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Quasinormal frequencies of Schwarzschild black holes in anti–de Sitter spacetimes:
A complete study of the overtone asymptotic behavior
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We present a thorough analysis of the quasinormal~QN! behavior associated with the decay of scalar,
electromagnetic, and gravitational perturbations of Schwarzschild black holes in anti–de Sitter~AdS! space-
times. As is known, the AdS QN spectrum crucially depends on the relative size of the black hole to the AdS
radius. There are three different types of behavior depending on whether the black hole is large, intermediate,
or small. The results of previous works, concerning lower overtones for large black holes, are completed here
by obtaining higher overtones for all three black hole regimes. There are two major conclusions that one can
draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds
for all three types of regime, large, intermediate, and small black holes, independently ofl, where l is the
quantum number characterizing the angular distribution; second, the spacing between modes is apparently
universal in that it does not depend on the field; i.e., scalar, electromagnetic, and gravitational QN modes all
have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations
are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials.
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I. INTRODUCTION

Any physical system has its modes of vibration. For no
dissipative systems these modes, forming a complete se
called normal, each mode having a given real frequency
oscillation and being independent of any other. The sys
once disturbed continues to vibrate in one or several of
normal modes. On the other hand, a black hole, as any o
gravitational system, is a dissipative system since it em
gravitational radiation. One has to consider, instead, qu
normal modes~QNMs! for which the frequencies are n
longer purely real, showing that the system is losing ene
QNMs are in general not complete and though insufficien
fully describe the dynamics, contain a great amount of inf
mation. For instance, they dominate the signal during
intermediate stages of the perturbation. Indeed, calculat
ranging from the formation of a black hole in gravitation
collapse to the collision of two black holes provide cle
evidence that no matter how one perturbs a black hole
response will be dominated by the QNMs. Through t
QNMs, one can also probe the black hole mass, elec
charge, and angular momentum by inspection of their ch
acteristic waveform, as well as test the stability of the ev
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horizon against small perturbations. Moreover, the interes
QNMs has now broadened, they might be related to fun
mental physics. In the context of black holes in asympto
cally flat spacetimes the importance of QNMs has long a
been recognized. Due to a crescent increase of interes
black holes in asymptotically de Sitter~dS! and asymptoti-
cally anti–de Sitter~AdS! spacetimes the study of QNMs ha
now spread into these.

In asymptotically flat spacetimes the idea of QNM
started with the work of Regge and Wheeler@1#, where the
stability of a black hole was tested, and were actually fi
numerically computed by Chandrasekhar and Detweiler s
eral years later@2#. It continues to be a very active field du
to the eminent possibility of detecting gravitational wav
from astrophysical sources. There are two standard revi
in the field@3#. QNMs in asymptotically flat spacetimes hav
recently acquired a further importance since it has been
posed that the Barbero-Immirzi parameter, a factor int
duced by hand in order that Loop Quantum Gravity rep
duces correctly the black hole entropy, is equal to the r
part of the quasinormal~QN! frequencies with a large imagi
nary part@4# ~see@5# for a short review!. For further devel-
opments in calculating QN frequencies in Kerr spacetim
and in asymptotically flat black holes spacetimes
d-dimensions see@6#. Some other recent calculations of Q
frequencies in asymptotically flat black hole spacetimes
be found in@7#.
©2003 The American Physical Society24-1
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In asymptotically dS spacetimes the calculation of Q
frequencies was first done by Moss and collaborators@8# in
which the stability of the Cauchy horizon of a charge bla
hole was analyzed. In Cardoso and Lemos@9# an analytical
method was devised to study the case in which the black
and the cosmological horizons are very close to each ot
This analytical method has recently been extended to hig
dimensional Schwarzschild dS black holes@10# and also to
higher order in the difference between the cosmological
horizon radius@11#. A different analytical approach has als
been developed in@12#.

In asymptotically AdS spacetimes, which is the bac
ground spacetime for our paper, there has been a g
amount of work because the AdS conformal field theo
~CFT! correspondence conjecture@13# makes the investiga
tion of QNMs important. According to it, the black hol
corresponds to a thermal state in the conformal field the
~CFT!, and the decay of the test field in the black hole spa
time corresponds to the decay of the perturbed state in
CFT. The dynamical time scale for the return to therm
equilibrium can be done in AdS spacetime and then tra
lated onto the CFT, using the AdS/CFT corresponden
Many authors have now delved into these calculations
several different black hole settings in several different
mensions~see@14# for a sample!. In this paper we are inter
ested in the four-dimensional Schwarzschild-AdS spaceti
The lowest lying modes~i.e., the less damped ones para
etrized by the overtone numbern50) for this spacetime
were found by Horowitz and Hubeny@15#, and completed by
Konoplya @16# for the scalar case, and by Cardoso and L
mos @17# for the electromagnetic and gravitational case. R
cently, Berti and Kokkotas@18# have confirmed all these re
sults and extended them to Reissner-Nordstro¨m-AdS black
holes. Here, we shall take a step further in carrying on
program by computing numerically, through an extens
search, the high overtone QN frequencies for scalar, elec
magnetic, and gravitational perturbations in t
Schwarzschild-AdS black hole. We shall do an extens
search for the high overtone QN frequencies, (n>1). We
find that the modes are evenly spaced for frequencies wi
large imaginary part. Moreover, the scalar, electromagne
and gravitational perturbations all possess, asymptotically
high overtonesn, QN frequencies with the same spacing, a
this spacing isl-independent. While we can numerical
prove this with great accuracy for large black holes, it
mains just a conjecture for small and intermediate bla
holes. We shall also see that the QN frequencies of the
oidal black hole with nontrivial topology@19# are identical to
the QN frequencies of a large Schwarzschild-AdS black h
@20#.
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II. EQUATIONS AND NUMERICAL METHOD

We shall deal with the free evolution of massless class
fields in the background of a Schwarzschild-AdS spacet
with the metric given by

ds25 f ~r !dt22
dr2

f ~r !
2r 2~du21sin2udf2!, ~1!

where f (r )5r 2/R2 1122M /r , R is the AdS radius, andM
the black hole mass~Newton’s constantGN and the velocity
of light are set to one!. The evolution of scalar, electromag
netic, and gravitational fields can be followed through t
Klein-Gordon, Maxwell, and Einstein equations, respe
tively. If one assumes that the fields are a small perturba
in the background given by Eq.~1!, then all the covariant
derivatives can be taken with respect to the metric~1!. It is
then possible to show that the evolution equations are a
the same type, i.e., a second order radial differential equa
~for more details we refer the reader to@15# for the scalar
case and to@17# for the electromagnetic and gravitation
case!. The wave equation is

]2C~r !

]r
*
2

1@v22V~r !#C~r !50, ~2!

where the tortoise coordinater * is defined as

]r

]r *
5 f ~r !, ~3!

and the potentialV appearing in Eq.~2! depends on the spe
cific field under consideration. Explicitly, for scalar perturb
tions,

Vs5 f ~r !F l ~ l 11!

r 2
1

2M

r 3
1

2

R2G , ~4!

while for electromagnetic perturbations,

Vem5 f ~r !F l ~ l 11!

r 2 G . ~5!

The gravitational perturbations decompose into two s
@17#, the odd and the even parity one. For odd perturbati
the potentialV(r ) in Eq. ~2! is

Vodd5 f ~r !F l ~ l 11!

r 2
2

6M

r 3 G , ~6!

while for even perturbations, we have
Veven5
2 f ~r !

r 3

9M313a2Mr 21a2~11a!r 313M2S 3ar 13
r 3

R2D
~3M1ar !2

, ~7!
4-2
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wherea5 1
2 @ l ( l 11)22#. In all cases, we denote byl the

angular quantum number, that gives the multipolarity of
field. We can of course rescaler, r→r /R. If we do this, the
wave equation takes again the form~2! with rescaled con-
stants, i.e.,r 1→ r 1/R , v→vR, where r 1 is the horizon
radius. So, we can takeR51 and measure everything i
terms ofR, the AdS radius. Equation~2! should be solved
under appropriate boundary conditions, i.e., incoming wa
near the horizon,

C;e2 ivr
* , r→r 1 , ~8!

and no waves at infinity,

C50, r→`. ~9!

We note that there are other reasonable boundary condi
at infinity, in particular for the gravitational perturbation
For instance, one can define Robin boundary condition
such a way as to preserve certain dualities between the
and the even gravitational perturbations. However, it w
verified numerically by Moss and Norman@8# that Dirichlet
or Robin boundary conditions yield approximately the sa
result, so we shall keepC50,r→`. Moreover, Cardoso and
Lemos @17# proved that for high overtone QN frequenci
the duality is preserved, so in this regime the distinction
irrelevant. Thus to compute the QN frequenciesv such that
the boundary conditions~8! and~9! are preserved, we follow
the Horowitz-Hubeny approach@15#. Within this approach
we need to expand the solution to the wave equation aro
x151/r 1 (x51/r ),

C~x!5 (
k50

`

ak~v!~x2x1!k, ~10!

and to find the roots of the equationC(x50)50. First, one
should substitute Eq.~10! into the wave equation~2! in order
to obtain a recursion relation forak @15#. Then, one has to
truncate the sum~10! at some largek5N and check that for
greaterk the roots converge to some true root which is t
sought QN frequency. The higher the overtone number,
the smaller the black hole size, the larger the numberN at
which the roots of the equationC(x50)50 converge. Yet,
since in the series~10! each next term depends on all th
preceding terms through the recursion relations, whenN is
too large, the tiny numerical errors in the first terms st
growing asN;102 to 103 or greater. As a result the root
suffer a sharp change for a small change on any of the in
parameters, displaying a ‘‘noisy’’ dependence. To avoid t
we have to increase the precision of all the input data and
recursion relation we are dealing with from the standard
digit precision up to a precision such that further increas
of it will not influence the result for the QN frequency. Fo
small black holes the roots start converging at very largeN
only, for instance, whenr 151/20 we can truncate the serie
at N;33104, but not before. Since for finding roots of Eq
~9! we have to resort to the trial and error method, the ab
procedure consumes much time, but nevertheless allow
to compute QNMs of small AdS black holes@16#, and to find
the higher overtones we are seeking.
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III. NUMERICAL RESULTS

In this section we will present the numerical results o
tained using the numerical procedure just outlined in the p
vious section. The results will be organized into three s
tions: scalar, electromagnetic, and gravitation
perturbations. For each field we shall also divide the res
into three different regimes: large, intermediate, and sm
black holes, since the results depend crucially on the reg
one is dealing with. Here a large black hole stands fo
black hole with r 1@1, an intermediate black hole is on
with r 1;1, and a small black hole has a horizon radi
r 1!1. We shall then try to unify these results. For ea
horizon radiusr 1 and angular quantum numberl there is an
infinity of QN frequencies~or overtones!. We shall order
them according to the standard procedure, by increasing
imaginary part. Accordingly, the fundamental QN frequen
is defined as the one having the lowest imaginary part~in
absolute value! and will be labeled with the integern50.
The first overtone has the second lowest imaginary part
is labeled withn51, and so on. The QN frequencies al
have a real part, which in general display an increase al
with the imaginary part. To the lowest value of the imagina
part corresponds the lowest value of the real part, to
second lowest value of the imaginary part corresponds
second lowest value of the real part, and so on. Thusn, the
overtone number, is also a number that in general increa
with the real part of the frequency~or energy! of the mode.
This seems to be a characteristic of AdS space only, du
the special boundary conditions associated with this spa
time. This, in a sense, is to be expected since the wave e
tion to be studied is a Schro¨dinger type equation, where fo
quantum nondissipative bound systems, such as the hy
gen atom or a particle in an infinite well potential, the pri
cipal quantum numbern ~which here has been called th
overtone number! appears due to the boundary conditions
the radial equation, a typical eigenvalue problem, and is
lated directly with the frequency of vibration of the orbita
The similarity is not full, though, since the boundary cond
tion at the black hole is of a different kind. However, for pu
AdS spacetimes, when there is no black hole and the bou
ary conditions are of infinite well type, the overtone numb
n is indeed a principal quantum number~see the Appendix!.

A. Scalar quasinormal frequencies

The fundamental scalar QN frequencies were first co
puted by Horowitz and Hubeny@15# for intermediate and
large black holes. Konoplya@16# extended these calculation
to the case of small black holes. Recently Berti and Kokko
@18# rederived all these results. Here we do for the first tim
an extensive search for higher overtones of scalar pertu
tions. Some of the lowest lying modes we find are shown
Tables I, II, and III for large, intermediate, and small bla
holes, respectively.

~i! Large black holes.As proven by Horowitz and Hubeny
@15# in the large black hole regime the frequencies must sc
4-3
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as the horizon radius@this can also be proven easily an
directly from the differential equation~2!#. We show in Table
I the results for a spherically symmetric mode (l 50) for a
black hole withr 15100 which is therefore sufficient to infe
the behavior of all large black holes. The fundamental f
quency agrees with previous results@15#. Perhaps the mos
interesting result in this large black hole regime is that
ymptotically for high overtone numbern the frequencies be
come evenly spaced and behave like, forl 50,

vs

r 1
5~1.29922.25i !n11.85622.673i , ~n,r 1!→`.

~11!

TABLE I. QN frequencies corresponding tol 50 scalar pertur-
bations of a large Schwarzschild-AdS black hole~BH! (r 1

5100). It can be seen that for largen the modes become evenl
spaced. Although not shown here, our numerical data indicates
this happens for all values ofl and also that the spacing is the sam
regardless of the value ofl. For l 50 and for highn the QN fre-
quencies go likevs/r 1 5(1.29922.25i )n11.85622.673i . The
corresponding spacing between consecutive modes seems
l-independent.

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 184.95344 2266.38560 7 1096.4487621841.88813

1 316.14466 2491.64354 8 1226.3831722066.89596

2 446.46153 2716.75722 9 1356.3122222291.90222

3 576.55983 2941.81253 10 1486.2375322516.90740

4 706.57518 21166.8440 50 6682.78814211516.9823

5 836.55136 21391.8641 299 39030.810 267542.308

6 966.50635 21616.8779 300 39160.7272267767.3091

TABLE II. QN frequencies corresponding tol 50 scalar pertur-
bations of an intermediate Schwarzschild-AdS BH (r 151). As-
ymptotically for large n one finds approximatelyvs;(1.97
22.35i )n12.7622.7i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 2.7982 22.6712 10 22.44671 226.20913

1 4.75849 25.03757 11 24.41443 228.55989

2 6.71927 27.39449 12 26.38230 230.91059

3 8.46153 29.74852 13 28.35029 233.26123

4 10.6467 212.1012 14 30.31839 235.61183

5 12.6121 214.4533 15 32.28658 237.96238

6 14.5782 216.8049 16 34.25485 240.31290

7 16.5449 219.1562 17 36.22318 242.66340

8 18.5119 221.5073 18 38.19157 245.01387

9 20.4792 223.8583 19 40.16002 247.36431
04402
-

-

Thus the spacing between frequencies is

vsn11
2vsn

r 1
5~1.29922.25i !, ~n,r 1!→`. ~12!

Moreover, although the offset 1.85622.673i in Eq. ~11! is
l-dependent~this number is different forl 51 scalar pertur-
bations, for example!, this asymptotic behavior for the spac
ing ~12! holds for any value ofl. In fact our search of the QN
frequencies for higher values ofl reveal that the results ar
very similar to those in Table I. We have gone up tol 54 for
scalar perturbations and the results were quite insensitiv
l. The asymptotic behavior sets in very quickly as one
creases the mode numbern. Typically for n510 Eq. ~11!
already gives a very good approximation. Indeed, forn
510 we find numerically~see Table I! vs51486.23753
22516.90740i for a r 15100 black hole, while the
asymptotic expression givesvs51484.622517.3i .

~ii ! Intermediate black holes.In Table II we show some of
the lowest lying scalar QN frequencies for an intermedi
black hole withr 151. For a black hole with this size, on
finds again that the spacing does not depend on the ang
numberl for very high overtone numbern. With an error of
about 2% the limiting value for the frequency is, forl 50,

vs;~1.9722.35i !n12.7622.7i , n→`. ~13!

For QN frequencies belonging to differentl ’s the offset in
Eq. ~13! is different, but as far as we can tell numerically, n
the asymptotic spacing implied by Eq.~13!. Expression~13!
for the asymptotic behavior works well again forn.10.

~iii ! Small black holes.Our search for the QN frequencie
of small black holes, i.e., black holes withr 1!1, revealed
what was expected on physical grounds, and was uncov
numerically for the first time in@16# for the fundamental
mode: for small black holes, the QN frequencies appro
the frequencies of pure AdS spacetime@21# ~see also the
Appendix!. In fact we find

vs52n1 l 13, r 1→0. ~14!

at
,

be

TABLE III. QN frequencies corresponding tol 50 scalar per-
turbations of a small Schwarzschild-AdS BH (r 150.2). Asymp-
totically for large n one finds approximatelyvs;(1.6920.57i )n
12.2920.46i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 2.47511 20.38990 6 12.45222 23.89179

1 4.07086 20.98966 7 14.14065 24.46714

2 5.72783 21.57600 8 15.83026 25.04186

3 7.40091 22.15869 9 17.52070 25.61610

4 9.08118 22.73809 10 19.21191 26.18997

5 10.7655 23.31557 11 20.90359 26.76355
4-4
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In Table III we show some results for a small black hole w
r 150.2. We stress that the values presented in Table III
the asymptotic spacing between modes may have an err
about 2%. In fact it is extremely difficult to find very hig
overtones of small black holes, and so it is hard to giv
precise extimate of the value they asymptote to.

In summary, we can say that the QN frequencies tend
be evenly spaced asymptotically asn gets very large, no
matter if the black hole is large, intermediate, or sma
Moreover, the spacing between consecutive modes is, a
as we can tell, independent of the angular quantum numbl.

B. Electromagnetic quasinormal frequencies

The fundamental electromagnetic QN frequencies w
computed for the first time by Cardoso and Lemos@17#. Re-
cently Berti and Kokkotas@18# have redone the calculatio
showing excellent agreement. Here we extend the resul
higher overtones. Some of the lowest lying electromagn
frequencies are shown in Tables IV–VIII.

~i! Large black holes.As found in @17# large black holes
show a somewhat peculiar behavior: some of the lowest
ing modes have pure imaginary frequencies, and these
well described by an analytical formula@17#. A surprising
aspect unveiled for the first time by the present search is
the number of such modes decreases as the horizon ra
becomes smaller, as can be seen from Tables IV and V
other words, for very large black holes the number of ima
nary modes grows. For example, forr 151000 ~Table IV!
there are eight pure imaginary modes, forr 15100 there are
four such modes~see Table V!, and forr 1510 there are only
two. If one wants to go forr 1 larger than 1000, the compu
tation is very time consuming since we use a trial and e
method for finding new modes. However, not only is this
completely new piece of data, it also makes us think t
infinitely large black holes may have pure imaginary elect
magnetic QN frequencies for any overtone number. Perh
an infinitly large black hole cannot vibrate at all.

Again, we find that for large black holes andl 51, the
frequencies are evenly spaced with

vem

r 1
5~1.29922.25i !n211.501112i , ~n,r 1!→`,

~15!

TABLE IV. QNMs corresponding tol 51 electromagnetic per
turbations of a large Schwarzschild-AdS BH (r 151000). Notice
that now there are eight pure imaginary modes, still well descri
by Liu’s formula.

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 0 21500.004789 5 0 28985.232

1 0 22999.982599 6 0 210596.03

2 0 24500.093600 7 0 211644.76

3 0 25999.513176 8 1219.7 213566.42

4 0 27502.69385 9 2494.6 215847.06
04402
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and a spacing given by

vemn11
2vemn

r 1
5~1.29922.25i !, ~n,r 1!→`. ~16!

For different values of the angular quantum numberl, we
find the same spacing~16! between consecutive modes, a
though the offset in Eq.~15! depends onl. So, asymptotically
for largen and large horizon radius the spacing is the sa
as for the scalar case. This is surprising, especially since

d

TABLE V. QNMs corresponding tol 51 electromagnetic per-
turbations of a large Schwarzschild-AdS BH (r 15100). The first
four modes are pure imaginary and are well described by L
approximation@17#. For high n the QN frequencies obey, forl
51, vem/r 1 5(1.29922.25i )n211.501112i . The corresponding
spacing between consecutive modes seems to bel-independent.

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 0 2150.0479 10 799.6171 22171.826

1 0 2299.8263 11 927.812 22398.208

2 0 2450.9458 12 1056.153 22624.438

3 0 2595.3691 13 1184.620 22850.543

4 22.504 2799.194 14 1313.192 23076.546

5 162.256 21035.098 15 1441.856 23302.464

6 289.028 21263.537 16 1570.601 23528.310

7 416.247 21491.223 17 1699.416 23754.094

8 543.792 21718.409 18 1828.295 23979.824

9 671.598 21945.246 19 1957.229 24205.508

TABLE VI. QNMs corresponding tol 51 electromagnetic per-
turbations of an intermediate Schwarzschild-AdS BH (r 151).
Asymptotically for largen the modes become evenly spaced
mode number and behave asvem;(1.9622.36i )n11.4522.1i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 2.163023 21.699093 10 21.067466 225.61714

1 3.843819 24.151936 11 23.015470 227.98278

2 5.673473 26.576456 12 24.965381 230.34713

3 7.553724 28.980538 13 26.916889 232.71037

4 9.458385 211.37238 14 28.869756 235.07265

5 11.37722 213.75633 15 30.823790 237.43413

6 13.30526 216.13482 16 32.778838 239.79488

7 15.23974 218.50933 17 34.734776 242.15499

8 17.17894 220.88081 18 36.691500 244.51455

9 19.12177 223.24993 19 38.648922 246.87360
4-5
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behavior of the scalar and electromagnetic potentials
radically different. It is even more surprising the fact that th
asymptotic behavior does not depend onl, as the electromag
netic potential is stronglyl-dependent. Furthermore, from th
first electromagnetic overtones one could surely not an
pate this behavior.

~ii ! Intermediate black holes.In Table VI we show some
of the lowest lying electromagnetic QN frequencies for
intermediate black hole withr 151. For a black hole with
this size, one finds again that the spacing does not depen
the angular numberl for very high overtone numbern. With
an error of about 2% the limiting value for the frequency
for l 51,

vem;~1.9622.36i !n11.4522.1i , n→`. ~17!

We note that here too the offset in Eq.~17! does depend onl,
but not the asymptotic spacing.

~iii ! Small black holes.For small black holes, see Table
VII and VIII, the spacing seems also to be equal as for
scalar case, but since it is very difficult to go very high
mode numbern in this regime, the error associated in es
mating the asymptotic behavior is higher, and one canno
completely sure. Again, the electromagnetic QN frequenc
of very small black holes asymptote to the pure AdS elec
magnetic modes~see the Appendix, where we sketch the
computation!. Indeed we find that

TABLE VII. QNMs corresponding tol 51 electromagnetic per
turbations of a small Schwarzschild-AdS BH (r 150.2). Asymp-
totically for largen one finds approximatelyvem;(1.6820.59i )n
11.8720.04i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 2.63842 20.05795 6 12.00066 23.53148

1 3.99070 20.47770 7 13.66436 24.12974

2 5.49193 21.08951 8 15.33370 24.72479

3 7.07835 21.70859 9 17.00715 25.31725

4 8.70165 22.32191 10 18.68370 25.90758

5 10.3450 22.92920 11 20.36268 26.49615

TABLE VIII. The fundamental (n50) QNMs corresponding to
l 51 electromagnetic perturbations of a small Schwarzschild-A
BH for several values ofr 1 .

r 1 Re@vQN#: Im@vQN#: r 1 Re@vQN#: Im@vQN#:

1/2 2.25913 20.65731 1/10 2.85188 20.00064

1/3 2.40171 20.29814 1/12 2.88058 20.00030

1/4 2.53362 20.13364 1/16 2.91363 20.00016

1/5 2.63842 20.05795 1/18 2.92406 20.00009

1/8 2.80442 20.00565 1/20 2.93200 20.00002
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52n1 l 12, r 1→0. ~18!

This can be clearly seen from Table VIII, where we show t
fundamental mode for small black holes of decreasing
dius. As the horizon radius gets smaller and smaller, the f
damental frequency approaches the value of 310i , which is
indeed the correct pure AdS mode forl 51, n50, electro-
magnetic perturbations. It was conjectured by Horowitz a
Hubeny @15# that for very small black holes in AdS spac
the imaginary part of the QN frequency for spherically sy
metric perturbations should scale with the horizon area,
with r 1

2 . Their argument was based on a previous result@22#
for the absorption cross section for thel 50 component. This
conjecture was later verified numerically to be correct
Konoplya@16# for the l 50 case. From Table VIII it is, how-
ever, apparent that this scaling is no longer valid forl 51
perturbation, and indeed we find it is not valid forlÞ0 per-
turbations, be it scalar, electromagnetic, or gravitational p
turbations. The reason why the imaginary part no lon
scales with the horizon area forlÞ0 perturbations is due to
the fact that the partial absorption cross section only sc
with the horizon area forl 50 perturbations. For otherl ’s the
behavior is more complex, and it could be that there is
simple scaling, or even that the behavior is oscillatory w
the massM of the black hole. We refer the reader to@23# for
details on the absorption cross section of black holes.

C. Gravitational quasinormal frequencies

The fundamental gravitational QN frequencies were co
puted for the first time by Cardoso and Lemos@17#. We
remind that there are two sets of gravitational wave eq
tions, the odd and even ones. Although it was found@17# that
there is a family of the odd modes which is very slow
damped and purely imaginary, it was possible to prove t
for high frequencies both odd and even perturbations m
yield the same QN frequencies. We present the results
higher overtones of odd perturbations in Tables IX–XII, a
even perturbations in Tables XIII–XVI.

S

TABLE IX. QNMs corresponding tol 52 odd gravitational per-
turbations of a large Schwarzschild-AdS BH (r 15100). The fun-
damental QN frequency is purely imaginary and seems to be
described by the formulavn5052( l 21)(l 12)/3r 1 i valid only
in the large black hole regime. In the largen limit one finds
vodd/r 1 5(1.29922.25i )n10.5820.42i . The corresponding spac
ing between consecutive modes seems to bel-independent.

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 0 20.013255 6 836.55392 21391.86345

1 184.95898 2266.38403 7 966.50872 21616.87735

2 316.14887 2491.64242 8 1096.4509821841.88755

3 446.46505 2716.75629 9 1226.3852722066.89540

4 576.56293 2941.81172 10 1356.3142222291.90170

5 706.57797 21166.8433 50 6552.87704211291.9807
4-6
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1. Odd perturbations

~i! Large black holes.As discussed for the first time in
@17# these exhibit a pure imaginary fundamental mode~see
Table IX!. For large black holes, this mode is slowly damp
and scales as the inverse of the horizon radius. Our ana
for higherl ’s indicates that in the large black hole regime
excellent fit to this fundamental pure imaginary mode is

voddn50
52

~ l 21!~ l 12!

3r 1
i , r 1→`. ~19!

This generalizes a previous result by Berti and Kokkotas@18#
for the l 52 case. The simplicity of this formula~which is
just a fit to our numerical data! leads us to believe it is
possible to find an analytical explanation for it, but su
explanation is still lacking. In the large black hole regim
asymptotically for high overtones one finds, forl 52, for
example,

TABLE X. QNMs corresponding tol 52 odd gravitational per-
turbations of an intermediate Schwarzschild-AdS BH (r 151). As-
ymptotically for large n one finds approximatelyvodd;(1.97
22.35i )n10.9320.32i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 0 22 10 20.604949 223.803860

1 3.033114 22.404234 11 22.567854 226.157246

2 4.960729 24.898194 12 24.531429 228.510214

3 6.905358 27.289727 13 26.495564 230.862849

4 8.854700 29.660424 14 28.460169 233.215214

5 10.80784 212.02344 15 30.425175 235.567355

6 12.76384 214.38266 16 32.390524 237.919308

7 14.72199 216.73969 17 34.356173 240.271103

8 16.68179 219.09530 18 36.322082 242.622761

9 18.64286 221.44994 19 38.288221 244.974301
04402
sis

,
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r 1
5~1.29922.25i !n10.5820.42i , ~n,r 1!→`.

~20!

This leads to the spacing

voddn11
2voddn

r 1
5~1.29922.25i !, ~n,r 1!→`, ~21!

which, as our results indicate is againl-independent. Again,
the offset in Eq.~20! depends onl.

~ii ! Intermediate black holes.Results for the odd QN fre-
quencies of an intermediate (r 151) black hole are shown in
Table X. With an error of about 5% the limiting value for th
frequency is, forl 52,

vodd;~1.9722.35i !n10.9320.32i , n→`. ~22!

We note that here too the offset in Eq.~22! does depend onl,
but not the asymptotic spacing, with a numerical error
about 5%.

~iii ! Small black holes.The behavior for small black hole
is shown in Tables XI and XII. As the black hole ge
smaller, the pure imaginary mode gets more damped:
imaginary part increases, as can be seen from Table

TABLE XI. QNMs corresponding tol 52 odd gravitational per-
turbations of a small Schwarzschild-AdS BH (r 150.2). Asymp-
totically for largen one finds approximatelyvodd;(1.6920.59i )n
12.4910.06i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 2.404 23.033 6 12.67161 23.43609

1 4.91594 20.30408 7 14.33020 24.05366

2 6.30329 20.89773 8 15.99881 24.66448

3 7.82330 21.53726 9 17.67433 25.26955

4 9.40720 22.17744 10 19.35465 25.86978

5 11.0279 22.81083 11 21.03839 26.46596
a
TABLE XII. The fundamental (n50) QNMs corresponding tol 52 odd gravitational perturbations of
small Schwarzschild-AdS BH for several values ofr 1 .

r 1 Re@vQN#: Im@vQN#: r 1 Re@vQN#: Im@vQN#:

0.8 (n50) 0 23.045373 0.5 (n51) 3.03759 20.71818

0.8 (n51) 2.89739 21.69556 0.4 3.16209 20.43092

0.7 (n50) 0 23.83538 0.3 3.35487 20.17320

0.7 (n51) 2.90665 21.34656 0.2 3.62697 20.01792

0.6 (n50) 0 24.901973 0.1 3.84839 20.00005

0.6 (n51) 2.95550 21.02196 1/15 3.90328 20.00001

0.5 (n50) 0 26.40000 1/20 3.92882 20.000002
4-7
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where we show the two lowest QN frequencies for sm
black holes with decreasing radius. As mentioned by B
and Kokkotas@18# the ordering of the modes here should
different. However, since one can clearly distinguish t
pure imaginary mode as belonging to a special family,
shall continue to label it withn50. We have not been able t
follow this mode for black holes withr 1,0.5, and so Table
XII does not show any pure imaginary modes for a horiz
radius smaller than 0.5. We note that, as for the scalar
electromagnetic cases, here too the modes are evenly sp
with a spacing which seems to be independent ofl no matter
if the black hole is large or small. For very small black hole
the frequencies reduce to their pure AdS values, compute
the Appendix, to wit

vodd52n1 l 12, r 1→0. ~23!

TABLE XIII. QNMs corresponding tol 52 even gravitational
perturbations of a large Schwarzschild-AdS BH (r 15100). For
large n, one findsveven/r 1 5(1.29922.25i )n10.5820.42i . The
corresponding spacing between consecutive modes seems
l-independent.

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 184.97400 2266.351393 6 966.60978021616.695872

1 316.17838 2491.584999 7 1096.5663521841.681256

2 446.50884 2716.674054 8 1226.5149522066.664293

3 576.62103 2941.70468 9 1356.4582122291.645761

4 706.65039 21166.71147 10 1486.3977622516.626168

5 836.64066 21391.70679 50 6683.51993211515.70869

TABLE XIV. QNMs corresponding tol 52 even gravitational
perturbations of an intermediate Schwarzschild-AdS BH (r 151).
Asymptotically for largen one finds approximatelyveven;(1.96
22.35i )n12.0121.5i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 3.017795 21.583879 10 21.68949 224.98271

1 4.559333 23.810220 11 23.64402 227.33549

2 6.318337 26.146587 12 25.60052 229.68799

3 8.168524 28.500194 13 27.55860 232.04026

4 10.061220 210.85631 14 29.51796 234.39234

5 11.976813 213.21224 15 31.47838 236.74424

6 13.906140 215.56749 16 33.43969 239.09600

7 15.844371 217.92208 17 35.40174 241.44762

8 17.788721 220.27609 18 37.36444 243.79914

9 19.737469 222.62960 19 39.32769 246.15057
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One can see this more clearly from Table XII, where in fa
for very small black holes the frequency rapidly approach
Eq. ~23!. Again, for small black holes, the imaginary pa
does not scale with the horizon area, by the reasons
plained before, in Sec. III B.

In conclusion, the higher overtones of odd perturbatio
follow a pattern very similar to the scalar case. We note t
the asymptotic behavior sets in very quickly, much like wh
happened for scalar and electromagnetic perturbations. T
cally the formulas yielding the asymptotic behavior wo
quite well for n.10. We are now able to prove that fo
sufficiently high frequencies the scalar and gravitational p
turbations are isospectral, a mystery that remained in@17#,
This is done in Sec. IV A below.

2. Even perturbations

Let us now briefly discuss the even modes. As found p
viously @17# these modes behave very similar to the sca
ones. Yet, the even gravitational modes are stipulated b
more complicated potential, and we have to truncate the
ries in power ofx2x1 at largerN, which makes the whole
procedure more time consuming. That is why when cons
ering small black holes we were restricted only by the fi
seven modes in that case. It is, however, sufficient to see
even gravitational QNMs, similar to other kinds of perturb
tions, tend to arrange into a equidistant spectrum under
increasing ofn. We show in Tables XIII–XVI the numerica
results for the QN frequencies of even gravitational pert
bations.

~i! Large black holes.Results for the QN frequencies o
large black holes are shown in Table XIII. In this regime o
finds for l 52 even perturbations

be

TABLE XV. QNMs corresponding tol 52 even gravitational
perturbations of a small Schwarzschild-AdS BH (r 150.2). As-
ymptotically for large n one finds approximatelyveven;(1.61
20.6i )n12.710.37i .

n Re@vQN#: Im@vQN#: n Re@vQN#: Im@vQN#:

0 3.56571 20.01432 3 7.65872 21.42994

1 4.83170 20.26470 4 9.20424 22.04345

2 6.17832 20.82063 5 10.78800 22.65360

TABLE XVI. The fundamental (n50) QNMs corresponding to
l 52 even gravitational perturbations of a small Schwarzschild-A
BH for several values ofr 1 .

r 1 Re@vQN#: Im@vQN#: r 1 Re@vQN#: Im@vQN#:

0.8 2.91541 21.18894 0.3 3.29299 20.14103

0.7 2.90591 20.98953 0.2 3.56571 20.01432

0.6 2.92854 20.78438 0.1 3.80611 20.00005

0.5 2.98985 20.57089 1/15 3.8735 20.00001

0.4 3.10317 20.35043 1/20 3.90852 20.000002
4-8
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veven

r 1
5~1.29922.25i !n11.8822.66i , ~n,r 1!→`,

~24!

leading to the spacing

vevenn11
2vevenn

r 1
5~1.29922.25i !, ~n,r 1!→`,

~25!

which once more turns out to bel-independent. All the re-
sults concerning the spacing of frequencies for large bl
holes have a very good precision, since in this regime i
possible to go very far out in overtone number~typically n
5300 is enough to achieve a 0.1% accuracy for the spaci!.

~ii ! Intermediate black holes.In Table XIV we show some
of the lowest lying even gravitational QN frequencies for
intermediate black hole withr 151. For a black hole with
this size, one finds again that the spacing does not see
depend on the angular numberl for very high overtone num-
ber n. With an error of about 5% the limiting value for th
frequency is, forl 52,

veven;~1.9622.35i !n12.0121.5i , n→`. ~26!

We note that here too the offset in Eq.~17! does depend onl,
but not the asymptotic spacing.

~iii ! Small black holes.The behavior for small black hole
is shown in Tables XV and XVI. Our search for the Q
frequencies of small black holes, i.e., black holes withr 1

!1 revealed again what was expected on physical grou
for small black holes, the QN frequencies approach the
quencies of pure AdS spacetime~see the Appendix!. In fact
we find

vevenAdS
52n1 l 12, r 1→0. ~27!

In Table XV we show the lowest lying QN frequencies for
small black hole (r 150.2). We stress that the values pr
sented in Table XV~as a matter of fact, all the tables co
taining data for small black holes! for the asymptotic spacing
between modes may have an error of about 2%. In fact
extremely difficult to find very high overtones of small blac
holes, and so it is hard to give a precise extimate of the va
they asymptote to. In Table XVI we show some of the fu
damental even QN frequencies for small black holes of
creasing radius, and one can clearly see how the fundam
frequency approaches the pure AdS value given in the
pendix.

IV. DISCUSSION OF THE RESULTS

A. Why are the scalar and gravitational perturbations
isospectral in the large black hole regime?

In a previous paper~Sec. III C in @17#!, we have shown
why the odd and even gravitational perturbations yield
same QN frequencies for large frequencies. The whole
proach was based on the fact that the odd and even gra
tional potentials are superpartner potentials@24#, i.e., they
04402
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are related to one another viaVodd5W21 dW/dr* 1b,
Veven5W22dW/dr* 1b, whereb52a212a31a4/9M2.
The function W is W52M /r 212322a/3r 13a212a2

127M2/3a(3M1ar )2 1
3 (a/M1a2/M19M /a). For

more details we refer the reader to@17#. We shall now see
that a similar method can be applied to show that in the la
black hole regime, scalar and gravitational perturbations
isospectral for large QN frequencies. To begin with, we n
that the potentialsV1 andV2 defined by

V15 f̃ S 2

R2
1

2M

r 3 D , ~28!

and

V25 f̃ S a

r 2
2

6M

r 3 D , ~29!

with f̃ 5r 2/R2 1 a/2 2 2M /r , anda any constant, are supe
partner potentials. The superpotentialW̃ is in this case is
given by

W̃5
r

R2
1

a

2r
2

2M

r 2
. ~30!

Thus the two superpartner potentialsV1 andV2 can be ex-
pressed in terms ofW̃ as

V15W̃21
dW̃

dr*
, V25W̃22

dW̃

dr*
. ~31!

Why are these two potentials of any interest? Because in
large r 1 limit, which we shall take to ber 1@a, we havef̃
;r 22 2M /r . Notice now that in this larger 1 limit the sca-
lar potential ~4! is Vs; f (212M /r 3), with f ;r 22 2M /r ,
since in this limit and withr 1@ l , one hasl ( l 11)/r 2 !2.
ThusV1 reduces to the scalar potential andV2 to the gravi-
tational odd potential, provided we takea5 l ( l 11). It then
follows from the analysis in@17# ~Sec. III C! that for large
black holes these two potentials should yield the same
quencies.

B. Future directions

The preceding sections have shown that the QNMs
Schwarzschild-AdS black holes have a universal behavio
the asymptotic regime of high overtones. This was verifi
explicitly and with great accuracy for the large black ho
regime, where we showed numerically that the spacing d
not depend on the perturbation in question and is equal

vn112vn

r 1
5~1.29922.25i !, ~n,r 1!→`. ~32!

We conjecture that the asymptotic behavior is the same
all kinds of perturbations irrespectively of the black ho
size, i.e., a fixed horizon radiusr 1 Schwarzschild-AdS black
hole will have an asymptotic spacing between consecu
4-9
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QN frequencies which is the same for scalar, electrom
netic, and gravitational perturbations. The difficulty in e
tracting very high overtones for small black holes, howev
prevents us from having an irrefutable numerical proof
this. It would be extremely valuable to have some kind
analytical scheme for extracting the asymptotic behav
much as has been done for the asymptotically flat space
Motl and Neitzke@4#. However, it looks quite difficult to
make any analytical approximation in asymptotically Ad
spaces, although there have been some attempts at th
cently ~see, for example, Musiri and Siopsis@14#!. We also
note that the spacing~32! was already found to be true b
Berti and Kokkotas@18# for the scalar and gravitational cas
for the lowest radiatable multipole, i.e.,l 50 andl 52 scalar
and gravitational perturbations, respectively. We have c
cluded that, surprisingly, the spacing~32! also works for the
electromagnetic case and for any value ofl. It was observed
that, despite having such different potentials the scalar,
electromagnetic, and gravitational QN frequencies have
same asymptotic behavior. Can one formulate some v
general conditions the potentials should obey in order
have the same asymptotic solutions? This is still an o
question.

There has been recently an exciting development tryin
relate the asymptotic QN frequencies with the Barbe
Immirzi parameter@4,5#. In fact it was observed, in the
Schwarzschild case, that asymptotically for high overton
the real part of the QN frequencies was a consta
l-independent, and using some~not very clear yet! corre-
spondence between classical and quantum states, was ju
right constant to make Loop Quantum Gravity give the c
rect result for the black hole entropy. Of course it is on
natural to ask whether such kind of numerical coinciden
holds for other spacetimes. We have seen that apparentl
are facing, in AdS space, a universal behavior, i.e.,
asymptotic QN frequencies do not depend on the kind
perturbations, and also do not depend onl. However, and in
contrast with asymptotically flat space, the real part of
asymptotic QN frequency is not a constant, but rather
creases linearly with the mode numbern. This is no reason to
throw off the initial motivation of seeking some kind of re
lation between Loop Quantum Gravity and QNMs, after a
there are no predictions for AdS space.

Finally we point out that the asymptotic behavior studi
here for the Schwarzschild-AdS black hole will hold also f
other black holes in asymptotically AdS. One example
these is the black hole with nontrivial topology@19#. The
general line element for this spacetime is@19#

ds25 f ~r !dt22 f ~r !21dr22r 2~du21df2!, ~33!

where

f ~r !5
r 2

R2
2

4MR

r
, ~34!

whereM is the ADM mass of the black hole, andR is the
AdS radius. There is a horizon atr 15(4M )1/3R. The range
of the coordinatesu andf dictates the topology of the blac
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hole spacetime. For a black hole with toroidal topology
toroidal black hole, the coordinateu ranges from 0 to 2p,
andf ranges from 0 to 2p as well. For the cylindrical black
hole, or black string, the coordinateu has the range2`
,Ru,`, and 0<f,2p. For the planar black hole, o
black membrane, the coordinatef is further decompactified
2`,Rf,` @19#. The fundamental QN frequencies fo
these black holes were computed in@20#, where it was veri-
fied that they follow the same pattern as for Schwarzsch
AdS black holes. Indeed one easily sees that in the la
black hole regime they both should yield the same results
the potentials are equal in this regime~compare the poten
tials in @20# with the ones in the present work!. In particular
the asymptotic behavior will be the same.

V. CONCLUSION

We have done an extensive search for higher overtonn
of the QNMs of Schwarzschild-AdS BH corresponding
scalar, electromagnetic, and gravitational perturbations.
have shown that:~i! No matter what size the black hole is
the QN frequencies are evenly spaced, both in the real an
the imaginary component, for high overtone numbern; ~ii !
The spacing between consecutive modes is independen
the perturbation. This means that scalar, electromagnetic,
gravitational perturbations all have, asymptotically, the sa
spacing between modes. This is one of the major finding
this work, together with the fact that this spacing seems to
also independent of the angular quantum numberl; ~iii ! We
were able to prove that the scalar and gravitational QN
quencies must asymptotically be the same;~iv! The electro-
magnetic QN frequencies of large black holes have a num
of first overtones with pure imaginary parts, and the high
the black hole radiusr 1 , the higher the number of these fir
pure damped, nonoscillating modes;~v! Finally, we have
computed analytically the electromagnetic and gravitatio
pure AdS modes, and we have shown numerically that
QN frequencies of very small black holes asymptote to th
pure AdS modes.
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APPENDIX: PURE ADS NORMAL MODES
FOR ELECTROMAGNETIC AND

GRAVITATIONAL PERTURBATIONS

In this appendix we shall briefly outline how to compu
the pure modes of AdS space~no black hole,M50) for
electromagnetic and gravitational perturbations. The sc
case was dealt with by Burgess and Lutken@21#. In pure AdS
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space the electromagnetic and gravitational potentials~both
odd and even! are

V5S r 2

R2
11D l ~ l 11!

r 2
, ~A1!

as can be seen by substitutingM50 in Eqs.~5!–~7!. Also in
this case the relationr (r * ) takes the simple form

r 5R tan
r *
R

, ~A2!

and therefore the potential~A1! takes a simple form in ther *
coordinate, namely

V5
l ~ l 11!

R2sinS r *
R D 2 . ~A3!

To proceed, we note that the change of variablex
5sin(r* /R)2 leads the wave equation to a hypergeome
equation,

]2C~x!

]x2
1

t̃

s

]C~x!

]x
1

s̃

s2
C~x!50, ~A4!

with

s̃54~vR!2x~12x!24l ~ l 11!~12x!, ~A5!
A.

a,

04402
c

s54x~12x!, ~A6!

t̃52~122x!. ~A7!

To put this in a more standard form, one changes wave fu
tion by defining

C~x!5Ax21x( l 11)/2Z~x!, ~A8!

and one gets the following standard hypergeometric differ
tial equation forZ:

s
]2Z~x!

]x2
1t

]Z~x!

]x
1lZ~x!50, ~A9!

with s defined in Eq.~A6! and

t5624l ~x21!212x, ~A10!

l52424l 2 l 21v2. ~A11!

By requiring well behaved fields everywhere a simple ana
sis @25# then shows that the following constraint needs to
satisfied:

vR52n1 l 12. ~A12!

These are the pure AdS frequencies for electromagnetic
gravitational perturbations, corresponding to pure AdS n
mal modes of the corresponding fields. One can compare
frequencies in Eq.~A12! with the scalar frequencies corre
sponding to pure AdS modes@21#, vsR52n1 l 13.
-
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