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Multi-black-hole solutions in five dimensions

H. S. Tan and Edward Teo
Department of Physics, National University of Singapore, Singapore 119260

~Received 20 May 2003; published 28 August 2003!

Using a recently developed generalized Weyl formalism, we construct an asymptotically flat, static vacuum
Einstein solution that describes a superposition of multiple five-dimensional Schwarzschild black holes. The
spacetime exhibits aU(1)3U(1) rotational symmetry. It is argued that for certain choices of parameters the
black holes are collinear and so may be regarded as a five-dimensional generalization of the Israel-Khan
solution. The black holes are kept in equilibrium by membranelike conical singularities along the two rota-
tional axes; however, they still distort one another by their mutual gravitational attraction. We also generalize
this solution to one describing multiple charged black holes, with fixed mass-to-charge ratio, in Einstein-
Maxwell-dilaton theory.
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I. INTRODUCTION

The Israel-Khan solution describing multiple colline
Schwarzschild black holes in four dimensions has b
known for some time@1#. It belongs to a class of static
axisymmetric solutions first obtained by Weyl@2#, who
showed that the corresponding vacuum Einstein equat
can be reduced to solving the Laplace equation in thr
dimensional flat space. Although the Israel-Khan solut
contains stringlike conical singularities, it nonetheless ha
well-defined gravitational action@3#, and this enables one t
study their interactions using standard techniques of grav
tional thermodynamics@4#.

Recently, Emparan and Reall@5# generalized the Wey
formalism to arbitrary dimensionsD>4. They showed tha
the general solution of theD-dimensional vacuum Einstei
equations which hasD22 orthogonal commuting isometrie
is specified byD23 axisymmetric solutions of the Laplac
equation in three-dimensional flat space. A way to class
these solutions was also presented in@5#. In particular, the
five-dimensional~5D! Schwarzschild black hole, like its
four-dimensional counterpart, belongs to the generali
Weyl class. Another noteworthy member of this class is
5D black ring solution@5#, which is the first example of an
asymptotically flat vacuum spacetime with an event horiz
of nonspherical topology.

The generalized Weyl formalism opens up, for the fi
time, the possibility of obtaining multi-Schwarzschild-blac
hole solutions in five dimensions. Three possible configu
tions were briefly discussed in@5#. First, a two-black-hole
solution was constructed, with the black holes located at
north and south poles of a Kaluza-Klein bubble.1 This solu-
tion is not asymptotically flat, since one coordinate is asym
totically a Kaluza-Klein circle. The second solution cons
ered in @5# was a three-black-hole solution that
asymptotically flat. However, it is not a collinear syste
since the central black hole is only collinear with each of
other two black holes alongdifferentaxes. Finally, a solution
describing an infinite periodic array of black holes was a

1A detailed study of this solution recently appeared in@6#.
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considered, although it was argued that this solution can
be interpreted as a black hole localized on a Kaluza-Kl
circle because it does not have the correct asymptotic st
ture.

It would be very interesting to find a multi-black-hol
solution in five dimensions that may be considered a gen
alization of the four-dimensional Israel-Khan solution. Su
a solution should satisfy two conditions. First, it should
asymptotically flat, rather than asymptotically Kaluza-Kle
as in the first solution mentioned above. Second, it sho
describe a ‘‘collinear’’ array of black holes, which rules o
the second solution. Such a notion of collinearity would ha
to be compatible with the spatial symmetries imposed on
Weyl solutions, i.e.,U(1)3U(1) corresponding to the two
orthogonal commuting rotational Killing vectors.

In this paper, we construct a multi-Schwarzschild-blac
hole solution ~which is actually the finite version of the
infinite-black-hole solution considered in@5#! which, we ar-
gue, satisfies the above two conditions and thus qualifies
5D analogue of the Israel-Khan solution. We begin in Sec
with the explicit construction of our solution and a chara
terization of the conditions under which it may be conside
a collinear array of black holes. In Sec. III, we examine so
basic properties of our solution for the case of a two-bla
hole system. In particular, we perform various limiting pr
cedures and study the near-horizon geometries of the b
holes, which turn out to be distorted by their mutual gra
tational attraction. In Sec. IV, the analysis is briefly repea
for the three-black-hole system. In Sec. V, the charged v
sion of our solution in the framework of Einstein-Maxwel
dilaton theory is obtained and studied. The extremal limit
then examined in Sec. VI. The paper ends with a discuss
of some possible extensions of this work.

II. THE MULTI-SCHWARZSCHILD-BLACK-HOLE
SOLUTION

In this paper, we are specifically interested in 5D sta
spacetimes belonging to the generalized Weyl class, i.e.,
sessing three orthogonal commuting Killing vectors. Suc
spacetime metric can be written as
©2003 The American Physical Society21-1
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ds252e2U1dt21e2U2dw21e2U3dc21e2n~dr21dz2!,

~2.1!

where n5n(r ,z) and Ua5Ua(r ,z) for a51,2,3. The
vacuum Einstein equations can be shown to reduce to
Laplace equation:

]2Ua

]r 2
1

1

r

]Ua

]r
1

]2Ua

]z2
50, ~2.2!

with n determined by quadratures@5#. The three harmonic
functionsUa can be thought of as the Newtonian potenti
produced by rods of zero thickness and density 1/2 along
z axis. They should add up to the potential of an infinite ro
An important example of a spacetime in this class is the
Schwarzschild solution, which has the potentials of the
structure shown in Fig. 1.

As described in@5#, certain important properties of a gen
eralized Weyl spacetime can be read off from its correspo
ing rod structure, even without the explicit form of the me
ric. For example, rod sources for the two angular coordina
w andc correspond to fixed points of these rotations, i.e.,
symmetry axes. If the rod sources for thew and c coordi-
nates extend to infinity in either direction, then the spacet
is asymptotically flat. Another important fact is that a fini
rod source for the time coordinate corresponds to an e
horizon in the spacetime. Moreover, if either end of this r
continues with rods ofdifferentangular coordinates, then th
event horizon will haveS3 topology. This means that the ro
structure in Fig. 1 describes a black hole in an asymptotic
flat spacetime, in agreement with the physical interpreta
of the 5D Schwarzschild solution.

Bearing these facts in mind, let us now attempt to draw
rod structure corresponding to a superposition ofN
Schwarzschild black holes that generalizes the Israel-K

FIG. 1. Rod structure of the 5D Schwarzschild-black-ho
solution.
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solution. We first note that it must haveN finite rods for the
time coordinate, corresponding toN disconnected event ho
rizons. Furthermore, to ensure that each horizon hasS3 to-
pology, the ends of each rod must continue with rods
different angular coordinates. Finally, the rod structu
should have the same asymptotic form as that in Fig. 1
ensure asymptotic flatness. These conditions leave us
the rod structure in Fig. 2 as one of the simplest possibilit
Of course, other rod structures are also possible; howe
we do not consider them to be as natural or compelling as
one chosen above.

It is straightforward to write down theUa’s corresponding
to the rod structure in Fig. 2. If we label the locations of t
rod ends in order of increasingz ~left to right in Fig. 2! by
a1 , a2 , . . . , a3N21, then we have

U15
1

2 (
k51

N

log
R3k222z3k22

R3k212z3k21
, ~2.3a!

U25
1

2 (
k52

N

log
R3k232z3k23

R3k222z3k22
1

1

2
log~R11z1!, ~2.3b!

U35
1

2 (
k52

N

log
R3k242z3k24

R3k232z3k23
1

1

2
log~R3N212z3N21!,

~2.3c!

whereRi[Ar 21z i
2 andz i[z2ai , for 1< i<3N21. Using

the method described in@5#, we can then solve forn. After
some calculation, we obtain the line element for this r
structure as

FIG. 2. Rod structure of anN-Schwarzschild-black-hole
solution.
ds252)
k51

N S R3k222z3k22

R3k212z3k21
Ddt21~R11z1!)

k52

N S R3k232z3k23

R3k222z3k22
Ddw21~R3N212z3N21!)

k52

N S R3k242z3k24

R3k232z3k23
Ddc2

1e2g0
AY1,3N21~R3N212z3N21!

R1R2•••R3N21AR12z1
)
k52

N AY3k22,3N21Y3k23,3N21Y1,3k23Y1,3k24Y3k23,3k22Y3k24,3k23Y3k24,3k22

Y3k24,3N21Y1,3k22

3 )
1,k, j

AY3k23,3j 22Y3k22,3j 23Y3k24,3j 23Y3k23,3j 24Y3k22,3j 24Y3k24,3j 22

Y3k22,3j 22Y3k23,3j 23Y3k24,3j 24
)
k52

N AR3k242z3k24

AR3k222z3k22

~dr21dz2!,

~2.4!
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whereYi j [RiRj1z iz j1r 2, ande2g0 is a constant to be ad
justed appropriately below. Note that this solution conta
3N22 free parameters, withN parameters related to the in
dividual masses of the black holes and the rest determin
their spatial arrangement.

Before embarking on a study of their spatial arrangeme
let us consider the background spacetime limit of Eq.~2.4! in
which all the black holes disappear. This corresponds
shrinking the rods for the time coordinate down to zero si
leaving just the rods for thew andc coordinates as in Fig. 3
It can be seen that the resulting rod structure correspond
the Euclidean version of the multipleC metric solution de-
rived in @7# ~in this case describingN21 accelerating black
holes!, with a flat time direction added on. This spacetime
clearly nonflat whenN>2. In addition to the usual two
semi-infinite rotational axes for thew and c coordinates, it
containsN21 finite-length rotational axes for each coord
nate. Observe that these axes are not one-dimensional
but rather two-dimensional membranes. While the se
infinite axes have the topology of open disksD2, the finite
ones have the topology of spheresS2. Furthermore, from the
behavior of the multipleC metric, we know that there are i
general conical singularities running along the axes. If
demand the two semi-infinite axes to be regular, then th
are unavoidable conical singularities along the finite ax
Thus, this spacetime consists of 2(N21) conical membranes
with S2 topology. They are orthogonal to one another, in
sense that any line of constant longitude of oneS2 is or-
thogonal to any line of constant longitude of an adjacentS2

at their adjoining point.
At first, it may seem rather strange to have such a n

trivial spacetime as the background. However, this is b
cally forced upon us if we want to construct multiple-blac
hole solutions within the generalized Weyl formalism, a
can be seen as follows. A black hole with an event horizon
S3 topology can be introduced only at points along thez axis
where the rods for thew andc coordinates meet, i.e., fixe
points of theU(1)3U(1) rotational symmetry. There ca
only be one such point in 5D Minkowski space@5#. If we
require two or more fixed points, then the only possible
ymptotically flat background, with a flat time direction, is th
Euclidean multipleC metric solution as described above.
solution corresponding toN21 accelerating black holes ha
2N21 such fixed points, although onlyN of them were used
in the construction of the solution~2.4!. These points are
labeleda1 , a3 , . . . , a2N21 in Fig. 3.

The reason for choosing theseN points alternately is be
cause any three adjacent fixed points cannot be collinear.
example,a1 anda2 are collinear along thec axis~with anS2

conical membrane connecting them!, while a2 and a3 are
collinear along thew axis ~with anotherS2 conical mem-
brane connecting them!. So the middle fixed point is collin-

FIG. 3. Rod structure of the background spacetime of Eq.~2.4!.
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ear with each of the other two points, but along differe
axes. This is precisely the reason why the three-black-h
system considered in@5# is not collinear. On the other hand
consider the three alternate fixed pointsa1 , a3, anda5. The
pointsa1 anda3 are joined up along thez axis by a finitec
axis and a finitew axis ~corresponding to two orthogona
S2’s!; a similar situation occurs betweena3 anda5. Suppose
we measure the distances between these three points b
ordinate displacements along the two angular axes, withai j
[uai2aj u. Then we shall refer to the three points as bei
‘‘collinear’’ if the ratios a12/a23 and a34/a45 are equal. In
other words, one has to cover the same ratio of distan
along the two orthogonal directions defined by thew andc
axes, in moving between collinear points.

This notion of collinearity is naturally compatible with th
U(1)3U(1) generalized Weyl symmetry of the spacetim
It turns out there is another notion of collinearity in fiv
dimensions that was alluded to in@5,6#: if a spacetime pos-
sesses anSO(3) spatial isometry, then points on the symm
try axis can be regarded as collinear.@Both these notions
actually coincide in four dimensions, sinceSO(D22)
>U(1)D23 whenD54.# However, since spacetimes in th
generalized Weyl class will not possessSO(3) symmetry in
general, the latter notion of collinearity cannot be appli
here. It should also be pointed out that our proposed no
of collinearity may not be the only possible one compatib
with U(1)3U(1) symmetry, but it is certainly one of th
simplest. Furthermore, as we shall see below, it passe
certain consistency check.2

It is now a straightforward matter to reintroduce the bla
holes into the background spacetime and extend our no
of collinearity to them. Stretching between any two adjac
black holes are now two orthogonal topological disks, w
eachD2 terminating on a black hole event horizon. Othe
wise, the picture is similar to that above. For definitene
consider the first three black holes from the left in Fig.
Now, a23 is the coordinate distance from the horizon of t
first black hole to the fixed pointa3 along thec axis, while
a34 is the coordinate distance froma3 to the horizon of the
second black hole along thew axis. If the ratioa23/a34 is the
same as the corresponding one between the second and
black holes, namely,a56/a67, then we shall refer to thes
three black holes as being collinear. Note that we are de
ing collinearity of the black holes with respect to the po
tions of their event horizons, rather than their centers,
simplicity. If collinearity is to be defined with respect to th
centers, then one needs to take into account the masses~and
hence radii! of the black holes.

In the interest of generality, we shall continue to keep
parameters of our solutionai arbitrary for most of this paper
If a collinear array of black holes is desired, then the para
eters can be specifically chosen to satisfy the conditions
scribed above.

III. THE TWO-BLACK-HOLE SOLUTION

Having obtained a 5D analogue of the Israel-Khan so
tion, the next step is to study some of its properties in det

2See the discussion surrounding Eq.~3.4!.
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We begin by focusing on the two-black-hole case, for simplicity and also because many of the characteristic properti
general solution are already present in this case. SettingN52 in Eq. ~2.4! yields the metric

ds252
~R12z1!~R42z4!

~R22z2!~R52z5!
dt21

~R11z1!~R32z3!

R42z4
dw21

~R22z2!~R52z5!

R32z3
dc2

1e2g0
A~R22z2!~R52z5!Y15Y45Y13Y34Y23Y35Y24Y12

A~R12z1!~R42z4!R1R2R3R4R5Y14Y25

~dr21dz2!, ~3.1!
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which has rod structure and parameters as in Fig. 4.
Let us first check the regularity conditions for the spat

sections of Eq.~3.1!. Consider thedswr
2 part of the metric. It

turns out that conical singularities cannot be avoided al
the w axis, and must be present at least along either
‘‘inner’’ part a3,z,a4 or the ‘‘outer’’ part z,a1. By
choosinge2g051/8 and the period ofw to be 2p, we have a
regular outer axis and a conical singularity running along
inner one. A similar situation applies to thedscr

2 part of the
metric. Explicitly, we find the conical excesses

dw52pS a14a25

Aa15a34a35a24

21D for a3,z,a4 ,

~3.2a!

dc52pS a14a25

Aa15a13a23a24

21D for a2,z,a3 ,

~3.2b!

whereai j [uai2aj u denotes the coordinate distance betwe
ai and aj along thez axis. That conical excesses, or stru
have appeared between the black holes agrees with
physical intuition: they provide the pressure necessary
counterbalance the gravitational attraction of the black ho
and achieve a static configuration. This is analogous to
4D case@4#, but with one important difference: the struts a
now extended in two spatial dimensions, and are there
membranes. They have the topology of disks, as describe
Sec. II, with their boundary circles wrapping around t
black hole event horizons.

It was also pointed out in Sec. II that conical singulariti
remain in the background spacetime even when the b
holes are removed with the choicea15a2 and a45a5. In
this case, the result is just the EuclideanC metric solution
with an added flat direction. The conical excesses along
inner axes are now

dw52p
a23

a34
for a3,z,a4 , ~3.3a!

FIG. 4. Rod structure of the two-black-hole solution.
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dc52p
a34

a23
for a2,z,a3 . ~3.3b!

We proceed to show in detail that our solution really co
sists of a superposition of two Schwarzschild black hol
Suppose we center ourselves on one black hole, say the
on the left, and push the other infinitely far away. Note th
there is an ambiguity in this procedure, since there are
possible directions in which this black hole can be push
We shall therefore demand that it be pushed to infinity
such a way thatit remains collinear with the original system.
In view of our notion of collinearity defined in Sec. II, thi
means we should take the limita3→` while preserving the
ratio

l[
a34

a23
. ~3.4!

After taking this limit and performing the coordinate tran
formation

r 5
1

2
A12

2a12

~11 l !R2
~11 l !R2sin2u, ~3.5a!

z52
1

2 S 12
a12

~11 l !R2D ~11 l !R2 cos2u , ~3.5b!

we recover the metric

ds252S 12
2a12

~11 l !R2D dt21S 12
2a12

~11 l !R2D 21

dR2

1R2du21R2sin2udw21~11 l !2R2 cos2udc2.

~3.6!

This is just the 5D Schwarzschild black hole, but there i
conical singularity, with excess angle 2p l , attached to it and
stretching to infinity along thec axis. It can be seen that thi
conical singularity is an artifact of the background spa
time, since the latterhas a conical singularity with exactly
the same excess angle given by Eq.~3.3b!. This is a good
consistency check, and it shows that we have taken
infinite-distance limit correctly. Now the presence of th
conical singularity will affect the calculation of the Arnowitt
Deser-Misner~ADM ! mass of this black hole@8#, since
1-4
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FIG. 5. The horizon of the left
black hole as represented by th
quarter circle 0<u<p/2, with
proper radiusAguu, for ~a! w
55, ~b! w50.5, and ~c! w
50.05. The jagged lines denot
the conical singularities stretchin
between the two black holes.
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spacetime is no longer asymptotically flat. Following t
procedure of@8#, we calculate its mass to be (3/4)pa12.

In a similar fashion, we can center ourselves on the ri
black hole and push the left one to infinity. In doing so, w
recover the limiting metric

ds252S 12
2la45

~11 l !R2D dt21S 12
2la45

~11 l !R2D 21

dR2

1R2du21S 11 l

l D 2

R2sin2udw21R2 cos2udc2.

~3.7!

Again we obtain a Schwarzschild black hole, with a coni
singularity now stretching to infinity along thew axis. It has
excess angle 2p l 21, in agreement with Eq.~3.3a!. The mass
of this black hole can be calculated to be (3/4)pa45. The
sum of the masses of the two individual black holes is the
fore

M5
3

4
p~a121a45!, ~3.8!

and it turns out to be equal to the calculated ADM mass
the full solution~3.1!. This is to be expected since the inte
action energy between the black holes~determined by the
conical singularities@4#! vanishes in the infinite separatio
limit, and so the total energy of the system is just the sum
the masses of the separate black holes.

We shall now show that our solution describes tw
Schwarzschild black holes even if the distance between t
is kept finite. This involves taking the near-horizon limit
each black hole. Let us focus on the left black hole. If
perform the coordinate transformation

r 5
1

2
A12

2a12

R2
R2sin2u, ~3.9a!

z52
1

2 S 12
a12

R2 D R2 cos2u , ~3.9b!

and then expand Eq.~3.1! nearR5A2a12, we obtain
04402
t
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-

f

f
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ds25 f 1
2~u!H 2S 12

2a12

R2 D dt21
a15a13

a14
2 F S 12

2a12

R2 D 21

dR2

1R2du2G J 1 f 2
2~u!R2sin2u dw21 f 3

2~u!R2 cos2udc2,

~3.10!

where

f 1
2~u![

a12cos2u 1a24

a12cos2u 1a25

, ~3.11a!

f 2
2~u![

a12cos2u 1a23

a12cos2u 1a24

, ~3.11b!

f 3
2~u![

a12cos2u 1a25

a12cos2u 1a23

. ~3.11c!

The metric~3.10! describes the near-horizon geometry of
Schwarzschild black hole, albeit distorted away from sphe
cal symmetry. This angular distortion is encoded by the th
so-called distortion factorsf 1 , f 2, and f 3, and can be attrib-
uted to the gravitational pull of the other black hole. It
only when the latter is pushed to infinity that the distorti
factors disappear.

One can similarly analyze the right black hole and find
near-horizon geometry to be given by the above express
upon switching w↔c, u→p/22u, a12→a45, a23→a34,
etc. For simplicity, let us assume here thata125a45 anda23
5a34, corresponding to a left-right symmetric system. W
shall take at5R5w5c5const slice of the near-horizo
metric to see how the quarter circle 0<u<p/2, with proper
radiusAguu, of each black hole is affected by the other. F
the left black hole, we have

guu}
cos2u 1w

11 cos2u 1w
, ~3.12!

where w[a24/a12 is a parameter related to the coordina
separation-to-mass ratio of the two-black-hole system. I
readily seen~see Fig. 5! that whenw is large we approach
perfect quarter circles for both black holes. Asw decreases,
the two quarter circles start to deviate from circular symm
1-5
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try. In the limit w→0, the quarter circles pinch off along th
axes joining them. This behavior is rather similar to that
the Israel-Khan solution@4#.

Let us now turn briefly to some other properties of o
two-black-hole solution. From the near-horizon metric
each black hole, one can calculate the three-areas of
event horizons to be

Aleft5A2~2p!2
a12Aa12a13a15

a14
, ~3.13a!

Aright5A2~2p!2
a45Aa45a35a15

a25
. ~3.13b!

To calculate the Hawking temperature associated with e
event horizon, it is convenient to Euclideanize our solut
t→2 i t. The natural period oft is then the inverse Hawking
temperature. We obtain

Tleft5
1

A22p

a14

Aa15a13a12

, ~3.14a!

Tright5
1

A22p

a25

Aa15a45a35

. ~3.14b!

A question then arises if the two black holes can be
thermodynamic equilibrium for some choice of paramete
In the 4D case, it was shown in@4# that the two black holes
have to be of the same mass for the system to be in the
equilibrium. To examine our solution likewise, we equate
expressions for the two temperatures to find
c
x

se
r

ry

-
g

,
o
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~a14
2 2a13a12!a45

2 1~a14
2 a3422a13a12a24!a452a13a12a24

2 50.

~3.15!

It can be shown that Eq.~3.15! has positive solutions fora45
for anya12, a23, anda34. In particular, we have the solutio
a125a45 anda235a34. Thus, we conclude that in our solu
tion, the two black holes need not be of the same mass
them to have the same temperature. If they do, then the
finite rotational axes between them must be of the sa
length.

Finally we observe a Smarr relation for either black ho
of our solution, consistent with that in@9#:

M j5
3

2
Tj S Aj

4 D , ~3.16!

where M j is the mass of the black hole. In its differenti
form, the Smarr relation may be identified with the first la
of black hole thermodynamics, withAj /4 the entropy of the
black hole.

IV. THE THREE-BLACK-HOLE SOLUTION

The techniques used in the preceding section to ana
theN52 case of Eq.~2.4! can be straightforwardly extende
to any otherN.2. However, the various calculations wi
get much more tedious. In this section, we shall briefly stu
theN53 solution, concentrating on the central black hole
this system as it exhibits some features not present in
N52 case.

For a three-black-hole system, the metric~2.4! reduces to
ds252
~R12z1!~R42z4!~R72z7!

~R22z2!~R52z5!~R82z8!
dt21~R11z1!

~R32z3!~R62z6!

~R42z4!~R72z7!
dw21

~R22z2!~R52z5!

~R32z3!~R62z6!
~R82z8!dc2

1
1

16A2

A~R22z2!~R52z5!~R82z8!

A~R12z1!~R42z4!~R72z7!

3
AY37Y46Y26Y35Y45Y27Y18Y48Y38Y13Y12Y34Y23Y24Y78Y68Y16Y15Y67Y56Y57

R1R2•••R8Y28Y14Y58Y17Y47Y36Y25
~dr21dz2!, ~4.1!
ar

to
where the rod parameters are defined in Fig. 6, and the fa
1/(16A2) has been chosen to make the outer rotational a
z,a1 andz.a8 regular. As usual, there are conical exces
resulting along the finite inner axes, but these cannot be
moved by any choice of parameters. They are necessa
hold the system in static equilibrium.

We can show that Eq.~4.1! indeed describes a three
black-hole configuration by performing the same limitin
procedures as in the two-black-hole case. In particular
recover the central black hole, we center our coordinates
tor
es
s
e-
to

to
n

it and push the other two black holes to infinity in a colline
fashion. This is done by taking the limita6→` such that the
three ratios

l 1[
a56

a67
, l 2[

a34

a67
, l 3[

a24

a67
~4.2!

remain fixed. After a coordinate transformation analogous
Eq. ~3.5!, the metric becomes
1-6
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ds252S 12
2a45

l1l2R2D dt21S 12
2a45

l1l2R2D 21

dR21R2du2

1l1
2R2sin2udw21l2

2R2 cos2udc2, ~4.3!

where

l1[
l 3~ l 11 l 2!~11 l 11 l 3!

l 2~11 l 11 l 2!~ l 11 l 3!
,

l2[
~11 l 1!~ l 11 l 2!~11 l 11 l 3!

l 1~11 l 11 l 2!~ l 11 l 3!
. ~4.4!

Thus we recover the Schwarzschild black hole, but w
conical singularities attached to it along two different dire
tions. The calculated values of the conical excesses coin
with those of the corresponding Euclidean multipleC metric
background.

To study the central black hole more carefully, let us co
sider its near-horizon geometry. As in the two-black-ho
case, we center ourselves on it and perform a coordin
transformation analogous to~3.9!. After expanding the met-
ric nearR5A2a45, we get

ds25g1
2~u!H 2S 12

2a45

R2 D dt21B F S 12
2a45

R2 D 21

dR2

1R2du2G J 1g2
2~u!R2sin2u dw2

1g3
2~u!R2 cos2 u dc2, ~4.5!

where

B[
a18a48a38a16a15a37a46a26a35a27

~a28a17a47a36a25!
2

~4.6!

is a rather complicated constant term. More interestingly,
angular distortion factors which describe how the cen
black hole is affected by the other two black holes are

g1
2~u![

~a45sin2u1a24!~a45cos2u 1a57!

~a45sin2u1a14!~a45cos2 u1a58!
, ~4.7a!

FIG. 6. Rod structure of the three-black-hole solution.
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g2
2~u![

~a45sin2u1a14!~a45cos2u 1a56!

~a45sin2u1a34!~a45cos2u 1a57!
, ~4.7b!

g3
2~u![

~a45sin2u1a34!~a45 cos2u 1a58!

~a45sin2u1a24!~a45 cos2u 1a56!
.

~4.7c!

For simplicity, we now assume thata125a78, a235a67,
and a345a56, corresponding to a left-right symmetric sy
tem. Again, we shall take at5R5w5c5const slice of the
metric ~4.5! and observe how the quarter circle 0<u<p/2,
with proper radiusAguu, is affected by the other two blac
holes. We have

guu}
~sin2u1w!~ cos2u 1w!

~sin2u1w1v !~ cos2u 1w1v !
, ~4.8!

where w[a24/a45 and v[a12/a45. This function encodes
the distortion of the central black hole’s horizon along theu
direction by the other two black holes. We can see from
even without the aid of graphical plots, the characteris
effects of the various physical parameters as follows. Fi
note thatw represents the ratio of the coordinate distan
between the left and central black holes to the mass of
latter. As it increases, the quarter circle tends more towa
circular arc. Second,v represents the ratio of the mass of t
left black hole to that of the central one. As it increases,
quarter circle deviates more from circular symmetry. Th
general behavior conforms to our Newtonian expectation

Finally, we briefly study the temperatures of the bla
holes in this solution. They are

Tleft5
1

A22p

a14a17

Aa18a13a12a15a16

, ~4.9a!

Tright5
1

A22p

a28a58

Aa18a48a38a78a68

, ~4.9b!

Tcentral5
1

A22p

a28a17a47a36a25

Aa18a48a38a16a15a37a46a26a35a45a27

.

~4.9c!

The question then arises if the three black holes can b
thermodynamic equilibrium for some choice of paramete
Indeed, there exist infinitely many solutions for such a s
nario, a particular solution beinga675a565a345a235a78/2
5a12/2, anda45.1.5886a67. In this case, the central blac
hole has to have a smaller mass than the other two b
holes in order to achieve thermodynamic equilibrium.

V. MULTIPLE CHARGED BLACK HOLES

We shall now generalize our solution~2.4! to a system of
multiple charged black holes in a general 5D Einste
Maxwell-dilaton theory. This would be a first step towa
embedding the solution in a more complete framework s
as string or M theory, which may then provide some insig
into the microscopic description of such a system.
1-7
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We begin by finding the corresponding multi-black-ho
solution in the special case of 5D Kaluza-Klein theory. Th
can be done using the standard procedure@10# of embedding
the spacetime~2.4! in six dimensions by adding a flat extr
dimension:

ds(6)
2 52e2U1dt21e2U2dw21e2U3dc21e2n~dr21dz2!

1dy2. ~5.1!

Boosting along they direction with rapiditys, the metric
becomes

ds(6)
2 52

e2U1

cosh2s 2e2U1 sinh2 s
dt2

1e2U2dw21e2U3dc21e2n~dr21dz2!

1~ cosh2s 2e2U1 sinh2 s!

3S dy2
~12e2U1! sinhs coshs

cosh2s 2e2U1 sinh2 s
dtD 2

. ~5.2!

If we dimensionally reduce ony using the ansatz

ds(6)
2 5e21/A6fds(5)

2 1eA3/2f~dy22Aadxa!2, ~5.3!

then the 5D metricds(5)
2 , Abelian gauge fieldAa , and dila-

ton f can be read off from Eq.~5.2!. They describe an elec
trically charged multi-black-hole solution in 5D Kaluza
Klein theory with the action

I 5
1

16p E d5xA2gS R2
1

2
]af]af2eA8/3fFabF

abD ,

~5.4!

whereFab[]aAb2]bAa .
Now Eq. ~5.4! belongs to a general class of Einstei

Maxwell-dilaton theories with the action

I 5
1

16p E d5xA2gS R2
1

2
]af]af2eafFabF

abD ,

~5.5!

wherea is a constant parametrizing the coupling of the
laton to the gauge field. In particular, the Einstein-Maxw
case is recovered whena50. It is fairly straightforward to
generalize our static multi-black-hole solution in Kaluz
Klein theory to that of Eq.~5.5!. The general-a solution
turns out to be

ds252H22b/3e2U1dt21Hb/3@e2U2dw21e2U3dc2

1e2n~dr21dz2!#, ~5.6a!

At5
Ab

2
H21~12e2U1! sinhs coshs, ef5Hba/2,

~5.6b!
04402
-
l

where

b[
12

413a2
, H[11 sinh2 s ~12e2U1!, ~5.7!

and Ua and n can be read off from Eqs.~2.3! and ~2.4!,
respectively. The corresponding magnetically charged s
tion can be obtained by the usual electromagnetic dua
transformation.

The rod structure of this solution is still given by Fig.
Its ADM mass and electric and scalar charge@11# can be
calculated in terms of the masses and electric and sc
charges of the individual black holes, as follows:

M total5 (
j 51

N

M j5
3p

8 S 11
2b

3
sinh2 s D (

j 51

N

m j , ~5.8!

Qtotal5 (
j 51

N

Qj5p2Ab sinh~2s! (
j 51

N

m j , ~5.9!

S total5 (
j 51

N

S j52p2ba sinh2 s (
j 51

N

m j . ~5.10!

Here we have labeled thej th black hole from the left, and se
m j[2 ua3 j 222a3 j 21u. Note that the individual black hole
all have the same mass-to-charge ratio. In accordance
the no-hair theorem@12#, we observe as usual that the sca
charge is not an independent parameter, and it vanishes w
the electric charge does so because

Qj
25S j S 16pM j

3a
1

322b

3ba2
S j D . ~5.11!

Furthermore, we have a relation between the rod length
the mass and charge of the black hole in question, given

m j
25S 8M j

3p
1

aS j

4p2D 2

2S Qj

p2Ab
D 2

. ~5.12!

The limit of vanishing rod lengthsm j→0 is the so-called
extremal limit. In view of its relative importance, this cas
will be discussed separately in Sec. VI.

Let us now specialize to the two-black-hole case. If w
center ourselves on the left black hole and push the right
to infinity as in Sec. III, we obtain

ds252S 11
m̃1

R2
sinh2 s D 22b/3S 12

m̃1

R2D dt2

1S 11
m̃1

R2
sinh2 s D b/3F S 12

m̃1

R2D 21

dR21R2du2

1R2sin2u dw21~11 l !2R2 cos2u dc2G ,
~5.13a!
1-8
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At5
Ab

2

m̃1 sinhs coshs

R21m̃1 sinh2 s
,

ef5S 11
m̃1

R2
sinh2 s D ba/2

, ~5.13b!

where m̃1[m1 /(11 l ). Thus, we recover in this limit a
single dilatonic black hole@11#, except for a conical singu
larity attached to it along thec axis with excess angle 2p l .
In a procedure similar to that in Sec. III, we may also calc
late its near-horizon geometry to obtain

ds25 f 1
2~u!H 2 cosh24b/3 s S 12

m1

R2D dt2

1 cosh2b/3 s
a15a13

a14
2 F S 12

m1

R2D 21

dR21R2du2G J
1 cosh2b/3 s@ f 2

2~u!R2sin2u dw2

1 f 3
2~u!R2 cos2u dc2#, ~5.14!

where the distortion factorsf 1 , f 2 , f 3 are the same as thos
in the vacuum case~3.11!. The three-area and temperature
the event horizon are, respectively,

A5A2~2p!2 coshb s
a12Aa12a13a15

a14
, ~5.15!
is
he

th
t
n-
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f

T5
cosh2b s

A22p

a14

Aa15a13a12

, ~5.16!

while the electrostatic potential at the horizon is

Fhorizon5
Ab

2
tanhs. ~5.17!

Note thatFhorizon is independent of which black hole we a
considering.

A similar analysis can be performed on the right bla
hole, but we will not reproduce the results here. We end
remarking that a generalized Smarr relation holds for
individual black holes:

M j5
3

2
Tj S Aj

4 D1
FhorizonQj

4p
. ~5.18!

This relation can be explicitly checked for the left black ho
using the above results, and is consistent with the Sm
formula for the electrically charged black holes found
@11#.3

VI. EXTREMAL BLACK HOLES

The extremal limit of the charged multi-black-hole sol
tion derived in the preceding section, is taken by send
m j→0 ands→` to infinity such that the chargesQj remain
fixed. The solution~5.6! becomes in this limit
ds252S 11 (
j 51

N
Q̃j

2R2 j 21
D 22b/3

dt21S 11 (
j 51

N
Q̃j

2R2 j 21
D b/3F ~R11z1! )

j 51

N21 S R2 j2z2 j

R2 j 112z2 j 11
Ddw2

1~R2N212z2N21! )
j 51

N21 S R2 j 212z2 j 21

R2 j2z2 j
Ddc21e2g0 )

k51

N21 S Y1,2k

Y1,2k11
D )

l ,m

N21

Y2l 11,2m

)
i 51

2N21

Ri )
j ,s

N21

Y2 j ,2sY2 j 11,2s11

~dr21dz2!G ,

~6.1a!

At52
Ab

2 S 11 (
j 51

N
Q̃j

2R2 j 21
D 21

, ef5S 11 (
j 51

N
Q̃j

2R2 j 21
D ba/2

, ~6.1b!
is
act
nd

the
whereQ̃j[Qj /(2p2Ab). Its corresponding rod structure
given by Fig. 3, but with the addition of point sources for t
time coordinate atz5a2 j 21, where theN black holes are
located.

Note that the part of the metric in square brackets is
Euclidean 4D multipleC metric solution. This is in contras
to the 5D multiextremal-black-hole solution previously co
e

sidered in@13#, in which the metric in the square brackets
the flat one. Our solution is more complicated due to the f
that we are adding black holes to the nontrivial backgrou

3There is a 4p in the denominator of the second term because
Maxwell term in Eq.~5.5! is 1/(4p) times that in@11#.
1-9
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of Fig. 3, instead of flat space. However, we believe it is s
worth studying the solution~6.1!, since the nonextremal gen
eralization of the multi-black-hole solution of@13# is not
known.

The ADM mass and scalar charge of thejth extremal
black hole are expressed in terms ofQj by

M j5
AbQj

8p
, ~6.2!

S j5AbaQj , ~6.3!

with the total mass and scalar charge of the solution given
their respective sums.

Let us again consider the two-black-hole case for simp
ity. The metric~6.1a! reduces to

ds252S 11
Q̃1

2R1
1

Q̃2

2R3
D 22b/3

dt2

1S 11
Q̃1

2R1
1

Q̃2

2R3
D b/3 F ~R11z1!~R22z2!

R32z3
dw2

1
~R12z1!~R32z3!

R22z2
dc2

1
Y12Y23

4R1R2R3Y13
~dr21dz2!G , ~6.4!

where the part of the metric in square brackets is just
usual EuclideanC metric solution@14#. The black holes are
located atz5a1 anda3. Centering on the left black hole an
pushing the other to infinity as was done above, we obta

ds252S 11
Q̃1

~11 l !R2D 22b/3

dt21S 11
Q̃1

~11 l !R2D b/3

@dR2

1R2du21R2sin2u dw21~11 l !2R2 cos2u dc2#,

~6.5!

where nowl[a23/a12. This is the extreme dilatonic blac
hole metric of@11,13#, but with a conical singularity attache
to thec axis. Its near-horizon limit is simply

ds252S Q̃1

~11 l !R2D 22b/3

dt21S Q̃1

~11 l !R2D b/3

@dR21R2du2

1R2sin2u dw21~11 l !2R2 cos2u dc2#. ~6.6!

The corresponding limits for the right black hole are simil
with the conical singularity attached to thew axis instead.
Note that there is an absence of angular distortion in
~6.6!. This is due to the well-known fact that the electrosta
repulsion exactly balances the gravitational attraction
tween extremally charged black holes. There are, howe
conical singularities still stretching between the black hol
but these are intrinsic to the background spacetime and
not be avoided.
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The areasAi of the event horizons are zero except for t
b53 ~Einstein-Maxwell! case where we find

Aleft5A 1

2p2

a12

a13
S Q1

A3
D 3/2

, ~6.7a!

Aright5A 1

2p2

a23

a13
S Q2

A3
D 3/2

. ~6.7b!

Furthermore, it is interesting to observe, as in@11#, the de-
pendence of the Hawking temperaturesT of the two extremal
black holes on the strength of the coupling constant:

Tboth→` for 0,b,1, ~6.8a!

Tboth50 for 1,b<3, ~6.8b!

Tleft5A 1

2Q1

a13

a12

Tright5A 1

2Q2

a13

a23

6 for b51. ~6.8c!

For 0,b,1, the extremal limit brings the temperature
formal infinity, similar to the behavior of 4D Kaluza-Klein
extremal black holes@15#. It was shown that these infinitely
hot extremal black holes are protected by mass gaps or
tential barriers which insulate them externally, and thus th
can be treated as elementary particles@16#. For 1,b<3, the
temperature tends to zero smoothly, characteristic of
tremal Einstein-Maxwell black holes, which are stable e
points of black hole evaporation@17#. The b51 case has a
finite temperature. This enigmatic case emerges from lo
energy effective string theory, when compactified to five
mensions. The finite temperature might lead one to think t
the extremal end point of black hole evaporation will res
in the formation of a naked singularity, but there exist va
ous arguments to avoid this conclusion@18,19#.

VII. DISCUSSION

In this paper, we have constructed a static solution
scribing a superposition ofN Schwarzschild black holes
which may be considered a 5D generalization of the Isra
Khan solution. For certain choices of parameters, the bl
holes may be regarded as collinear. The main propertie
these solutions were then studied. While they share m
properties with the Israel-Khan solution, there are also c
cial differences, particularly in the structure of the conic
singularities. The charged generalization of this solution w
also considered.

There are a number of avenues for further research.
example, the interaction between two 4D near-extrem
black holes was analyzed in@4# by embedding them in M
theory as bound states of branes. Using an effective st
description of these bound states, the semiclassical resu
the entropy, and its correction due to the interaction betw
1-10
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the black holes, was reproduced for large separation
would be very interesting to see if an effective string desc
tion can also be found for our 5D charged two-black-h
solution.

In four dimensions, there exists a class of solutions kno
as black diholes@20#, which consist of pairs of black hole
with equal mass, and charges of the same magnitude
opposite sign. This is in contrast to the multicharged-bla
hole solutions of@4# and in this paper, whose black holes a
carry charges of the same sign. An effective string model
near-extremal black diholes was found in@21#, in terms of an
interacting system of strings and antistrings. A natural qu
tion is whether these results would generalize to five dim
sions. A first step in this direction was recently made in@22#,
in which a 5D extremal black dihole solution was foun
using the generalized Weyl formalism. Like the two-blac
hole solutions considered in this paper, the black holes e
in the background of the EuclideanC metric.

We note that by removing all the finite rod sources for t
w coordinate and the left-most rod source for the time co
dinate in Fig. 2, we obtain a limiting metric describing mu
tiple concentric black rings. This solution can be analyz
almost in parallel with the multi-black-hole solution of th
av

.

04402
It
-

n

ut
-

r

s-
-

-
ist

r-

d

paper. Another possible black ring configuration that o
could consider is obtained from the two-black-hole rod str
ture ~Fig. 4! by moving the finite rod source for thew coor-
dinate to thec coordinate, and vice versa. The resultin
solution describes a pair of orthogonal black rings. Super
sitions of black rings and black holes are also possible.

Finally, there remains the open question of whether it
possible to construct a multi-black-hole solution in five d
mensions withSO(3) instead ofU(1)3U(1) symmetry. As
mentioned in Sec. II, such a solution would possess one s
metry axis rather than two, and so would in some se
resemble the Israel-Khan solution more closely. However
construct such a solution requires one to move beyond
generalized Weyl formalism. Unfortunately, there has be
little headway in this direction so far, mainly because t
Einstein equations are no longer reducible to a linear eq
tion, as in Eq.~2.2!.
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