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Asymptotic safety of gravity coupled to matter
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Nonperturbative treatments of the UV limit of pure gravity suggest that it admits a stable fixed point with a
positive Newton constant and a cosmological constant. We prove that this result is stable under the addition of
a scalar field with a generic potential and nonminimal coupling to the scalar curvature. There is a fixed point
where the mass and all nonminimal scalar interactions vanish, while the gravitational couplings have values
which are almost identical to those in the pure gravity case. We discuss the linearized flow around this fixed
point and find that the critical surface is four dimensional. In the presence of other, arbitrary, massless mini-
mally coupled matter fields, the existence of the fixed point, the sign of the cosmological constant, and the
dimension of the critical surface depend on the type and number of fields. In particular, for some matter
content, there exist polynomial asymptotically free scalar potentials, suggesting a gravitational solution to the
well-known problem of triviality.
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I. INTRODUCTION evolution, are attracted toward the FP for.? Starting
from any point on the critical surface, the UV limit can be
The failure of perturbative approaches to quantum gravitytaken safely, because the couplings, and as a consequence the

does not necessarily imply that quantum gravity does nophysical reaction rates, will be drawn toward the FP and
exist as a field theory. There is still in principle the possibil-hence remain finitd.On the other hand, if one starts from a
ity that the theory could be “nonperturbatively quantized.” point not belonging to the critical surface, the RG evolution
To understand what this means, one has to look at the renofj|| generally lead to divergences. If the critical surface has
malization group(RG), i.e., the flow of the coupling con- finjte dimensionc, the theory will be predictive, because
stantsg;(k), as a certain external momentum paraméte&r  only c—1 parameters will be left undetermined and will

changed. It is customary to také& as a unit of mass; @, has  have to be fixed by experiment at a given energy stie
dimensiond; in units of mass, we define dimensionless cou-last remaining parameter being the scale ilsdlhe special
plingsg, =g:k~%. The RG flow is then given by the integral case when the FP with a finite dimensional critical surface is
curves of a vector fiel@ in the space of all couplings, whose the Gaussian FP is equivalent to the usual perturbative notion
componentsB;(g) =d,g; (with t=Ink) are the beta func- Of renormalizability and asymptotic freedom.
tions. A fixed point(FP) is a pointg, in the space of all Th|s_scenar|o for _n_onper;urbatwe _renormallzablhty has
couplings, where been discussed specifically in a gravitational contexftlih
where this good property was called “asymptotic safety.” At
the time, some encouraging results were obtained by study-
Bi(g,)=0. ) ing gravity in 2+ e dimensiong1,2], but the program soon
came to a halt essentially for want of technical tools. It now
appears that the right tool to tackle this problem is the exact
For example, in ordinary quantum field theories inRG equation(ERGE), in one of several guises that have
Minkowski space, a Gaussian theory is always a(€#led appeared in the literature in the last decf8le5).
the Gaussian BPbecause it does not have quantum correc- The ERGE is a differential equation that determines the
tions. RG flow of the action. It can be viewed as a set of infinitely
Suppose that the theory admits a FP. We define the UVhany first order differential equations for infinitely many
critical surface to be the locus of points that, under the RGrariables(the coupling constantsand therefore cannot gen-
erally be solved in practice. A method that is commonly used
to calculate nonperturbative beta functions is to make a
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The precise physical meaning of the paramétdepends on the  2In statistical mechanics the term “critical surface” is used for the
specific problem that one is addressing; it is usually the momentuniR critical surface, i.e., the locus of points that are attracted toward
of some particle entering into the process under study, or the inversbe FP whent— —. Note, also, that the “RG timet is often
of some characteristic length of the system. In gendeddas the  defined with the opposite sign with respect to ours.
meaning of an IR cutoff, because the effective theory describing the In general, in the action there will be couplings whose values do
process must include the effect of all the fluctuations of the fieldsnot affect cross sections and reaction rates. They are called inessen-
with momenta larger thak. tial couplings. Our reasoning applies only to the essential couplings.
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physically motivated ansatz for the running effective action,interacting scalar field. Aside from its role as a model for the

typically containing a finite number of parameters, and insertiggs field in unified theories, a scalar fielthe dilaton

this ansatz into the ERGE. appears in many popular theories of gravity. It can therefore
The ERGE, in the specific form discussed &), has been sometimes be regarded as part of the gravitational sector,

applied to Einstein’s theory if6,7], where the beta functions rather than the matter sector. This makes its properties espe-

for Newton’s constant and for the cosmological constan€ially interesting in a gravitational context. In this paper we

were derived. It was later realized that these beta functionghall not make any assumption about the physical interpreta-

actually admit a nontrivial UV-attractive FB]. The proper-  tion of the scalar field. o

ties of this FP were further discussed in greater detdi9]n The class of actions that we consider is

A particularly important issue is to prove that the FP is not an 1

artifact of the ansatz but is a genuine property of gravitation. :j 4 ( 2y _ 2 "

Several facts seem to indicate that the FP is quite robust. Itr[g'¢] dx\g| V(#%)~F(#")R+ 29 uPd).

has been shown to exist in four spacetime dimensions for )

many different shapes of the cutoff, whereas in other dimen- ) )

sions it exists only for certain cutoffs but not others. Its prop-where the potential/ and the scalar-tensor couplirig are

erties have been shown to be only weakly dependent on tr¥bitrary real analytic functiongThe RGE's for this system
shape of the cutoff, indicating that the truncation is self-Were studied earlier |[114].} Although it is not necessary for
consistenf10]. It has been found in certain dimensionally Some of the results of this paper, we shall assume that the
reduced versions of the thedyd]. It is also remarkable that Potential has its minimum at the origin. Then we can identify
Newton’s constant always turns out to be positive, a fact thaf (0)=«=1/167G, G being Newton’s constant, and(0)
could not in any way be guaranteed by the general form of= 2«A, where A is the (dimension-2 cosmological con-

the equations. stant. It will appear that the behavior of the couplings im-

The most important test, however, is the stability of theplicit in the functionsV andF is sufficiently systematic that
FP against the addition of new couplings. Each time we conWe are actually able to draw several conclusions involving an
sider a new coupling, whether remaining in the context ofinfinite number of couplings. For some purposes, however,
pure gravity or if we introduce matter fields, a new betaWe shall restrict our attention to a five-parameter ansatz,
function has to vanish, and therefore a new constraint has t¢hereV is at most quartic inp andF is at most quadratic.
be satisfied by the set of all couplings at the FP. It is there- Aside from establishing the existence of a nontrivial FP,
fore nontrivial that the FP still exists when we take into the main question addressed in this paper will be the dimen-
account additional couplings. sion of the critical surface. In practice, this is done by lin-

In the context of pure gravity, an important progress wasearizing the flow around the FP. We defing=g;—g;, as
made in[12], where it was shown that the addition of a term the shift from the fixed point. The linearized flow around the
quadratic in curvature does not spoil the existence of the Ffixed point is described by the equations
In fact it turned out that the values of the cosmological and
Newton’s constants at the FP are almost unaffected by the dw;i=Mjjvj, ©)
new interaction, while the new coupling constant is quite
small at the FP. This is far from being conclusive evidencewhereM;;=4dp;/dg; . Let P be the(generally complexlin-
but it is nevertheless an important result, especially in viewear —transformation that diagonalizesM: P~ *MP
of the fact that another FP that was present in the truncatiorr diag(a;, . . . ,ay) (the columns ofP are the eigenvectors
with only two couplings—the Gaussian FP—does not exisof M). Defining f=P v, one findsd,f,= a,f, so f(t)
in the three-coupling truncation. =e*!. Transforming back to the original variables, the so-

As far as matter is concerned, we have recently considiution can be writterg;(t) =g;, + R€ P;;f;(t)]. It is easy to
ered the effect of minimally coupled, massless quantunshow that the eigenvalues are invariant under redefinitions
fields of arbitrary spif13]. The only couplings taken into of the couplings.
account were the cosmological and Newton’s constant, since The eigenvalues with negative real pawhich for brevity
the coefficients of the matter kinetic terms can be normalizedve shall call the “negative eigenvaluestorrespond to di-
to their standard values by field rescalings. It was shown thatections for which the RG flow approaches the FP in the UV.
the existence of the FP, the values of the cosmological conFhe corresponding parametgris called a relevant param-
stant and Newton'’s constant at the FP, and the dimension @fter. Those with positive real pafthe “positive eigenval-
the critical surface all depend on the type and number ofies”) correspond to directions for which the RG flow moves
fields present. Altogether, the existence and attractiveness afvay from the FP in the UV. The corresponding paramgter
the FP puts some constraints on the number of matter fields called an irrelevant parameter. The parameters correspond-
that are present. ing to purely imaginary eigenvalues are called margfral.

In this paper we continue the analysis of coupled gravitythe linearized theory, in order to approach the FP in the UV,
and matter systems and we begin to address the issue ibfis therefore necessary to stay on the hyperplane spanned by
matter couplings. There are many different couplings that are
necessary to construct realistic theories of the world, and we——
cannot possibly take them all into account, so as a first step*Thus, in the conventions used in statistical mechanics(IRe
we shall consider the simplest example, that of a selfcritical surface is spanned by the irrelevant parameters.
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the eigenvectors with negative eigenvalues. This hyperplaneenormalized scalar potential has finitely many nonzero cou-
is the tangent space to the critical surface at the FP. Therglings in the continuum limit. This seems to indicate that the
fore, the dimension of the critical surface is equal to theinteraction with gravityand, indirectly, with the other matter
number of negative eigenvalues. On general grounds, orfé€lds solves the problem of the triviality of the scalar
expects the critical surface to be finite dimensional. In thistheory.
way all but a finite number of couplings would be fixed and ~ This paper is organized as follows. In Sec. Il, by way of
the theory would be as predictive as a perturbatively renorintroduction, we derive the ERGE and we use it to prove
malizable theory. some well-known results on the Gaussian FP of a pure scalar
We now give a brief summary of the results of this paper.theory in flat space. In Sec. Il we consider the modifications
First of all, a nontrivial FP still exists with the ansa®. The ~ ©f the beta functions due to gravity, we prove the existence
purely gravitational couplingsthe cosmological constant Of the Gaussian-matter FP, and we discuss (tegative
and Newton’s constant, which appear as #feindependent  "esults of the numerical search for other FP’s. Section IV is
terms in the function® andF) have the same values as in devoted to the properties of the GMFP. We analyze the lin-
[13] and all the other couplings are equal to zero. In a sensgafized flow around the GMFP and show that the coupling to
this is therefore “the same” fixed point that was considereddravity affects the dimensions of the couplings, shifting them
in [8] and in[9,15]. It can also be regarded as a generaliza-relat've to the canonical va_lu_es. In Sec. V we cons_lder the
tion of the Gaussian FP of the pure scalar theory in flat spac&ffect of other massless, minimally coupled matter fields on
We therefore call it the Gaussian-matter EBMFP). We the GMFP. In Sec. VI we will consider in some detail thge
have performed a systematic search for other FP’s within §ependence of our results on the shape of the cutoff function
five-parameter truncation of the action, whafeand F are ~ @nd on the gauge-fixing parameter. Finally, in Sec. VIl we
polynomials containing at most terms of ordgf and ¢2, ~ Make some concluding remarks. _ _
respectively. Thus, in addition to the cosmological and New- All results are derived in the case of Euclidean signature,
ton’s constants, we consider a scalar mass term, a quart@ four dimensions. Since the expressions of the beta func-
self-interaction, and a nonminimal coupling of the scalarions are extremely lengthy, in deriving our results we have
field to the scalar curvature. Detailed numerical analyse§12de extensive use of algebraic manipulation software.
have convinced us that there are no FP’s with nonzero scalar
mass and couplings, for values of the cosmological and |I. THE GAUSSIAN FP IN PURE SCALAR THEORY
Newton constant close to those of the pure-gravity FP. ) o ) ]
Comparing to the results of the pure scalar theory, the We begln.by conS|der|ng. the case of a_smgle scalar field
main effect of the coupling to gravity is to change the expo-Without gravity and a generic even potential
nentsq; . It turns out that of the two canonically marginal o
couplings, thep? coupling becomes irrelevant while the V(¢)=Z X2n¢2“_ (4)
¢#°R coupling becomes relevant. The other couplings pre- n=0

serve the character that is implied by their canonical dimen; . . o~ . .
sion; the critical dimension would thus be equal to 4. In this section we assume thd(0)=Xo=2Ax=0; the first

We then look at the effect of other matter fields on the FPnonzero term is the mass,=;m?, while A, is the usual
The results of this investigation generalize those already requartic coupling. The couplingsh,, have dimension
ported in[13]. The behavior of the beta functions is deter- (massf®>~™, so the usual power-counting arguments tell us
mined by two parameters that depend on the number dhat the terms in Eq) with n>2 are perturbatively non-
fields, and the existence of the FP depends on the values oénormalizable, while the term=2 is marginal. We will
these parameters. In this way the existence of the FP yieldsow rederive this result within the formalism of the ERGE's.
constraints on the type and number of matter fields. Thes&his will set the stage for further developments in later sec-
constraints appear to be satisfied by popular unified modelsions.

The existence region is subdivided into subregions with To derive the ERGE, one begins by modifying the classi-
varying numbers of attractive directions. In the region thatcal propagator by adding to the action a term quadratic in the
we have explored, comprising large numbers of matter fieldsfjelds which in momentum space can be writt&i$, ()

the dimension of the critical surface is always finite. In par-=1[d*q¢(—q)Re(2) #(q), wherez=q?. The effect of this
ticular, there are regions in which the attractive directionsterm must be to suppress the propagation of field modes with
correspond to nontrivial polynomial potentials of degree 4 ormomenta smaller thak, while leaving the modes with mo-
higher. This may yield a solution of a long-standing puzzle.menta larger thak unaffected. This is the case if the smooth
In a pure scalar theory in flat space, the Gaussian FP is IButoff functionR, is chosen to tend to zero faek? and to
attractive (all couplings are irrelevantAs a consequence, a constant foz—0. For numerical work, in this paper we
when one takes the continuum limit at the Gaussian FP, th@ill work with cutoffs of the form

renormalized theory is free. This result is not an obstacle in

the context of an effective field theory, but it has to be some- 2aze
how circumvented if scalar fields have to appear in a funda- Rd2)= 1— g 2azk*’ )
mental field theory. The coupling to gravity is a natural con-

text for a solution of this issue. Our results suggest that therwith a a free parameter. We then define a scale-dependent
exist theories of gravity coupled to matter such that thegenerating functional of connected Green’s functions

2az/k?
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wk[J]:—lnf (D¢)exr{—(S+ASk+fJ¢)

such that 6W, /8J3)|;-o=(¢) and a scale-dependent effec-

tive action T\ e ]=T [ o]~ ASLde], where T\[ ¢
=W, [J]—-[J¢ is obtained fromW,[J] by the usual
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where a prime denotes the derivative with respeaptpthe
trace can be understood as an integration over momenta. It
can be reexpressed as

ol'y= Q>

11)

9Py )

32m% "\ P+ V + 492V

Legendre-transform procedure. The scale-dependent effec-

tive action tends to the bare acti®whenk tends to the UV
cutoff, and to the ordinary effective action fé&r—0. We
have

1
W= (AS) = ETr<¢¢>5’tRk: (6)

where the trace is over all Fourier modesd internal indi-
ces, if there were anyThen,

W bl = dW([I]— 3 AS Dl

STH(dd) (BN DR,

whereV= [d*x denotes the volume of spacetime and

- 1 (+=
Qn[f]sz0 dzZ2' (2). (12

The coupling constants can be extracted from the potential
by

~ 1 9"V
“ =l (47

(13
$=0
In order to look for a fixed point one has to define dimen-

sionless couplinga ,,=k?™~2)X,,, . The corresponding beta
functions are given by

1 52WkaR @ K20-2) 1 gn
=—=-Tr——— . =2(n— + —
2 6J48J ik at)\Zn 2(n 2))\2n Vv n! &(¢2)n07trk oo
Applying the standard identity (14)
~ _ Explicitly, the first few beta functions are given b
52Wk B ( 521'*[( ) 1 (8) p y g y
8381\ 6¢puddal 12\, P
dNp=—2N— 5 Q2 ron,) (1539
one then obtains the ERGHS6] 32m 2
AT =T T +R 715R (9) = _HP
==Tr . = —
th k 2 6¢5¢ k tk (90\4 32772 0)\6Q2 (7)+ 2)\2)2
In the previous formula and in the following we shall drop 0P
the subscript ing.,; this should not cause any confusion. +144}\in ——| | (15b)
Note that, although the definition &f, would require an UV (P+2Xz)
regulator, the trace in Eq9) is automatically finite due to
the termd;R,., which effectively restricts the integration to a B P
small range of momenta abokt The ERGE describes the dthe=2Ne T 3272 —56h Q2 2
. . T (P+2\5)
flow of the functionall’, with the scalek. In order to extract
beta functions, one has to resort to approximations. A com- P
mon procedure is to make an ansatz about the forin, @ind + 7200 4N Q> 3
to insert it into the ERGE. Of course the beta functions ob- (P+2)2)
tained in this way are no longer exact: one loses all informa- oP
tion about the dependence of the beta functions on the pa- -1728.3Q, ‘—) , (159
rameters that have been left out of the ansatz. Nevertheless, (P+2N,)4
the results do contain information that is not accessible in
perturbation theory and they have been shown to yield nu- 1 P
merically accurate values in many circumstanigg47]. We dNg=4Ng+ 3972 —90N Q> —
now apply this procedure to the scalar theory. (P+2X2)
Introducing in Eqg. (9) the truncation I'\(¢) aP
=[d**[—3¢3*°¢p+V(4?)], where V is a k-dependent +1344 )\ 5Q, t—)
potential, gives (P+2)\,)°
1 07th 2 atlp
oNy==Tr| ——————|, 10 +9007\6Q2<—
S22 T Pt v+ ag2y 10 (P+2)2)°
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OP are equal to the canonical dimensions of the couplings, and
—8640\g\2Q; — the terms on the second diagoned( + 1), which are equal
(P+2\p)* to
+20736.%Q _P (150) M, L =Pan =(2n+1)(n+1)c (16)
2 (P 2\,)%/ | SRR P

wherec= — (1/1672)Q,(4,P/P?). All other terms are zero.

— 72n~ . - - .
where Quf]=k "'Qq[f] is a dimensionless integralk Numerically, the integraQ,(4,P/P?) is equal to 0.924 for

=k ?R, is a dimensionless cutoff, arB=k 2P, is a di- a2

mensionless modified propagator. T . . )
This theory admits a well-known Gaussian FP: if we set Therefore, the matriM has the following form:

N,=0, Eq.(153 implies\,=0, Eq.(15b then implies\g —2  6C 0 0

=0, and so on: recursively all couplings are found to be

zero. This is not the only solution of the coupled system. One

can fix an arbitrary value of, and the equations then recur- 0 0 2 28 ... |. (17)

sively determine all the other couplinfs8]. However, when 0 0 0

\,# 0 these potentials become singular at a finite valué of

and therefore are not considered to be physically acceptable

[19]. In what follows we will restrict our attention to the The eigenvalue problem for this infinite matrix yields the

Gaussian FP. . .
We now study the critical surface in the neighborhood ofrecurSIOn relation
the FP using the linearized RG equati@B). Let B, 2(n—2)—u
= kg and 1etM;; =3B /9 . It appears from Eqg15) )\2n+2:m)\2n1 (18

(as well as from dimensional and diagrammatic consider-

ationg that the nth beta function is a polynomial in the whereu is the eigenvalue. This relation can have two types
couplingshy, ... Aonyio, linearink,,,». Therefore the el-  of solution. If we assume that the potential is a finite poly-
ements of the matrii;; with j>i+1 are zero. On the other nomial of orderK, Eq.(18) implies thatu=2(K—2). These
hand, since alh,, are zero at the FP, when the derivativeseigenvalues are just the diagonal elements of the méitirix

are evaluated at the FP only the terms linear in the couplingShe corresponding eigenvectors are the columns of the fol-
remain. These are exactly the terms on the diagonal, whiclowing matrix P:

1 —0.0175512 3.8480410 3 1.04825<10 °

0 0.999846  —0.0438425 1.7914810 °

0 0 0.999038 —0.0816446  ...|. (19)
0 0 0 0.99666

The eigenvalues are equal to the canonical dimensions of theor this, one has to go beyond the linearized analysis
couplings, so that the relevant, irrelevant, and marginal couf20].)
plings correspond exactly to the couplings that are super- There is also another type of eigenvector, corresponding
renormalizable, nonrenormalizable, and renormalizable ino nonpolynomial potentials, that avoids the problem of trivi-
the perturbative sense. ality. If we do not assume that,x,,=0 for somekK, the
These polynomial potentials suffer from the well-known recursion relatior{18) can be solved for tha,, in terms of
problem of triviality. Consider the scalar theory regularizedthe free parameteds, andu, yielding a potential that can be
with a UV cutoff Ay, and an IR cutoffk. Keepingk fixed  written as a Kummer functiofiL8]. There argnegative val-
and lettingA yy—©° (the continuum limit has the same ef- ues ofu for which the potential has all the physically desir-
fect as keeping\yy fixed and lettingk—0. An irrelevant  able propertiegpositivity at «, symmetry breaking They
coupling tends to zero fdt— 0, and therefore for any fixed are therefore nontrivial asymptotically free scalar theories.
k it will tend to zero in the continuum limit. This will be the However, there are infinitely many attractive directions and
case for allx,; with i=2, so the theory is noninteracting in therefore these theories do not satisfy the conditions for
the continuum limit.(Our analysis says only that the cou- asymptotic safety.
plings from\g upward have to be zero; the hard part is to  This concludes our brief review of the ERGE for a scalar
prove that also the marginal coupling, tends to zero. field theory.
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lll. THE COUPLED SYSTEM background metric equal to the classical one, ig,,

We now consider the coupling of the scalar theory to=9u», SO that many contributions disappear. From these
gravity, using the ansai2) for the running effective action. €quations one can read off the beta functions of the
This will obviously change the beta functions of the scalarcouplings.
potential; in addition, we will have to take into account also ~ The gauge-fixing action is chosen as
the beta functions of the gravitational couplings. These are
given by the Taylor expansion coefficients of the function

F(¢?) of Eq. (2), which we write as follows: 1
(¢) q ( ) SGF:ZJ' d4X gg/“/F,qu: (23)
F(¢%)= 2, End™. (20
. . . o . — = B+1_
The first term in the expansion can be identified with the F.=9"\ V.0,,— TV”QVP ,

(inverse Newton constant:éy=«=1/(167G), while the
second term is the well-known scalar tensor interaction term
#°R with dimensionless coefficiet,= £. The running cou-

plings are given by so that the corresponding ghost action will be

~ 1 I"F
on=y T . (21 _ -1
SRS RA P Sgh=f d“XVgC#(‘VZg“” Bz VEVI-RMIC,.
As Dbefore, we define dimensionless couplings, (24)
=k?(-1¢, . The corresponding beta functions are
given by . : . :
In principle, @« and 8 are running parameters in the effective
action, so one should take into account their beta functions,
K2(h-1) 1 g+l too. However, as will be discussed in Sec. VI, there are ar-
Oépn=2(n—1)&n+ - N guments to the effect thai=0 at the FP. Therefore, unless
Y nl IRA( )" o . . .
#=0,R=0 otherwise stated, we will always work in the gauge 0 and
(22 p=1.

The kinetic term of the gravitons is obtained by lineariz-
We now have to insert this ansatz into the appropriat ng the action around a de Sitter metric ywth scalar curvature
and a constant scalar backgrou#id Using the method of

ERGE. The derivation of Eq(9) in the previous section h ¢ . f |
was quite general and therefore the ERGE for gravity/)» the RHS of Eq(9) can be written as a sum of severa

coupled to a scalar field has again the same form, except ff™MS: corresponding to the spin-2, -1, and -0-components of
two generalizations: first, the field is to be reinterpreted as the f'§|d5, and has to be completed by adding the ghost con-
a matrix consisting of the components of the metric and dfibutions.
scalar field; second, since gravity is a gauge theory, one has The spin-2 component of the metric has the inverse
to take into account the effect of gauge fixing and ghos®ropagator
terms.

Here we mention some points that are necessary to under-
stand the results; we refer @] and[9] for details. In deriv- )
ing the ERGE, one encounters tlqggantum metric(to be EF(QS )
integrated out in the functional integyasayy,,, , which can
be decomposed into the sum of an arbitrary background met-

ric g,,, and a quantum fluctuatidm, . The background met-
ric is used in the gauge fixing terni3) below and also in
the cutoff termsAS,, which have to be quadratic in,,, .
In the Legendre transformation one encounters also the
classical metric g,, which is the canonically conjugate

- : ; . 1
variable of the source associated with the quantum metric. ZF(¢?)

o

Thus, in general, the actioh, will depend on bothg and

g- On the other hand the ansatz) depends only on one
metric. In order to derive the beta functions for the couplings
in Eq. (2) we proceed as follows. In the right-hand side wherea is the gauge-fixing parameter. The two spin-0 com-
(RHY of the ERGE, one first takes the functional derivativesponents of the metric mix with the scalar field; the resulting
with respect to theclassical field g and then one sets the inverse propagator is given by the matrix

2
z+ =R

L 2
3R] =5 V(4. (25

where nowz= —V,V#. The spin-1 component of the metric
has the inverse propagator

2a—1
Z+

R) =V(¢?), (26)
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3 3- -1 3 3 R 3 R
1—6F<¢>2>( “z+“7R)—§V<¢2> A YAV L
3 1 3a—p 1 3 R
e Ly S ‘EF'(¢2)¢(Z‘§ +oV'
g (p?)\z z—— —%F’(cpz)(z—g YA Z+2V' + 4>V —R(2F' +4¢p°F")

The two factors under the trace in the RHS of E®). are

(27)

dependence ok of all coupling constants that are present in

obtained from these expressions as follows. The modified (4?) and its derivativesthis is related to the “renormal-
(cutoff) propagators are given by the inverses of the expresization group improvement” that turns the one-loop RG into

sions in Eqs(25),(26),(27), with z replaced byP,(z). The

an exact equationThis generates terms proportional to the

function Ry for each spin component is given by the differ- beta functions in the RHS of the equations, so that the ERGE
ence of the cutoff propagator and the original propagator. Irdoes not immediately yield expressions for the beta functions

the case of spin 2 and spin 1, this is just the functiz)

defined in Eq(5), whereas for the spin-0 components it is a

3% 3 matrix [the difference of Eq(27) with z replaced by
Pw(2) and Eq.(27)].

Since in Egs.(25), (26), (27) the momentum variable
always appears multiplied by the functi6if$?), the matri-
cesR, appearing in Eq(9) also containF(¢$2). When in-

but rather linear equations for the beta functions.

The beta functions themselves are then obtained by in-
verting the matrix of coefficients, and this introduces further
nonlinearities into the system. We will not write the expres-
sions for the beta functions themselves but only the linear
equations that determine the beta functions. We will order
the couplings in order of decreasing mass dimengli@fore

serted in the RHS of Eq(22), in addition to the explicit dividing by powers ok): Ng,&9,N2,€2,M4,&4, ... . These
dependence oP,(z) onk, one has to take into account the are the first five equations:
1 I P(Nog(3P+8N,)+P(3P+4N5) &) & R(2Ng—5&,P)
dho= 51 Q2 — = Qo Qo (29)
32 P(P+2N2)(£0P—No) €o P(No—&oP)
. [am[—xo(sm 10N,) + P(11P+ 26)\2)50]}
0 3gap2 | <! P(P+2\2)(£P— o)
o [ 3 P{6N oL 20N, P+ 2003+ PP(5—8&,) ]+ 3N — 20N ,P— 2003+ PX(8£,— 5) 1}
| P2(P+2X5)2(£6P—No)?
0 [0 P{E2P[ — 2200 ,P— 22003+ P2(24¢,— 55) ]} L1 ak [R(5)\O+3§OP)}
il P2(P+2)5)2(£gP—\g)2 384w &0 | 1 P(&P—\o)
R(—3N5+ 6N &P+ 5E5P?
450, ( 0t 6Xoéo 250 ) | 29
P?(&P— o)

SThis did not happen in the pure scalar case because there the propagator was fixed to be equal to 1. It would have happened if we had
written a more general action containing a term (Z(Z;)Z)Q”Vﬁ ¢d,¢. Then the expressions for all beta functions would contain on the
RHS the beta functions of the couplings that appear in the funﬂ(@hz)
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A PL2NIN 4+ EaPPL 2N 40— Na(1+265) 2]+ No[ (14 2E,) (— 2N5+ AN, P+ £,P%) — AN, €0 P}
(P+2N5)2(£9P— )2

3
62 < °

I o= —
th2 1

o {R{_)\z[_m\gfz"‘&\ofogﬂ’*’53732(3+2§2)]+5273[27\3_4>\0§073+(5+652)5(%7)2]}]
16m2¢2 ~° P(P+2X\,)(£9P—No)?

PR [R[—zxo(m 2N\,) + EgP(5P— 2\ ,+ 125273)]} 30

16m2¢, - P(P+2\2)(£6P—No)

P

1
Q1 (Pt 2002 (EaP—N )2'(3)\3)\4_7\0{4)\2P(1_3§2)§2+)\§(3+1652)+7)[67\4)\0+7)(1_3§2)§2]}
2)“(€oP— Ao

4872

&=

+ £l LONZP+ 10N 3+ 3\ 4 £9 P2+ Ny PA(1— 6£,— 6£2)]) pre
T

AP
PP+ 2N5)3(&P—\o)®

X Q;

(= 1BNGPPL — AN 4+ (P+2N5) €4

— BN N3P+ 2N3+ NIPA(1+4¢,+ 10¢3) |+ BN 9EoP3(— AN 4o+ E4P) + N PP(AEy+ 1965+ 2465+ 1860E4) ]
+No&oPL3BNS+BAIP(6+ 7&,) — 120, P3(&,+ 18¢5+ 1885+ 9&0£4) ]+ N o&oPP{3N5(5+ 36¢,+ 20£5)

+PL 216N 4 &5+ P(10&,+ 2165+ 3663 — 54¢0é,) 1} — £5PY 104N+ 3N5P2(23— 126,) — BN IP(— 25+ 4£5) ]

+ 265N PO(— 5+ 24¢,+ 51E5+ 3663+ 18¢0£4) + 3E5PO(— 28N 4éobp— TETP— 1263P+ 6£0E4P))

éo R 2.2 2 2
{140\ 5N5— 10N 3 —1+8
38477263Q1{P(P+2>\2)(§0P—>\o)2 (4OEP T £2P15No~ 100 367 (~1+8¢;)]
— 2N o[ —BAGEa+ 10N géo&y P+ EGPA(— 4+ 278, 1| — Mo
384m2¢2

R
PP+ 2N2)%(£6P—\o)®

X Qz[ JABNI(P+2N)2E,— BN2E( P+ 2N ,) (8N2+ 158, P2+ 22\ ,£,P)
+ E3P[ — 416\ 3+ ANSP(— 924 61£,) |+ ESPY £,P(25— 168, — 2885) + 4N o — 20+ 79¢,+ 60&5) |
+ No€5PL 144\ 53— 200 ,£,P2(— 5+ 126,) ]+ No£5 P AN5(18+ 37&,) + £,PX(85+ 168, + 28855)]}]

AT Q[
384m2¢, L P(P+2)\;)(&P—\

0) '{_ 5)\0(P+ 2)\2) + 3§0P( _P_ 18)\2+ 16527))}}

dié, R 2 2_ 2 _
2 ~{15)\0(73+ 2N5) = 6N pEQPLI25+ 8N, P(2—5¢,)

384n%E, 2| PP+ 20)A(£gP— No)?

+P2(5+28¢,+ 96£5) |+ E5P7 — 148\ 5— 4\ ,P(31+ 60¢,) + P?(— 25+ 168, + 57655)]}], (3D
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0P

(NG 25 +5(P+2
2 Py 20y EaP— o) (ol 4t 5(P+2N2)N6]

Q

Ok 4=

FNZ =238, ANY BN 4(1+28)) + P(— 1+ 168,) E411+ N3P{TA2 £+ P(— 15N g&o+ E4P[ 1+ 8E,) ]}
+2NINPL— AN4(1+ 8,5+ 1265) + 3] — SN g+ P(L+8&p) €41} + E[AON5— 40PN (— 1+ 2¢&,)

— 24PN3(— N 4o+ 5E,P) 1+ E5PP[ 280560 — DA &P+ N4 P(L+ 8¢, + 24£5) ]

+ EoN 2P — L0N6&5— 2N a&o( 5+ 408+ 2465) — P 6&5+ 5265+ 4885~ 8éoba+ £o(1— 1660£4) I}

+ No{20N5(1+4&5) — 2N3[ — 12\ 4+ P(1+ 24é,+ 12485+ 1260E4) 1} + 2N NS PL 2N 4éo( 17+ 16¢,)

+3P(Ep+ BE+ BAES+ 28064+ 16E0E2E4) ]+ NN 2P — 300 6£5— 18N 4&0( 1+ 8E,+ 8£3) + P 28¢5 — 9665+ 14éoE,,
+ Eo(1+640£0) [} NoPHTGE + Phao( 1+ 88+ 2465) + Pl — 15\ 6£5— P&+ 483+ 2485~ £oéy

&g

t
+

S({60N2E3P— 240033 ¢, P?
Ty ({60n &5 26062

—8&0€264)11) Q:

P(P+2X) (&P~ No)?

+ N[~ BNGES+ LGP (N4 + TE4P) — 28N oE5P(E5P+ Noka) I+ NS{BNGE0(BESP+ Noks)

+ EgPIPA(3+ 1265+ 38065) — 120 o(3N g+ £4P) T} + P2 — 2N+ BN GE0P) (65— £oka)

+ PP{EGPLBN séo( 1+ 8+ 2485) + 585+ 1265+ 7265 — 5éods— 2860E 641} + BN oo Pl — Nado(1+8E,+2485)
+P(— 285+ Béoba+BEobrEa) ]~ 2N PLANG — L2NGE0P) (63— Eoéa) — BN oEGPINabo(1+8E2)

+7D(—2§§+§o§4+4§o§2§4)]}—2)\258772{6)\450(14‘852)"‘73[85%"'13253_250&4‘52(34‘245054)]})]

S(12003E5P— 2\3[ AN3E,— BN péoéy P+ E5P(3+ 190¢,) ]

s { R
16262 2| P(P+2N5)2(£9P—\o)?
+ NPl — 8N3Eo+ 16N o&or P+ ABETP(2N 4+ £4P) ]+ E5[ PP(3+ 166+ 396£3) — 48\ o( 2N 4+ £4P) ]

+PH = 2N5Ey— ETPL 24N 4E0(1+ 6£)) + P €+ 1885+ 14483 — 2450£,) 1H+ AN o &g P 6N 4E0(1+6£)

€4
+P(€2—6808a) D]+ 16722,

R
(P+2X)2(&P—No)?

Q2 {=2No(P+2X o) + EP(5P— 14N+ 245277)}]- (32

This system of linear equations can be solved &  are solved, the beta functig8}; is written as a rational func-

=d\y and ﬂ§i=ﬁt§2i . Note that we have not made any tion of Ao, Ny, ... oo @andéy,&s, ... &, While the beta
truncation of the function¥ andF: no couplings have been function g5 is writen as a rational function of
assumed to be zero. Ao N2y - Moo @nd &g, &a, ... by o

We do not exhibit the equations for the higher couplings. |t js clear that the systeriy; =0, B5,=0 admits a FP for
By means of algebra|p manipulation software we have calyhich all couplingsk,; and &, vanish fori>0, while for
culated the beta functions up &g and&g. The gen_eral pat- ;_q No=2kA, and &y=« have the same values that they
Leerpe h‘l(')r\:\(/ae;/uer:ét:zh greaidddeea?v(/afrzngotnhtzir?(giléig?;]iiastgfquvomd have in the presence of a single free scalar field, as
: 1 2 y discussed in13] (these values are numerically very close to

involving only the couplings\g, \,, and &,. Aside from . . _
these couplings appearing insi@g¢ andQ,, the equation for those of pure gravity, discussed[]), namely, fora=2,

B5; is a polynomial in the couplingsg,\y, ... \p+, and

£0.60, .. . ,&i, With the functionsQ, and Q, as coeffi- No 4 =0.0080022,

cients, while the equation foﬁgi is a polynomial in the

couplingshg,\o, ... Aoiro andé&y,&s, . . . &40, With the

functionsQ; and Q, as coefficients. When these equations &0+ =0.023500. (33
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To compare with the results §8], we define the dimension- eters, but none of them survived the addition of an extra
less variables\ = A/k?=\,/2¢, andg=Gk?=1/16m¢,. At parameter, so that we had to conclude that they were all

the GMFP spurious FP’s due to the truncation. As a further check we
also resorted to series expansions around the GMFP or one

Nox of the spurious FP’s mentioned above. All the results ob-

A= T =0.1703, tained in this way are perfectly consistent with the other

calculations. The outcome of all these efforts is that no FP

other than the GMFP was found.
g, = =0.8466. (34) This is of course not a proof that a FP does not exist in
167 &0, this range of couplings. For example, a beta function may

. . change sign twice on a link, once from positive to negative
These values differ from those in E(.25 of [9] on two 4 once from negative to positive, and if the distance be-

accounts: they are calculated for different values of the cutoffyeen the zeros is smaller than the size of the step, it may
parametes, and here the FP is shifted due to the presence oOfye|l escape detection by our methods. Nevertheless, after
the scalar field. When these factors are taken into accoumhis numerical work, we consider it quite unlikely that an-
there is perfect agreemeriBee Fig. &) of [9] for the de-  other nontrivial FP exists in the range of values for the cou-
pendence of results os=2a and compare with Fig. 8 plings that we have considered.
below] This result is corroborated by the following observation.
This FP can be viewed alternatively as the FP of purdf one does not truncate the functiow'sandF to polynomi-
gravity, slightly shifted due to the presence of a free, massals, as in the pure scalar case the structure of the beta func-
less, minimally coupled scalar, or as the Gaussian FP of théions seems to allow for a recursive solution depending on
pure scalar theory, generalized to include gravitational intertwo free parameters. If we fix arbitrary values foy and &,
actions. It is remarkable that matter remains “non-self-from Eqgs.(28),(29) one derives\, and§,; substituting them
interacting” at this FP, and that the only nonzero couplingsinto Egs.(30),(31), one can solve fok, and¢,, and so on.
are those that affect only the gravitational degrees of freeThis will determine the functiony/=V, andF=F, upto
dom. (This goes some way toward justifying the assumptiontWo arbitrary parameters. It will be interesting to analyze this
in [13] that matter fields are non-self-interactingor want ~ in detail and to see whether the resulting functidfs and
of a better terminology, we shall refer to this FP as thelx are regular or still present the problems discuss¢d9n
Gaussian-matter FP. In any case, it seems highly unlikely that the solutions will

The issue arises whether the coupled system of equatim%e polynomial. This point of view also sheds a different light

: o , ; : the FP found if8,9]. The values of\,, and&,, at the
admits other nontrivial FP’s. The complexity of the equations>"! ' . _0x 0%
has prevented us from deriving definite results on this issue(.BMFP are the only ones for whicty, =0 and,, =0, and

, . . - ~as a consequence all the higher couplings turn out to be zero,
We have looked for other FP’s using numerical methods in 4n accordance with the truncation made there. We shall not

five-parameter truncation of the theory containing the cou—pursue this issue any more here. In the rest of this paper we

plings Az, for n=0,1,2 and the couplingg,, for n=0,1. hall restrict our attention to the GMFP, which is a special
Our method consists in considering a grid in the space of al ember of this family of solutions, and is definitely a physi-
parameters and evaluating the beta functions by numeric%la”y acceptable solution.

integration at a point and then at all neighboring points. If all

beta functions change sign simultaneously when going from IV. LINEARIZED FLOW AROUND THE GMFP

a point to a neighbor, then generically there will be a FP ) ) _ )

somewhere near the link between the two points. The region Having established the existence of the GMFP in the trun-

is then examined with a finer grid until the position of the Fpcation defined by the actiof?), we have to study its prop-

is located with sufficient accuracy. We started off with theerties, in particular, to find the dimension of the critical sur-

2x 2 grid given byl and&,, confirming the results gio];  face.

we then added one by one the other variables involved in the We begin by calculating the matri; . Again, we order

five-parameter truncation, getting increasingly complicatedhe couplings in order of decreasing mass dimension:

systems of equations. No.é0,h2,82,M4,€4.N6, - .. - As in the pure scalar theory,
Because of the complexity of the beta functions, the nudue to the functional dependences @ and 85 on the

merical evaluation takes considerable time. The largest ranggouplings, an infinite triangle above the diagonal is zero.

we have explored is a85 grid with the dimensionless cos- Furthermore, due to the fact that only the “purely gravita-

mological constank ranging from 0.010 to 0.045 in steps of tional” couplings A\ and &, are nonzero at the GMFP, an

0.005; the dimensionless Newton constantanging from infinite triangle below the diagonal is zero. The structure of

0.01 to 0.06 in steps of 0.01; the dimensionless scalar madbe matrixM is therefore remarkably simple:

2\, ranging from—1 to 1 in steps of 0.2; the dimensionless M M 0 0

quartic scalar coupling , ranging from—15 to 5 in steps of oo oz

1; the dimensionless scalar-tensor couplifig &, ranging 0 My My O

from —5 to 5 in steps of 1. This makes a lattice with more 0 0 My My

than 120000 points. Many other attempts have been tried

with finer lattices and/or fewer parameters. We did find some

nontrivial solutions when considering fewer than five param-

, (39
0 0 0 Mg
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where each one of the nonzero entries is<a22matrix of the
form

5,3?20
IN (2j)
! 518(§2i)
IN(2j)

9By
9€(2j)
9B |
9€(2))

(36)

For the calculation of the dimension of the critical surface

PHYSICAL REVIEW D58, 044018 (2003

scalar theory. However, if we restrict ourselves to solutions
where V and F are polynomials, given the almost-block-
diagonal structure oM, the eigenvalues oM are just the
eigenvalues of the diagonal blocks; . Explicitly, the diag-
onal blocks have the following form:

2(i—2) 0

oM
0 2(i—1)>+

SM

SMye

Mii = OM g

» (37)

we need to count the number of negative eigenvalues of thehere the first term contains the canonical dimensions of the

matrix M. The eigenvalue problem for the matik could be
turned into recursion relations fap; andé&,; , as for the pure

couplings and the second term, which contains the quantum
corrections, has the following form:

go (9'[7) 1 (3’{73(—3)\04-1150?)}
= 3 —_ _3 °
oM 16772( Qz (Ao—Pé&o)2 Azl Q: (Ao— &oP)2 1 P(=No+&P)
{am@xg—exogopﬂlgg ) ) N [R(—2>\0+5§0P)} ( oP
2 P2(Ng— EoP)2 ' PNt &P || Y (hg— £0P)2
aP [R(—2>\0+5§07>)} R
Y ||.A- .
+1O§0Q2{(§o7’_>\0)3) 8Qz P(=Not&P) (Ql (No—&0P)?
(9t73(—3)\0+11§073)} atP(3A§—6A0§OP+11§§P2)D )
). . (38
H%QZ{@OP—AOF)( 1[ P(—hot&P) | 2 P2(ho— EoP)? 39
_ 3o WP o1 (i 3 ” [c?ﬂ?(—3)\0+11§077)}
M=~ o2 2l (Ng— &4P)2 8w2AQz[R &P &P g [ 1 P(—o+&P)
IP(3N2— 6N &g P+ 11537?2)1 ]
? PA(No— &P)?
aomenz | Bhofod Q2 (Ao— &P)2 1[ P(—No+&P)
i | 9P(3NZ— B\ oo+ 11E5T?) )_ [R(—zxﬁsgop)} [atp(—3>\o+1lgo7>)}
Qz_ P2(\g— &P)2 2 P(—hotéP) |\ T P(—hotéP)
50 9 P(3N2— BN gégP+ 11E2P?) ) ( {am(a\g—loxogop—sgo?ﬂ)
il P2(No—&oP)? ' Po— £oP)2
50 | R(3N3—ON3EGP+ 17N o3P+ 553%)])
il P2(—No+ £P)°
o [R(—2>\0+5§0P)H G¢P(3N2—22¢0\ o P+ 11£272)
A Qe || @ P(ho— &oP)?
.50, O P(—3N3+ONZEgP— 33 2P+ 11537>3)my a9
PH(— o+ &P)°
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_ b0 | _ AP ) ‘7t7>(_3)\o+11§o7’)}
Mo 2A2| 4§°(Q1 (ho—ggPy?] o2 (_)\o+fop)3> §°( 1[ P(— ot &P)
atp(sxg—exogop+11§§792)]) ( ] R m
5Q | Qq | +10Q,y| ———————— , (40)
’ P2(ho—£P)? To=&P2 T (—Not+ &P
A 1) {atp(—sxoﬂlgop)}
a1 PhotéP)
|9 P(3N2— 6N P+ 11£272) R(5\o— 10N &g P— 3E2P?)
+5Q; > | Qu >
_ P*(No— &P) P(No— &P)
50 | R(3NS— ONBEGP+ 17N o3P+ 5E3T°) )+( [&tP(—3)\0+1l§OP)}
gl P2(—No+ £oP)° 1 P(— Nt £oP)
9 P(3N2—6)\ 11£2 JP(3N2— 22\ 112
50, tP(3\g o§oP+21§oP2)]).A_(Q1{ P(3N\g o§o7’+2 1§o772)l
_ P*(No— &oP) P(\o— &P)
[0 P(—3N3+9N2EgP— 33N o E2P2+ 1143
50, P 3hot NoboP—3RofgPH 1&@%])_ A], )
I P2(— Ao+ &P)°
where
B R(5A0+3§07))} R(3N§— 6N o&oP—5E57P) ,
= 1{—730\0_ &P 2{ P £P)? +3847%&,. (42)
|
The most remarkable property of these quantum correc- 7.1257 —2.519
tions is that they are independentip$o that the eigenvalues M = ’ 46
of M,;,; simply grow by 2 wheneveris increased by 1. For 66~ | 8.1295 0'63962) (49

example, choosing the cutoff with=2, we have the follow-

ing numerical results:

Moo=| 8.1295 —5.360

1.1257 —2.519
4 1

which has eigenvalues 2.1173t3.1563;

M2=| 8.1295 —3.3604]

3.1257 — 2.5197

with eigenvalues-0.1173 3.1563;

Mas=| 8.1295 —1.3604]

5.1257 — 2.5192)

with eigenvalues 1.88263.1563;

with eigenvalues 3.88263.1563; and so on.
The off-diagonal blockdM;; .1 in Eq. (35) do not affect
the eigenvalues but determine the mixing between the cou-
(43 plings. Numerically, we have

—0.005036 — 0.00226;

Mo=| 0.002736 —0.00758 (47)
(44) —0.03021 —0.0135
M2s=| 0.01642 —0.04551] (48)
—0.07554 —0.0334
Mas=| 0.04104 —0.1138] (49)
(45
and so on.
The first two(complex conjugateeigenvectors have com-
ponents
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—0.3486+0.3392 plex conjugatg eigenvalues have positive real part 1.8826
0.8737 and therefore these couplings are irrelevant. Since they lie
' very close to the plane spanned by the marginal coupling
0 (canonical dimension)0and the irrelevant coupling, (ca-
nonical dimension—2), we can say by a slight abuse of
language that the quantum corrections change the dimension
(50) of A, and ¢&,, making them both irrelevant.
The pattern continues. The eigenvalues come in complex
conjugate pairs, and are formed by mixing the couplings
and &,;, with small contributions from the lower couplings.
The eigenvalues also occur in complex conjugate pairs, and
are equal to(minug the canonical dimensions of the cou-
plings[2(i—2) and 2{—1), respectively plus a quantum
. ) correction. The correction is positive for the couplings of the
They are a mixing o, and¢o; the correspondingcomplex  series,; and negative for those of the serigg, and the
conjugate eigenvalues have negative real pai2.1173 and  yesylting dimension is always contained between those of the

o O O o o

therefore these are relevant couplings. two main couplings that enter into the mix.
The second and third eigenvectors have components All eigenvalues differ from the first two by multiples of 2.
. In particular, all the eigenvalues from the fifth onward have
(—16.59+¥5.343) %10 positive real parts, so that the dimension of the critical sur-
(—2.970+1.136)x 103 face is 4. The naive expectation based on canonical dimen-

sions would have been @®r 3, if we do not count the two
0.3485-0.3392 marginal couplings The quantum corrections modify the di-
0.8736 mension of the two marginal couplings, and &, so thaté,
0 (after mixing with\,) becomes relevant while, (after mix-
(51 ing with £,) becomes irrelevant.

0
0 V. EFFECT OF OTHER MATTER FIELDS
0

In this section, we assume that in addition to the graviton
and the scalar field discussed in the previous sections there
areng—1 new real scalar fields),, Weyl fields, n,, Max-
well fields, andngs (Majorana Rarita-Schwinger fields, all
Lo ) . minimally coupled. We neglect all masses and interactions of
.tl’lbutIOI’]S' from\, and £o; the correspondlngcomplex CON"  these additional matter fields. The only interactions are the
jugate eigenvalues have negative real par0.1173 and ¢ giscussed in the previous sections. This generalizes the

therefore these couplings are also relevant. Since they Ilﬁesults 0f[13] where only the couplings., and & were
very clc_>se to the p_Iane spanned by the relevant coupling taken into account. We also give some more details of the
(canonical dimension)2and the marginal coupling, (ca-  .giculations

nonical dimension ) we can say by a slight abuse of lan- In the presence of these new fields, E@8),(29) for the

guage that the quantum corrections change the dimension g fnctions are modified by the addition of the following
N\, and &, making them both relevant.

They are essentially a mixing of, and &,, with small con-

The fifth and sixth eigenvectors have components terms:
(19.3472.834) X 10°° Siho= —— (Ng— 2N+ 2nM_4nRs)Q2[£D} 53
(2.65372.310) X 10" 32m P
(—9.951+3.203)x 10 3 1 )
(—17.81+6.820)x 103 8h&o= @I (—2ng+ 4nw—4nM)Q1{$}
—0.3485-0.3392 (52 {ﬁtPH
0.8727 +(—6nyw+9ny—160g9d Qo — [ . (54)
0 P?
0 Since the contribution of the new fields to the effective ac-

tion is independent ofy, they do not affect at all the beta
functions of all couplings\,; and&,; for i=1.
The equations for the couplings,; for i=1 and¢,; for
They are essentially a mixing of, and ¢4, with small con- i=1 are automatically satisfied at the GMFP. Therefore the
tributions from\ g, &, A», andé,; the correspondingcom-  only equations that remain to solve are the ones\fpand
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&o. For the sake of comparison wifi3] we will use the The functionh(\) always has a zero at the origin, corre-

couplings\ andg in place of\ g and&,. The system of these sponding to the Gaussian FP. The derivativen(f) at the

two equations is the same as the one discuss¢tid) and  origin is given by

therefore the values of; and &, at the GMFP coincide with

the ones calculated therein. h'(0 4 167 1 59
We re(_:all_some of the ca@lculaﬂons ia3]. For the pur-- (0) c(0) Q,[aPIP] A’ (59

pose of finding the fixed points, one can use the following

trick. We observe that at a fixed poiéo/&o=—0:9/9  and therefore has the same signXs WhenA’>0, the
=2. Therefore, the equations for the fixed points are equ"’afunctionh()\) tends to— for A somewhere between 0 and

lent to another, simpler, set of equations which is obtained by, 0-1(P)/2 [namely, wherec(\)=0]. Consegeuntly
. . . , ze[0,00 y . y
replacing d:o/éo with 2 in the RHS's of Eqs(28),(29).  there exists a non-Gaussian BRGFP with positive \., .

g N
Then the equatio*=0 can be replaced by On the other hand, wheh’ <0, h has no positive zeros and
the existence of the NGFP for negatixg hinges on the
asymptotic behavior oh for A— —oo: it exists only if h

wherec()) is obtained by formally replacing with 1 and ftenc_js to a n_egative asymptote. The asymptotic behavibr of
4G with —2 in the expression fop,A/k%. Whenc(x) IS given by lim_ . h(\)=192a/7, where
#0, we can solve E(55) for g and substitute the result into

g-c(\)—2\=0, (55)

Bgzol We Sha” denote T— 7'0+ nsTs+ anw+ nMTM+nRsTRs, (60)
2\ P P R
h(k)=ﬂg(>\,m , (56) T0==5Q1| | ~15Q; = +10Q;| 5
so that the zeros df correspond to the FP’s. R
The general behavior of the functidris controlled by the +30Q; = ~—12.82,

values of the two parametefs andr, which in turn depend

on the type and number of matter fields. The parameteis o P

equal toA+ o, whereA=ny—n; is the difference of the TS:ZQl[t—FB.SS,

total numbers of bosonic and fermionic degrees of freedom P

(ni=2ny+4ngs and ny,=ng+2ny+2) and o

=20Q,[ RIP]IQ,[6;PIP] is approximately equal to 3.64 .

(for a=2). w= _4Q1[?
The value of the cosmological constant at the &P, is

zero on the hyperpland’=0. To see this, note that when 0P

c(\)=0, Eq.(55) implies\=0. Therefore, ifc(0)#0 the TM=Q1[t_}_9Q2{t_}%_6_52,

only solution with\, =0 is the Gaussian FP, but &(0)

=0 we can have a GMFP with, =0. Explicitly,

t

P
Trs= 16Q; 2

(The numerical values are given far=2.)
so that the condition for the existence of a non-Gaussian FP Depending on the sign of the two parametaArsand r,
with zero cosmological constant is precisely the space spanned by the variabigs nyy, ny andnggcan
be divided into four regions that we shall label as follows:

~14.79.

P
C(O): ? +2(D2

(Np—n)Q,

R
P

47k* ) L

A'=0. (58)
7<0 70

Due to the irrationality ofr, there is in general no combina-
tion of matter fields that satisfies this condition; however, thed’' <0 1l v
hyperplane defined by Eq58) has an important physical
significance: it separates the regions with positive and negzié >0 I I
tive N, , as will become clear below. The behavior of the functioh is shown in Fig. 1 for pure
The functionh tends to zero whea—min,_o..(P)/2.  gravity, which lies in region I. There are no zeros for nega-
However, this point does not correspond to a FP: For thigive \, sinceh grows monotonically from the asymptote at
value of A the denominators in the functior®; and Q, t— —o to zero at the origin(Gaussian FP It then has a
appearing in the beta functions vanish and the beta functiongositive zero and tends te-«. There is another apparent
themselves blow up. Moreover, it was shown &) that the  zero forA~0.4, but it is not an acceptable solution: it cor-
Ward identities break down near this point. Consequentlyresponds to the point where the denominators in the function
only values of\ strictly less than mip.o.;(P)/2 will be  Q; vanish. Thus, in region | there is always a single FP with
considered. positive\, .
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FIG. 1. Plot of the functioi for ng=0,n,,=0,n, =0 (region ;

the asymptotic value dfi for t— —« is —65.3.

|

( A

AL

-10 -8 -6 -4 -2

-1

FIG. 2. Plot of the functiorh for ng=100n,,=40n,=0 (re-

gion Il). The asymptotic value di for t— — is 0.939.
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h(d)
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T TR v e T LR A
_5.
_10.
_15_
_20.
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A
-3 -2 -1
-0.5
-1

FIG. 3. Plot of the functiorh for ng=0,n,,=40ny,=0 (region
Il1). The asymptotic value di for t— —o is —8.13.

Figure 2 shows the functioh for a theory in region IlI.
The behavior for positiva is very similar to that in region I,
but the asymptote for— —oo is now positive, so that there
exists a second FP for negatixg . This FP can be seen to
yield negativeg, and is therefore physically uninteresting.

The behavior of the functioh in region Il is shown in
Fig. 3. The positive zero is the unphysical one, so there is a
single attractive GMFP with negative, , which turns out to
have positivey, .

Finally, the behavior of the functioh in region IV is
shown in Fig. 4. It decreases monotonically from the positive
asymptotet — — o to the Gaussian FP. For positiweit be-
haves as in region Ill, having no zeros except for the un-
physical one. Thus, in region IV there is no non-Gaussian FP.
Region 1V is the white wedge in Figs. 5, 6, and 7. One sees
that it comes actually quite close to the origin; from this
point of view the existence of the FP for pure gravity seems
to be a lucky accident.

The value of\, in regions | and Il is always less than
min, ¢ (o) (P)/2, which is numerically equal to 0.40@or
a=2) and therefore reasonably within the bounds of the
heat-kernel approximation. On the other hand, in region Il
N\, becomes quickly rather large in absolute value; in this
regimeR>k? on shell and therefore the heat-kernel approxi-
mation ceases to be valid on shell. In this region the results
are reliable only close to the surfade =0.

In order to determine the dimension of the critical surface
we have calculated numerically the mathk for many dif-
ferent combinations of fields. The results of such calculations
are shown in Figs. 5, 6, and 7 for the casgs=0 andny,
=0, ny =24, andny =45, respectivelythese numbers are
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h(L) my | 0

150 2007 = 2°

FIG. 6. Attractivity regions fomy,=24. The gray scale corre-
sponds to the number of attractive directions.

730 -25  -20 -15  -10 5

It is interesting to compare these results with the analysis
of the pure scalar theory. Due to the fact that the couplipg
o) is marginal in the pure scalar theory, the linearized analysis

is not sufficient to determine its behavior. In the presence of

3 gravity there is no zero eigenvalue and therefore the linear-
5 ized analysis is sufficient to determine the dimension of the
critical surface. In region lll, the relevant directions corre-
1 spond to potentials that are at most quadratigirin region
by Il, however, there can be a large humber of negative eigen-
-3 _o 1 values, corresponding to nontrivial potentigighat are poly-
1 nomial and asymptotically free. If, as at the end of Sec. II,

we think of the theory as having a UV cutoX, then
assuming that the limit\ ,,— o0 is meaningful the problem

of triviality is solved.

These theories are also predictive since they have a finite
mber of negative eigenvalugTherefore, they satisfy the
conditions for asymptotic safety.

FIG. 4. Plot of the functior for ng=40n,y,=40n,,=0 (region
IV). The asymptotic value df for t— — is 8.72.

chosen to correspond to the gauge field content of popule}qu
grand unified theory models

First of all, these numerical calculations exactly confirm
the shape of the existence region of the FP that was derived
analytically above. The structure of the eigenvalues is the VI. CUTOFF AND GAUGE DEPENDENCE
same as in the pure gravityscalar case, which was dis- _ .
cussed in Sec. IV. The eigenvalues are given by the canonical 1he Physical results are independent of the cutoff param-
dimensions plus a quantum correction which depends on th@ters in the exact theory, so the extent of parameter depen-
type and number of matter fields but otherwise is the sam@€nce that is observed in the truncated theory gives a quan-
for every pair @, ,&,). For any given number of matter titative measure of the errors. We have performed various
fields, the GMFP has a finite-dimensional critical surface. In€Sts on the parameter dependence of our results, and it is
region IIl, the critical surface has mostly dimensiofitree ~ '€@ssuring for the reliability of the tru.ncat|on that this depen-
negative real eigenvalugsxcept for a narrow area close to d€nce tums out to be reasonably mild.
the separatrixA’ =0, where its dimension is 2 or 4. In re-  'n€ dependence af, andé,, on gauge and cutoff pa-
gions | and Il the critical dimension varies considerably, be-fameters was discussed [i8,21]. Figure 8 summarizes the
ing roughly linear in the number of fieldit grows withng ~ cutoff dependence at the GMFP for gravity coupled to one
and decreases with,,). These calculations generalize the Scalar field in the gauge=0. The results we obtain are very

results of[ 13], where the FP could have at most two attrac-Cl0Se to those of9], since at the GMFP the only new con-
tive directions. tribution that we get for the values af, andé&,, is that of

the kinetic term of the scalar field. It is apparent that, while
nw Nox andé,, are quite sensitive to the cutoff paramedethe
ratio o, /&5, is not. As noted ir{7], this quantity is, up to
numerical factors,(the inverse of the on-shell action, a
physically observable quantity, so it must be independent of
the cutoff scheme. It is seen in Fig. 8 thatatdependence is
indeed pretty mild.

~:6b 80 10-0”s 19 5This should be contrasted with the asymptotically free nonpoly-
nomial potentials of18]. Those potentials are parametrized by a
FIG. 5. Attractivity regions fomy,=0. The gray scale corre- continuous parameter and therefore have an infinity of relevant cou-
sponds to the number of attractive directions. plings.
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FIG. 7. Attractivity regions fomy=45. The gray scale corre- -2 3

sponds to the number of attractive directions. )
FIG. 9. a dependence of the real part of the eigenvalues of the

. . stability matrix (first 2X 2 submatrix.
The dependence dfy; +i65;, the eigenvalues of the sta- Y ( 4

bility matrix M, on the cutoff parametex is shown in Figs. sign. For instance, in the gauge= 1 one would compute the

9-11, for several values at. We have calculated them in dimension of the critical surface to be 2. Looking at Fig. 10

the range .1/§as5(.),. but they are reported qnly for 1/2 one can most easily understand what the situation is like: for
<a=<?20. Figure 9, giving the real parts of the eigenvalues of

4 - a=0 all cutoffs give a negative value @f', then asa in-
the supmatn)d\/l 00, agrees with Fig. 9 ofd], up to the smr;_mll creases they change sign, but for large valuea dfiey be-
corrections due to the presence of a spglar f|¢|d. The flgurec,s'ome negative again. Physical results such as the dimension
rglaﬂve to the real parts Of the remaining eigenvalues argy yhe critical surface cannot depend on the shape of the
simply shifted by the canonical dimension. 2 cutoff function, so this fact is certainly a shortcoming of our

| The fws_t;hlng We can see in 'lz'ﬁ’ 9 IS thhe presence afde%uncation. More work is needed to assess with greater con-
plateau with very weakapparently logarithmicvariation of  fijence the dimension of the critical surface, but the consid-

the eigenvalues, fqr ;aszo. Actually, -the re-sults for 1/5 erations developed ifg], i.e., thate itself runs to 0 in the
<as<1/2 seem to indicate that there is a divergenceaas |, regime, suggest that the=0 value is the physically
—0. This is due to the fact that in this limit the cutoff func- correct result
tion tends to become a constant, so it affects also the propa- 11,4 same.conclusions for the cutoff and gauge indepen-
gation of modes with momenta larger thigrand it does not - yance can be drawn for the imaginary parts, as can be seen
work WeI_I as an IR cutoff. Clgar_ly, .Iarger values af 'of from Fig. 11; they turn out to take the same valtes to a
order'ur;lty, are p][eLerred. f-_lf_?'s IS 1N accordance with thesign) for all the eigenvalues. The effect of nonvanishing
generic features of the cutoff functions describedSh imaginary parts is that the RG spirals around the FP, but they
_ As far as thex dependence is concermed, we can see thalye ot important in the discussion of the attractivity of the
it is quite weak. For all possible values afall curves are  gp
contained between the curves=0 anda=3, which differ This discussion applies also to the higher couplings; their
by ~0.4. In order to better understand the dependence on 4 414, dependence is given by curves that differ from those
for different values ofy, it is useful to plot the same results Figs. 9—11 by a constant shift by a multiple of 2. The only
as a function ofa (Fig. 10, with a being a parameter that jmortant point that remains to some extent open, then, is the
labels the different curveisve shall restrict ourselves to only eyact dimension of the UV critical surface, but nevertheless
one plot of the real parts; the others can obviously be deriveg,q can safely say that it is finite dimensional.
by shifting the graph by the canonical dimension of the 0p-  \when other matter fields are present, the nature of the
erator involved. , , GMFP as a function of the number of matter fields is also a
Since the real parts of the eigenvalues of the ma#ths  fnction of gauge and cutoff parameters. As already noted in

are close to zero, this modest shift of the eigenvalues due tﬁ3] the constantr is independent of the gauge parameter
the change of gauge parameter is enough to change their

el
A
30
A 0.4 *as=5
25
0.3 4- a=1
20
0.2 -¢ a=3
15
0.1 -k a=6
10
s -& a=1(
=-0.
-~ a=50
-0.2

FIG. 8. a dependence of, , &p. , and\g, /53* in the gauge
a=0. The values ohy, and¢,, have been magnified by a factor FIG. 10. @ dependence of the real part of the eigenvalues of the
of 500 to display the three curves in the same range. stability matrix (second X 2 submatriy.
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as already noticed ifl3], while the attractivity property is

- =0 preserved. On the other hand, we can consider the effect of
R adding gravity to a scalar theory with a generic potential and

el regard the GMFP as an extension of the Gaussian FP. The
o3 main effect is that the couplings that are present in the scalar

potential V mix with those appearing in the functidf, and

hra=s the dimensions of the resulting couplinfghich dictate the

- a=10 speed of the approach to the)RP changed by a finite quan-

& a=50 tum correction. While at the Gaussian FP the quantum cor-
al - «s100 rections vanish, so that the relevant couplings are, as usual,

those with dimension less than 4, the gravitational contribu-
tions bring about modifications even if the matter sector al-
FIG. 11. a dependence of the imaginary part of the eigenvaluegows for a perturbative treatment. At the GMFP, the stability
of the stability matrix. matrix has a block-diagonal form so that there is strong mix-
ing between the parametexs, and &,,,, for n=m, whereas
and varies from 4.745 fon=0.05 to 2.765 foa=20. This for n#m they are almost or Comp'etely decoup|ed_ The ei_
corresponds to a vertical shift of the separatkix=0 by at  genvalues, whose real part determines whether an operator is
most 2 in Figs. 5-7. The parameteiis gauge independent relevant or irrelevant, come in complex conjugate pairs, and
for a# 0 but shows discontinuity at=0. The planer=0is  grow systematically by a constant 2. For instance, the mar-
shifted and also Sllghtly rotated to the rightagrOWS. ThUS, gina] operator of the pure Sca|d‘4 theory becomes now an
region IIl becomes larger as grows. Recall, however, that jrrelevant operator, and the dimension of the UV critical sur-
only the part of this region close to the separatkik=0 is  face is calculated to be 4 for a generic analytic potential.
trustworthy. These results hold in the gauge=0; they differ slightly for
other values of the gauge-fixing parameter, bet0 seems
VII. CONCLUSIONS to be the physically correct value at the FP. The striking fact
] ) o is that gravity gives calculable, finite contributions that
In this paper we have considered the application of thgnange significantly the pure scalar theory. This is one of the
ERGE's to a coupled system of gravity and matter fields. They,ost important results of our paper.
main aim. of this work was to verify_ that the conditions. for  \we have then considered the effect of adding other mini-
asymptotic safety continue to hold in the presence of intery|1y coupled massless matter fields. For the existence of the
acting matter fields. To make the problem manageable, WEMFP, we obtain the same bounds presentefl8). As to
first dealt with a 5'”9|92 scalar fielg¢ with an arbitrary po-  {he attractivity of the FP, we have found that, when it exists,
tential depending onp, to see how this inclusion could there are always finitely many attractive directions. There-
change the picture of pure gravity; then we considered thgyre gravity seems to remain asymptotically safe also in the
effect of minimally coupled fields with different spins. Our presence of generic matter fields. We expect that this result
results can be considered as a first step toward constructing@|| still hold if we add other interactions between matter
realistic_ theory of gravity an_d.matter,. but are also relevant tGig|ds that are asymptotically free. From this point of view,
gravitational theories containing a dilaton. ~ the scalar field posed a greater challenge, since the pure sca-
In the context of the ansat2) we found that there exists |5y theory is not asymptotically free. It is remarkable that the
a FP where only the cosmological constant and Newton'goypling to gravity fixes this problem and at the same time
constant are nonzero. We called it the Gaussian matter FP. 5o opens a new path toward the solution of the issue of
detailed numerical search within a five-parameter truncatior@rivia"ty_
of the effective action has failed to yield any other FP. This IS All these results add on to the other proofs that have been
actually what one would expect from our understanding ofzgjiected in the literature about the physical reliability of this
the scalar theory18]. approach.
The GMFP may be viewed in two ways. On one hand, the
scalar field can be regarded as a “perturbation” of the pure
theory of gravity considered if9] and the GMFP as an ACKNOWLEDGMENTS
extension of the FP found if8]. The addition of the scalar We thank A. Bonanno and M. Reuter for useful discus-
field has the effect of shifting slightly the values &fand x, sions.
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