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We present a thorough analysis of the quasinor(@) behavior associated with the decay of scalar,

electromagnetic, and gravitational perturbations of Schwarzschild black holes in anti—dd/Rigspace-

times. As is known, the AdS QN spectrum crucially depends on the relative size of the black hole to the AdS
radius. There are three different types of behavior depending on whether the black hole is large, intermediate,
or small. The results of previous works, concerning lower overtones for large black holes, are completed here
by obtaining higher overtones for all three black hole regimes. There are two major conclusions that one can
draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds
for all three types of regime, large, intermediate, and small black holes, independehtiwloérel is the
quantum number characterizing the angular distribution; second, the spacing between modes is apparently
universal in that it does not depend on the field; i.e., scalar, electromagnetic, and gravitational QN modes all
have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations
are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials.
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[. INTRODUCTION horizon against small perturbations. Moreover, the interest in
QNMs has now broadened, they might be related to funda-
Any physical system has its modes of vibration. For non-mental physics. In the context of black holes in asymptoti-
dissipative systems these modes, forming a complete set, agally flat spacetimes the importance of QNMs has long ago
called normal, each mode having a given real frequency obeen recognized. Due to a crescent increase of interest for
oscillation and being independent of any other. The systemjack holes in asymptotically de SittédS) and asymptoti-
once disturbed continues to vibrate in one or several of theajly anti-de SittefAdS) spacetimes the study of QNMs has
normal modes. On the other hand, a black hole, as any othey\ spread into these.
gravitational system, is a dissipative system since it emits |, asymptotically flat spacetimes the idea of QNMs

gravitational radiation. One has to consider, instead, quasisiarted with the work of Regge and Wheeléi, where the
normal modes(QNMs) for which the frequencies are no gpiiiy of a black hole was tested, and were actually first

longer purgly real, showing that the system is I.osing' e.nergynumerically computed by Chandrasekhar and Detweiler sev-
QNMs are in general not. completg and though msufﬁugnt toeral years latef2]. It continues to be a very active field due
fuIIy_ descrlbe_ the dynamics, contain a great amount o_f Infor_to the eminent possibility of detecting gravitational waves
mation. For instance, they dominate the signal during th(?

intermediate stages of the perturbation. Indeed, calculationéorr? af_st:((j)p?t]ysu?\zlill/lsqurces. Thefe zlilreﬂtwo stano_lard rﬁwews
ranging from the formation of a black hole in gravitational " the field[3]. QNMs in asymptotically flat spacetimes have

collapse to the collision of two black holes provide clear ®Cently acquired a further importance since it has been pro-
evidence that no matter how one perturbs a black hole, itgosed that the Barbero-Immirzi parameter, a factor intro-
response will be dominated by the QNMs. Through theduced by hand in order that Loop Quantum Gravity repro-
QNMs, one can also probe the black hole mass, electriéluces correctly the black hole entropy, is equal to the real
charge, and angular momentum by inspection of their charPart of the quasinormdQN) frequencies with a large imagi-
acteristic waveform, as well as test the stability of the evennary part[4] (see[5] for a short review. For further devel-
opments in calculating QN frequencies in Kerr spacetimes
and in asymptotically flat black holes spacetimes in

*Email address: vcardoso@fisica.ist.utl.pt d-dimensions seg5]. Some other recent calculations of QN
"Email address: konoplya_roma@yahoo.com frequencies in asymptotically flat black hole spacetimes can
*Email address: lemos@physics.columbia.edu be found in[7].
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In asymptotically dS spacetimes the calculation of QN Il. EQUATIONS AND NUMERICAL METHOD

frequencies was first done by Moss and collaboraiBfsn We shall deal with the free evolution of massless classical

which the stability of the Cauchy horizon of a charge bI""Ckfields in the background of a Schwarzschild-AdS spacetime
hole was analyzed. In Cardoso and Lem®kan analytical with the metric given by

method was devised to study the case in which the black hole

and the cosmological horizons are very close to each other. dr2
This analytical method has recently been extended to higher ds?=f(r)dt?— — —r2(d@?+sirfod ¢?), 1)
dimensional Schwarzschild dS black hol@$] and also to f(r)

higher order in the difference between the cosmological and ) )
horizon radiug11]. A different analytical approach has also Wheref(r)=r?/R?+1-2M/r, Ris the AdS radius, an¥
been developed ifil2]. the black hole maséNewton’s constanGy and the velocity

In asymptotically AdS spacetimes, which is the back-Of light are set to one The evolution of scalar, electromag-
ground Spacetime for our paper, there has been a grea?tic, and graVitational fields can be followed through the
amount of work because the AdS conformal field theoryKlein-Gordon, Maxwell, and Einstein equations, respec-
(CFT) Correspondence Conjectulre3] makes the investiga_ .t|Ve|y. If one assume.s that the fields are a small pertull’batlon
tion of QNMs important. According to it, the black hole in the background given by Eql), then all the covariant
corresponds to a thermal state in the conformal field theorglerivatives can be taken with respect to the meftic It is
(CFT)’ and the decay of the test field in the black hole spacethen pOSSible tO show that the eVOlUtiqn equation-s are a”.Of
time corresponds to the decay of the perturbed state in thi@€ same type, i.e., a second order radial differential equation
CFT. The dynamical time scale for the return to thermal(for more details we refer the reader [tb5] for the scalar
equilibrium can be done in AdS spacetime and then trans¢ase and td17] for the electromagnetic and gravitational
lated onto the CFT, using the AdS/CFT correspondencec@sé. The wave equation is
Many authors have now delved into these calculations in 9
several different black hole settings in several different di- 9 (r)
mensiongsee[14] for a sampl@ In this paper we are inter- &rfc
ested in the four-dimensional Schwarzschild-AdS spacetime. . i . i
The lowest lying modesi.e., the less damped ones param-Where the tortoise coordinatg is defined as
etrized by the overtone number=0) for this spacetime o
were found by Horowitz and Huben{5], and completed by —=1(r), 3
Konoplya[16] for the scalar case, and by Cardoso and Le- N
mos[17] for the electromagnetic and gravitational case. Rexnq the potentiaV appearing in Eq(2) depends on the spe-

cently, Berti and Kokkotag18] have confirmed all these re- jfic field under consideration. Explicitly, for scalar perturba-
sults and extended them to Reissner-NorastdS black  {jgng,

holes. Here, we shall take a step further in carrying on this
program by computing numerically, through an extensive
search, the high overtone QN frequencies for scalar, electro- Ve=1(r)| — s = 4)
magnetic, and gravitational perturbations in the r ' R
Schwarzschild-AdS black hole. We shall do an extensivewh“e for e|ectr0magnetic perturbations,
search for the high overtone QN frequencies=(). We

find that the modes are evenly spaced for frequencies with a

large imaginary part. Moreover, the scalar, electromagnetic, Vem=1(r)
and gravitational perturbations all possess, asymptotically for

high overtones, QN frequencies with the same spacing, andThe gravitational perturbations decompose into two sets
this spacing isl-independent. While we can numerically [17], the odd and the even parity one. For odd perturbations
prove this with great accuracy for large black holes, it re-the potentiaN(r) in Eq. (2) is

mains just a conjecture for small and intermediate black

+[w?=V(r)]¥(r)=0, @

l(1+1) 2M 2
+—+

[(1+1)
r2

®

holes. We shall also see that the QN frequencies of the tor- I(1+1) 6M
oidal black hole with nontrivial topology19] are identical to Vodd=F(T) 2 3 ©®)
the QN frequencies of a large Schwarzschild-AdS black hole
[20]. while for even perturbations, we have
rS
IM3+3a’Mr?+ a?(1+ a)r®+3M?| 3ar +3—
2f(r) R?
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where a=3[I(1+1)—2]. In all cases, we denote Hythe Ill. NUMERICAL RESULTS
angular quantum number, that gives the multipolarity of the
field. We can of course rescaler —r/R. If we do this, the In this section we will present the numerical results ob-

wave equation takes again the fo@ with rescaled con- tained using the numerical procedure just outlined in the pre-
stants, i.e.r,—r,./R, o—wR, wherer, is the horizon vious section. The results will be organized into three sec-
radius. So, we can takR=1 and measure everything in tions: scalar, electromagnetic, and gravitational
terms ofR, the AdS radius. Equatio(2) should be solved perturbations. For each field we shall also divide the results
under appropriate boundary conditions, i.e., incoming wavego three different regimes: large, intermediate, and small

near the horizon, black holes, since the results depend crucially on the regime
—ior one is dealing with. Here a large black hole stands for a
P~e *,r—r (8) ) . ; -
black hole withr,>1, an intermediate black hole is one
and no waves at infinity, with r . ~1, and a small black hole has a horizon radius
r.<1. We shall then try to unify these results. For each
V=0, r—e. ©)  horizon radiug . and angular quantum numblethere is an

We note that there are other reasonable boundary conditior finity of Q'_\I frequencies(or overtonel We shall ord_er

at infinity, in particular for the gravitational perturbations. "ém according to the standard procedure, by increasing the
For instance, one can define Robin boundary conditions iffnaginary part. Accordingly, the fundamental QN frequency
such a way as to preserve certain dualities between the odgl defined as the one having the lowest imaginary part
and the even gravitational perturbations. However, it wa@bsolute valueand will be labeled with the integer=0.
verified numerically by Moss and Normd#] that Dirichlet The first overtone has the second lowest imaginary part and
or Robin boundary conditions yield approximately the samds labeled withn=1, and so on. The QN frequencies also
result, so we shall keefy =0, —o. Moreover, Cardoso and have a real part, which in general display an increase along
Lemos[17] proved that for high overtone QN frequencies with the imaginary part. To the lowest value of the imaginary
the duality is preserved, so in this regime the distinction ispart corresponds the lowest value of the real part, to the
irrelevant. Thus to compute the QN frequenciesuch that second lowest value of the imaginary part corresponds the
the boundary condition&) and(9) are preserved, we follow second lowest value of the real part, and so on. Thubse

the Horowitz-Hubeny approackl5]. Within this approach overtone number, is also a number that in general increases
we need to expand the solution to the wave equation aroungith the real part of the frequendpr energy of the mode.

Xy =1/r, (x=1Ir), This seems to be a characteristic of AdS space only, due to
w the special boundary conditions associated with this space-
W (x) = a x—x, )k 10 time. This, in a sense, is to be expected since the wave equa-

(x) g’o o)l +) (10 tion to be studied is a Schdinger type equation, where for

] . ) quantum nondissipative bound systems, such as the hydro-
and to find the roots of the equatidin(x=0)=0. First, one  gen atom or a particle in an infinite well potential, the prin-
should _subst|tute quo) mtp the wave equatiof®) in order cipal quantum numben (which here has been called the
to obtain a recursion relation fa [15]. Then, one has to  ,erone numbgrappears due to the boundary conditions of
truncate the surfil0) at some larg&=N and check t_hat _for the radial equation, a typical eigenvalue problem, and is re-
greaterk the roots converge _to some true root which is thel ted directly with the frequency of vibration of the orbital.
sought QN frequency. The higher the overtone number, an he similarity is not full, though, since the boundary condi-

the smaller the black hole size, the larger the nu tion at the black hole is of a different kind. However, for pure

which the roots of the equatiodr(x=0)=0 converge. Yet, AdS i hen there i bl k.h | q ih t')o q

since in the serie$10) each next term depends on all the spacetimes, when there 1S no black hole an € bound-
ary conditions are of infinite well type, the overtone number

preceding terms through the recursion relations, wReis o incinal h
too large, the tiny numerical errors in the first terms start" S indeed a principal quantum numbieee the Appendix

growing asN~10? to 1C° or greater. As a result the roots
suffer a sharp change for a small change on any of the input
parameters, displaying a “noisy” dependence. To avoid this
we have to increase the precision of all the input data and the The fundamental scalar QN frequencies were first com-
recursion relation we are dealing with from the standard 20puted by Horowitz and Hubenf15] for intermediate and
digit precision up to a precision such that further increasindarge black holes. Konoplyfl 6] extended these calculations
of it will not influence the result for the QN frequency. For to the case of small black holes. Recently Berti and Kokkotas
small black holes the roots start converging at very laXge [18] rederived all these results. Here we do for the first time
only, for instance, when . =1/20 we can truncate the series an extensive search for higher overtones of scalar perturba-
at N~3x10%, but not before. Since for finding roots of Eq. tions. Some of the lowest lying modes we find are shown in
(9) we have to resort to the trial and error method, the abov&ables |, Il, and Il for large, intermediate, and small black
procedure consumes much time, but nevertheless allows tmles, respectively.

to compute QNMs of small AdS black holgk6], and to find (i) Large black holesAs proven by Horowitz and Hubeny
the higher overtones we are seeking. [15] in the large black hole regime the frequencies must scale

A. Scalar quasinormal frequencies
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TABLE I. QN frequencies corresponding te=0 scalar pertur- TABLE Ill. QN frequencies corresponding t=0 scalar per-
bations of a large Schwarzschild-AdS black halBH) (r, turbations of a small Schwarzschild-AdS BH_ (=0.2). Asymp-
=100). It can be seen that for largethe modes become evenly totically for largen one finds approximatelys~(1.69-0.57)n
spaced. Although not shown here, our numerical data indicates that 2.29-0.46 .
this happens for all values dfind also that the spacing is the same,
regardless of the value of For =0 and for highn the QN fre- n Re won]: Im[ wgn]: n Re won]: IM[ wgn]:
quencies go likewdr, =(1.299-2.25)n+1.856-2.673. The

corresponding spacing between consecutive modes seems to Be 247511 —0.38990 6 1245222 —3.89179

l-independent. 1 407086 —0.98966 7  14.14065 —4.46714

N Rdogyl: Imlwgn]: n  Rogl: Im[ won]: 5.72783 —1.57600 8 15.83026 —5.04186
9

0 184.95344 —266.38560 7 1096.44876—1841.88813 7.40091  —2.15869 17.52070 —5.61610

2
3

1 316.14466 —491.64354 8 1226.38317—2066.89596 4 9.08118 —2.73809 10 19.21191 —6.18997
5

2 446.46153 —716.75722 9  1356.31222—2291.90222 10.7655 —3.31557 11  20.90359 —6.76355
3 576.55983 —941.81253 10 1486.23753—2516.90740

4 70657518 —1166.8440 50 6682.78814—11516.9823  Thus the spacing between frequencies is

5 836.55136 —1391.8641 299 39030.810 —67542.308 v o

6 966.50635 —1616.8779 300 39160.7272-67767.3091 — —(1299-225), (nry)—=. (12

+

as the horizon radiugthis can also be proven easily and Moreover, although the offset 1.85@.673 in Eq. (11) is
directly from the differential equatiof2)]. We show in Table  |-dependentthis number is different fot=1 scalar pertur-

| the results for a spherically symmetric mode=Q) for a  pations, for example this asymptotic behavior for the spac-
b|aCk h0|e Withl’+ =100 Wh|Ch iS therefore SuffiCien'[ to infer |ng (12) holds for any Value Olf_ In fact our Search Of the QN
the behavior of all large black holes. The fundamental frefrequencies for higher values bfreveal that the results are
quency agrees with previous results5]. Perhaps the most yery similar to those in Table I. We have gone ug o4 for
interesting result in this large black hole regime is that asscalar perturbations and the results were quite insensitive to
ymptotically for high overtone numberthe frequencies be- | The asymptotic behavior sets in very quickly as one in-

come evenly spaced and behave like, Ifer0, creases the mode number Typically for n=10 Eq. (11)
© already gives a very good approximation. Indeed, fior
—=(1.299-2.25)n+1.856-2.673, (n,r,)—c. =10 we find numerically(see Table )l ws=1486.23753
ry —2516.9074D0 for a r,=100 black hole, while the

1D asymptotic expression gives;=1484.6- 2517.3.
TABLE II. QN frequencies corresponding te=0 scalar pertur- (i) Intermediate black holesn Table Il we show some of

bations of an intermediate Schwarzschild-AdS BH € 1). As-  the lowest Iy_ing scalar QN frequencies fQF an intt_ermediate
ymptotically for large n one finds approximatelyws~(1.97  black hole withr . =1. For a black hole with this size, one

—2.35)n+2.76-2.7. finds again that the spacing does not depend on the angular
numberl for very high overtone number. With an error of

n R wonl:  IM[wgy]: N Rl Im[ wgn]: about 2% the limiting value for the frequency is, 1o 0,

0 2.7982 —2.6712 10 22.44671 —26.20913

we~(1.97-2.35)N+2.76-2.7, n—wo. (13

475849  —5.03757 11  24.41443 —28.55989

6.71927 —7.39449 12  26.38230 —30.91059 For QN frequencies belonging to differelis the offset in
Eq. (13 is different, but as far as we can tell numerically, not
8.46153  —9.74852 13  28.35029 —33.26123  the asymptotic spacing implied by Ed.3). Expression(13)

for the asymptotic behavior works well again for-10.
10.6467 —-12.1012 14 30.31839 —35.61183 .
(iii ) Small black holesOur search for the QN frequencies
12.6121 —14.4533 15 32.28658 —37.96238 of small black holes, i.e., black holes with. <1, revealed

145782  —16.8049 16  34.25485 —40.31290 numerically for the first time iN16] for the fundamental

16.5449 —19.1562 17 36.22318 —42.66340 mode: for small black holes, the QN frequencies approach

the frequencies of pure AdS spacetif#l] (see also the
185119 215073 18 38.19157 —45.01387  Appendix. In fact we find

Ol | N|O |0 | ™| W[N] F

20.4792 —23.8583 19  40.16002 —47.36431

ws=2n+1+3,r,—0. (19
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TABLE IV. QNMs corresponding td =1 electromagnetic per- TABLE V. QNMs corresponding td=1 electromagnetic per-
turbations of a large Schwarzschild-AdS BIH,(=1000). Notice turbations of a large Schwarzschild-AdS BH, (= 100). The first
that now there are eight pure imaginary modes, still well describedour modes are pure imaginary and are well described by Liu's

by Liu’s formula. approximation[17]. For high n the QN frequencies obey, fdr
=1, wenfr+ =(1.299-2.25)n—11.501+ 12i. The corresponding

n Re won]: Im[ wonl: N R wgnl: Im[ wgnl: spacing between consecutive modes seems feirmependent.

0 0 —1500.004789 5 0 —8985232 1 Rdwgd: IMogd: N Rwod:  IMood:

1 0 —2999.982599 6 0 1059603 0 ~150.0479 10 799.6171 —2171.826

2 0 —4500.093600 7 0 -1164476 0 ~299.8263 11  927.812 —2398.208

3 0 —5999.513176 8 1219.7 —13566.42 2 0 —450.9458 12 1056.153 — 2624.438

4 0 —7502.69385 9 24946 -—15847.06 4 0 ~595.3691 13  1184.620 —2850.543
4 22.504 —799.194 14 1313.192 —3076.546

In Table Il we show some results for a small black hole with
r,.=0.2. We stress that the values presented in Table Il foP 162.256 1035008 15 1441.856 —3302.464
the asymptotic spacing between modes may have an error gf 289028 —1263537 16 1570.601 —3528.310
about 2%. In fact it is extremely difficult to find very high
overtones of small black holes, and so it is hard to give & 416.247  —1491.223 17  1699.416 —3754.094
precise extimate of the value they asymptote to. s
In summary, we can say that the QN frequencies tend to
be evenly spaced asymptotically asgets very large, no 9 671.598 —1945.246 19 1957.229 —4205.508
matter if the black hole is large, intermediate, or small.
Moreover, the spacing between consecutive modes is, as far
as we can tell, independent of the angular quantum nuimberand a spacing given by

543.792 —1718.409 18  1828.295 —3979.824

. . . we — W
B. Electromagnetic quasinormal frequencies Mh+1 ™ —(1.299-2.25), (n,r,)—x. (16)

The fundamental electromagnetic QN frequencies were Fs
computed for the first time by Cardoso and Lembg|. Re-

cently Berti and Kokkota$18] have redone the calculation find the same spacingl6) between consecutive modes, al-

showing excellent agreement. Here we gxtend the results .t[(Plough the offset in Eq15) depends oh. So, asymptotically
higher overtones. Some of the lowest lying electromagnetufOr large n and large horizon radius the spacing is the same

freg‘;i’;ﬁgj Sfclfhhoovlvgsxs-lf—igfj ilnv[_1\7/]| Illérge black holes as for the scalar case. This is surprising, especially since the

show a somewhat peculiar behavior: some of the lowest ly- 1ag| g vI. QNMs corresponding td=1 electromagnetic per-

ing modes have pure imaginary frequencies, and these afgations of an intermediate Schwarzschild-AdS BH, £ 1).
well described by an analytical formufd7]. A surprising  asymptotically for largen the modes become evenly spaced in

aspect unveiled for the first time by the present search is thahode number and behave ag,~(1.96-2.36)n+1.45-2.1i.
the number of such modes decreases as the horizon radiys

becomes smaller, as can be seen from Tables IV and V. In Rdwoy]:  Imlwoy]: N Rwonl:  Imogyl:
other words, for very large black holes the number of imagi-
nary modes grows. For example, for =1000 (Table 1V) 0 2.163023 —1.699093 10 21.067466 —25.61714
there are eight pure imaginary modes, for=100 there are 3.843819 —4.151936 11 23.015470 —27.98278
four such modesgsee Table V, and forr ., =10 there are only
two. If one wants to go for, larger than 1000, the compu- 2 ~ 5673473 —6.576456 12 24.965381 —30.34713
tation is very time consuming since we use a trial and erro
method for finding new modes. However, not only is this a
completely new piece of data, it also makes us think that 0.458385 —11.37238 14 28.869756 —35.07265
infinitely large black holes may have pure imaginary electro-
magnetic QN frequencies for any overtone number. Perhaps, ~ 11.37722 —13.75633 15 30.823790 —37.43413

an infinitly large black hole cannot vibrate at all. 6 13.30526 —16.13482 16 32.778838 —39.79488
Again, we find that for large black holes ahe:1, the

For different values of the angular quantum numhbewe

7.553724 —8.980538 13 26.916889 —32.71037

frequencies are evenly spaced with 7 1523974 —18.50933 17 34.734776 —42.15499
Wem 8 17.17894 —20.88081 18 36.691500 —44.51455
—=(1.299-2.25)n— 115012, (n,r,)—oo,

I 9 19.12177 —23.24993 19 38.648922 —46.87360

(19
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TABLE VII. QNMs corresponding td =1 electromagnetic per- TABLE IX. QNMs corresponding td=2 odd gravitational per-
turbations of a small Schwarzschild-AdS BH,(=0.2). Asymp- turbations of a large Schwarzschild-AdS BH,(=100). The fun-
totically for largen one finds approximatelwq,~(1.68-0.59)n damental QN frequency is purely imaginary and seems to be well

+1.87-0.04. described by the formula,-,=—(1—-1)(1+2)/3r i valid only
in the large black hole regime. In the largelimit one finds
n Re wonl: Im[ wonl: n Re won]: Im[ wgn]: Woad r + =(1.299-2.25)n+0.58-0.42. The corresponding spac-

ing between consecutive modes seems td-ineependent.

0 263842 -005795 6 12.00066 —3.53148
1 399070 -047770 7 1366436 -4.12974 N Rdwol: IMeon: N Rwonl:  IMlwonf
> 549193 108951 8 1533370 —472479 O 0 ~0013255 6 83655392 —1391.86345
3 707835 170859 9 1700715 _5a317os 1 184.95808 —266.38403 7  966.50872 —1616.87735
4 870165 232191 10 1868370 —5oo7ss 2 316.14887 —491.64242 8 1096.45098—1841.88755
E 103450 2092920 11 2036268 —6496l5 3 446.46505 —716.75629 9 1226.38527—2066.89540

4 576.56293 —941.81172 10 1356.31422—2291.90170

behavior of the scalar and electromagnetic potentials aré 706.57797 —1166.8433 50 6552.87704—11291.9807
radically different. It is even more surprising the fact that this
asymptotic behavior does not dependl pas the electromag-

netic potential is stronglirdependent. Furthermore, from the Wem, = 2N+ [+2, r,—0. (18
first electromagnetic overtones one could surely not antici-
pate this behavior. This can be clearly seen from Table VI, where we show the

(i) Intermediate black holesn Table VI we show some fundamental mode for small black holes of decreasing ra-
of the lowest lying electromagnetic QN frequencies for andjus. As the horizon radius gets smaller and smaller, the fun-
intermediate black hole with, =1. For a black hole with damental frequency approaches the value 608, which is
this size, one finds again that the spacing does not depend @fdeed the correct pure AdS mode flor 1, n=0, electro-
the angular numbdrfor very high overtone number. With  magnetic perturbations. It was conjectured by Horowitz and
an error of about 2% the limiting value for the frequency is,Hubeny[15] that for very small black holes in AdS space,
for =1, the imaginary part of the QN frequency for spherically sym-

metric perturbations should scale with the horizon area, i.e.,
Wem~(1.96-2.36)n+1.45-2.1i, n—o». (170  with r2 . Their argument was based on a previous rd@af}
for the absorption cross section for the0 component. This
We note that here too the offset in EG7) does depend oj ~ conjecture was later verified numerically to be correct by
but not the asymptotic spacing. Konoplya[16] for thel =0 case. From Table VIII it is, how-

(iii) Small black holesFor small black holes, see Tables ever, apparent that this scaling is no longer valid Iferl
VII and VI, the spacing seems also to be equal as for theperturbation, and indeed we find it is not valid fot 0 per-
scalar case, but since it is very difficult to go very high in turbations, be it scalar, electromagnetic, or gravitational per-
mode numben in this regime, the error associated in esti- turbations. The reason why the imaginary part no longer
mating the asymptotic behavior is higher, and one cannot bscales with the horizon area fb# 0 perturbations is due to
completely sure. Again, the electromagnetic QN frequenciethe fact that the partial absorption cross section only scales
of very small black holes asymptote to the pure AdS electrowith the horizon area fdr=0 perturbations. For othéis the
magnetic modegsee the Appendix, where we sketch their behavior is more complex, and it could be that there is no
computation. Indeed we find that simple scaling, or even that the behavior is oscillatory with

the massM of the black hole. We refer the reader[&8] for

TABLE VIII. The fundamental i=0) QNMs corresponding to  details on the absorption cross section of black holes.

I=1 electromagnetic perturbations of a small Schwarzschild-AdS

BH for several values of , . C. Gravitational quasinormal frequencies

r.  Rdooy: Imwo: 1y Rdwo: Mool The fundamental gravitational QN frequencies were com-
puted for the first time by Cardoso and Lemids7]. We

12 225913 —0.65731 1/10  2.85188 —0.00064  remind that there are two sets of gravitational wave equa-
13 240171 —029814 1/12 2.88058 —0.00030 tons, the odd and even ones. Although it was foltid that
there is a family of the odd modes which is very slowly
1/4 2.53362 —0.13364 1/16  2.91363 -—0.00016 damped and purely imaginary, it was possible to prove that
for high frequencies both odd and even perturbations must
yield the same QN frequencies. We present the results for
1/8 280442 —0.00565 1/20 2.93200 —0.00002 higher overtones of odd perturbations in Tables IX—XII, and
even perturbations in Tables XIII-XVI.

1/5 2.63842 —0.05795 1/18 2.92406 —0.00009
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TABLE X. QNMs corresponding tb=2 odd gravitational per- TABLE XI. QNMs corresponding td=2 odd gravitational per-
turbations of an intermediate Schwarzschild-AdS BH€1). As- turbations of a small Schwarzschild-AdS BH_ (=0.2). Asymp-
ymptotically for large n one finds approximatelywyqs~(1.97  totically for largen one finds approximately,qq~(1.69—0.59)n

—2.35)n+0.93-0.34. +2.49+0.04.
n R\l Im[won]: n Rl Imfwqn]: n Re won]: Im[won]: n Re won]: Im[wqgn]:
0 0 -2 10 20.604949 —23.803860 0 2.404 —3.033 6 12.67161 —3.43609
1 3.033114 —2.404234 11 22.567854 —26.157246 1 4.91594 —0.30408 7 14.33020 —4.05366
2 4.960729 —4.898194 12 24.531429 —28.510214 2 6.30329 —0.89773 8 15.99881 —4.66448
3 6.905358 —7.289727 13 26.495564 —30.862849 3 7.82330 —1.53726 9 17.67433 —5.26955
4 8.854700 —9.660424 14 28.460169 —33.215214 4 9.40720 —2.17744 10 19.35465 —5.86978
5 10.80784 —12.02344 15 30.425175 —35.567355 5 11.0279 —2.81083 11 21.03839 —6.46596
6 12.76384 —14.38266 16 32.390524 —37.919308
7 1472199 —16.73969 17 34.356173 —40.271103 ded:(1_299— 2.25)n+0.58-0.42, (N,r.)—sco.
8 16.68179 —19.09530 18 36.322082 —42.622761 F+ (20)
9 18.64286 —21.44994 19 38.288221 —44.974301 This leads to the spacing

1. Odd perturbations @Wodd, , ; — “odd, (1209-225), (nr.)—ee (2

(i) Large black holesAs discussed for the first time in rs

[17] these exhibit a pure imaginary fundamental mdsiee
Table 1X). For large black holes, this mode is slowly damped
and scales as the inverse of the horizon radius. Our analysﬁ
for higherl’s indicates that in the large black hole regime an
excellent fit to this fundamental pure imaginary mode is

which, as our results indicate is agdimdependent. Again,
ge offset in Eq(20) depends orh.

(i) Intermediate black holeRResults for the odd QN fre-
quencies of an intermediate (=1) black hole are shown in
Table X. With an error of about 5% the limiting value for the
(I-1)(1+2) frequency is, fol =2,

® =————"j, r,—om, 19
odd,_o 3r. - 19 wodg~ (1.97-2.35)n+0.93-0.32, n—». (22

This generalizes a previous result by Berti and Kokki#$  We note that here too the offset in E§2) does depend oh

for the|=2 case. The simplicity of this formuléwhich is  but not the asymptotic spacing, with a numerical error of
just a fit to our numerical datadeads us to believe it is about 5%.

possible to find an analytical explanation for it, but such (iii) Small black holesThe behavior for small black holes
explanation is still lacking. In the large black hole regime,is shown in Tables XI and Xll. As the black hole gets
asymptotically for high overtones one finds, for2, for  smaller, the pure imaginary mode gets more damped: the
example, imaginary part increases, as can be seen from Table XlI,

TABLE XIl. The fundamental (=0) QNMs corresponding tb=2 odd gravitational perturbations of a
small Schwarzschild-AdS BH for several valuesrof.

ry Re won]: IMLwgn]: Iy R wonl: ImLwonl:
0.8 (n=0) 0 —3.045373 0.516=1) 3.03759 —0.71818
0.8 (h=1) 2.89739 —1.69556 0.4 3.16209 —0.43092
0.7 (h=0) 0 —3.83538 0.3 3.35487 —0.17320
0.7 (n=1) 2.90665 —1.34656 0.2 3.62697 —0.01792
0.6 (h=0) 0 —4.901973 0.1 3.84839 —0.00005
0.6 (n=1) 2.95550 —1.02196 1/15 3.90328 —0.00001
0.5 (n=0) 0 —6.40000 1/20 3.92882 —0.000002
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TABLE XIIl. QNMs corresponding td =2 even gravitational TABLE XV. QNMs corresponding td =2 even gravitational
perturbations of a large Schwarzschild-AdS BH, €100). For  perturbations of a small Schwarzschild-AdS BH,&0.2). As-
large n, one findSweyedr+ =(1.299-2.25)n+0.58-0.42. The  ymptotically for large n one finds approximatelyweye~ (1.61
corresponding spacing between consecutive modes seems to be).6G)n+2.7+0.37.
|-independent.

n waQN] |m[wQN] n Rd:wQN] Im[(l)QN]
3.56571 —0.01432 3 7.65872 —1.42994

0 184.97400 —266.351393 966.609780—1616.695872

1 316.17838 —491.584999

0
1 483170 —0.26470 4 9.20424 —2.04345
1096.56635—1841.681256 5

6.17832 —0.82063 5 10.78800 —2.65360

6
7

446.50884 —716.674054 8 1226.51495-2066.664293
9

576.62103 —941.70468 1356.45821~-2291.645761  QOne can see this more clearly from Table XlI, where in fact
706.65039 —1166.71147 10 1486.39776-2516.626168 [Of Very small_ black holes the frequency rap_idly qpproaches
Eq. (23). Again, for small black holes, the imaginary part
836.64066 —1391.70679 50 6683.51993-11515.70869 does not scale with the horizon area, by the reasons ex-
plained before, in Sec. Il B.

In conclusion, the higher overtones of odd perturbations
where we show the two lowest QN frequencies for smallfollow a pattern very similar to the scalar case. We note that
black holes with decreasing radius. As mentioned by Bertfhe asymptotic behavior sets in very quickly, much like what
and Kokkotag 18] the ordering of the modes here should behappened for scalar and electromagnetic perturbations. Typi-
different. However, since one can clearly distinguish thiscally the formulas yielding the asymptotic behavior work
pure imaginary mode as belonging to a special family, wequite well for n>10. We are now able to prove that for
shall continue to label it with=0. We have not been able to sufficiently high frequencies the scalar and gravitational per-
follow this mode for black holes with, <0.5, and so Table turbations are isospectral, a mystery that remaineflL i,

XIl does not show any pure imaginary modes for a horizonThis is done in Sec. IV A below.

radius smaller than 0.5. We note that, as for the scalar and )

electromagnetic cases, here too the modes are evenly spaced, 2. Even perturbations

with a spacing which seems to be independeritraf matter Let us now briefly discuss the even modes. As found pre-
if the black hole is Iarge or small. For very small black h0|es,vious|y [17] these modes behave very similar to the scalar
the frequencies reduce to their pure AdS values, computed ignes. Yet, the even gravitational modes are stipulated by a
the Appendix, to wit more complicated potential, and we have to truncate the se-
ries in power ofx—x, at largerN, which makes the whole
procedure more time consuming. That is why when consid-
ering small black holes we were restricted only by the first
seven modes in that case. It is, however, sufficient to see that

TABLE XIV. QNMs corresponding td =2 even gravitational even gravitational QNMs, similar to other kinds of perturba-
perturbations of an intermediate Schwarzschild-AdS BH=<1).  tions, tend to arrange into a equidistant spectrum under the
Asymptotically for largen one finds approximatelye,e~(1.96  increasing of. We show in Tables XIlI-XVI the numerical

a|l b~ | w0 DN

wodd=2n+|+2, r,—0. (23)

—2.35)n+2.01-15. results for the QN frequencies of even gravitational pertur-
. _ _ _ bations.
n Rdoq: Imlogy: N Roqy]:  Imlogy]: (i) Large black holesResults for the QN frequencies of
0 3.017795 —1.583879 10 21.68949 —24.98271 Iarge black holes are shown in Table XIII. In this regime one
finds forl =2 even perturbations
1 4559333 —3.810220 11  23.64402 —27.33549
TABLE XVI. The fundamental i=0) QNMs corresponding to
2 6.318337 —6.146587 12  25.60052 —29.68799 | =2 even gravitational perturbations of a small Schwarzschild-AdS
3 8168524 -8500194 13 27.55860 —32.04026  BH for several values of, .
4 10061220 —10.85631 14 2951796 —34.39234 r, Rdooy]: IMwoy]: ry Rdoon:  IMwonl:
5 11.976813 —13.21224 15 31.47838 —36.74424 0.8 2.91541 —1.18894 0.3 3.29299 —0.14103
6 13.906140 —15.56749 16  33.43969 —39.09600 0.7 2.90591 -—0.98953 0.2 3.56571 —0.01432
7 15.844371 —17.92208 17 35.40174 —41.44762 0.6 2.92854 —0.78438 0.1 3.80611 —0.00005
8 17.788721 —20.27609 18 37.36444 —43.79914 0.5 2.98985 —0.57089 1/15 3.8735 —0.00001
9 19.737469 —22.62960 19 39.32769 —46.15057 0.4 3.10317 —0.35043 1/20 3.90852 —0.000002
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Weven are related to one another vidyy=W?+ dW/dr, + 8,
. :(1299— 225)n+188— 2.66, (n,r+)—>00, Veven:WZ_dW/dr* _,’_ﬁ’ Where,8= _ a2+ 2a3+a4/9M 2_
(24  The function W is W=2M/r?+ —3~2a/3r +3a*+2a”
+27M?/3a(3M + ar)— 3 (a/M+ a?/M +9M/ a). For
leading to the spacing more details we refer the reader [tb7]. We shall now see

that a similar method can be applied to show that in the large

ven, black hole regime, scalar and gravitational perturbations are

=(1.299-2.25), (n,ry)—e, isospectral for large QN frequencies. To begin with, we note
(25)  that the potentialy/l andV2 defined by

Weven, ;@

M

which once more turns out to Heindependent. All the re- ~
sults concerning the spacing of frequencies for large black
holes have a very good precision, since in this regime it is
possible to go very far out in overtone numkgmpically n and
=300 is enough to achieve a 0.1% accuracy for the spacing

(i) Intermediate black hole$n Table XIV we show some v ~( a 6M

: (28)

of the lowest lying even gravitational QN frequencies for an ' (29

intermediate black hole with, =1. For a black hole with
this size, one finds again that the spacing does not seemto  ~ ., .,
depend on the angular numbefor very high overtone num- with f=r=/R + a/2 —2M/r, anda any constant, are super-

ber n. With an error of about 5% the limiting value for the Partner potentials. The superpotenti is in this case is
frequency is, fol =2, given by

~ — _ - r a 2M
Weyerr-(1.96-2.35)n+2.01-1.5, n—oo. (26) f= 2 (30)

We note that here too the offset in EG7) does depend oh

but(_p())tsthe I?E)I/mﬁtﬁtif S‘IPr?CiEgH ot | black fol Thus the two superpartner potentidlé andV2 can be ex-
iii) Small black holesThe behavior for small black holes . =
is shown in Tables XV and XVI. Our search for the QN pressed in terms o as

frequencies of small black holes, i.e., black holes with

. : ~ - dW
<1 revealed again what was expected on physical grounds: V1=W?3+ . V2=W?2— . (32)
for small black holes, the QN frequencies approach the fre- dr, dr,
qguencies of pure AdS spacetineee the Appendix In fact

Why are these two potentials of any interest? Because in the

larger , limit, which we shall take to be ,>a, we havef
Weven = 2N+1+2, 1,—0. (7  ~r?- 2M/r. Notice now that in tf13is large.. Iim;t the sca-
lar potential (4) is Vg~ f(2+2M/r®), with f~r<— 2M/r,
In Table XV we show the lowest lying QN frequencies for a Since in this limit and withr . >1, one had(I+1)/r?<2.
small black hole (. =0.2). We stress that the values pre- ThusV1 reduces to the scalar potential av#l to the gravi-
sented in Table X\Mas a matter of fact, all the tables con- tational odd potential, provided we take=I(I+1). It then
taining data for small black holggor the asymptotic spacing follows from the analysis if17] (Sec. Il Q that for large
between modes may have an error of about 2%. In fact it i®lack holes these two potentials should yield the same fre-
extremely difficult to find very high overtones of small black qU€NcIes.
holes, and so it is hard to give a precise extimate of the value
they asymptote to. In Table XVI we show some of the fun- B. Future directions
dame_ntal even QN frequencies for small black holes of de- ¢ preceding sections have shown that the QNMs of
creasing radius, and one can clearly see how the fundamentgly,yarzschild-AdS black holes have a universal behavior in
frequency approaches the pure AdS value given in the Apge asymptotic regime of high overtones. This was verified
pendix. explicitly and with great accuracy for the large black hole
regime, where we showed numerically that the spacing does
IV. DISCUSSION OF THE RESULTS not depend on the perturbation in question and is equal to

we find

A. Why are the scalar and gravitational perturbations Wpr1— O
isospectral in the large black hole regime? r—=(1.299— 2.25), (n,r)—ce, (32

In a previous pape(Sec. IlIC in[17]), we have shown '

why the odd and even gravitational perturbations yield thé/Ne conjecture that the asymptotic behavior is the same for
same QN frequencies for large frequencies. The whole apall kinds of perturbations irrespectively of the black hole
proach was based on the fact that the odd and even gravitaize, i.e., a fixed horizon radius. Schwarzschild-AdS black
tional potentials are superpartner potentigld], i.e., they hole will have an asymptotic spacing between consecutive
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QN frequencies which is the same for scalar, electromaghole spacetime. For a black hole with toroidal topology, a
netic, and gravitational perturbations. The difficulty in ex- toroidal black hole, the coordinaig ranges from 0 to Z,
tracting very high overtones for small black holes, howeverand ¢ ranges from 0 to Z as well. For the cylindrical black
prevents us from having an irrefutable numerical proof ofhole, or black string, the coordinat¢ has the range-«
this. It would be extremely valuable to have some kind of<R@<<, and O<¢<2mw. For the planar black hole, or
analytical scheme for extracting the asymptotic behaviorblack membrane, the coordinageis further decompactified
much as has been done for the asymptotically flat space by «<R¢< [19]. The fundamental QN frequencies for
Motl and Neitzke[4]. However, it looks quite difficult to these black holes were computed #0], where it was veri-
make any analytical approximation in asymptotically AdSfied that they follow the same pattern as for Schwarzschild-
spaces, although there have been some attempts at this ®dS black holes. Indeed one easily sees that in the large
cently (see, for example, Musiri and Siopgis4]). We also  black hole regime they both should yield the same results as
note that the spacin(B2) was already found to be true by the potentials are equal in this reginieompare the poten-
Berti and Kokkota$18] for the scalar and gravitational cases tials in [20] with the ones in the present workn particular
for the lowest radiatable multipole, i.¢50 andl=2 scalar the asymptotic behavior will be the same.
and gravitational perturbations, respectively. We have con-
cluded that, surprisingly, the spaci(gp) also works for the
electromagnetic case and for any valud.df was observed
that, despite having such different potentials the scalar, the We have done an extensive search for higher overtanes
electromagnetic, and gravitational QN frequencies have thef the QNMs of Schwarzschild-AdS BH corresponding to
same asymptotic behavior. Can one formulate some verycalar, electromagnetic, and gravitational perturbations. We
general conditions the potentials should obey in order tthave shown thatti) No matter what size the black hole is,
have the same asymptotic solutions? This is still an opefhe QN frequencies are evenly spaced, both in the real and in
question. the imaginary component, for high overtone numhbgfii)
There has been recently an exciting development trying tdhe spacing between consecutive modes is independent of
relate the asymptotic QN frequencies with the Barberothe perturbation. This means that scalar, electromagnetic, and
Immirzi parameter[4,5]. In fact it was observed, in the gravitational perturbations all have, asymptotically, the same
Schwarzschild case, that asymptotically for high overtonesspacing between modes. This is one of the major findings in
the real part of the QN frequencies was a constantthis work, together with the fact that this spacing seems to be
l-independent, and using sonfeot very clear yetcorre-  also independent of the angular quantum nunibéii) We
spondence between classical and quantum states, was just there able to prove that the scalar and gravitational QN fre-
right constant to make Loop Quantum Gravity give the cor-quencies must asymptotically be the sartie) The electro-
rect result for the black hole entropy. Of course it is only magnetic QN frequencies of large black holes have a number
natural to ask whether such kind of numerical coincidencef first overtones with pure imaginary parts, and the higher
holds for other spacetimes. We have seen that apparently wRe black hole radius, , the higher the number of these first
are facing, in AdS space, a universal behavior, i.e., thgure damped, nonoscillating modes;) Finally, we have
asymptotic QN frequencies do not depend on the kind otomputed analytically the electromagnetic and gravitational
perturbations, and also do not dependloHowever, and in pure AdS modes, and we have shown numerically that the
contrast with asymptotically flat space, the real part of theQN frequencies of very small black holes asymptote to these
asymptotic QN frequency is not a constant, but rather inpure AdS modes.
creases linearly with the mode numipeiThis is no reason to
throw off the initial motivation of seeking some kind of re-
lation between Loop Quantum Gravity and QNMs, after all,

there are no predictions for AdS space. It is a pleasure to acknowledge stimulating correspon-
Finally we point out that the asymptotic behavior studiedgence related to this problem with Veronica Hubeny. This
here for the Schwarzschild-AdS black hole will hold also forwork was partially funded by Fundaz para a Ciacia e
other black holes in asymptotically AdS. One examp|e OfTecnologia (FC'D_PortugaJ through project PESO/PRO/
these is the black hole with nontrivial topolog$9]. The  2000/4014. V.C. also acknowledges financial support from
general line element for this spacetime 18] FCT through PRAXIS XXI program. J.P.S.L. acknowledges
5 142 2o 5 financial support from ICCTI/FCT and thanks Observiato
ds’=f(r)dt?—f(r)"*dr’=r*(d¢*+d¢?), (339  Nacional do Rio de Janeiro for hospitality.

V. CONCLUSION
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APPENDIX: PURE ADS NORMAL MODES
r2  AMR FOR ELECTROMAGNETIC AND
f(r)= 2T (34 GRAVITATIONAL PERTURBATIONS

In this appendix we shall briefly outline how to compute
whereM is the ADM mass of the black hole, arillis the  the pure modes of AdS spac¢mo black hole,M=0) for
AdS radius. There is a horizon at =(4M)°R. The range electromagnetic and gravitational perturbations. The scalar
of the coordinate® and ¢ dictates the topology of the black case was dealt with by Burgess and Lutk2]. In pure AdS
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space the electromagnetic and gravitational potenttzish
odd and evenare

r2

R2

[(1+1)
2

\Y; (A1)

r

as can be seen by substituting=0 in Egs.(5)—(7). Also in
this case the relation(r, ) takes the simple form

r *
r=Rtan—, (A2)

R

and therefore the potentighl) takes a simple form in the,
coordinate, namely

I(1+1)

r*)z'

R

R2sin

(A3)

To proceed, we note that the change of variable

PHYSICAL REVIEW B8, 044024 (2003

o=4x(1-x), (AB)

T=2(1-2x). (A7)

To put this in a more standard form, one changes wave func-
tion by defining

P (x)=x—1xTD27(x),

and one gets the following standard hypergeometric differen-
tial equation forZ:

(A8)

P20 | 920 | 0=0, (A9)

Ix2 X

with ¢ defined in Eq(A6) and
7=6—4l(x—1)— 12, (A10)
A=—4—4] -1+ »?. (A11)

By requiring well behaved fields everywhere a simple analy-

=sin(r,/R)? leads the wave equation to a hypergeometricsis[25] then shows that the following constraint needs to be

equation,
P THD) |G o, (Ad)
ax? X g2
with
=4 wR)>X(1—x)—4l(I1+1)(1-X), (A5)

satisfied:

wR=2n+1+2. (A12)

These are the pure AdS frequencies for electromagnetic and
gravitational perturbations, corresponding to pure AdS nor-
mal modes of the corresponding fields. One can compare the
frequencies in Eq(A12) with the scalar frequencies corre-
sponding to pure AdS mod¢&1], o R=2n+1+3.
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