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Multi-black-hole solutions in five dimensions
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Using a recently developed generalized Weyl formalism, we construct an asymptotically flat, static vacuum
Einstein solution that describes a superposition of multiple five-dimensional Schwarzschild black holes. The
spacetime exhibits B(1)X U (1) rotational symmetry. It is argued that for certain choices of parameters the
black holes are collinear and so may be regarded as a five-dimensional generalization of the Israel-Khan
solution. The black holes are kept in equilibrium by membranelike conical singularities along the two rota-
tional axes; however, they still distort one another by their mutual gravitational attraction. We also generalize
this solution to one describing multiple charged black holes, with fixed mass-to-charge ratio, in Einstein-
Maxwell-dilaton theory.
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[. INTRODUCTION considered, although it was argued that this solution cannot
be interpreted as a black hole localized on a Kaluza-Klein
The Israel-Khan solution describing multiple collinear circle because it does not have the correct asymptotic struc-
Schwarzschild black holes in four dimensions has beeiture.
known for some timg1]. It belongs to a class of static, It would be very interesting to find a multi-black-hole
axisymmetric solutions first obtained by We}2], who  solution in five dimensions that may be considered a gener-
showed that the corresponding vacuum Einstein equationglization of the four-dimensional Israel-Khan solution. Such
can be reduced to solving the Laplace equation in threea solution should satisfy two conditions. First, it should be
dimensional flat space. Although the Israel-Khan solutionasymptotically flat, rather than asymptotically Kaluza-Klein
contains stringlike conical singularities, it nonetheless has @s in the first solution mentioned above. Second, it should
well-defined gravitational actiof8], and this enables one t0 yescribe a “collinear” array of black holes, which rules out
study their interactions using standard techniques of gravitane second solution. Such a notion of collinearity would have
tional thermodynamic§4]. _ to be compatible with the spatial symmetries imposed on 5D
Recently, Emparan and Redb] generalized the Weyl \yey| solutions, i.e.U(1)xU(1) corresponding to the two
formalism to arbitrary dimension®=4. They showed that orthogonal commuting rotational Killing vectors.
the general solution of thB-dimensional vacuum Einstein In this paper, we construct a multi-Schwarzschild-black-
equations which hab — 2 orthogonal commuting isometries hole solution (which is actually the finite version of the
is specified byD —3 axisymmetric solutions of the Laplace infinite-black-hole solution considered [B]) which, we ar-
equation in three-dimensional flat space. A way to classifyyye, satisfies the above two conditions and thus qualifies as a
these solutions was also presented 5 In particular, the  5p analogue of the Israel-Khan solution. We begin in Sec. I
five-dimensional (5D) Schwarzschild black hole, like its ith the explicit construction of our solution and a charac-
four-dimensional counterpart, belongs to the generalizegerization of the conditions under which it may be considered
Weyl class. Another noteworthy member of this class is they collinear array of black holes. In Sec. Ill, we examine some
5D black ring solutior{5], which is the first example of an pasic properties of our solution for the case of a two-black-
asymptotically flat vacuum spacetime with an event horizomple system. In particular, we perform various limiting pro-
of nonspherical topology. _ ~ cedures and study the near-horizon geometries of the black
The generalized Weyl formalism opens up, for the firstholes, which turn out to be distorted by their mutual gravi-
time, the possibility of obtaining multi-Schwarzschild-black- tational attraction. In Sec. IV, the analysis is briefly repeated
hole solutions in five dimensions. Three possible configuratgr the three-black-hole system. In Sec. V, the charged ver-
tions were briefly discussed if5]. First, a two-black-hole sjon of our solution in the framework of Einstein-Maxwell-
solution was constructed, with the black holes located at thejjjaton theory is obtained and studied. The extremal limit is
north and south poles of a Kaluza-Klein bubbhis solu-  then examined in Sec. VI. The paper ends with a discussion
tion is not asymptotically flat, since one coordinate is asympof some possible extensions of this work.
totically a Kaluza-Klein circle. The second solution consid-
ered in [5] was a three-black-hole solution that is
asymptotically flat. However, it is not a collinear system, Il THE MULTI-SCHWARZSCHILD-BLACK-HOLE
since the central black hole is only collinear with each of the ' SOLUTION
other two black holes alongjfferentaxes. Finally, a solution
describing an infinite periodic array of black holes was also In this paper, we are specifically interested in 5D static
spacetimes belonging to the generalized Weyl class, i.e., pos-
sessing three orthogonal commuting Killing vectors. Such a
!A detailed study of this solution recently appeared6h spacetime metric can be written as
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FIG. 1. Rod structure of the 5D Schwarzschild-black-hole
solution. FIG. 2. Rod structure of anN-Schwarzschild-black-hole

solution.
ds?= —e?V1dt?’+e?Vadp?+e?Vad P+ e2¥(dr?+ d 2, _ _ _ o
2.1) solution. We first note that it must hawfinite rods for the
time coordinate, corresponding b disconnected event ho-
where v=w(r,z) and U,=U,(r,z) for «=1,23. The rizons. Furthermore, to ensure that each horizon $fam-
vacuum Einstein equations can be shown to reduce to thgology, the ends of each rod must continue with rods of
Laplace equation: different angular coordinates. Finally, the rod structure
should have the same asymptotic form as that in Fig. 1, to
2 2 ensure asymptotic flatness. These conditions leave us with
7 U, 11U, U, g .
- + =0, (2.2)  therod structure in Fig. 2 as one of the simplest possibilities.
grz roor 972 Of course, other rod structures are also possible; however,

] ) . we do not consider them to be as natural or compelling as the
with v determined by quadratur¢§]. The three harmonic 5ne chosen above.

functionsU,, can be thought of as the Newtonian potentials |t js straightforward to write down the ,’'s corresponding
produced by rods of zero thickness and density 1/2 along thg, the rod structure in Fig. 2. If we label the locations of the

zaxis. They should add up to the potential of an infinite rod.roq ends in order of increasirg(left to right in Fig. 2 by
An important example of a spacetime in this class is the 50, g, ..., as_4, then we have

Schwarzschild solution, which has the potentials of the rod
structure shown in Fig. 1.

As described irf5], certain important properties of a gen- 12 Rak—2— {3k-2
eralized Weyl spacetime can be read off from its correspond- U1= EkZ lo
ing rod structure, even without the explicit form of the met- -
ric. For example, rod sources for the two angular coordinates
¢ andy correspond to fixed points of these rotations, i.e., the 1 N Ray_3— Can3
symmetry axes. If the rod sources for tlgeand s coordi- U,== 2 lo
nates extend to infinity in either direction, then the spacetime 2i=2 Rak-27{3k-2
is asymptotically flat. Another important fact is that a finite
rod source for the time coordinate corresponds to an event
horizon in the spacetime. Moreover, if either end of this rod
continues with rods oflifferentangular coordinates, then the Us=
event horizon will haves® topology. This means that the rod

(2.3a

1
1 Ra-1— {31

1
+5l0g(Ri+dy), (230

N
Rak-a— {34
> o

1
+ =log(R3n_1— {3n—1),
“, Rax a— Ll s 2 O(Ran—1—{3n-1)

1
2

structure in Fig. 1 describes a black hole in an asymptotically (2.30
flat spacetime, in agreement with the physical interpretation
of the 5D Schwarzschild solution. whereR;=\r?+ ¢Z and{;=z—a,, for 1<i<3N—1. Using

Bearing these facts in mind, let us now attempt to draw g¢he method described i5], we can then solve for. After
rod structure corresponding to a superposition Mf some calculation, we obtain the line element for this rod
Schwarzschild black holes that generalizes the Israel-Khastructure as

de?+(Ray_1— §3N—1)k1;[2

4 — ﬁ ( Rak—2—{3k-2

R3k3_§3k3)
k=1 \Rak-1—dak-1

(R3k4_§3k4
Rak—2— a2

N
dt?+(Ry+ ) [ ( ot )dl/lz
k=2 3k-3" {3k-3

N
VY- 1(Ran—1— dan-1) VY oan-1Yak-3an-1Y13-3Y 122 333 2Y3k—a.x—3Y3k—4%—2

+e?70
RiRo- - Ran-1VR1 =1 k=2 Yak-an-1Y1,%-2
N
y VYak_33-2Ysk-23-3Yak-23-3Yak-35-aYak—23-2Y3k-a3—2 VRak-4—{ak-4 (dr?+d2)
1<k<] Yak-23-2Y3k-33-3Y3k-43-4 k=2 \VRak_2— {3k_2 ’
(2.4
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L ear with each of the other two points, but along different
Uy axes. This is precisely the reason why the three-black-hole
""" system considered if5] is not collinear. On the other hand,
Us — o consider the three alternate fixed poiats a;, andas. The
o Gz 3 G2N-1 pointsa, andag are joined up along the axis by a finiteys

axis and a finitep axis (corresponding to two orthogonal
S?'s); a similar situation occurs between andas. Suppose
whereY;;=RiR;+ ¢, §j+r2, ande2” is a constant to be ad- We measure the distances between these three points by co-

justed appropriately below. Note that this solution containg®rdinate displacements along the two angular axes, ajth
3N 2 free parameters, with parameters related to the in- — & ~&jl. Then we shall refer to the three points as being

dividual masses of the black holes and the rest determiningcClinéar” if the ratios a;,/ays and ass/ass are equal. In
their spatial arrangement ther words, one has to cover the same ratio of distances

Before embarking on a study of their spatial arrangementalong the two orthogonal directions defined by thand i

. . S ; axes, in moving between collinear points.
let us consider the backgroun_d spacetime !'m't of @) in This notion of collinearity is naturally compatible with the
which all the black holes disappear. This corresponds t

L . ) X QJ(l)XU(l) generalized Weyl symmetry of the spacetime.
shrinking the rods for the time coordinate down to zero sizey; t,rms out there is another notion of collinearity in five

leaving just the rods for the a_ndzp coordinates as in Fig. 3. gimensions that was alluded to iB,6]: if a spacetime pos-

It can be seen that the resulting rod structure corresponds tsses agO(3) spatial isometry, then points on the symme-
the Euclidean version of the multlp@ metric solution de- try axis can be regarded as Co”inewoth these notions
rived in[7] (in this case describiniy—1 accelerating black actually coincide in four dimensions, sinc8QO(D—2)
holeg, with a flat time direction added on. This spacetime is=U(1)°~2 whenD=4.] However, since spacetimes in the
clearly nonflat whenN=2. In addition to the usual two generalized Weyl class will not posse86(3) symmetry in
semi-infinite rotational axes for the and ¢ coordinates, it general, the latter notion of collinearity cannot be applied
containsN— 1 finite-length rotational axes for each coordi- here. It should also be pointed out that our proposed notion
nate. Observe that these axes are not one-dimensional lined, collinearity may not be the only possible one compatible
but rather two-dimensional membranes. While the semiwith U(1)XU(1) symmetry, but it is certainly one of the
infinite axes have the topology of open didR$, the finite ~ simplest. Furthermore, as we shall see below, it passes a
ones have the topology of sphet®s Furthermore, from the Certain consistency cheék. )

behavior of the multipleC metric, we know that there are in It is now a straightforward matter to reintroduce the blaqk
general conical singularities running along the axes. If wd'0les into the background spacetime and extend our notion
demand the two semi-infinite axes to be regular, then ther@f collinearity to them. Stretching between any two adjacent
are unavoidable conical singularities along the finite axes?!2ck holes are now two orthogonal topological disks, with

Thus, this spacetime consists of\¢ 1) conical membranes eachD? terminating on a black hole event horizon. Other-

with S? topology. They are orthogonal to one another, in theWise, the picture is similar to that above. For definiteness,

sense that any line of constant longitude of @eis or- consider the first three black holes from the left in Fig. 2.

thogonal to any line of constant longitude of an adjacgnt Po¥v,k)f123l(ishtfl1e ::o:)hrdi?atz dis_t;ncel fromtr:he ho_rizonhg:f the
at their adjoining point. irst black hole to the fixed poird; along they axis, while

At first, it may seem rather strange to have such a non234 is the coordinate distance froay to the horizon of the

trivial spacetime as the background. However, this is basiS€cOnd black hole along theaxis. If the ratioags/as, is the

cally forced upon us if we want to construct multiple-black- same as the corresponding one between the second and third
hole solutions within the generalized Weyl formalism, angblack holes, namel)a56/_a67, th_en we shall refer to these'
can be seen as follows. A black hole with an event horizon off€€ black holes as being collinear. Note that we are defin-
S® topology can be introduced only at points along trexis "9 collinearity of the black holes with respect to the posi-
where the rods for the and ¢ coordinates meet, i.e., fixed tions of their event horizons, rather than their centers, for
points of theU(1)xU(1) rotational symmetry. There can simplicity. If collinearity is to be d_eflned with respect to the
only be one such point in 5D Minkowski spa]. If we centers, then one needs to take into account the mésses
require two or more fixed points, then the only possible ashence radii of the black holes.

ymptotically flat background, with a flat time direction, is the In the interest of gen_erality, we shall continue t.o keep the
Euclidean multipleC metric solution as described above. A parameters of our solutios arbitrary for most of this paper.

solution corresponding thi— 1 accelerating black holes has If a collinear array of black holes is desired, then the param-
2N—1 such fixed points, although only of them were used eters can be specifically chosen to satisfy the conditions de-

in the construction of the solutiof2.4). These points are scribed above.
labeleda,, as, ..., axy_1 in Fig. 3.

The reason for choosing theBepoints alternately is be-
cause any three adjacent fixed points cannot be collinear. For Having obtained a 5D analogue of the Israel-Khan solu-
examplea; anda, are collinear along thes axis(with anS?>  tion, the next step is to study some of its properties in detail.
conical membrane connecting thgmvhile a, and a; are
collinear along thep axis (with anotherS? conical mem-
brane connecting themSo the middle fixed point is collin-  ?See the discussion surrounding Eg.4).

FIG. 3. Rod structure of the background spacetime of(Edf).

lll. THE TWO-BLACK-HOLE SOLUTION
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We begin by focusing on the two-black-hole case, for simplicity and also because many of the characteristic properties of the
general solution are already present in this case. Selin@ in Eq. (2.4) yields the metric

Ri— R,— R+ R;— R,— Rg—
dszz—( 1= {)(Ry—{4) dt2+( 11 {1)(Rs—{3) d¢2+( 2~ {2)(Rs—{5) dy?
(R2—2)(Rs—{5) Ra— {4 Rs— {3
R,— Rg—{5)Y15Y45Y13Y34Y 23Y35Y 04Y
+e270\/( 2= {2)(Rs—{5)Y15Y45Y13Y34Y 23Y35Y 24 12(dr2+d22), 3.1)
V(R1—£1)(Ry— £a) RiIRyR3R4R5 Y 14Y 5
|
which has rod structure and parameters as in Fig. 4. ag,
Let us first check the regularity conditions for the spatial 5¢=27Ta— for a,<z<as. (3.3b
sections of Eq(3.1). Consider thedsir part of the metric. It 2

turns out that conical singularities cannot be avoided along We proceed to show in detail that our solution really con-
the ¢ axis, and must be present at least along either theists of a superposition of two Schwarzschild black holes.
‘inner” part az<z<a, or the “outer” part z<a;. By = Suppose we center ourselves on one black hole, say the one
choosinge?”o=1/8 and the period of to be 2, we have a on the left, and push the other infinitely far away. Note that
regular outer axis and a conical singularity running along thehere is an ambiguity in this procedure, since there are two
inner one. A similar situation applies to tluieslzw part of the  possible directions in which this black hole can be pushed.
metric. Explicitly, we find the conical excesses We shall therefore demand that it be pushed to infinity in
such a way thait remains collinear with the original system

aq4855 In view of our notion of collinearity defined in Sec. Il, this
Op=2m m_l for ag<z<a,, means we should take the limit— o while preserving the

15434435424 .

ratio
(3.23
a

Q14225 == (3.9

Oy=2m| ————==-1| for a,<z<as, ass
Vai5813823824

(3.2b  After taking this limit and performing the coordinate trans-

formation

wherea;;=|a; — a;| denotes the coordinate distance between
a; anda; along thez axis. That conical excesses, or struts, 1 / 2a,,
have appeared between the black holes agrees with our r=—-+/1—-—"— (1+1)R?sin26, (3.59
physical intuition: they provide the pressure necessary to 2 (1+1)R?
counterbalance the gravitational attraction of the black holes
and achieve a static configuration. This is analogous to the 1 ag, )
4D casd4], but with one important difference: the struts are z=-35|1- m (1+1)R*cos29, (3.5b
now extended in two spatial dimensions, and are therefore
membranes. They have the topology of disks, as described in
Sec. I, with their boundary circles wrapping around thee recover the metric
black hole event horizons.

It was also pointed out in Sec. Il that conical singularities 2a,, 2a,, -1
remain in the background spacetime even when the black ds?=— - 2 i —— R?
holes are removed with the choieg=a, anda,=as. In (1+DR (1+DR

this case, the result is just the Euclide@mmetric solution +R2d 6%+ R%sit0d o2+ (1+1)2R? cof0d 2.
with an added flat direction. The conical excesses along the
inner axes are now (3.6)

a3 This is just the 5D Schwarzschild black hole, but there is a
0p= 2’7Ta— for az<z<ay, (3.39 conical singularity, with excess angler®, attached to it and
34 stretching to infinity along th& axis. It can be seen that this
conical singularity is an artifact of the background space-

U time, since the lattehas a conical singularity with exactly
U, the same excess angle given by E8.3b. This is a good
consistency check, and it shows that we have taken the
Us SR N
@ s s e . |nf|n_|te—d|'stancel I|m[t correctly. Now the presence of .the
conical singularity will affect the calculation of the Arnowitt-
FIG. 4. Rod structure of the two-black-hole solution. Deser-Misner(ADM) mass of this black hold8], since

044021-4



MULTI-BLACK-HOLE SOLUTIONS IN FIVE DIMENSIONS PHYSICAL REVIEW D68, 044021 (2003

=0 =0 =0
FIG. 5. The horizon of the left
black hole as represented by the
quarter circle G<#<m/2, with
proper radius+g,, for (@ w
=5, (b) w=0.5, and (c) w
=0.05. The jagged lines denote
0=1% == 6=1%

the conical singularities stretching
between the two black holes.
(a) (b) (o)

spacetime is no longer asymptotically flat. Following the " 1855 2ay, -1
procedure of 8], we calculate its mass to be (3#,. dg?=f2(9){ —| 1— | AP+ —; 1-—=| dR?
In a similar fashion, we can center ourselves on the right agy R

black hole and push the left one to infinity. In doing so, we

recover the limiting metric +R2d62 ] +f§( 0)R2sir?0 d¢z+f§( 0)R? co20d 2,
-1
2la 2la 3.1
as’=- ‘T“det”(l‘ﬁ) are o
(1+1) (1+1) where
1+1\2
+R%d#%+ - R2sir? 0d o2+ R? cog 0d . 21,020 +ay
f3o=—p—, (3.113
(3.7) a;,C0S 0 + ays
Again we obtain a Schwarzschild black hole, with a conical a;,C0S 0 + ayg
. . : o . f2(0)=——= (3.11b
singularity now stretching to infinity along the axis. It has 2 A co2l +a., '
excess angle 2] 1, in agreement with Eq:3.3a. The mass 12 24
of this black hole can be calculated to be (3f4)s. The
sum of the masses of the two individual black holes is there- £2(9)= 212C0S'0 +ays (3.119
fore s\ :

a;,c080 +ay;

3 The metric(3.10 describes the near-horizon geometry of a
M= 7 7(a12+ ass), (3.8 Schwarzschild black hole, albeit distorted away from spheri-
cal symmetry. This angular distortion is encoded by the three
so-called distortion factork;, f,, andfs, and can be attrib-
and it turns out to be equal to the calculated ADM mass oluted to the gravitational pull of the other black hole. It is
the full solution(3.1). This is to be expected since the inter- only when the latter is pushed to infinity that the distortion
action energy between the black hol@etermined by the factors disappear.
conical singularitieg4]) vanishes in the infinite separation  One can similarly analyze the right black hole and find its
limit, and so the total energy of the system is just the sum ofear-horizon geometry to be given by the above expressions
the masses of the separate black holes. upon switching ¢« i, 6— m/2— 0, aj;,—ayus, arz— aaa,

We shall now show that our solution describes twoetc. For simplicity, let us assume here thags=a,s anda,;
Schwarzschild black holes even if the distance between them a,,, corresponding to a left-right symmetric system. We

is kept finite. This involves taking the near-horizon limit of shall take at=R=¢==const slice of the near-horizon

each black hole. Let us focus on the left black hole. If Wemetric to see how the quarter circle®< /2, with proper

perform the coordinate transformation radius /g, of each black hole is affected by the other. For
the left black hole, we have

1 2a
r=-/1- —212 R2sin20, (3.99 co20 +w
2 R _ (3.12

o8
Goo 1+ cofo+w’
1 ap| _, wherew=a,,/a, is a parameter related to the coordinate
z=-3|1- Rz R"cos2, (39D geparation-to-mass ratio of the two-black-hole system. It is
readily seensee Fig. % that whenw is large we approach
perfect quarter circles for both black holes. wsdecreases,
and then expand E@3.1) nearR=\/2a,,, we obtain the two quarter circles start to deviate from circular symme-
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try. In.the_ limitw—0, the quarter c.ircles pinch qff along thg (air alﬁlgaisﬂaﬁas‘l_ 2a158,,84) 845~ a13a12a§4= 0.
axes joining them. This behavior is rather similar to that in (3.15
the Israel-Khan solutiof4]. ’
tVV(I)_—?)tlali:T(-?](())\llé tlsjgr P(r)lr?ﬂyF:gnfotrr?: ﬁ;h;th%rfpjr:t'ffegcog;lt can be shown that E¢3.15 has positive solutions faa,s
ution. 12 ! for anya;,, as3, andas,. In particular, we have the solution

each blac_k hole, one can calculate the three-areas of thaen: a4s anday=as,. Thus, we conclude that in our solu-
event horizons to be

tion, the two black holes need not be of the same mass for

them to have the same temperature. If they do, then the two
apva - . '
A= 2(271)2 12 12a13a15, (3.133 finite rotational axes between them must be of the same
a14 length.
Finally we observe a Smarr relation for either black hole
A5V 845835815 i i ; .
Avight= 2(2m)? - _ (3.139 of our solution, consistent with that {19]:
M=o 3.1
To calculate the Hawking temperature associated with each 72 a ) (316

event horizon, it is convenient to Euclideanize our solution
t— —ir. The natural period of is then the inverse Hawking

) where M; is the mass of the black hole. In its differential
temperature. We obtain

form, the Smarr relation may be identified with the first law
of black hole thermodynamics, witd;/4 the entropy of the

1 aiq
Tiert= : (3.143  black hole.
V22m Jajsaiqar,
1 a IV. THE THREE-BLACK-HOLE SOLUTION
25

(3.14h The techniques used in the preceding section to analyze

Tright: -
V22m Vasfuss theN=2 case of Eq(2.4) can be straightforwardly extended

A question then arises if the two black holes can be into any otherN>2. However, the various calculations will
thermodynamic equilibrium for some choice of parametersget much more tedious. In this section, we shall briefly study
In the 4D case, it was shown [d] that the two black holes the N=3 solution, concentrating on the central black hole in
have to be of the same mass for the system to be in therm#his system as it exhibits some features not present in the
equilibrium. To examine our solution likewise, we equate theN=2 case.
expressions for the two temperatures to find For a three-black-hole system, the metc4) reduces to

(Ri—=Z1)(Ry—L4)(R7—7)
(Ro—¢2)(Rs—{5)(Rg—{3)

(Ri=£)(Re=Le) |, (Re=La)(Rs=Ls)
(Re= L) (Ri—17) 7 " (Ra— {3)(Rg—Lg)

ds’=— dt?+(Ry+¢y) (Rg— {g)dy?

1 V(Ry—¢2)(Rs— ¢5)(Rg— L)
+
16v2 V(Ry— (1) (Ry— £4)(Ri—&7)

« VY37 46Y 26Y 35Y 45Y 27Y 16Y 48Y 38Y 13Y 12 34Y 25 24Y 78Y 66Y 16Y 15Y 67Y 56 Y 57
R1Rz- - -RgY28Y14Y58Y17Y 47Y36Y 25

(dr?2+dz%), 4.1

where the rod parameters are defined in Fig. 6, and the factdrand push the other two black holes to infinity in a collinear
1/(16y2) has been chosen to make the outer rotational axef@shion. This is done by taking the limi,— o such that the
z<<a; andz>ag regular. As usual, there are conical excesseshree ratios
resulting along the finite inner axes, but these cannot be re-
moved by any choice of parameters. They are necessary to a a a
hold the system in static equilibrium. =2, =2 |,=-2 4.2

Yy q 1 v 2 v 13 4.2

We can show that Eq(4.1) indeed describes a three- 67 67 ae7

black-hole configuration by performing the same limiting
procedures as in the two-black-hole case. In particular, toemain fixed. After a coordinate transformation analogous to
recover the central black hole, we center our coordinates oRg. (3.5), the metric becomes
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Uy
Uy
Us

a1 Q2 as Gy as Ge a7 ag

FIG. 6. Rod structure of the three-black-hole solution.

2ays

ds= -

1—

dR2+ R2d 6?

2a
1— % )dt2+
A A,R2

1AoR

+\2R%sir?0d %+ \3R? cog 6d /2, (4.3

where

[3(l1+1)(1+1,+13)
[(1+1+15)(I1+13)’

)\15

(A+1)+1)(2+1+15)
[1(1+1+15)(1+13)

A, (4.4

Thus we recover the Schwarzschild black hole, but with
conical singularities attached to it along two different direc-
tions. The calculated values of the conical excesses coinci
with those of the corresponding Euclidean multiflenetric

background.

To study the central black hole more carefully, let us con
sider its near-horizon geometry. As in the two-black-holeh
case, we center ourselves on it and perform a coordinate
transformation analogous {8.9). After expanding the met-

ric nearR=/2a,5, we get

~1
23,5 2ays
dszzgf(e)[—<1—? dt>+B 1—? dR?
+R%d #? ] +03(0)R?sir? 0 de?
+03(9)R?cog ¢ dy?, (4.5
where
a a a a
B 189489382169 15A378 46826035027 4.6

(226217847836225) 2

is a rather complicated constant term. More interestingly, the
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_ (@ysSinP O+ a44)(8,45C0S°6 +asg)

2(0)= , (4.7
92(6) (a45SiM? 6+ az,) (a,5C0S 0 + ag,) (470
2 0)= (245SIMP 0+ a34) (845 COS 0 + asg)
%= (a55iP 0+ ay4)(a,5COS 0 +asg)
(4.70

For simplicity, we now assume that,=a;g, a,3= ag7,
and azy=asg, corresponding to a left-right symmetric sys-
tem. Again, we shall take = R= ¢ = ¢y=const slice of the
metric (4.5 and observe how the quarter circlee@< /2,
with proper radius\/g,,, is affected by the other two black
holes. We have

(Sirf0+w)( cos o +w)
(sirf0+w+v)( cofd +w+v)

Qgo™ (4.9

wherew=ay,/a,s andv=aj,/a,s. This function encodes
the distortion of the central black hole’s horizon along the
direction by the other two black holes. We can see from it,
even without the aid of graphical plots, the characteristic
effects of the various physical parameters as follows. First,
note thatw represents the ratio of the coordinate distance
between the left and central black holes to the mass of the
latter. As it increases, the quarter circle tends more toward a
ircular arc. Second, represents the ratio of the mass of the
&ft black hole to that of the central one. As it increases, the
quarter circle deviates more from circular symmetry. This
general behavior conforms to our Newtonian expectations.

Finally, we briefly study the temperatures of the black
oles in this solution. They are

1 a1417
Tiert= ’ 4o
V227 \Jayga;:8158:516
1 a
Tright= e ' 9
\/5277 a18948A35A75968
. - 1 Apgdy 724793625
trai— .
227 Jaga4685021 8152542035 asR 27 (4.99

The question then arises if the three black holes can be in
thermodynamic equilibrium for some choice of parameters.
Indeed, there exist infinitely many solutions for such a sce-
nario, a particular solution being;= asg= as,= as3=as42
=a,,/2, anda,s=1.588@&¢;. In this case, the central black
hole has to have a smaller mass than the other two black
holes in order to achieve thermodynamic equilibrium.

V. MULTIPLE CHARGED BLACK HOLES

angular distortion factors which describe how the central

black hole is affected by the other two black holes are

_ (@ysSiMP O+ a,,)(8,45C0S'6 + as7)
 (@ueSiMPO+ay,)(8,5C0% O+ asg)

9%(6)

(4.7

We shall now generalize our soluti@®.4) to a system of
multiple charged black holes in a general 5D Einstein-
Maxwell-dilaton theory. This would be a first step toward
embedding the solution in a more complete framework such
as string or M theory, which may then provide some insights
into the microscopic description of such a system.
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We begin by finding the corresponding multi-black-hole where
solution in the special case of 5D Kaluza-Klein theory. This

can be done using the standard proced@@ of embedding

the spacetimé2.4) in six dimensions by adding a flat extra

dimension:

dsgy= —e?V1dt?+e?V2d ? + e?V3dy? + e?*(dr? + d )

+dy?. (5.1
Boosting along they direction with rapidity o, the metric
becomes

e2U1
dsiy=— dt?
6) costto —e?Visint? o

+e?Y2dp?+ e?Vady?+ e’ (dr?+dz%)
+( costfo —e?Yisint? o)

(1—e?Y1) sinho cosho

x| dy— dt (5.2
Y costto —e?Visintt o
If we dimensionally reduce oy using the ansatz
dsfsy=e V®dsly + e T (dy—2A,dx)2, (5.3

then the 5D metricdsfS), Abelian gauge field\,, and dila-

ton ¢ can be read off from Eq5.2). They describe an elec-
trically charged multi-black-hole solution in 5D Kaluza-

Klein theory with the action

1
_ 5y [—
I—15 fdx\/ g

1 ‘
R— Eaaqbé'ad)— e‘m‘/’FabFab) ,
(5.4)

whereF jp=0,A,— dpAa .

12

E4+—32, H=1+ sinifo (1—82U1),
o

B (5.7

andU, and v can be read off from Eq92.3) and (2.4),
respectively. The corresponding magnetically charged solu-
tion can be obtained by the usual electromagnetic duality
transformation.

The rod structure of this solution is still given by Fig. 2.
Its ADM mass and electric and scalar chafdd] can be
calculated in terms of the masses and electric and scalar
charges of the individual black holes, as follows:

N 37| 28 N
MtOtaIZ E Mj:? 1+ ?Sinh2 0') E Mj (58)
j=1 =1

N N
Quia= 2, Q=m*VBsinh(20) 2, uj. (5.9

N N
EtotaI: ;1 EJ :ZWZBCY Sinh2 O'jzl Mj - (51@

Here we have labeled th¢h black hole from the left, and set
wj=2 |agj_,—agj_1|. Note that the individual black holes

all have the same mass-to-charge ratio. In accordance with
the no-hair theorerfil 2], we observe as usual that the scalar
charge is not an independent parameter, and it vanishes when
the electric charge does so because

16mM; 3-28 )
+ =05
3a 3Ba?

QP =3 (5.11)

Furthermore, we have a relation between the rod length and

Now Eg. (5.4) belongs to a general class of Einstein- the mass and charge of the black hole in question, given by

Maxwell-dilaton theories with the action

1 1
= —_— 5 — - a g Aad ab
| 167dex\/ g(R 5 dahd® b e F obF )
(5.5

where« is a constant parametrizing the coupling of the di-
laton to the gauge field. In particular, the Einstein-Maxwell

case is recovered when=0. It is fairly straightforward to

generalize our static multi-black-hole solution in Kaluza-

Klein theory to that of Eq.5.5. The generalk solution
turns out to be

ds?= — H~2ARg2U1g2 + HAY e2V2d o2+ e?Vad g2

+e?’(dr?+dz)], (5.6a
At:\/z—EHl(l—ezul) sinho cosho, e?=HA*"2,
(5.6b

8M;

37

2_
M=

(5.12

e= el
412 772\/,[—3 '
The limit of vanishing rod lengthg;—0 is the so-called
extremal limit. In view of its relative importance, this case
will be discussed separately in Sec. VI.

Let us now specialize to the two-black-hole case. If we

center ourselves on the left black hole and push the right one
to infinity as in Sec. Ill, we obtain

~ —28/3
ds?=—| 1+ ﬂsinh?a) 1- M) ge
R2 2

-1

~ I3
+ 1+ﬂsinh20) 1- 1) gR2+ R2d62
R2 2

+R?sirf0 de?+(1+1)°R?cos o dlpz},
(5.133
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A JB 11 sinho cosho . coshPo  ayp, 5.18
' 2 R2+7L1 Sinhz g , \/52’” \/a15a13a.12, )
Ty Bal2 while the electrostatic potential at the horizon is
ef=|1+ Esinh2 o , (5.13b 7
B
CI)hOI’iZOHZT tanh?'. (517)

where ;=pu,/(1+1). Thus, we recover in this limit a
single dilatonic black hol¢11], except for a conical singu-
larity attached to it along the axis with excess angle7.

In a procedure similar to that in Sec. Ill, we may also calcu-
late its near-horizon geometry to obtain

Note that®,.i,0n IS independent of which black hole we are
considering.

A similar analysis can be performed on the right black
hole, but we will not reproduce the results here. We end by

remarking that a generalized Smarr relation holds for the
dg=12( 0)| _ cosh 4By | 1— '“_; dt? individual black holes:
3_ (A PhorizoQi
ay5813 M1 o MI:E J(Z]) % ©.18
+ costtfPo ——| | 1- = dR?+R2d 62
a
14 This relation can be explicitly checked for the left black hole
+ cositPR o[ 13(9)R?sir? 6 dg? using the above results, and is consistent with the Smarr
) formula for the electrically charged black holes found in
+f5(0)R?>cog6 dy?], (5.14  [11]3

where the distortion factorf;, f,, f5 are the same as those
in the vacuum cas€8.11). The three-area and temperature of V1. EXTREMAL BLACK HOLES

the event horizon are, respectively, The extremal limit of the charged multi-black-hole solu-

— tion derived in the preceding section, is taken by sending
A=12(2m)2 costf & B12v812813815 (5.15  ~&j—0 ando— to infinity such that the chargeg; remain
a4 ' fixed. The solution(5.6) becomes in this limit

N —2813 N B3 N1 R
ds?=—| 1+ ’ ) d?+| 1+ ‘ Ry+ (#)d 2
ileszfl 121 2Ry Ry gl)J':l Roj+1—{2j+1 ¢
N-1
NLip g N-1 Il_n[1 Yaor+1,2m
2i—17 {2j-1 1,% ,
+(R2N71_§2N71)H (:;\,_fj_)dlﬁz‘Fezyo Y N-T  N-1 (dr?+d2?) |,
=1 2j gZJ k=1 1,2k+1
H R H Yoj2sY2j+1,241
i=1 j<s
(6.1a
\/,E N 'Q -1 N 'Q Bal2
A=— | 1+ L . ef=|1+ L , 6.1
' 2 1'21 2Ryj 1 jzl 2Ry 1 (6.1

WhereQJEQJ /(2m2\/B). Its corresponding rod structure is sidered in[13], in WhiC'h th_e metric in theT square brackets is
given by Fig. 3, but with the addition of point sources for the the flat one. Our solution is more complicated due to the fact

time coordinate az=a,;_;, where theN black holes are that we are adding black holes to the nontrivial background
located.

Note that the part of the metric in square brackets is the
Euclidean 4D multipleC metric solution. This is in contrast  *There is a 4r in the denominator of the second term because the
to the 5D multiextremal-black-hole solution previously con- Maxwell term in Eq.(5.5) is 1/(4) times that in[11].
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of Fig. 3, instead of flat space. However, we believe itis still The areas4; of the event horizons are zero except for the
worth studying the solutiof6.1), since the nonextremal gen- B=3 (Einstein-Maxwell case where we find
eralization of the multi-black-hole solution ¢fl3] is not

known. 1 ap/0 3/2
The ADM mass and scalar charge of tfta extremal A= ——12( —1) , (6.7

black hole are expressed in terms@f by 272 a13| |3
. [ 3/2
M i~ %’ (6'2) Aright: i % % . (6-7b)
272 a3\ \/3
3=VBaQ;, (6.3 Furthermore, it is interesting to observe, ag 1], the de-

] ) ) pendence of the Hawking temperatuilesf the two extremal
with the total mass and scalar charge of the solution given by 5.k holes on the strength of the coupling constant:
their respective sums.

Let us again consider the two-black-hole case for simplic-

Thoth— f <B<1 .
ity. The metric(6.1a reduces to bot— > for 0<p<1, (683
'Q 'Q —2pI3 TbothIO for 1<B=3, (68b)
=_ <, x2 2
ds? 1+ 2R, + 2R3) dt
+l1s Q. N Qz)ﬁlg [(R1+§1)(R2_§2)d ) Tiert™ V2Q; ay, ¢ 6.8
5 5 or B=1. .
2Ry 2Rs Rs— {3 ¢ T [ 1 ags A (6.89
N (Rl_gl)(Ra_Zs)dwz 19NN 2Q, ags
Rp=¢2 For 0<B<1, the extremal limit brings the temperature to
Y1oYos formal infinity, similar to the behavior of 4D Kaluza-Klein
+ W(WZJF dz) |, (6.4  extremal black holefl5]. It was shown that these infinitely

hot extremal black holes are protected by mass gaps or po-
where the part of the metric in square brackets is just théentlal barriers which insulate them eXterna”y, and thus they
usual EuclidearC metric solution[14]. The black holes are Ccan be treated as elementary parti¢l8). For 1< <3, the
located atz=a, andas. Centering on the left black hole and temperature tends to zero smoothly, characteristic of ex-
pushing the other to |nf|n|ty as was done above, we obtain tremal Einstein-Maxwell black hOleS, which are stable end
points of black hole evaporatidi7]. The =1 case has a

o) —2pI3 o) BI3 finite temperature. This enigmatic case emerges from low-
ds?=—| 1+ —12 24 —12) [dR? energy effective string theory, when compactified to five di-
(1+HR (1+HR mensions. The finite temperature might lead one to think that

212 o 2 252 > the extremal end point of black hole evaporation will result
TR RESin'6 de? +(1+1)*R*cosd dy], in the formation of a naked singularity, but there exist vari-
(6.5 ous arguments to avoid this conclusidi8,19.

where nowl=a,3/a;,. This is the extreme dilatonic black
hole metric off11,13, but with a conical singularity attached
to the ¢ axis. Its near-horizon limit is simply In this paper, we have constructed a static solution de-

~ 053 5 scribing a superposition oN Schwarzschild black holes,
Q; ep 42 Q; which may be considered a 5D generalization of the Israel-
(1+1R? (1+1R?

VII. DISCUSSION

BI3

[dR?+R?d6”>  Khan solution. For certain choices of parameters, the black
holes may be regarded as collinear. The main properties of
+R?sirt0 de?+(1+1)2R%cos0 dy?]. (6.6) these solutions were then studied. While they share many
properties with the Israel-Khan solution, there are also cru-
The corresponding limits for the right black hole are similar,cial differences, particularly in the structure of the conical
with the conical singularity attached to the axis instead. singularities. The charged generalization of this solution was
Note that there is an absence of angular distortion in Egalso considered.
(6.6). This is due to the well-known fact that the electrostatic There are a number of avenues for further research. For
repulsion exactly balances the gravitational attraction beexample, the interaction between two 4D near-extremal
tween extremally charged black holes. There are, howevehlack holes was analyzed {@#] by embedding them in M
conical singularities still stretching between the black holestheory as bound states of branes. Using an effective string
but these are intrinsic to the background spacetime and cauescription of these bound states, the semiclassical result for
not be avoided. the entropy, and its correction due to the interaction between
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the black holes, was reproduced for large separation. Ipaper. Another possible black ring configuration that one
would be very interesting to see if an effective string descrip-could consider is obtained from the two-black-hole rod struc-
tion can also be found for our 5D charged two-black-holeture (Fig. 4) by moving the finite rod source for the coor-
solution. dinate to they coordinate, and vice versa. The resulting
In four dimenSionS, there exists a class of solutions knOWrSO|ution describes a pair of Orthogona| black rings_ Superpo_
as black dihole$20], which consist of pairs of black holes sitions of black rings and black holes are also possible.
with equal mass, and charges of the same magnitude but Finally, there remains the open question of whether it is
opposite sign. This is in contrast to the multicharged-blackpossible to construct a multi-black-hole solution in five di-
hole solutions of4] and in this paper, whose black holes all mensions witl5O(3) instead ofU(1)x U(1) symmetry. As
carry charges of the same sign. An effective string model fopentioned in Sec. II, such a solution would possess one sym-
near-extremal black diholes was found #1], in terms of an  metry axis rather than two, and so would in some sense
interacting system of strings and antistrings. A natural quesresemble the Israel-Khan solution more closely. However, to
tion is whether these results would generalize to five dimenconstruct such a solution requires one to move beyond the
sions. Afirst step in this direction was recently madé28],  generalized Weyl formalism. Unfortunately, there has been
in which a 5D extremal black dihole solution was found jittle headway in this direction so far, mainly because the

using the generalized Weyl formalism. Like the two-black- Einstein equations are no longer reducible to a linear equa-
hole solutions considered in this paper, the black holes exigfon, as in Eq(2.2.

in the background of the Euclidea metric.

We note that by removing all the finite rod sources for the
¢ coordinate and the left-most rod source for the time coor-
dinate in Fig. 2, we obtain a limiting metric describing mul-
tiple concentric black rings. This solution can be analyzed We would like to thank Roberto Emparan for his com-
almost in parallel with the multi-black-hole solution of this ments and suggestions.
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