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According to a recent proposal, the so-called Barbero-Immirzi parameter of loop quantum gravity can be
fixed, using Bohr’s correspondence principle, from a knowledge of highly damped black hole oscillation
frequencies. Such frequencies are rather difficult to compute, even for Schwarzschild black holes. However, it
is now quite likely that they may provide a fundamental link between classical general relativity and quantum
theories of gravity. Here we carry out the first numerical computation of very highly damped quasinormal
modes(QNM’s) for charged and rotating black holes. In the Reissner-Nomfstrase QNM frequencies and
damping times show an oscillatory behavior as a function of charge. The oscillations become faster as the
mode order increases. At fixed mode order, QNM’s describe spirals in the complex plane as the charge is
increased, tending towards a well defined limit as the hole becomes extremal. Kerr QNM’s have a similar
oscillatory behavior when the angular index=0. Forl=m=2 thereal part of Kerr QNM frequencies tends
to 2Q), Q being the angular velocity of the black hole horizon, while the asymptotic spacing ohéggnary
parts is given by T .
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[. INTRODUCTION value; these results were confirmed by Anderd€&rbuild-
ing on an improved WKB-type technique, the phase integral
Quasinormal modeQNM'’s) play a fundamental role in method, previously developed in R¢T].
black hole physics. They are known to “carry the finger- More recently QNM's, which are essentially related to the
prints” of a black hole, since their frequencies only dependclassicaldynamical properties of a black hole, have become
on fundamental black hole parameters such as mass, chargesubject of great interest for the quantum gravity commu-
and angular momentum. They determine the late-time evoludity. This interest stems essentially from Hod’s propdsal
tion of fields in the black hole exterior. Even more impor- t0 apply Bohr’s correspondence principle to black hole phys-
tanﬂy, they may p|ay a fundamental role in the newborn f|e|dICS By the Bekenstein-HaWking formula the surface area of
of gravitational wave astrophysics; indeed, numerical simu@ black hole is nothing but its entropy. In a quantum theory
lations of stellar collapse and black hole collisions haveof gravity the surface area should have a discrete spectrum,
shown that in the final stage of such proceségagdown” ) and the eigenvalues of this spectrum are likely to be uni-
QNM's dominate the black hole response to any kind offormly spaced. In order to give a prediction on the area spac-
perturbation. Therefore QNM'’s have been extensively studing, Hod observed that the real parts of the asymptotic
ied for more than 30 yeardor comprehensive reviews see (highly dampediquasinormal frequencies of a Schwarzschild
Refs.[1,2]) with the aim to shed light on the strong-field black hole of masd, as numerically computed by Nollert
behavior of classical general relativity. [5], can be written as
Research was mainly focused on modes having small

imaginary part for two main reasons: first, weakly damped wr=TyIn3, (1)
modes are expected to be dominant in gravitational wave
radiation; second, numerical methods used to computerhere Ty=(87M) ! is the black hole Hawking tempera-
QNM’s generally run into trouble when the modes’ imagi- ture (here and in the following we use units such that
nary part grows, i.e., when the damping is high. Early inves=G=1). He then exploited Bohr’s correspondence prin-
tigations of highly damped modes had motivations whichciple, requiring that transition frequencies at large quantum
were radically different from those of the present papernumbers should equal classical oscillation frequencies, to
Highly damped modes were seen as a good benchmark faredict the spacing in the area spectrum for a Schwarzschild
the reliability of numerical methods. Their study could pro- black hole. It is worth stressing that in this quantum gravity
vide hints(if not a formal proof to whether or not QNM’s  context, as opposed to the study of QNM'’s in the context of
are infinite in number. Finally, there was hope that their studygravitational wave emission, relevant modes are those for
could lead to a better understanding of the long-standingvhich the imaginary part tends to infinity—that is, modes
issue of mode completeness. Applications of different methwhich damp infinitely fast and doot radiate at all.
ods yielded at first puzzling and contradictory results: WKB ~ We point out that a dynamical interpretation of the Hawk-
methods predicted that the asymptotic real part of the freing effect through a semiclassical treatment of the quantum-
quency, wg, should vanish for highly damped modg3], = mechanical uncertainty associated to QNM oscillations was
while the continued-fraction methods developed by Leaveproposed long ago by Yorf9]. York’s dynamical treatment
[4] seemed to suggest thak should be finite. An improve- could successfully be used to calculate the temperature and
ment of the continued fraction technique devised by Nollertentropy of the hole. However, his proposal to relate classical
[5] finally showed thatv is indeed finite and determined its black hole oscillations to the hole’s quantum-mechanical be-
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havior is essentially different from Hod’s, in that the dynami- the relationA=S/4. Let us introduce the so-called “angular
cal effects considered in Reff9] are dominated by slowly velocity of the horizon”Q=4=mal/A, and ®=47Qr_/A.

damped QNM's. Applying the first law of black hole thermodynamics,
Following Hod'’s suggestion, Bohr’s correspondence prin-
ciple has recently been used by Dreyer to fix a free parameter AM=THAS+QAIJ+DAQ, (4)

(the so-called Barbero-Immirzi parametaeppearing in loop
guantum gravity{ 10]. Supposing that transitions of a quan-
tum black hole are characterized by the appearance or disa
pearance of a puncture with lowest possible gpip,, and
that changed M in the black hole mashsl, corresponding to
such a transition, are related to the asymptotic frequéhrcy

by

but dropping without justification th& Q term andassum-
ing that the formula for the area spectrum derived for a

chwarzschild black hole still holds in this caséod con-
jectured[8] that the real parts of the asymptotic frequencies
for charged and rotating black holes are given by

wR=Z)RETH|I’I 3+mQ, (5)
AM=riwg, @ wherem is the azimuthal eigenvalue of the field. In particu-
lar, such a conjecture implies that QNM'’s of extremal RN
black holes would have aanishingasymptotic real part.
dUnfortunately, numerical studies of asymptotic frequencies
of charged and rotating black holes have been lacking until
ow. Hod[18] recently used the most systematic exploration
f Kerr black hole QNM'’s, which was carried out a few
years ago by Onozawd9], to lend qualitative support to

Hod'’s proposal has also been used as an argument in favor qumuI?(S). Hovyevler, Iln tr|1et_follov¥|n? we W'." ext_end On- ;
an equidistant black hole area spectrum. Evidence that th awas trr:urtntehrlca cafclu a |onds (f) arger _|mz:g|3a:jy patrh,
earlier formula for black hole entropy in loop quantum grav-S owing that tne use ot low-order Irequencies o deduce the

; : : : totic behavior a®,— is rather questionable.
ity still holds whenj ,;,=1 has been presented in REE3]. asymp ; : . .
Numerical computations of gravitational QNM's for Motl and Neitzke[16] recently obtained an analytic for-

higher-dimensional black holes are still lacking. However,mUIa for thg asymptotic frequenugs of scalar and
Kunstatter[14] recently generalized Dreyer's argument to eIect_romagnet|c—graV|tat|onaI perturbations of a RN black
give a prediction for the area spacitand for the asymptotic hole:

oscillation frequencyof d-dimensional black holes. Bo ~Bw_

When Hod made his original proposal, the fact thatis e r2t3e 0 ©
proportional to In 3 was just a curious numerical coincidenceror computational convenience, the authors fixed their units
Further support to the aforementioned arguments came frofy 3 somewhat unconventional way: they introduced a pa-
the analytical proof by Mot[15] that highly damped QNM  rameterk related to the black hole charge and mass by
frequencies are indeed proportional to In 3. More preciselyg/ =2k/(1+K), so thatB=4m/(1—k)=1/T is the in-
choosing units such that\2=1, highn mode frequencies \erse plack hole Hawking temperature aii= — k23 is the

Dreyer found that loop quantum gravity gives a correct pre
diction for the Bekenstein-Hawking entropyjif,;,=1, con-
sequently fixing the Barbero-Immirzi parameter. Motivate
by the occurrence of an integer value f@f;,, Dreyer went
on to suggest that the gauge group of loop quantum gravit
should be S@), and not SW2). Such a proposal has re-
cently been questioned in Refd1,12. In the latter paper,

satisfy the relation inverse Hawking temperature of the inner horizon. However,
) some features of their result are particularly puzzling.
Sehw_ In_3+ 1(n— 1/2)+O(n*1’2) ) (1) As emphasizedand partially justified with plausibility
41 2 ' arguments in Refs.[16,17], the predicted asymptotic RN

quasinormal frequencies do not reduce to the Schwarzschild
Such an expression has recently been confirmed throughlianit as the black hole charg® tends to zero.
different analytical approach in Rgf16], where it has also (2) Quasinormal frequencies of a charged black hole, ac-
been generalized to higher-dimensional black holes and toording to formula(6), depend not only on the black hole’s
four-dimensional Reissner-NordsindRN) black holes. The Hawking temperature, but also on the Hawking temperature
WKB approach used in Ref16] has later been exploited to of the (causally disconnectgdnner horizon.
analytically compute reflexion and transmission coefficients (3) The authors suggest that, should the black hole mass
of multidimensional Schwarzschild black hole@sd of four-  and charge acquire a small imaginary péwhich in their
dimensional RN black holgsn the limit of large imaginary  words “may not be an unreasonable thing to do,” since “the
frequencieg17]. black hole eventually evaporates'their asymptotic RN fre-
There are many important reasons to try to understand thguencies would be proportional to In 2. This is in stark con-
behavior of highly damped QNM'’s for general black holes.trast with the Schwarzschild results: should this be true,
Let us consider charged, rotating black holes, having angulabreyer’'s argument could be used to infer that the gauge
momentum per unit mass=J/M and charge. The black  group of loop quantum gravity is SP).
hole’s (event and inngrhorizons are given in terms of the  (4) The result does not seem to agree with the conjectured
black hole parameters by.=M=M?—a?—~Q? The behavior predicted by formuléb).
hole’s temperatur§ y=(r, —r_)/A, whereA=47(2Mr | Therefore, their result cannot be considered conclusive,
—Q?) is the hole’s surface area, related to its entrGlyy  and there are many issues to clarify. Furthermore, if
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asymptotic frequencies for “generic” black holes depend onfor Schwarzschild black holes. In the following sections we
the hole’s charge and angular momentum, a relevant questi@how how to generalize Nollert's method to the charged and
is: how should arguments based on Bohr’s correspondenaetating cases.

principle be modified? A similar question was recently raised
by Cardoso and Lemof20]. They studied the asymptotic
spectrum of Schwarzschild black holes in de Sitter space-
times and found that, when the black hole radius is compa- In this section and the following we briefly describe the
rable to the cosmological radius, the asymptotic spectrungomputational procedure we used. More details are given,
depends not only on the hole’s parameters, but also on the.g., in Refs[5,4,23. Let us introduce a tortoise coordinate

A. Reissner-Nordstram black holes

angular separation inddx r, , defined in the usual way by the relation

For all these reasons, a numerical computation of highly
damped QNM’s is now needed more than ever. Such a nu- dr _ A @
merical computation is technically challenging: even though dr, r?’

the first overtones of the QNM spectrum have now been

studied for more than 15 years, we present here the ﬁr%hereA=r2—2Mr+Q2; after a separation of the angular
computation of this kind for RN and Kerr black holes. dependence and a Fourier decomposition, axial electromag-

We will present numerical results that generally supportyetic and gravitational perturbations of a RN metric are de-
the calculations carried out in Refd5-17. Indeed, a test-  ¢¢riped by a couple of wave equations

able prediction of those analytical derivations is that

asymptotic frequencies facalar perturbations should have 5

the same value as gravitational frequencies; however, to our ( d +w?
knowledge, asymptotic scalar modes have never been shown dri

in the published literature. We will extend Nollert’s calcula-

tion to scalar modes, confirming the analytical prediction.p5, perturbations can be obtained from the axial ones

Furthermore, our scalar mode calculation gives useful hi”t?hrough a Chandrasekhar transformati@4]. In the limit
on leading order corrections to the asymptotic frequencies o(f?_o the potentialsV; and V, describe, respectively,
— Y, 1 2 ) )

Schwarzschild black holes. epurely electromagnetic and axial gravitational perturbations

The P'af‘ Olf thetﬁager ISt asdf_oIIO\Il\lvsil Int,Setc. uWe detscngof a Schwarzschild black hole. Now, the radial equations for
our numerical method, extending Nollerts technique 1o RV, perturbations can be solved using a series expansion

?nd Ii(err ndeath ?Orl\(/avs.rclin Sric. Illnyvetsrow gut:] nitjrinnfrllci:al around some suitably chosen point. The coefficiantsf the
esults, and put forward some conjectures o € P Caexpansion are then determined by a recursion relation. For
tions for the asymptotic behavior of the modes. The conclu

sions and a discussion follo Schwarzschild black holes the recursion relation has three
: ISCUSSI W. terms, i.e., it is of the form

Zi =ViZ . ®

Il. NUMERICAL METHOD apa;+ Boap=0,

A first comprehensive analysis of the QNM spectrum of
RN black holes was first carried out by Guni@d]; then aja,+ B1a,+ y180=0, (9)
Kokkotas and Schut22] verified and extended his results
using numerical integrations and WKB methods. Unfortu-
nately, the standard WKB techniques cannot be applied to
our case, since they become inaccurate in estimating the
modes’ real part as the imaginary part increases, unless onghere the recursion coefficienas,, B8, andy, are functions
resorts to more sophisticated phase-integral metfigld3he  of the frequencyw and ofl (if we fix units such that
first few modes of the Schwarzschild and Kerr black holes=1).
were studied by Leaver using a continued fraction technique For RN black holes we actually have a four-term recur-
[4], which was then extended to the RN c§28]. This tech-  sion relation(whose coefficients also depend on the charge
nique is generally rather accurate for modes having Q), but we can reduce it to the previous form using a Gauss-
~wg, but it eventually loses accuracy when>wg. The ian elimination step. It turns out that the QNM boundary
error is essentially introduced by a truncation of the powerconditions are satisfied when the following continued-
series solution to the radial equation at some laxgd=or  fraction condition on the recursion coefficients holds:
largeN, Leaver has shown that this error can be written as an
integral, which is rapidly convergent near the lower quasi-
normal frequencieswhere |wg|>|w,| and |w|~1); how- 0=Bp—
ever, the convergence becomes slower as the overtone index B~ Bz~
increase$23]. That is why the problem of computing high-
order overtones is so numerically challenging. An improve-The nth quasinormal frequency isnumerically the most
ment of the continued fraction method was used by Nollerstable root of thenth inversion of the continued-fraction re-
[5] to find the asymptotic behavior of the QNM frequencieslation (10), i.e., it is the root of

an@ni1t Bnant Yn@n_1t 6han->=0, n=23, ...

apgY1 a1Y2

(10
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An—1Yn An-2Yn-1 oY1 ARIm,rr+(S+ 1)(2r_1)RIm,r+V(r)le:01 (15
P B Boo- o
where
AnYn+1 Xn+1Yn+2
= L (n=12,..). (1D V(r)={(r?+a??w?—2amor +a’m?+is[am(2r—1)
,Bn+1 ,Bn+2

2_ .2 -1 ; 22
The infinite continued fraction appearing in E41) can be To(r-a)JA T [2iser —ate" A (16
_summed “bottom to top” starting from some large truncation |, writing down these equation we have adopted, consis-
indexN. Nollert has shown that the convergence of the proently with what we did for the RN case, Leaver’s conven-
cedure improves if such a sum is started using a wise choicgyns. In particular, we chose units such tha#21. The

for_ the value of the “_rest” of t_he continued_ fractiomyy, . parameter s=0,—1,—2 for scalar, electromagnetic and
This rest can be obtained solving the equation gravitational perturbations, respectivedy,is the Kerr rota-
tion parameter (6.a<1/2), andA,, is an angular separa-

Ry= YN+1 , (12)  tion constant. In the Schwarzschild limit the angular separa-
Bn+1~ an+1RN+1 tion constant can be determined analytically, and is given by
) the relationA,=1(I+1)—s(s+1).
and assuming that Boundary conditions for each equation translate into a
- couple of three-term continued fraction relations of the form
Ru— 2 C.N-K2 (10). Finding QNM frequencies is now a two-step procedure:
N= K . (13 . T
=0 for assigned values dd, ¢, m and w, first find the angular
separation constam;,,(w) looking for zeros of theangular
If we introducep=—iw, and denote by , the coordinate continued fraction; then replace the corresponding eigen-
radius of the black hole’s event horizon, it turns out that thevalue into theradial continued fraction, and look for its ze-
first few coefficients in the series ar€,=—-1, C;= ros as a function ofv. In principle, the convergence of the
*\2p(2r,—1), C,=(3/4—2pr ). procedure for modes with large imaginary parts can be im-

As first shown in Ref[25] using WKB techniques and proved, as described earlier, by a wise choice of the Rggt,
then confirmed using different numerical methods in Ref.of the radial continued fraction. Expanding this rest as in
[26], even for modes with moderate imaginary parts, RNformula (13) and introducingb=1—4a?, we get for the
QNM frequencies show a very peculiar behavior as thefirst few coefficients:Co=—1, C,=*2pb, C,=[3/4
charge increases. Our numerical results agree with those p(b+1)—s].
shown in Ref[26]. Furthermore, we have checked that our As for the RN case, we have checked that our results
method yields Nollert's asymptotic frequencies in theagree with those shown in Refigt,19] for small values of
Schwarzschild limit. Due to convergence reasons, calculam,, and that we get Nollert’'s asymptotic quasinormal fre-
tions become more and more computationally intensive aguencies in the nonrotating limit.
the charge is increased. Indeed, because of the merging of
the inner_and outer horizons, maximally_charge_d black h(_)les IIl. RESULTS
yield radial equations for the perturbation variables which
have a different singularity structure, and deserve a special As a first step in the computation of asymptotic modes for
treatmen{27]. We plan to investigate the behavior of highly charged and rotating black holes we have checked that our
damped QNM'’s for maximally charged black holes in thenumerical methods reproduce known results in the
future. Schwarzschild limif28]. In particular, we have verified the

asymptotic behavior found by Nollef6]. His main result
B. Kerr black holes was that the real part of the asymptotic QNM frequencies

. corresponding tagravitational perturbations can be well fit-
As we did for the charged black hole case, here we onlyeq by a relation of the form

briefly sketch our computational procedure, referring the
reader to Refd5,4,19 for more details. In the Kerr case, the

perturbation problem reduces to a couple of differential WR= W+ E (17
equations—one for the angular part of the perturbations and Jn

the other for the radial part. In Boyer-Lindquist coordinates,

definingu=cosg, the angular equation reads The leading-order fitting coefficient is independentl @ind

given by w,.=0.0874247, consistentlyvithin numerical ac-
curacy with the analytical formuld3). Corrections of order
~n~Y2 however, aré dependent. Furthermore, we will see
in a moment that they also depend on the spof the per-

[(1—-U?) Sl ot | (awu)?—2awsu+s+A,

(m+su)? —0 (14) turbing field, and that is why we denoted them Xy, . For
1=z |om=0 gravitational perturbationss& —2) Nollert found (and we
verified to the same level of accuracthat A _, ,=0.4850,
and the radial one is N_3=1.067,\_,4=3.97.
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Now, an important testable prediction of the recent dericreasingl for a given value of the mode index has the
vations of the “In 3" asymptotic behavior is thatalarblack  effect of “unwinding” the spirals, as can be observed in the
hole perturbations should lead to the same asymptotic QNMwo panels in the second row of Fig. 1. However, for ehch
frequency, at leading order in an expansion in powers ofhe spiralling behavior is eventually observed wings large
n~2[15-17. To check this prediction we have extended enough; a typical example for=6 is shown in the last plot
our numerical calculations t&=0. Using the procedure de- of Fig. 1.
scribed in Ref[5], we found that our scalar QNM data are  Maybe a clearer picture of the modes’ behavior can be
well fitted by formula(17). As n—c, the asymptotic fre-  gptained looking separately at the real and imaginary parts of
quency for scalar modes is again given dy=0.0874247,  the mode frequencies as function of charge. Let us focus first
consistently with the analytic calculation. What changes argyn the real parts. The corresponding numerical results are
the numerical values of the leading-order correction coeffishown in Fig. 2, together with the predictions of the analytic
cientshg ; namely, we find\¢=0.0970,A3=0.679, o>  formula (6). It is quite apparent that, as the mode order
=1.85. grows, the oscillating behavior as a function of charge start

Neitzke[17] recently suggested that leading-order correcearlier and earlier. A% increases, the oscillations become
tions to the asymptotic frequency should be proportional tGaster, the convergence of the continued fraction method
[(s*~1)—3I(I+1)]. As an interesting byproduct of our cal- slower, and the required computing time gets longer. There-
culation, we found that our numerical values fog,'s are  fore, when the imaginary part increases it becomes more
consistent with Neitzke’s conjecture; that the proportionalitydifficult to follow the roots numerically as we approach the

constant is dependent an extremal valugQ=1/2. That is why our data for large values
of n do not cover the whole range of allowed values r
)\s,|:ks[(52—1)—3|(| +1)], (18) Despite these difficulties, we have many reasons to trust our

numerics. We have carefully checked our results, using first
i . ] ) double and then quadrupole precision in our Fortran codes
and finally, we determined the proportionality constdqt®d  (indeed, as increases, we can obtain results for large values
be given byk_,=—0.0323,ko=—0.0970. Recently Maas- of the charge only using quadrupole precigiohs we have
sen van den Brink29] derivedk _, analytically, finding shown earlier, our frequencies accurately reproduce Nollert's
results in the Schwarzschild limit, so our numerics can be
\/EF(1/4)4 trusted fOI’. small values d@®. Furthermore, the predicti.ons of
T T . 0.0323356. (190  the analytic formula exactly overlap with the oscillations we
4327572 observe for large values of the charge. Not only this does
give support to the asymptotic formula7], it also gives us
faith that the numerics are meaningful also for large charge,
where we don't have any published results to confirm our

—-2—

Notice that, within our numerical accuradsg=3k_,. This
prediction may be helpful to analytically determikg. We A
shall say more about the importance of leading-order corred2"edictions. _ o

tions to the frequencies in the following; now we turn to a  Similar considerations apply to the imaginary parts. We
discussion of our numerical results for RN and Kerr blackPresent a few plots illustrating the general trend for the

holes imaginary parts in Fig. 3, showing again excellent agreement

with the asymptotic formuldé6) asn increases. Once again,
the analytic formula shows deviations from our “exact” nu-
merical results only for small values of the charge, probably
The numerical behavior of the first few overtones of a RNindicating that corrections of order 2 should be taken into
black hole was studied numerically by Andersson and Onaccount for small values d. When we look at the mode
ozawa[26], who unveiled a very peculiar behavior as thetrajectories in the complew- plane, the increasingly oscillat-
modes’ imaginary part increases. Our numerical codes are iimg behavior of the real and imaginary parts means that the
excellent agreement with their results. In comparing withnumber of “spirals” described by the mode before reaching
their paper note, however, that Andersson and Onozawthe extremal value increases roughly as the mode order
count modes starting from=0, while we label the funda- Can we deduce something from the agreement of our nu-
mental mode byr=1, following Leaver(see Table 1 in Ref. merical results with formula(6) at large values of the
[4]). The results we display refer to perturbations reducing taharge? It would be extremely interesting to draw conse-
pure gravitational perturbations of Schwarzschild in the unquences on the extremal RN case, for various reasons. First
charged limit. The trajectories described by the modes in thef all, the QNM spectrum for extremal RN black holes is
complexw plane first show “closed loops,” as in the top left characterized by an isospectrality between electromagnetic
panel of Fig. 1. Then they get a spiral-like shape, moving ouaand gravitational perturbations, which has been motivated in
of their Schwarzschild value and “looping in” towards some Ref.[30] as a manifestation of supersymmetry. Furthermore,
limiting frequency asQ tends to the extremal value. This topological arguments have been used to show that the
kind of behavior is shown in the top right panel of Fig. 1. We entropy-area relation breaks down for extreme QNN\'§).
have observed that such a spiralling behavior sets in folherefore, we believe that some caution is required in claim-
larger values of the modes’ imaginary pére., larger values ing that the connection between QNM'’s and the area spec-
of n) as the angular indek increases. In other words, in- trum is still valid for extreme black holes, as recently advo-

A. Reissner-Nordstram black holes
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FIG. 1. The top two panels show the behavior of the5 andn=10 QNM frequencies in the complex plane. Then=10 mode
“spirals in” towards its value in the extremal charge limit; the number of spirals described by each mode increases roughly as the mode order
n. The panels in the second row show how the 10 spiral “unwinds” as the angular inddxis increasedin other words, the asymptotic
behavior sets in later for largéls). Finally, the bottom panel shows a higjimode trajectory “pointing” to its limit as the charge becomes
extremal. In all cases, we have marked by an arrow the frequency corresponding to the SchwarzschizHi)it (

cated in Ref[32]. These problems may be connected with
our recent finding that extremally charged black holes in a wR 4 as Q—1/2. (20)
(nonasymptotically flat anti-de Sitter spacetime could be

marginally unstabl¢33].

Our numerics seem to indicate that we can trust formuldHowever, it is quite difficult to check this prediction numeri-
(6) in the large-charge regime. Then a very interesting coneally. In the extremal RN case, due to the coalescence of the
clusion follows[17]: the real part of the frequency for ex- inner and outer horizons, the singularity structure of the ra-
tremal RN black holes coincides with the Schwarzschilddial perturbation equations changes. Therefore one has to
value, i.e. apply a different(and slightly more involved procedure,
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FIG. 2. Real part of the RN QNM frequencies as a function of chargefeb, 10, 30, 60, 5000, 10000, 100000. As the mode order
increases, the computation becomes more and more time consuming, the oscillations become faster, and a good numerical sampling is rathel
difficult to achieve; therefore in the last plot we use different symkeisall squares, circles and trianglés display the actually computed
points. Forn=5000, 10000, 100000 we also compare to the prediction of the analytic fofB)utkerived by Motl and Neitzk¢16]. The
oscillatory behavior is reproduced extremely well by their formula, but the disagreement increases for small charge{6paoei not
yield the correct Schwarzschild limit.

which has been described in R¢R7]. We have tried to B. Kerr black holes
apply that procedure to get highly damped QNM’s. Appar-
ently, the extremal RN QNM'’s show a behavior which is
rather similar to that of Schwarzschild QNM'see, e.g., Fig.

1in Ref.[4]): they have finite real part for small values of A systematic exploration of the behavior of the first few
|, approach the pure-imaginary axisasis increased, and ,\ertones was carried out only some years ago, using Leav-
then.the real part increases again. This would support thgys continued fraction method, by Onozajit#)], who found
predictions of the asymptotic formul8). Unfortunately, we  gome rather odd features as the mode damping increases. For

have not yet managed to get stable numerical results for 'arg&ample Detweilef35] showed that the first few modes
values ofw, . We plan to improve our codes and obtain MOrehaving | =m have vanishing imaginary part and real part

numerically stable results in the future. equal tom as the black hole becomes extrerfialour units,

If, supported by the agreement between our numerics angls a— 1/2). He also showed analytically that there can be
the analytical prediction, we assume that form(@@) holds,  infinite solutions to the Teukolsky equation haviag 1/2
an interesting result emerges: Hod'’s conject@eis incom-  andw=m, which led to the suspicion thail modes having
patible with the “truncated” version of the first law of black |=m should “cluster” on the real axis ab=m as the black
hole mechanic$4) obtaineddropping theAQ term([8]. In-  hole becomes extremal. An interesting outcome of Onoza-
deed, formulg5) predicts that the real part of the asymptotic wa’s investigation was that, for given valuesladnd m=1,
frequencies in the extremal case should be zero. This dodbkere is at least one mode frequency which does not tend to
not imply that Hod’s conjecture is wrong, but only tltibp-  m in the extremal limit. Onozawa also found that, when
ping the AQ termto deduce formuld5) is not a valid as- ~10, modes having negative (which for the first few over-
sumption. tones show a tendency to decrease in frequency as the hole is

Quasinormal frequencies of Kerr black holes were first
studied by Leaver using continued fraction techniq{#ls
and subsequently investigated by other authad.
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FIG. 3. Imaginary part of the RN QNM frequencies as a function of charge fot0, 30, 60, 5000. Fon=5000 we also display the
actually computed points, and compare to the prediction of the analytic forf@ulAs for the real part, the oscillations are reproduced
extremely well, but the disagreement with our numerical data increases for small charge.

spun up show instead a tendency to “turn around” and in- behavior has recently been found by Glampedakis and
crease their frequency as increases, sometimes showing Andersson foscalarperturbations of Kerr black holes, using
strange “loops” in the complex» plane(see Figs. 3 and 4 in a different method37]. Figures 5 and 6 show the real and
Ref.[19]). imaginary partsrespectively of some Kerr modes witim

We have confirmed Onozawa’s results, and extended thems 0. It is useful to compare these plots with Figs. 2 and 3:
to moderately higm. However, since one has to solve simul- the behavior is extremely similar, and asymptotically it can
taneously the angular and the radial continued fraction, therobably be described by some formula reminiscent of Eq.
numerical problem turned out to be much more tricky than(6). Of course, such a behavior is not even close to that
the search of highly damped modes in the RN case. Compapredicted by formuld5).
ing Nollert’s technique and a standard summation of the con- Hod recently used Onozawa’s data, which to our knowl-
tinued fraction using Gautschi’s algorithi], we found out  edge are the only available published data for highly damped
that it is much harder to achieve a stable numerical compuKerr modes, to show that the results predicted by fornfbila
tation of modes fom~50 or higher[36]. Because of these agree with the numerically computations in Rgf9] within
convergence problems, even using Nollert’s method, we did-5%, at least wheh=m. We repeated Onozawa’s calcula-
not manage to push the numerical calculation to very largéions, finding excellent agreement with his results, and then
values ofn. However, even moderately high valuesrashed  extended it to higher-order modes. We found thatpas-
some light on what should be the asymptotic behavior otreases, the formula conjectured by Hod does not seem to
Kerr QNM’s. provide a good fit to the asymptotic modes. As shown in Fig.

Let us first consider Kerr perturbations havimg=0. We 7, the proposed formula disagrees quite badly in the small
have been able to compute quite a few moderately highlyotation rate regime even for the low-lying modes which
damped modes fdr=2 andl =3, and in Fig. 4 we show two were used for comparison by Hod. In any event, this is to be
of these modes. These plots should be compared to the R&ékpected and does not contradict Hod’s claim, since it is
modes we have shown in Fig. 1: there is a similar “looping” known from previous calculations in the Schwarzschild limit
behavior, with the number of loops increasing as the dampf4] that modes witm< 10 have real parts of the QNM fre-
ing of the mode increases. We notice that a similar loopingjuencies which are not close enough to their asymptotic
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FIG. 4. Trajectories of Kerr modes havimg=0 in the complex» plane. The left panel correspondslte3, n=15 and the right panel
corresponds tb=3, n=20. The number of spirals increases with the mode order, as in the RN case. We have marked by an arrow the point
in the plane corresponding to the Schwarzschild limit.

value. However, if formuld5) really holds in the asymptotic

ior is faster for large values @, and generally the agreement

limit, one would expect the agreement with numerical calcu-between formuld21) and our numerics is good for values of
lations to get better as the mode’s imaginary part increases;=0.1. The indexn appearing in formuld21) depends, of
on the contrary, Fig. 7 shows that, asncreases, the agree- course, on the labelling convention we use to “count”

ment gets worse, even for large rotation raigbich used to
show rather good agreement for- 10). So Hod'’s formula
does not seem to provide an accurate fit to the asymptotithe typical “shift” ( —

QNM:’s.

Notice also that the modes’ imaginary part does not show

1/4) which is present in formulg). In

frequencies. We actually found that, as the mode order ineur opinion, this is another hint that the Schwarzschild limit

creases, modes havilg=m=2 are fitted extremely well
(relative errors being of order 0.1% whenn~50) by the

of highly damped Kerr modes should be taken with special
care, and that order of limits issues may be relevant in the

relation

ol ,=2Q+i27Tyn.

(21)

asymptotic regime.

Preliminary calculations show that modes having2
andm=1, m=—-1 andm=—2 show a more complicated
behavior. We are currently trying to improve our understand-

It is interesting to note that, although the real part tends to éng of highly damped Kerr QNM'’s using both analytical and
different asymptotic value, the spacing in the imaginary partsiumerical techniques. Some of our results will be shown in a

doesagree with the value conjectured by Hod in Ref8].

separate pap¢B8|.

Indeed, Hod put forward his conjecture observing that in the

Schwarzschild case the asymptotic QNM spacing is given by

IV. CONCLUSIONS

27Ty . The convergence to the indicated asymptotic behav-

In this paper we have numerically investigated the
asymptotic behavior of QNM'’s for chargd®kN) and rotat-

05 T T T T T T T T T . . .
_______________ ~. =2 n=8 ing (Kerr) black holes. We have first confirmed Nollert’s re-
AN ———4=3 n=15 sults and extended them to scalar perturbations of Schwarzs-
04r ~ \ ' child black holes. Our numerics are consistent with

['RTIN]
\'lh”pn

N3 kJ(s*~1)-3I(1+1)]
wR—E‘F \/ﬁ s

(22

01r L u,pu"m where, within our accurack,= —0.0970=3k_,. Recently
; the constank_, has been determined analytically—see for-
0.0 s - . ! . - : i mula (19)—and our result may be useful to determiqgas

FIG. 5. Real part of Kerr modes having=0 as a function
of a. Labels indicate the corresponding values ahd of the mode

ordern.

More importantly, our results for charged and rotating
black holes do not agree with the simple behavior predicted

by Hod’s conjecture for the real part of the frequency, as
given in formula(5). We have shown that both the real and

the imaginary part of RN QNM’s as functions of charge dis-
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FIG. 6. Imaginary part of Kerr modes havimg=0 as a function of. The left panel corresponds te-3, n=15 and the right panel
corresponds tb=3, n=20.

play an oscillating behavior. The oscillations start at smalleiThis implies that dropping thaQ term in the first law of
values of the charge and get fasterramcreases. We have black hole mechanics, as done by Hod to conjecture the va-
compared our numerical results to the predictions of thdidity of formula (5), is presumablynot a justified assump-
asymptotic formula6) derived in Ref[16] and found that, tion.

in general, they agree extremely well, especially for large Highly damped gravitational quasinormal frequencies of
values of the mode inder. The formula derived by Motl rotating(Kerr) black holes proved more difficult to compute,
and Neitzke only fails to reproduce our numerical results ineven using Nollert's method, and show a more complicated
the limit of small charge. Quite likely, their expression has abehavior. Fom=0, we observe spirals in the complex plane
wrong limit in the Schwarzschild cagéhe real part tending reminiscent of RN modes, confirming the behavior found in
to In5/4w instead of In3/4r) because finiter corrections Ref. [37] for highly dampedscalar perturbations. Fol=m
become relevant a® tends to zerd17]. A computation of =2, the behavior is completely different. The asymptotic
higher-order corrections to the asymptotic RN formula will behavior of Kerr modes having=m=2 is very well fitted
probably give a final answer on the reasons for the s@all- by formula(21) that we rewrite here

discrepancy we observe. If we trust the predictions of for-

mula (6), as the agreement between analytical and numerical Kerr )

results suggests to do, the asymptotic frequency for extremal O] =p=2=2Q+i27Tyn,

RN black holes is the same as for Schwarzschild black holes.

where() is the angular velocity of the black hole horizon and
Ty is its temperature. The convergence to the limiting value
is faster whera is large, and the formula can be seen as an
extension of formuld3) to Kerr modes having=m=2. We
think that a calculation of finiter corrections to the asymp-
totics may help explain both the faster convergence rate at
large a, and the apparent disagreement with form{8ain

the limita— 0. A more extensive investigation of asymptotic
Kerr QNM'’s is ongoing[38].

ACKNOWLEDGMENTS

- - - - - - - - - We are grateful to N. Andersson for useful discussions
0.0 0.1 02 03 04 05 and a careful reading of a first draft of the manuscript. It is a
pleasure to thank A. Neitzke for correspondence, and espe-
cially for sharing with us his unpublished results on the pre-

FIG. 7. Relative error in the formula for the asymptotic fre- dictions of the analytic RN formula. Finally, we thank A.
quency conjectured by Hod. The plots sh@w (wg— wg)/®g, Ashtekar and J. Pullin for their encouragement to carry out
where oy is defined in formula(5), for increasing values of the the present calculation. This work has been supported by the
mode indexn, namely,n=12, 30, 40, 50 antl=m=2. Asngrows, EU Program “Improving the Human Research Potential and
the relative error in the conjectured asymptotic formula tends to béhe Socio-Economic Knowledge BaséResearch Training
larger and larger. Network Contract No. HPRN-CT-2000-001)37

044027-10



ASYMPTOTIC QUASINORMAL MODES OF REISSNER ..

[1] K.D. Kokkotas and B.G. Schmidt, Living Rev. Relati®, 2
(1999.
[2] H.-P. Nollert, Class. Quantum Grai6, R159(1999.

[3] J.W. Guinn, C.M. WIll, Y. Kojima, and B.F. Schutz, Class.

Quantum Grav7, L47 (1990.
[4] E.W. Leaver, Proc. R. Soc. Lond@02, 285 (1985.
[5] H.-P. Nollert, Phys. Rev. @7, 5253(1993.
[6] N. Andersson, Class. Quantum Gra@, L61 (1993.
[7] N. Andersson and S. Linnaeus, Phys. Revi@)4179(1992.
[8] S. Hod, Phys. Rev. LetB1, 4293(1998.
[9] J.W. York, Phys. Rev. [28, 2929(1983.
[10] O. Dreyer, Phys. Rev. Letf0, 081301(2003.
[11] A. Corichi, Phys. Rev. 367, 087502(2003.
[12] A.P. Polychronakos, hep-th/0304135.
[13] R.K. Kaul and S.K. Rama, Phys. Rev.@8, 024001(2003.
[14] G. Kunstatter, Phys. Rev. Lefi0, 161301(2003.
[15] L. Motl, gr-qc/0212096.
[16] L. Motl and A. Neitzke, hep-th/0301173.
[17] A. Neitzke, hep-th/0304080.
[18] S. Hod, Phys. Rev. B7, 081501R) (2003.
[19] H. Onozawa, Phys. Rev. b5, 3593(1997.
[20] V. Cardoso and J.P.S. Lemos, Phys. Re%m084020(2003.
[21] D.L. Gunter, Philos. Trans. R. Soc. LondA296, 497 (1980);
A301, 705 (198)).
[22] K.D. Kokkotas and B.F. Schutz, Phys. Rev33, 3378(1988.
[23] E.W. Leaver, Phys. Rev. B1, 2986(1990.

[24] S. Chandrasekhar, ifhe Mathematical Theory of Black Holes

PHYSICAL REVIEW D 68, 044027 (2003

(Oxford University, New York, 1988

[25] N. Andersson, Proc. R. Soc. Londéd42, 427 (1993.

[26] N. Andersson and H. Onozawa, Phys. Re\64 7470(1996.

[27] H. Onozawa, T. Mishima, T. Okamura, and H. Ishihara, Phys.
Rev. D53, 7033(1996.

[28] In our discussion of the numerical results we consistently use
Leaver’s convention on units, settingV2=1; in particular,
this means that extremal Kerr and RN black holes correspond,
respectively, tea=1/2 andQ=1/2.

[29] A. Maassen van den Brink, gr-qc/0303095.

[30] H. Onozawa, T. Okamura, T. Mishima, and H. Ishihara, Phys.
Rev. D55, 4529(1997); T. Okamurajbid. 56, 4927(1997); R.
Kallosh, J. Rahmfeld, and W.K. Wondid. 57, 1063(1998.

[31] S.W. Hawking, G.T. Horowitz, and S.F. Ross, Phys. Re®.1D
4302(1995.

[32] E. Abdalla, K.H.C. Castello-Branco, and A. Lima-Santos,
gr-qc/0301130.

[33] E. Berti and K.D. Kokkotas, Phys. Rev. &, 064020(2003.

[34] E. Seidel and S. lyer, Phys. Rev. &1, 374 (1990; K.D.
Kokkotas, Class. Quantum Gra; 2217 (1991).

[35] S. Detweiler, Astrophys. 239, 292(1980.

[36] We are grateful to V. Cardoso and H. Onozawa for comparing
their results with ours and clarifying this point.

[37] K. Glampedakis and N. Andersson, gr-qc/0304030.

[38] E. Berti, V. Cardoso, K. D. Kokkotas, and H. Onozawa,
hep-th/0307013.

044027-11



