better as the mode’s imaginary part increa
on the contrary, Fig. 7 shows that, asn increases, the agree
ment gets worse, even for large rotation rates~which used to
show rather good agreement forn;10). So Hod’s formula
does not seem to provide an accurate fit to the asymp
frequencies. We actually found that, as the mode order
creases, modes havingl 5m52 are fitted extremely wel
~relative errors being of order;0.1% whenn;50) by the
relation

v l 5m52
Kerr 52V1 i2pTHn. ~21!

It is interesting to note that, although the real part tends
different asymptotic value, the spacing in the imaginary pa
doesagree with the value conjectured by Hod in Ref.@18#.
Indeed, Hod put forward his conjecture observing that in
Schwarzschild case the asymptotic QNM spacing is given
2pTH . The convergence to the indicated asymptotic beh
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FIG. 5. Real part of Kerr modes havingm50 as a function
of a. Labels indicate the corresponding values ofl and of the mode
ordern.
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ior is faster for large values ofa, and generally the agreemen
between formula~21! and our numerics is good for values o
a*0.1. The indexn appearing in formula~21! depends, of
course, on the labelling convention we use to ‘‘coun
QNM’s.

Notice also that the modes’ imaginary part does not sh
the typical ‘‘shift’’ ( 21/4) which is present in formula~3!. In
our opinion, this is another hint that the Schwarzschild lim
of highly damped Kerr modes should be taken with spec
care, and that order of limits issues may be relevant in
asymptotic regime.

Preliminary calculations show that modes havingl 52
and m51, m521 andm522 show a more complicated
behavior. We are currently trying to improve our understan
ing of highly damped Kerr QNM’s using both analytical an
numerical techniques. Some of our results will be shown i
separate paper@38#.

IV. CONCLUSIONS

In this paper we have numerically investigated t
asymptotic behavior of QNM’s for charged~RN! and rotat-
ing ~Kerr! black holes. We have first confirmed Nollert’s re
sults and extended them to scalar perturbations of Schwa
child black holes. Our numerics are consistent with

vR5
ln 3

4p
1

ks@~s221!23l ~ l 11!#

An
, ~22!

where, within our accuracy,k0520.097053k22. Recently
the constantk22 has been determined analytically—see fo
mula ~19!—and our result may be useful to determinek0 as
well.

More importantly, our results for charged and rotati
black holes do not agree with the simple behavior predic
by Hod’s conjecture for the real part of the frequency,
given in formula~5!. We have shown that both the real an
the imaginary part of RN QNM’s as functions of charge d
7-9
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FIG. 6. Imaginary part of Kerr modes havingm50 as a function ofa. The left panel corresponds tol 53, n515 and the right panel
corresponds tol 53, n520.
lle

th

rg

i
a

il
ll-
or
ic
m
le

va-

of
,

ted
e
in

tic

d
lue
an

-
e at

ic

ns
s a
spe-
re-
.

out
the
nd

e-

b

play an oscillating behavior. The oscillations start at sma
values of the charge and get faster asn increases. We have
compared our numerical results to the predictions of
asymptotic formula~6! derived in Ref.@16# and found that,
in general, they agree extremely well, especially for la
values of the mode indexn. The formula derived by Motl
and Neitzke only fails to reproduce our numerical results
the limit of small charge. Quite likely, their expression has
wrong limit in the Schwarzschild case~the real part tending
to ln 5/4p instead of ln 3/4p) because finite-n corrections
become relevant asQ tends to zero@17#. A computation of
higher-order corrections to the asymptotic RN formula w
probably give a final answer on the reasons for the smaQ
discrepancy we observe. If we trust the predictions of f
mula ~6!, as the agreement between analytical and numer
results suggests to do, the asymptotic frequency for extre
RN black holes is the same as for Schwarzschild black ho

0.0 0.1 0.2 0.3 0.4 0.5

-0.2
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FIG. 7. Relative error in the formula for the asymptotic fr

quency conjectured by Hod. The plots showE5(vR2ṽR)/ṽR ,

where ṽR is defined in formula~5!, for increasing values of the
mode indexn, namely,n512, 30, 40, 50 andl 5m52. Asn grows,
the relative error in the conjectured asymptotic formula tends to
larger and larger.
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This implies that dropping theDQ term in the first law of
black hole mechanics, as done by Hod to conjecture the
lidity of formula ~5!, is presumablynot a justified assump-
tion.

Highly damped gravitational quasinormal frequencies
rotating~Kerr! black holes proved more difficult to compute
even using Nollert’s method, and show a more complica
behavior. Form50, we observe spirals in the complex plan
reminiscent of RN modes, confirming the behavior found
Ref. @37# for highly dampedscalar perturbations. Forl 5m
52, the behavior is completely different. The asympto
behavior of Kerr modes havingl 5m52 is very well fitted
by formula ~21! that we rewrite here

v l 5m52
Kerr 52V1 i2pTHn,

whereV is the angular velocity of the black hole horizon an
TH is its temperature. The convergence to the limiting va
is faster whena is large, and the formula can be seen as
extension of formula~3! to Kerr modes havingl 5m52. We
think that a calculation of finite-n corrections to the asymp
totics may help explain both the faster convergence rat
large a, and the apparent disagreement with formula~3! in
the limit a→0. A more extensive investigation of asymptot
Kerr QNM’s is ongoing@38#.
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