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Asymptotic safety of gravity coupled to matter

Roberto Percacci* and Daniele Perini†
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~Received 25 April 2003; published 25 August 2003!

Nonperturbative treatments of the UV limit of pure gravity suggest that it admits a stable fixed point with a
positive Newton constant and a cosmological constant. We prove that this result is stable under the addition of
a scalar field with a generic potential and nonminimal coupling to the scalar curvature. There is a fixed point
where the mass and all nonminimal scalar interactions vanish, while the gravitational couplings have values
which are almost identical to those in the pure gravity case. We discuss the linearized flow around this fixed
point and find that the critical surface is four dimensional. In the presence of other, arbitrary, massless mini-
mally coupled matter fields, the existence of the fixed point, the sign of the cosmological constant, and the
dimension of the critical surface depend on the type and number of fields. In particular, for some matter
content, there exist polynomial asymptotically free scalar potentials, suggesting a gravitational solution to the
well-known problem of triviality.
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I. INTRODUCTION

The failure of perturbative approaches to quantum gra
does not necessarily imply that quantum gravity does
exist as a field theory. There is still in principle the possib
ity that the theory could be ‘‘nonperturbatively quantized
To understand what this means, one has to look at the re
malization group~RG!, i.e., the flow of the coupling con
stantsg̃i(k), as a certain external momentum parameterk is
changed.1 It is customary to takek as a unit of mass; ifg̃i has
dimensiondi in units of mass, we define dimensionless co
plingsgi5g̃ik

2di. The RG flow is then given by the integra
curves of a vector fieldb in the space of all couplings, whos
componentsb i(g)5] tgi ~with t5 ln k) are the beta func-
tions. A fixed point~FP! is a point g* in the space of all
couplings, where

b i~g* !50. ~1!

For example, in ordinary quantum field theories
Minkowski space, a Gaussian theory is always a FP~called
the Gaussian FP!, because it does not have quantum corr
tions.

Suppose that the theory admits a FP. We define the
critical surface to be the locus of points that, under the

*Electronic address: percacci@sissa.it
†Electronic address: perini@he.sissa.it
1The precise physical meaning of the parameterk depends on the

specific problem that one is addressing; it is usually the momen
of some particle entering into the process under study, or the inv
of some characteristic length of the system. In general,k has the
meaning of an IR cutoff, because the effective theory describing
process must include the effect of all the fluctuations of the fie
with momenta larger thank.
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evolution, are attracted toward the FP fort→`.2 Starting
from any point on the critical surface, the UV limit can b
taken safely, because the couplings, and as a consequenc
physical reaction rates, will be drawn toward the FP a
hence remain finite.3 On the other hand, if one starts from
point not belonging to the critical surface, the RG evoluti
will generally lead to divergences. If the critical surface h
finite dimensionc, the theory will be predictive, becaus
only c21 parameters will be left undetermined and w
have to be fixed by experiment at a given energy scale~the
last remaining parameter being the scale itself!. The special
case when the FP with a finite dimensional critical surface
the Gaussian FP is equivalent to the usual perturbative no
of renormalizability and asymptotic freedom.

This scenario for nonperturbative renormalizability h
been discussed specifically in a gravitational context in@1#
where this good property was called ‘‘asymptotic safety.’’
the time, some encouraging results were obtained by stu
ing gravity in 21e dimensions@1,2#, but the program soon
came to a halt essentially for want of technical tools. It no
appears that the right tool to tackle this problem is the ex
RG equation~ERGE!, in one of several guises that hav
appeared in the literature in the last decade@3–5#.

The ERGE is a differential equation that determines
RG flow of the action. It can be viewed as a set of infinite
many first order differential equations for infinitely man
variables~the coupling constants! and therefore cannot gen
erally be solved in practice. A method that is commonly us
to calculate nonperturbative beta functions is to make

m
se

e
s

2In statistical mechanics the term ‘‘critical surface’’ is used for t
IR critical surface, i.e., the locus of points that are attracted tow
the FP whent→2`. Note, also, that the ‘‘RG time’’t is often
defined with the opposite sign with respect to ours.

3In general, in the action there will be couplings whose values
not affect cross sections and reaction rates. They are called ine
tial couplings. Our reasoning applies only to the essential couplin
©2003 The American Physical Society18-1
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physically motivated ansatz for the running effective actio
typically containing a finite number of parameters, and ins
this ansatz into the ERGE.

The ERGE, in the specific form discussed in@5#, has been
applied to Einstein’s theory in@6,7#, where the beta function
for Newton’s constant and for the cosmological const
were derived. It was later realized that these beta functi
actually admit a nontrivial UV-attractive FP@8#. The proper-
ties of this FP were further discussed in greater detail in@9#.
A particularly important issue is to prove that the FP is not
artifact of the ansatz but is a genuine property of gravitati
Several facts seem to indicate that the FP is quite robus
has been shown to exist in four spacetime dimensions
many different shapes of the cutoff, whereas in other dim
sions it exists only for certain cutoffs but not others. Its pro
erties have been shown to be only weakly dependent on
shape of the cutoff, indicating that the truncation is se
consistent@10#. It has been found in certain dimensional
reduced versions of the theory@11#. It is also remarkable tha
Newton’s constant always turns out to be positive, a fact t
could not in any way be guaranteed by the general form
the equations.

The most important test, however, is the stability of t
FP against the addition of new couplings. Each time we c
sider a new coupling, whether remaining in the context
pure gravity or if we introduce matter fields, a new be
function has to vanish, and therefore a new constraint ha
be satisfied by the set of all couplings at the FP. It is the
fore nontrivial that the FP still exists when we take in
account additional couplings.

In the context of pure gravity, an important progress w
made in@12#, where it was shown that the addition of a ter
quadratic in curvature does not spoil the existence of the
In fact it turned out that the values of the cosmological a
Newton’s constants at the FP are almost unaffected by
new interaction, while the new coupling constant is qu
small at the FP. This is far from being conclusive eviden
but it is nevertheless an important result, especially in vi
of the fact that another FP that was present in the trunca
with only two couplings—the Gaussian FP—does not ex
in the three-coupling truncation.

As far as matter is concerned, we have recently con
ered the effect of minimally coupled, massless quant
fields of arbitrary spin@13#. The only couplings taken into
account were the cosmological and Newton’s constant, s
the coefficients of the matter kinetic terms can be normali
to their standard values by field rescalings. It was shown
the existence of the FP, the values of the cosmological c
stant and Newton’s constant at the FP, and the dimensio
the critical surface all depend on the type and number
fields present. Altogether, the existence and attractivenes
the FP puts some constraints on the number of matter fi
that are present.

In this paper we continue the analysis of coupled grav
and matter systems and we begin to address the issu
matter couplings. There are many different couplings that
necessary to construct realistic theories of the world, and
cannot possibly take them all into account, so as a first s
we shall consider the simplest example, that of a s
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interacting scalar field. Aside from its role as a model for t
Higgs field in unified theories, a scalar field~the dilaton!
appears in many popular theories of gravity. It can theref
sometimes be regarded as part of the gravitational se
rather than the matter sector. This makes its properties e
cially interesting in a gravitational context. In this paper w
shall not make any assumption about the physical interpr
tion of the scalar field.

The class of actions that we consider is

G@g,f#5E d4xAgS V~f2!2F~f2!R1
1

2
gmn]mf]nf D ,

~2!

where the potentialV and the scalar-tensor couplingF are
arbitrary real analytic functions.~The RGE’s for this system
were studied earlier in@14#.! Although it is not necessary fo
some of the results of this paper, we shall assume that
potential has its minimum at the origin. Then we can ident
F(0)5k[1/16pG, G being Newton’s constant, andV(0)
52kL, where L is the ~dimension-2! cosmological con-
stant. It will appear that the behavior of the couplings im
plicit in the functionsV andF is sufficiently systematic tha
we are actually able to draw several conclusions involving
infinite number of couplings. For some purposes, howev
we shall restrict our attention to a five-parameter ans
whereV is at most quartic inf andF is at most quadratic.

Aside from establishing the existence of a nontrivial F
the main question addressed in this paper will be the dim
sion of the critical surface. In practice, this is done by li
earizing the flow around the FP. We definev i5gi2gi* as
the shift from the fixed point. The linearized flow around t
fixed point is described by the equations

] tv i5Mi j v j , ~3!

whereMi j 5]b i /]gj . Let P be the~generally complex! lin-
ear transformation that diagonalizesM: P21M P
5diag(a1 , . . . ,aN) ~the columns ofP are the eigenvectors
of M ). Defining f 5P21v, one finds] t f k5akf k , so f k(t)
5eakt. Transforming back to the original variables, the s
lution can be writtengi(t)5gi* 1Re@Pi j f j (t)#. It is easy to
show that the eigenvaluesa i are invariant under redefinition
of the couplings.

The eigenvalues with negative real part~which for brevity
we shall call the ‘‘negative eigenvalues’’! correspond to di-
rections for which the RG flow approaches the FP in the U
The corresponding parameterf i is called a relevant param
eter. Those with positive real part~the ‘‘positive eigenval-
ues’’! correspond to directions for which the RG flow mov
away from the FP in the UV. The corresponding parametef i
is called an irrelevant parameter. The parameters corresp
ing to purely imaginary eigenvalues are called marginal.4 In
the linearized theory, in order to approach the FP in the U
it is therefore necessary to stay on the hyperplane spanne

4Thus, in the conventions used in statistical mechanics, the~IR!
critical surface is spanned by the irrelevant parameters.
8-2
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the eigenvectors with negative eigenvalues. This hyperp
is the tangent space to the critical surface at the FP. Th
fore, the dimension of the critical surface is equal to t
number of negative eigenvalues. On general grounds,
expects the critical surface to be finite dimensional. In t
way all but a finite number of couplings would be fixed a
the theory would be as predictive as a perturbatively ren
malizable theory.

We now give a brief summary of the results of this pap
First of all, a nontrivial FP still exists with the ansatz~2!. The
purely gravitational couplings~the cosmological constan
and Newton’s constant, which appear as thef2-independent
terms in the functionsV andF) have the same values as
@13# and all the other couplings are equal to zero. In a se
this is therefore ‘‘the same’’ fixed point that was consider
in @8# and in @9,15#. It can also be regarded as a generali
tion of the Gaussian FP of the pure scalar theory in flat sp
We therefore call it the Gaussian-matter FP~GMFP!. We
have performed a systematic search for other FP’s with
five-parameter truncation of the action, whereV and F are
polynomials containing at most terms of orderf4 and f2,
respectively. Thus, in addition to the cosmological and Ne
ton’s constants, we consider a scalar mass term, a qu
self-interaction, and a nonminimal coupling of the sca
field to the scalar curvature. Detailed numerical analy
have convinced us that there are no FP’s with nonzero sc
mass and couplings, for values of the cosmological a
Newton constant close to those of the pure-gravity FP.

Comparing to the results of the pure scalar theory,
main effect of the coupling to gravity is to change the exp
nentsa i . It turns out that of the two canonically margin
couplings, thef4 coupling becomes irrelevant while th
f2R coupling becomes relevant. The other couplings p
serve the character that is implied by their canonical dim
sion; the critical dimension would thus be equal to 4.

We then look at the effect of other matter fields on the
The results of this investigation generalize those already
ported in @13#. The behavior of the beta functions is dete
mined by two parameters that depend on the numbe
fields, and the existence of the FP depends on the value
these parameters. In this way the existence of the FP yi
constraints on the type and number of matter fields. Th
constraints appear to be satisfied by popular unified mod
The existence region is subdivided into subregions w
varying numbers of attractive directions. In the region th
we have explored, comprising large numbers of matter fie
the dimension of the critical surface is always finite. In p
ticular, there are regions in which the attractive directio
correspond to nontrivial polynomial potentials of degree 4
higher. This may yield a solution of a long-standing puzz
In a pure scalar theory in flat space, the Gaussian FP i
attractive ~all couplings are irrelevant!. As a consequence
when one takes the continuum limit at the Gaussian FP,
renormalized theory is free. This result is not an obstacle
the context of an effective field theory, but it has to be som
how circumvented if scalar fields have to appear in a fun
mental field theory. The coupling to gravity is a natural co
text for a solution of this issue. Our results suggest that th
exist theories of gravity coupled to matter such that
04401
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renormalized scalar potential has finitely many nonzero c
plings in the continuum limit. This seems to indicate that t
interaction with gravity~and, indirectly, with the other matte
fields! solves the problem of the triviality of the scala
theory.

This paper is organized as follows. In Sec. II, by way
introduction, we derive the ERGE and we use it to pro
some well-known results on the Gaussian FP of a pure sc
theory in flat space. In Sec. III we consider the modificatio
of the beta functions due to gravity, we prove the existen
of the Gaussian-matter FP, and we discuss the~negative!
results of the numerical search for other FP’s. Section IV
devoted to the properties of the GMFP. We analyze the
earized flow around the GMFP and show that the coupling
gravity affects the dimensions of the couplings, shifting the
relative to the canonical values. In Sec. V we consider
effect of other massless, minimally coupled matter fields
the GMFP. In Sec. VI we will consider in some detail th
dependence of our results on the shape of the cutoff func
and on the gauge-fixing parameter. Finally, in Sec. VII w
make some concluding remarks.

All results are derived in the case of Euclidean signatu
in four dimensions. Since the expressions of the beta fu
tions are extremely lengthy, in deriving our results we ha
made extensive use of algebraic manipulation software.

II. THE GAUSSIAN FP IN PURE SCALAR THEORY

We begin by considering the case of a single scalar fi
without gravity and a generic even potential

V~f!5 (
n50

`

l̃2nf2n. ~4!

In this section we assume thatV(0)5l̃052Lk50; the first
nonzero term is the massl̃25 1

2 m2, while l̃4 is the usual
quartic coupling. The couplingsl̃2n have dimension
(mass)2(22n), so the usual power-counting arguments tell
that the terms in Eq.~4! with n.2 are perturbatively non-
renormalizable, while the termn52 is marginal. We will
now rederive this result within the formalism of the ERGE
This will set the stage for further developments in later s
tions.

To derive the ERGE, one begins by modifying the clas
cal propagator by adding to the action a term quadratic in
fields which in momentum space can be writtenDSk(f)
5 1

2 *d4qf(2q)Rk(z)f(q), wherez5q2. The effect of this
term must be to suppress the propagation of field modes
momenta smaller thank, while leaving the modes with mo
menta larger thank unaffected. This is the case if the smoo
cutoff functionRk is chosen to tend to zero forz@k2 and to
a constant forz→0. For numerical work, in this paper w
will work with cutoffs of the form

Rk~z!5
2aze22az/k2

12e22az/k2 , ~5!

with a a free parameter. We then define a scale-depen
generating functional of connected Green’s functions
8-3
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Wk@J#52 lnE ~Df!expF2S S1DSk1E Jf D G
such that (dWk /dJ)uJ505^f& and a scale-dependent effe

tive action Gk@fcl#5G̃k@fcl#2DSk@fcl#, where G̃k@fcl#
5Wk@J#2*Jfcl is obtained from Wk@J# by the usual
Legendre-transform procedure. The scale-dependent e
tive action tends to the bare actionSwhenk tends to the UV
cutoff, and to the ordinary effective action fork→0. We
have

] tWk5] t^DSk&5
1

2
Tr^ff&] tRk , ~6!

where the trace is over all Fourier modes~and internal indi-
ces, if there were any!. Then,

] tGk@fcl#5] tWk@J#2] tDSk@fcl#

5
1

2
Tr~^ff&2^f&^f&!] tRk

52
1

2
Tr

d2Wk

dJdJ
] tRk . ~7!

Applying the standard identity

d2Wk

dJdJ
52S d2G̃k

dfcldfcl
D 21

, ~8!

one then obtains the ERGE@16#

] tGk5
1

2
TrS d2Gk

dfdf
1RkD 21

] tRk . ~9!

In the previous formula and in the following we shall dro
the subscript infcl ; this should not cause any confusio
Note that, although the definition ofGk would require an UV
regulator, the trace in Eq.~9! is automatically finite due to
the term] tRk , which effectively restricts the integration to
small range of momenta aboutk. The ERGE describes th
flow of the functionalGk with the scalek. In order to extract
beta functions, one has to resort to approximations. A co
mon procedure is to make an ansatz about the form ofGk and
to insert it into the ERGE. Of course the beta functions o
tained in this way are no longer exact: one loses all inform
tion about the dependence of the beta functions on the
rameters that have been left out of the ansatz. Neverthe
the results do contain information that is not accessible
perturbation theory and they have been shown to yield
merically accurate values in many circumstances@4,17#. We
now apply this procedure to the scalar theory.

Introducing in Eq. ~9! the truncation Gk(f)
5*d4x@2 1

2 f]2f1V(f2)#, where V is a k-dependent
potential, gives

] tGk5
1

2
TrS ] tPk

Pk1V814f2V9
D , ~10!
04401
c-
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where a prime denotes the derivative with respect tof2, the
trace can be understood as an integration over moment
can be reexpressed as

] tGk5
V

32p2
Q̃2S ] tPk

Pk1V814f2V9
D ~11!

whereV5*d4x denotes the volume of spacetime and

Q̃n@ f #5
1

G~n!
E

0

1`

dzzn21f ~z!. ~12!

The coupling constants can be extracted from the poten
by

l̃2n5
1

n!

]nV

]~f2!nU
f50

. ~13!

In order to look for a fixed point one has to define dime
sionless couplingsl2n5k2(n22)l̃2n . The corresponding beta
functions are given by

] tl2n52~n22!l2n1
k2(n22)

V

1

n!

]n

]~f2!n ] tGkU
f50

.

~14!

Explicitly, the first few beta functions are given by

] tl2522l22
12l4

32p2
Q2S ] t P

P 12l2
D , ~15a!

] tl45
1

32p2 F230l6Q2S ] tP
~P12l2!2D

1144l4
2Q2S ] tP

~P12l2!3D G , ~15b!

] tl652l61
1

32p2 F256l8Q2S ] tP
~P12l2!2D

1720l4l6Q2S ] tP
~P12l2!3D

21728l4
3Q2S ] tP

~P12l2!4D G , ~15c!

] tl854l81
1

32p2 F290l10Q2S ] tP
~P12l2!2D

11344l4l8Q2S ] tP
~P12l2!3D

1900l6
2Q2S ] tP

~P12l2!3D

8-4
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28640l6l4
2Q2S ] tP

~P12l2!4D
120736l4

4Q2S ] tP
~P12l2!5D G , ~15d!

where Qn@ f #5k22nQ̃n@ f # is a dimensionless integral,R
5k22Rk is a dimensionless cutoff, andP5k22Pk is a di-
mensionless modified propagator.

This theory admits a well-known Gaussian FP: if we
l250, Eq. ~15a! implies l450, Eq. ~15b! then impliesl6
50, and so on: recursively all couplings are found to
zero. This is not the only solution of the coupled system. O
can fix an arbitrary value ofl2 and the equations then recu
sively determine all the other couplings@18#. However, when
l25” 0 these potentials become singular at a finite value of
and therefore are not considered to be physically accept
@19#. In what follows we will restrict our attention to th
Gaussian FP.

We now study the critical surface in the neighborhood
the FP using the linearized RG equation~3!. Let b2n
5] tl2n and letMi j 5]b2i /]l2 j . It appears from Eqs.~15!
~as well as from dimensional and diagrammatic consid
ations! that the 2nth beta function is a polynomial in th
couplingsl4 , . . . ,l2n12, linear inl2n12. Therefore the el-
ements of the matrixMi j with j . i 11 are zero. On the othe
hand, since alll2n are zero at the FP, when the derivativ
are evaluated at the FP only the terms linear in the coupl
remain. These are exactly the terms on the diagonal, w
f t
o
e

n
ed

-

n
u-
to
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e
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are equal to the canonical dimensions of the couplings,
the terms on the second diagonal (i 5 j 11), which are equal
to

Mii 115
]b2n

]l2n12
5~2n11!~n11!c ~16!

wherec52(1/16p2)Q2(] tP/P2). All other terms are zero
Numerically, the integralQ2(] tP/P2) is equal to 0.924 for
a52.

Therefore, the matrixM has the following form:

S 22 6c 0 0 . . .

0 0 15c 0 . . .

0 0 2 28c . . .

0 0 0 4 . . .

. . . . . . . . . . . . . . .

D . ~17!

The eigenvalue problem for this infinite matrix yields th
recursion relation

l2n125
2~n22!2m

~2n11!~n11!c
l2n , ~18!

wherem is the eigenvalue. This relation can have two typ
of solution. If we assume that the potential is a finite po
nomial of orderK, Eq. ~18! implies thatm52(K22). These
eigenvalues are just the diagonal elements of the matrix~17!.
The corresponding eigenvectors are the columns of the
lowing matrix P:
S 1 20.0175512 3.8480431023 1.0482531025 . . .

0 0.999846 20.0438425 1.7914831023 . . .

0 0 0.999038 20.0816446 . . .

0 0 0 0.99666 . . .

. . . . . . . . . . . . . . .

D . ~19!
sis

ing
vi-

ir-

es.
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lar
The eigenvalues are equal to the canonical dimensions o
couplings, so that the relevant, irrelevant, and marginal c
plings correspond exactly to the couplings that are sup
renormalizable, nonrenormalizable, and renormalizable
the perturbative sense.

These polynomial potentials suffer from the well-know
problem of triviality. Consider the scalar theory regulariz
with a UV cutoff LUV and an IR cutoffk. Keepingk fixed
and lettingLUV→` ~the continuum limit! has the same ef
fect as keepingLUV fixed and lettingk→0. An irrelevant
coupling tends to zero fork→0, and therefore for any fixed
k it will tend to zero in the continuum limit. This will be the
case for alll2i with i>2, so the theory is noninteracting i
the continuum limit.~Our analysis says only that the co
plings from l6 upward have to be zero; the hard part is
prove that also the marginal couplingl4 tends to zero.
he
u-
r-
in

For this, one has to go beyond the linearized analy
@20#.!

There is also another type of eigenvector, correspond
to nonpolynomial potentials, that avoids the problem of tri
ality. If we do not assume thatl2K1250 for someK, the
recursion relation~18! can be solved for thel2n in terms of
the free parametersl2 andm, yielding a potential that can be
written as a Kummer function@18#. There are~negative! val-
ues ofm for which the potential has all the physically des
able properties~positivity at `, symmetry breaking!. They
are therefore nontrivial asymptotically free scalar theori
However, there are infinitely many attractive directions a
therefore these theories do not satisfy the conditions
asymptotic safety.

This concludes our brief review of the ERGE for a sca
field theory.
8-5
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III. THE COUPLED SYSTEM

We now consider the coupling of the scalar theory
gravity, using the ansatz~2! for the running effective action
This will obviously change the beta functions of the sca
potential; in addition, we will have to take into account al
the beta functions of the gravitational couplings. These
given by the Taylor expansion coefficients of the functi
F(f2) of Eq. ~2!, which we write as follows:

F~f2!5 (
n50

`

j̃2nf2n. ~20!

The first term in the expansion can be identified with t
~inverse! Newton constant:j05k51/(16pG), while the
second term is the well-known scalar tensor interaction te
f2R with dimensionless coefficientj25j. The running cou-
plings are given by

j̃2n5
1

n!

]nF

]~f2!n U
f50

. ~21!

As before, we define dimensionless couplingsj2n

5k2(n21)j̃2n . The corresponding beta functions a
given by

] tj2n52~n21!j2n1
k2(n21)

V
1

n!

]n11

]R]~f2!n
] tGkU

f50,R50

.

~22!

We now have to insert this ansatz into the appropri
ERGE. The derivation of Eq.~9! in the previous section
was quite general and therefore the ERGE for grav
coupled to a scalar field has again the same form, excep
two generalizations: first, the fieldf is to be reinterpreted a
a matrix consisting of the components of the metric an
scalar field; second, since gravity is a gauge theory, one
to take into account the effect of gauge fixing and gh
terms.

Here we mention some points that are necessary to un
stand the results; we refer to@7# and@9# for details. In deriv-
ing the ERGE, one encounters thequantum metric~to be
integrated out in the functional integral!, saygmn , which can
be decomposed into the sum of an arbitrary background m
ric ḡmn and a quantum fluctuationhmn . The background met
ric is used in the gauge fixing terms~23! below and also in
the cutoff termsDSk , which have to be quadratic inhmn .
In the Legendre transformation one encounters also
classical metric gmn , which is the canonically conjugat
variable of the source associated with the quantum me
Thus, in general, the actionGk will depend on bothḡ and
g. On the other hand the ansatz~2! depends only on one
metric. In order to derive the beta functions for the couplin
in Eq. ~2! we proceed as follows. In the right-hand sid
~RHS! of the ERGE, one first takes the functional derivativ
with respect to theclassical field g, and then one sets th
04401
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background metric equal to the classical one, i.e.,gmn

5ḡmn , so that many contributions disappear. From the
equations one can read off the beta functions of
couplings.

The gauge-fixing action is chosen as

SGF5
1

2aE d4xAḡḡmnFmFn , ~23!

Fm5ḡnrS ¹̄ngrm2
b11

4
¹̄mgnrD ,

so that the corresponding ghost action will be

Sgh5E d4xAḡC̄mS 2¹̄2gmn1
b21

2
¹m¹n2RmnDCn .

~24!

In principle,a andb are running parameters in the effectiv
action, so one should take into account their beta functio
too. However, as will be discussed in Sec. VI, there are
guments to the effect thata50 at the FP. Therefore, unles
otherwise stated, we will always work in the gaugea50 and
b51.

The kinetic term of the gravitons is obtained by linear
ing the action around a de Sitter metric with scalar curvat
R and a constant scalar backgroundf. Using the method of
@7#, the RHS of Eq.~9! can be written as a sum of sever
terms, corresponding to the spin-2, -1, and -0-component
the fields, and has to be completed by adding the ghost c
tributions.

The spin-2 component of the metric has the inve
propagator

1

2
F~f2!S z1

2

3
RD2

1

2
V~f2!, ~25!

where nowz52¹m¹m. The spin-1 component of the metri
has the inverse propagator

1

a
F~f2!S z1

2a21

4
RD2V~f2!, ~26!

wherea is the gauge-fixing parameter. The two spin-0 co
ponents of the metric mix with the scalar field; the resulti
inverse propagator is given by the matrix
8-6



S 3

16
F~f2!S 32a

a
z1

a21

a
RD2

3

8
V~f2!

3

16

b2a

a
F~f2!AzAz2

R

3
2

3

2
F8~f2!fAPkAPk2

R

3

3

16

b2a

a
F~f2!AzAz2

R

3
2

1

16

3a2b2

a
F~f2!z1

1

8
V~f2! 2

3

2
F8~f2!fS z2

R

3 D1fV8

2
3

F ~f2!AzAz2
R

2
3

F8~f2! z2
R

1fV8 z12V814f2V92R~2F814f2F9!

D .
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2
8

3 2 S 3 D
~27!
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The two factors under the trace in the RHS of Eq.~9! are
obtained from these expressions as follows. The modi
~cutoff! propagators are given by the inverses of the exp
sions in Eqs.~25!,~26!,~27!, with z replaced byPk(z). The
function Rk for each spin component is given by the diffe
ence of the cutoff propagator and the original propagator
the case of spin 2 and spin 1, this is just the functionRk(z)
defined in Eq.~5!, whereas for the spin-0 components it is
333 matrix @the difference of Eq.~27! with z replaced by
Pk(z) and Eq.~27!#.

Since in Eqs.~25!, ~26!, ~27! the momentum variablez
always appears multiplied by the functionF(f2), the matri-
cesRk appearing in Eq.~9! also containF(f2). When in-
serted in the RHS of Eq.~22!, in addition to the explicit
dependence ofPk(z) on k, one has to take into account th
04401
d
s-

n

dependence onk of all coupling constants that are present
F(f2) and its derivatives~this is related to the ‘‘renormal-
ization group improvement’’ that turns the one-loop RG in
an exact equation!. This generates terms proportional to th
beta functions in the RHS of the equations, so that the ER
does not immediately yield expressions for the beta functi
but rather linear equations for the beta functions.5

The beta functions themselves are then obtained by
verting the matrix of coefficients, and this introduces furth
nonlinearities into the system. We will not write the expre
sions for the beta functions themselves but only the lin
equations that determine the beta functions. We will or
the couplings in order of decreasing mass dimension~before
dividing by powers ofk): l0 ,j0 ,l2 ,j2 ,l4 ,j4 , . . . . These
are the first five equations:
if we had
the
] tl05
1

32p2 H Q2F] tP~l0~3P18l2!1P~3P14l2!j0!

P~P12l2!~j0P2l0! G12
j08

j0
Q2FR~2l025j0P!

P~l02j0P! G J , ~28!

] tj05
1

384p2 H Q1F] tP@2l0~3P110l2!1P~11P126l2!j0#

P~P12l2!~j0P2l0! G
2Q2F ] tP$6l0j0P@20l2P120l2

21P2~528j2!#13l0
2@220l2P220l2

21P2~8j225!#%

P2~P12l2!2~j0P2l0!2 G
1Q2F ] tP$j0

2P2@2220l2P2220l2
21P2~24j2255!#%

P2~P12l2!2~j0P2l0!2 G J 1
1

384p2

] tj0

j0
H Q1FR~5l013j0P!

P~j0P2l0! G
15Q2FR~23l0

216l0j0P15j0
2P2!

P2~j0P2l0!2 G J , ~29!

5This did not happen in the pure scalar case because there the propagator was fixed to be equal to 1. It would have happened
written a more general action containing a term (1/2)Z(f2)gmn]mf]nf. Then the expressions for all beta functions would contain on
RHS the beta functions of the couplings that appear in the functionZ(f2).
8-7
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] tl252
3

16p2
Q2F ] tP$2l0

2l41j0P2@2l4j02l2~112j2!2#1l0@~112j2!~22l2
214l2j2P1j2P2!24l4j0P#%

~P12l2!2~j0P2l0!2 G
2

] tj0

16p2j0
2

Q2FR$2l2@24l0
2j218l0j0j2P1j0

2P2~312j2!#1j2P@2l0
224l0j0P1~516j2!j0

2P2#%

P~P12l2!~j0P2l0!2 G
1

] tj2

16p2j0

Q2FR@22l0~P12l2!1j0P~5P22l2112j2P!#

P~P12l2!~j0P2l0! G , ~30!

] tj25
1

48p2
Q1F ] tP

~P12l2!2~j0P2l0!2
•~3l0

2l42l0$4l2P~123j2!j21l2
2~3116j2!1P@6l4l01P~123j2!j2#%

1j0@10l2
2P110l2

313l4j0P21l2P2~126j226j2
2!# !G2

1

48p2

3Q2F ] tP
P2~P12l2!3~j0P2l0!3

•„218l0
3P2@24l4j21~P12l2!j4#

26l0
2@3l2

3P12l2
41l2

2P2~114j2110j2
2!#16l0

2@9j0P3~24l4j21j4P!1l2P3~4j2119j2
2124j2

3118j0j4!#

1l0j0P@36l2
418l2

3P~617j2!212l2P3~j2118j2
2118j2

319j0j4!#1l0j0P3$3l2
2~5136j2120j2

2!

1P@216j0l4j21P~10j2121j2
2136j2

3254j0j4!#%2j0
2P2@104l2

413l2
2P2~23212j2!26l2

3P~22514j2!#

12j0
2l2P5~25124j2151j2

2136j2
3118j0j4!13j0

2P5~224l4j0j227j2
2P212j2

3P16j0j4P!…G
1

] tj0

384p2j0
2

Q1F R
P~P12l2!~j0P2l0!2

•$40l2
2j0

2P1j2P@5l0
2210l0j0P13j0

2P2~2118j2!#

22l2@25l0
2j2110l0j0j2P1j0

2P2~24127j2!#%G2
] tj0

384p2j0
2

3Q2F R
P2~P12l2!2~j0P2l0!3

•$15l0
3~P12l2!2j223l0

2j0~P12l2!~8l2
2115j2P2122l2j2P!

1j0
3P2@2416l2

314l2
2P~292161j2!#1j0

3P4@j2P~252168j22288j2
2!14l2~220179j2160j2

2!#

1l0j0
2P@144l2

3220l2j2P2~25112j2!#1l0j0
2P2@4l2

2~18137j2!1j2P2~851168j21288j2
2!#%G

2
] tj2

384p2j0

Q1F R
P~P12l2!~j0P2l0!

•$25l0~P12l2!13j0P~2P218l2116j2P!%G
2

] tj2

384p2j0

Q2F R
P2~P12l2!2~j0P2l0!2

•$15l0
2~P12l2!226l0j0P@12l2

218l2P~225j2!

1P2~5128j2196j2
2!#1j0

2P2@2148l2
224l2P~31160j2!1P2~2251168j21576j2

2!#%G , ~31!
044018-8
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] tl45
3

16p2
Q2F ] tP

~P12l2!3~j0P2l0!3
•„l0

3@224l4
215~P12l2!l6#

1l0
2$224l2

3j414l2
2@8l4~112j2!1P~21116j2!j4#%1l0

2P$72l4
2j01P~215l6j01j4P@118j2!#%

12l0
2l2P$24l4~118j2112j2

2!13@25l6j01P~118j2!j4#%1j0@40l2
5240Pl2

4~2112j2!

224Pl2
3~2l4j015j2P!#1j0

2P3@24l4
2j025l6j0P1l4P~118j2124j2

2!#

1j0l2P3$210l6j0
222l4j0~5140j2124j2

2!2P@6j2
2152j2

3148j2
428j0j41j2~1216j0j4!#%

1l0$20l2
4~114j2!22l2

3@212l4j01P~1124j21124j2
2112j0j4!#%12l0l2

2P@2l4j0~17116j2!

13P~j214j2
2144j2

312j0j4116j0j2j4!#1l0l2P2$230l6j0
2218l4j0~118j218j2

2!1P@28j2
3296j2

4114j0j4

1j2~1164j0j4!#%1l0P2$72l4
2j0

21Pl4j0~118j2124j2
2!1P@215l6j0

22P~j214j2
3124j2

42j0j4

28j0j2j4!#%…G1
] tj0

16p2j0
3

Q2F R
P~P12l2!2~j0P2l0!3

•~$60l2
4j0

3P2240l2
3j0

3j2P2

1l2
2@28l0

3j2
214j0

4P2~9l417j4P!224l0j0
2P~j2

2P1l0j4!#%1l2
2$8l0

2j0~3j2
2P1l0j4!

1j0
3P@P2~3112j21380j2

2!212l0~3l41j4P!#%1P2~22l0
316l0

2j0P!~j2
22j0j4!

1P3$j0
3P@3l4j0~118j2124j2

2!15j2
2112j2

3172j2
425j0j4224j0j2j4#%13l0j0

2P3@2l4j0~118j2124j2
2!

1P~22j2
213j0j418j0j2j4!#22l2P$~4l0

3212l0
2j0P!~j2

22j0j4!26l0j0
2P@l4j0~118j2!

1P~22j2
21j0j414j0j2j4!#%22l2j0

3P2$6l4j0~118j2!1P@8j2
21132j2

322j0j41j2~3124j0j4!#%!G
1

] tj2

16p2j0
2

Q2F R
P~P12l2!2~j0P2l0!2

•~120l2
3j0

2P22l2
2@4l0

2j228l0j0j2P1j0
2P2~31190j2!#

1l2P@28l0
2j2116l0j0j2P148j0

3P~2l41j4P!#1j0
2@P2~3116j21396j2

2!248l0~2l41j4P!#

1P2$22l0
2j22j0

2P@24l4j0~116j2!1P~j2118j2
21144j2

3224j0j4!#%14l0j0P2@6l4j0~116j2!

1P~j226j0j4!#…#1
] tj4

16p2j0

Q2F R
~P12l2!2~j0P2l0!2

•$22l0~P12l2!1j0P~5P214l2124j2P!%G . ~32!
y
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to
This system of linear equations can be solved forb2i
l

5] tl2i and b2i
j 5] tj2i . Note that we have not made an

truncation of the functionsV andF: no couplings have bee
assumed to be zero.

We do not exhibit the equations for the higher couplin
By means of algebraic manipulation software we have c
culated the beta functions up tol8 andj6. The general pat-
tern however, is, already clear from the equations sho
here. The functionsQ1 andQ2 always contain denominator
involving only the couplingsl0 , l2, and j0. Aside from
these couplings appearing insideQ1 andQ2, the equation for
b2i

l is a polynomial in the couplingsl0 ,l2 , . . . ,l2i 12 and
j0 ,j2 , . . . ,j2i , with the functionsQ1 and Q2 as coeffi-
cients, while the equation forb2i

j is a polynomial in the
couplingsl0 ,l2 , . . . ,l2i 12 andj0 ,j2 , . . . ,j2i 12, with the
functionsQ1 and Q2 as coefficients. When these equatio
04401
.
l-

n

are solved, the beta functionb2i
l is written as a rational func-

tion of l0 ,l2 , . . . ,l2i 12 andj0 ,j2 , . . . ,j2i , while the beta
function b2i

j is written as a rational function o
l0 ,l2 , . . . ,l2i 12 andj0 ,j2 , . . . ,j2i 12.

It is clear that the systemb2i
l 50, b2i

j 50 admits a FP for
which all couplingsl2i and j2i vanish for i .0, while for
i 50 l052kL, and j05k have the same values that the
would have in the presence of a single free scalar field
discussed in@13# ~these values are numerically very close
those of pure gravity, discussed in@9#!, namely, fora52,

l0 * 50.0080022,

j0 * 50.023500. ~33!
8-9



-

to
e
u

ur
s
th

te
lf
g
e
io

h

tio
n
u

in
ou

f a
ric
a
o
FP
io
P

he

th
te

nu
n
-
f

a
ss

re
rie
m
m

tra
all

we
one
b-
er
FP

in
ay

ive
be-
ay
fter

n-
u-

n.

unc-
on

his

ill
ht

ero,
not
r we
ial
i-

un-
-
r-

on:
,

ro.
a-
n
of

R. PERCACCI AND D. PERINI PHYSICAL REVIEW D68, 044018 ~2003!
To compare with the results of@9#, we define the dimension
less variablesl5L/k25l0/2j0 and g5Gk251/16pj0. At
the GMFP

l* 5
l0*
2j0*

50.1703,

g* 5
1

16pj0*
50.8466. ~34!

These values differ from those in Eq.~5.25! of @9# on two
accounts: they are calculated for different values of the cu
parametera, and here the FP is shifted due to the presenc
the scalar field. When these factors are taken into acco
there is perfect agreement.@See Fig. 5~b! of @9# for the de-
pendence of results ons52a and compare with Fig. 8
below.#

This FP can be viewed alternatively as the FP of p
gravity, slightly shifted due to the presence of a free, ma
less, minimally coupled scalar, or as the Gaussian FP of
pure scalar theory, generalized to include gravitational in
actions. It is remarkable that matter remains ‘‘non-se
interacting’’ at this FP, and that the only nonzero couplin
are those that affect only the gravitational degrees of fr
dom. ~This goes some way toward justifying the assumpt
in @13# that matter fields are non-self-interacting.! For want
of a better terminology, we shall refer to this FP as t
Gaussian-matter FP.

The issue arises whether the coupled system of equa
admits other nontrivial FP’s. The complexity of the equatio
has prevented us from deriving definite results on this iss
We have looked for other FP’s using numerical methods
five-parameter truncation of the theory containing the c
plings l2n for n50,1,2 and the couplingsj2n for n50,1.
Our method consists in considering a grid in the space o
parameters and evaluating the beta functions by nume
integration at a point and then at all neighboring points. If
beta functions change sign simultaneously when going fr
a point to a neighbor, then generically there will be a
somewhere near the link between the two points. The reg
is then examined with a finer grid until the position of the F
is located with sufficient accuracy. We started off with t
232 grid given byl0 andj0, confirming the results of@9#;
we then added one by one the other variables involved in
five-parameter truncation, getting increasingly complica
systems of equations.

Because of the complexity of the beta functions, the
merical evaluation takes considerable time. The largest ra
we have explored is a 535 grid with the dimensionless cos
mological constantl ranging from 0.010 to 0.045 in steps o
0.005; the dimensionless Newton constantg ranging from
0.01 to 0.06 in steps of 0.01; the dimensionless scalar m
2l2 ranging from21 to 1 in steps of 0.2; the dimensionle
quartic scalar couplingl4 ranging from215 to 5 in steps of
1; the dimensionless scalar-tensor couplingj5j2 ranging
from 25 to 5 in steps of 1. This makes a lattice with mo
than 120 000 points. Many other attempts have been t
with finer lattices and/or fewer parameters. We did find so
nontrivial solutions when considering fewer than five para
04401
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eters, but none of them survived the addition of an ex
parameter, so that we had to conclude that they were
spurious FP’s due to the truncation. As a further check
also resorted to series expansions around the GMFP or
of the spurious FP’s mentioned above. All the results o
tained in this way are perfectly consistent with the oth
calculations. The outcome of all these efforts is that no
other than the GMFP was found.

This is of course not a proof that a FP does not exist
this range of couplings. For example, a beta function m
change sign twice on a link, once from positive to negat
and once from negative to positive, and if the distance
tween the zeros is smaller than the size of the step, it m
well escape detection by our methods. Nevertheless, a
this numerical work, we consider it quite unlikely that a
other nontrivial FP exists in the range of values for the co
plings that we have considered.

This result is corroborated by the following observatio
If one does not truncate the functionsV andF to polynomi-
als, as in the pure scalar case the structure of the beta f
tions seems to allow for a recursive solution depending
two free parameters. If we fix arbitrary values forl0 andj0,
from Eqs.~28!,~29! one derivesl2 andj2; substituting them
into Eqs.~30!,~31!, one can solve forl4 andj4, and so on.
This will determine the functionsV5V* and F5F* up to
two arbitrary parameters. It will be interesting to analyze t
in detail and to see whether the resulting functionsV* and
F* are regular or still present the problems discussed in@19#.
In any case, it seems highly unlikely that the solutions w
be polynomial. This point of view also sheds a different lig
on the FP found in@8,9#. The values ofl0* andj0* at the
GMFP are the only ones for whichl2* 50 andj2* 50, and
as a consequence all the higher couplings turn out to be z
in accordance with the truncation made there. We shall
pursue this issue any more here. In the rest of this pape
shall restrict our attention to the GMFP, which is a spec
member of this family of solutions, and is definitely a phys
cally acceptable solution.

IV. LINEARIZED FLOW AROUND THE GMFP

Having established the existence of the GMFP in the tr
cation defined by the action~2!, we have to study its prop
erties, in particular, to find the dimension of the critical su
face.

We begin by calculating the matrixMi j . Again, we order
the couplings in order of decreasing mass dimensi
l0 ,j0 ,l2 ,j2 ,l4 ,j4 ,l6 , . . . . As in the pure scalar theory
due to the functional dependences ofb2i

l and b2i
j on the

couplings, an infinite triangle above the diagonal is ze
Furthermore, due to the fact that only the ‘‘purely gravit
tional’’ couplings l0 and j0 are nonzero at the GMFP, a
infinite triangle below the diagonal is zero. The structure
the matrixM is therefore remarkably simple:

S M00 M02 0 0 •••

0 M22 M24 0 •••

0 0 M44 M46 •••

0 0 0 M66 •••

••• ••• ••• ••• •••

D , ~35!
8-10
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where each one of the nonzero entries is a 232 matrix of the
form

Mi j 5S ]b (2i )
l

]l (2 j )

]b (2i )
l

]j (2 j )

]b (2i )
j

]l (2 j )

]b (2i )
j

]j (2 j )

D . ~36!

For the calculation of the dimension of the critical surfa
we need to count the number of negative eigenvalues of
matrix M. The eigenvalue problem for the matrixM could be
turned into recursion relations forl2i andj2i , as for the pure
04401
e

scalar theory. However, if we restrict ourselves to solutio
where V and F are polynomials, given the almost-block
diagonal structure ofM, the eigenvalues ofM are just the
eigenvalues of the diagonal blocksMii . Explicitly, the diag-
onal blocks have the following form:

Mii 5S 2~ i 22! 0

0 2~ i 21!D 1S dMll dMlj

dM jl dM jj D , ~37!

where the first term contains the canonical dimensions of
couplings and the second term, which contains the quan
corrections, has the following form:
dMll5
j0

16p2 S 3Q2F ] tP
~l02Pj0!2G2

1

D2
•H 23Q2F R

~l02j0P!2G•S Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G D •D28Q2FR~22l015j0P!

P~2l01j0P! G•S Q1F ] tP
~l02j0P!2G

110j0Q2F ] tP
~j0P2l0!3G D •D28Q2FR~22l015j0P!

P~2l01j0P! G•S Q1F R
~l02j0P!2G

110j0Q2F R
~j0P2l0!3G D •S Q1F] tP~23l0111j0P!

P~2l01j0P! G15Q2F ] tP~3l0
226l0j0P111j0

2P2!

P2~l02j0P!2 G D J D , ~38!

dMlj52
3l0

16p2
Q2F ] tP

~l02j0P!2G2
1

8p2D
Q2FRS 2

j0P 1
3

j0P2l0
D G H Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G J
2

1

32p2D2 H 6l0j0•D•Q2F R
~l02j0P!2G•S Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G D 22Q2FR~22l015j0P!

P~2l01j0P! G•S Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G D •S Q1F ] tP~5l0
2210l0j0P23j0P2!

P~l02j0P!2 G
25Q2FR~3l0

329l0
2j0P117l0j0

2P15j0
3P3!

P2~2l01j0P!3 G D
22•D•Q2FR~22l015j0P!

P~2l01j0P! G•S Q1F ] tP~3l0
2222j0l0P111j0

2P2!

P~l02j0P!2 G
15Q2F ] tP~23l0

319l0
2j0P233l0j0

2P2111j0
3P3!

P2~2l01j0P!3 G D J , ~39!
8-11
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dM jl522
j0

D2
•H 24j0S Q1F ] tP

~l02j0P!2G110j0Q2F ] tP
~2l01j0P!3G D •D24j0S Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G D •S Q1F R
~l02j0P!2G110Q2F R

~2l01j0P!3G D J , ~40!

dM jj52
1

D2
•H 2S Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G D •S Q1FR~5l0210l0j0P23j0
2P2!

P~l02j0P!2 G
25Q2FR~3l0

329l0
2j0P117l0j0

2P215j0
3P3!

P2~2l01j0P!3 G D 1S Q1F] tP~23l0111j0P!

P~2l01j0P! G
15Q2F ] tP~3l0

226l0j0P111j0
2P2!

P2~l02j0P!2 G D •D2S Q1F ] tP~3l0
2222l0j0P111j0

2P2!

P~l02j0P!2 G
25Q2F ] tP~23l0

319l0
2j0P233l0j0

2P2111j0
3P3!

P2~2l01j0P!3 G D •DJ , ~41!

where

D5Q1FR~5l013j0P!

P~l02j0P! G15Q2FR~3l0
226l0j0P25j0

2P2!

P2~l02j0P!2 G1384p2j0 . ~42!
re
s
r

ou-

-

The most remarkable property of these quantum cor
tions is that they are independent ofi, so that the eigenvalue
of M2i2i simply grow by 2 wheneveri is increased by 1. Fo
example, choosing the cutoff witha52, we have the follow-
ing numerical results:

M005S 1.1257 22.5192

8.1295 25.3604D , ~43!

which has eigenvalues22.117363.1563i ;

M225S 3.1257 22.5192

8.1295 23.3604D , ~44!

with eigenvalues20.117363.1563i ;

M445S 5.1257 22.5192

8.1295 21.3604D , ~45!

with eigenvalues 1.882663.1563i ;
04401
c-

M665S 7.1257 22.5192

8.1295 0.6396D , ~46!

with eigenvalues 3.882663.1563i ; and so on.
The off-diagonal blocksMii 11 in Eq. ~35! do not affect

the eigenvalues but determine the mixing between the c
plings. Numerically, we have

M025S 20.005036 20.002264

0.002736 20.007585D , ~47!

M245S 20.03021 20.01359

0.01642 20.04551D , ~48!

M465S 20.07554 20.03340

0.04104 20.1138D , ~49!

and so on.
The first two~complex conjugate! eigenvectors have com

ponents
8-12
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1
20.348660.3392i

0.8737

0

0

0

0

0

0

. . .

2 . ~50!

They are a mixing ofl0 andj0; the corresponding~complex
conjugate! eigenvalues have negative real part22.1173 and
therefore these are relevant couplings.

The second and third eigenvectors have components

1
~216.5975.343i !31024

~22.97061.136i !31023

20.348560.3392i

0.8736

0

0

0

0

. . .

2 . ~51!

They are essentially a mixing ofl2 andj2, with small con-
tributions froml0 andj0; the corresponding~complex con-
jugate! eigenvalues have negative real part20.1173 and
therefore these couplings are also relevant. Since they
very close to the plane spanned by the relevant couplingl2
~canonical dimension 2! and the marginal couplingj2 ~ca-
nonical dimension 0!, we can say by a slight abuse of la
guage that the quantum corrections change the dimensio
l2 andj2 making them both relevant.

The fifth and sixth eigenvectors have components

1
~19.3472.834i !31026

~2.65372.310i !31025

~29.95173.203i !31023

~217.8166.820i !31023

20.348560.3392i

0.8727

0

0

. . .

2 . ~52!

They are essentially a mixing ofl4 andj4, with small con-
tributions froml0 , j0 , l2, andj2; the corresponding~com-
04401
lie

of

plex conjugate! eigenvalues have positive real part 1.88
and therefore these couplings are irrelevant. Since they
very close to the plane spanned by the marginal couplingl4
~canonical dimension 0! and the irrelevant couplingj4 ~ca-
nonical dimension22), we can say by a slight abuse o
language that the quantum corrections change the dimen
of l4 andj4, making them both irrelevant.

The pattern continues. The eigenvalues come in comp
conjugate pairs, and are formed by mixing the couplingsl2i
andj2i , with small contributions from the lower couplings
The eigenvalues also occur in complex conjugate pairs,
are equal to~minus! the canonical dimensions of the cou
plings @2(i 22) and 2(i 21), respectively# plus a quantum
correction. The correction is positive for the couplings of t
seriesl2i and negative for those of the seriesj2i , and the
resulting dimension is always contained between those of
two main couplings that enter into the mix.

All eigenvalues differ from the first two by multiples of 2
In particular, all the eigenvalues from the fifth onward ha
positive real parts, so that the dimension of the critical s
face is 4. The naive expectation based on canonical dim
sions would have been 5~or 3, if we do not count the two
marginal couplings!. The quantum corrections modify the d
mension of the two marginal couplingsl4 andj2 so thatj2
~after mixing withl2) becomes relevant whilel4 ~after mix-
ing with j4) becomes irrelevant.

V. EFFECT OF OTHER MATTER FIELDS

In this section, we assume that in addition to the gravi
and the scalar field discussed in the previous sections t
are nS21 new real scalar fields,nW Weyl fields,nM Max-
well fields, andnRS ~Majorana! Rarita-Schwinger fields, al
minimally coupled. We neglect all masses and interaction
these additional matter fields. The only interactions are
ones discussed in the previous sections. This generalize
results of @13# where only the couplingsl0 and j0 were
taken into account. We also give some more details of
calculations.

In the presence of these new fields, Eqs.~28!,~29! for the
beta functions are modified by the addition of the followin
terms:

d] tl05
1

32p2
~nS22nW12nM24nRS!Q2F] tP

P G , ~53!

d] tj05
1

384p2 H ~22nS14nW24nM !Q1F] tP
P G

1~26nW19nM216nRS!Q2F ] tP
P2 G J . ~54!

Since the contribution of the new fields to the effective a
tion is independent off, they do not affect at all the bet
functions of all couplingsl2i andj2i for i>1.

The equations for the couplingsl2i for i>1 andj2i for
i>1 are automatically satisfied at the GMFP. Therefore
only equations that remain to solve are the ones forl0 and
8-13
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j0. For the sake of comparison with@13# we will use the
couplingsl andg in place ofl0 andj0. The system of these
two equations is the same as the one discussed in@13#, and
therefore the values ofl0 andj0 at the GMFP coincide with
the ones calculated therein.

We recall some of the calculations in@13#. For the pur-
pose of finding the fixed points, one can use the follow
trick. We observe that at a fixed point] tj0 /j052] tg/g
52. Therefore, the equations for the fixed points are equ
lent to another, simpler, set of equations which is obtained
replacing ] tj0 /j0 with 2 in the RHS’s of Eqs.~28!,~29!.
Then the equationbl50 can be replaced by

g•c~l!22l50, ~55!

wherec(l) is obtained by formally replacingG with 1 and
] tG with 22 in the expression for] tL/k4. When c(l)
Þ0, we can solve Eq.~55! for g and substitute the result int
bg50. We shall denote

h~l!5bgS l,
2l

c~l! D , ~56!

so that the zeros ofh correspond to the FP’s.
The general behavior of the functionh is controlled by the

values of the two parametersD8 andt, which in turn depend
on the type and number of matter fields. The parameterD8 is
equal toD1s, where D5nb2nf is the difference of the
total numbers of bosonic and fermionic degrees of freed
(nf52nW14nRS and nb5nS12nM12) and s
[20Q2@R/P#/Q2@] tP/P# is approximately equal to 3.64
~for a52).

The value of the cosmological constant at the FP,l* , is
zero on the hyperplaneD850. To see this, note that whe
c(l)50, Eq. ~55! implies l50. Therefore, ifc(0)Þ0 the
only solution with l* 50 is the Gaussian FP, but ifc(0)
50 we can have a GMFP withl* 50. Explicitly,

c~0!5
1

4pk4 S ~nb2nf !Q2F] tP
P G120Q2FRPG D , ~57!

so that the condition for the existence of a non-Gaussian
with zero cosmological constant is precisely

D850. ~58!

Due to the irrationality ofs, there is in general no combina
tion of matter fields that satisfies this condition; however,
hyperplane defined by Eq.~58! has an important physica
significance: it separates the regions with positive and ne
tive l* , as will become clear below.

The functionh tends to zero whenl→minzP[0,`] (P)/2.
However, this point does not correspond to a FP: For
value of l the denominators in the functionsQ1 and Q2
appearing in the beta functions vanish and the beta funct
themselves blow up. Moreover, it was shown in@6# that the
Ward identities break down near this point. Consequen
only values ofl strictly less than minzP[0,`] (P)/2 will be
considered.
04401
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The functionh(l) always has a zero at the origin, corr
sponding to the Gaussian FP. The derivative ofh(l) at the
origin is given by

h8~0!5
4

c~0!
5

16p

Q2@] tP/P#
•

1

D8
~59!

and therefore has the same sign asD8. When D8.0, the
functionh(l) tends to2` for l somewhere between 0 an
minzP[0,`] (P)/2 @namely, wherec(l)50]. Conseqeuntly,
there exists a non-Gaussian FP~NGFP! with positive l* .
On the other hand, whenD8,0, h has no positive zeros an
the existence of the NGFP for negativel* hinges on the
asymptotic behavior ofh for l→2`: it exists only if h
tends to a negative asymptote. The asymptotic behaviorh
is given by liml→2` h(l)5192p/t, where

t5t01nStS1nWtW1nMtM1nRStRS, ~60!

t0525Q1F] tP
P G215Q2F ] tP

P2 G110Q1FRPG
130Q2F R

P2G'212.82,

tS52Q1F] tP
P G'3.58,

tW524Q1F] tP
P G16Q2F ] tP

P2 G'21.62,

tM5Q1F] tP
P G29Q2F ] tP

P2 G'26.52,

tRS516Q2F ] tP
P2 G'14.79.

~The numerical values are given fora52.!
Depending on the sign of the two parametersD8 and t,

the space spanned by the variablesnS , nW , nM andnRS can
be divided into four regions that we shall label as follows

t,0 t.0

D8,0 III IV

D8.0 I II

The behavior of the functionh is shown in Fig. 1 for pure
gravity, which lies in region I. There are no zeros for neg
tive l, sinceh grows monotonically from the asymptote
t→2` to zero at the origin~Gaussian FP!. It then has a
positive zero and tends to2`. There is another apparen
zero forl'0.4, but it is not an acceptable solution: it co
responds to the point where the denominators in the func
Qi vanish. Thus, in region I there is always a single FP w
positivel* .
8-14
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FIG. 1. Plot of the functionh for nS50,nW50,nM50 ~region I!;
the asymptotic value ofh for t→2` is 265.3.

FIG. 2. Plot of the functionh for nS5100,nW540,nM50 ~re-
gion II!. The asymptotic value ofh for t→2` is 0.939.
04401
Figure 2 shows the functionh for a theory in region II.
The behavior for positivel is very similar to that in region I,
but the asymptote fort→2` is now positive, so that there
exists a second FP for negativel* . This FP can be seen t
yield negativeg* and is therefore physically uninteresting

The behavior of the functionh in region III is shown in
Fig. 3. The positive zero is the unphysical one, so there
single attractive GMFP with negativel* , which turns out to
have positiveg* .

Finally, the behavior of the functionh in region IV is
shown in Fig. 4. It decreases monotonically from the posit
asymptotet→2` to the Gaussian FP. For positivel it be-
haves as in region III, having no zeros except for the u
physical one. Thus, in region IV there is no non-Gaussian
Region IV is the white wedge in Figs. 5, 6, and 7. One s
that it comes actually quite close to the origin; from th
point of view the existence of the FP for pure gravity see
to be a lucky accident.

The value ofl* in regions I and II is always less tha
minzP[0,`] (P)/2, which is numerically equal to 0.402~for
a52) and therefore reasonably within the bounds of
heat-kernel approximation. On the other hand, in region
l* becomes quickly rather large in absolute value; in t
regimeR@k2 on shell and therefore the heat-kernel appro
mation ceases to be valid on shell. In this region the res
are reliable only close to the surfaceD850.

In order to determine the dimension of the critical surfa
we have calculated numerically the matrixM for many dif-
ferent combinations of fields. The results of such calculatio
are shown in Figs. 5, 6, and 7 for the casenRS50 andnM
50, nM524, andnM545, respectively~these numbers are

FIG. 3. Plot of the functionh for nS50,nW540,nM50 ~region
III !. The asymptotic value ofh for t→2` is 28.13.
8-15
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chosen to correspond to the gauge field content of pop
grand unified theory models!.

First of all, these numerical calculations exactly confi
the shape of the existence region of the FP that was der
analytically above. The structure of the eigenvalues is
same as in the pure gravity1scalar case, which was dis
cussed in Sec. IV. The eigenvalues are given by the canon
dimensions plus a quantum correction which depends on
type and number of matter fields but otherwise is the sa
for every pair (l2i ,j2i). For any given number of matte
fields, the GMFP has a finite-dimensional critical surface.
region III, the critical surface has mostly dimension 3~three
negative real eigenvalues!, except for a narrow area close
the separatrixD850, where its dimension is 2 or 4. In re
gions I and II the critical dimension varies considerably, b
ing roughly linear in the number of fields~it grows with nS
and decreases withnW). These calculations generalize th
results of@13#, where the FP could have at most two attra
tive directions.

FIG. 4. Plot of the functionh for nS540,nW540,nM50 ~region
IV !. The asymptotic value ofh for t→2` is 8.72.

FIG. 5. Attractivity regions fornM50. The gray scale corre
sponds to the number of attractive directions.
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It is interesting to compare these results with the analy
of the pure scalar theory. Due to the fact that the couplingl4
is marginal in the pure scalar theory, the linearized analy
is not sufficient to determine its behavior. In the presence
gravity there is no zero eigenvalue and therefore the line
ized analysis is sufficient to determine the dimension of
critical surface. In region III, the relevant directions corr
spond to potentials that are at most quadratic inf. In region
II, however, there can be a large number of negative eig
values, corresponding to nontrivial potentialsV that are poly-
nomial and asymptotically free. If, as at the end of Sec.
we think of the theory as having a UV cutoffLUV , then
assuming that the limitLUV→` is meaningful the problem
of triviality is solved.

These theories are also predictive since they have a fi
number of negative eigenvalues.6 Therefore, they satisfy the
conditions for asymptotic safety.

VI. CUTOFF AND GAUGE DEPENDENCE

The physical results are independent of the cutoff para
eters in the exact theory, so the extent of parameter de
dence that is observed in the truncated theory gives a q
titative measure of the errors. We have performed vari
tests on the parameter dependence of our results, and
reassuring for the reliability of the truncation that this depe
dence turns out to be reasonably mild.

The dependence ofl0* andj0* on gauge and cutoff pa
rameters was discussed in@9,21#. Figure 8 summarizes the
cutoff dependence at the GMFP for gravity coupled to o
scalar field in the gaugea50. The results we obtain are ver
close to those of@9#, since at the GMFP the only new con
tribution that we get for the values ofl0* andj0* is that of
the kinetic term of the scalar field. It is apparent that, wh
l0* andj0* are quite sensitive to the cutoff parametera, the
ratio l0* /j0*

2 is not. As noted in@7#, this quantity is, up to
numerical factors,~the inverse of! the on-shell action, a
physically observable quantity, so it must be independen
the cutoff scheme. It is seen in Fig. 8 that itsa dependence is
indeed pretty mild.

6This should be contrasted with the asymptotically free nonpo
nomial potentials of@18#. Those potentials are parametrized by
continuous parameter and therefore have an infinity of relevant c
plings.

FIG. 6. Attractivity regions fornM524. The gray scale corre
sponds to the number of attractive directions.
8-16
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The dependence ofu2i8 6 iu2i9 , the eigenvalues of the sta
bility matrix M, on the cutoff parametera is shown in Figs.
9–11, for several values ofa. We have calculated them i
the range 1/5<a<50, but they are reported only for 1/
<a&20. Figure 9, giving the real parts of the eigenvalues
the submatrixM00, agrees with Fig. 9 of@9#, up to the small
corrections due to the presence of a scalar field. The fig
relative to the real parts of the remaining eigenvalues
simply shifted by the canonical dimension 2i .

The first thing we can see in Fig. 9 is the presence a c
plateau with very weak~apparently logarithmic! variation of
the eigenvalues, for 1&a&20. Actually, the results for 1/5
<a<1/2 seem to indicate that there is a divergence aa
→0. This is due to the fact that in this limit the cutoff func
tion tends to become a constant, so it affects also the pr
gation of modes with momenta larger thank, and it does not
work well as an IR cutoff. Clearly, larger values ofa, of
order unity, are preferred. This is in accordance with
generic features of the cutoff functions described in@5#.

As far as thea dependence is concerned, we can see
it is quite weak. For all possible values ofa all curves are
contained between the curvesa50 anda.3, which differ
by ;0.4. In order to better understand the dependence oa
for different values ofa, it is useful to plot the same result
as a function ofa ~Fig. 10!, with a being a parameter tha
labels the different curves~we shall restrict ourselves to onl
one plot of the real parts; the others can obviously be deri
by shifting the graph by the canonical dimension of the o
erator involved!.

Since the real parts of the eigenvalues of the matrixM22
are close to zero, this modest shift of the eigenvalues du
the change of gauge parameter is enough to change

FIG. 7. Attractivity regions fornM545. The gray scale corre
sponds to the number of attractive directions.

FIG. 8. a dependence ofl0* , j0* , andl0* /j0*
2 in the gauge

a50. The values ofl0* andj0* have been magnified by a facto
of 500 to display the three curves in the same range.
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sign. For instance, in the gaugea51 one would compute the
dimension of the critical surface to be 2. Looking at Fig.
one can most easily understand what the situation is like:
a50 all cutoffs give a negative value ofu8, then asa in-
creases they change sign, but for large values ofa they be-
come negative again. Physical results such as the dimen
of the critical surface cannot depend on the shape of
cutoff function, so this fact is certainly a shortcoming of o
truncation. More work is needed to assess with greater c
fidence the dimension of the critical surface, but the cons
erations developed in@9#, i.e., thata itself runs to 0 in the
UV regime, suggest that thea50 value is the physically
correct result.

The same conclusions for the cutoff and gauge indep
dence can be drawn for the imaginary parts, as can be
from Fig. 11; they turn out to take the same values~up to a
sign! for all the eigenvalues. The effect of nonvanishin
imaginary parts is that the RG spirals around the FP, but t
are not important in the discussion of the attractivity of t
FP.

This discussion applies also to the higher couplings; th
a anda dependence is given by curves that differ from tho
in Figs. 9–11 by a constant shift by a multiple of 2. The on
important point that remains to some extent open, then, is
exact dimension of the UV critical surface, but neverthele
we can safely say that it is finite dimensional.

When other matter fields are present, the nature of
GMFP as a function of the number of matter fields is als
function of gauge and cutoff parameters. As already note
@13#, the constants is independent of the gauge parame

FIG. 9. a dependence of the real part of the eigenvalues of
stability matrix ~first 232 submatrix!.

FIG. 10. a dependence of the real part of the eigenvalues of
stability matrix ~second 232 submatrix!.
8-17
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and varies from 4.745 fora50.05 to 2.765 fora520. This
corresponds to a vertical shift of the separatrixD850 by at
most 2 in Figs. 5–7. The parametert is gauge independen
for aÞ0 but shows discontinuity ata50. The planet50 is
shifted and also slightly rotated to the right asa grows. Thus,
region III becomes larger asa grows. Recall, however, tha
only the part of this region close to the separatrixD850 is
trustworthy.

VII. CONCLUSIONS

In this paper we have considered the application of
ERGE’s to a coupled system of gravity and matter fields. T
main aim of this work was to verify that the conditions f
asymptotic safety continue to hold in the presence of in
acting matter fields. To make the problem manageable,
first dealt with a single scalar fieldf with an arbitrary po-
tential depending onf2, to see how this inclusion could
change the picture of pure gravity; then we considered
effect of minimally coupled fields with different spins. Ou
results can be considered as a first step toward construct
realistic theory of gravity and matter, but are also relevan
gravitational theories containing a dilaton.

In the context of the ansatz~2! we found that there exist
a FP where only the cosmological constant and Newto
constant are nonzero. We called it the Gaussian matter F
detailed numerical search within a five-parameter trunca
of the effective action has failed to yield any other FP. This
actually what one would expect from our understanding
the scalar theory@18#.

The GMFP may be viewed in two ways. On one hand,
scalar field can be regarded as a ‘‘perturbation’’ of the p
theory of gravity considered in@9# and the GMFP as an
extension of the FP found in@8#. The addition of the scala
field has the effect of shifting slightly the values ofL andk,

FIG. 11. a dependence of the imaginary part of the eigenval
of the stability matrix.
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as already noticed in@13#, while the attractivity property is
preserved. On the other hand, we can consider the effec
adding gravity to a scalar theory with a generic potential a
regard the GMFP as an extension of the Gaussian FP.
main effect is that the couplings that are present in the sc
potentialV mix with those appearing in the functionF, and
the dimensions of the resulting couplings~which dictate the
speed of the approach to the FP! is changed by a finite quan
tum correction. While at the Gaussian FP the quantum c
rections vanish, so that the relevant couplings are, as us
those with dimension less than 4, the gravitational contri
tions bring about modifications even if the matter sector
lows for a perturbative treatment. At the GMFP, the stabil
matrix has a block-diagonal form so that there is strong m
ing between the parametersl2n andj2m for n5m, whereas
for nÞm they are almost or completely decoupled. The
genvalues, whose real part determines whether an opera
relevant or irrelevant, come in complex conjugate pairs, a
grow systematically by a constant 2. For instance, the m
ginal operator of the pure scalarf4 theory becomes now an
irrelevant operator, and the dimension of the UV critical s
face is calculated to be 4 for a generic analytic potent
These results hold in the gaugea50; they differ slightly for
other values of the gauge-fixing parameter, buta50 seems
to be the physically correct value at the FP. The striking f
is that gravity gives calculable, finite contributions th
change significantly the pure scalar theory. This is one of
most important results of our paper.

We have then considered the effect of adding other m
mally coupled massless matter fields. For the existence o
GMFP, we obtain the same bounds presented in@13#. As to
the attractivity of the FP, we have found that, when it exis
there are always finitely many attractive directions. The
fore gravity seems to remain asymptotically safe also in
presence of generic matter fields. We expect that this re
will still hold if we add other interactions between matt
fields that are asymptotically free. From this point of vie
the scalar field posed a greater challenge, since the pure
lar theory is not asymptotically free. It is remarkable that t
coupling to gravity fixes this problem and at the same ti
also opens a new path toward the solution of the issue
triviality.

All these results add on to the other proofs that have b
collected in the literature about the physical reliability of th
approach.
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