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First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories
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The first law of black hole mechanics is derived from the Einstein-Maxwell Lagrangian by comparing two
infinitesimally nearby stationary black holes. With similar arguments, the first law of black hole mechanics in
Einstein-Yang-Mills theory is also derived.

DOI: 10.1103/PhysRevD.68.044016 PACS nuni§er04.70.Bw, 04.40.Nr
I. INTRODUCTION Q
Ag=— (). @

According to the “no hair” theorem, a general stationary
black hole is a charged and rotating black hole. The first lawro see the behavior o, on the horizon, we introduce the
of black hole mechanics shows that the first order variationkruskal coordinatesl,V):
of the areaA, massM, angular momentund, and chargeQ

are related by U=—e ", (©)
1 V=ge", (4)

g KOA= OM — 04483~ By oQ, D here
u=t—r,, 5)

where k denotes the surface gravity of the black hdlg,

denotes the angular velocity of the horizon, angl, denotes v=t+r,. (6)

the electrostatic potential of the horizon. There are two ver-

sions of this law, referred to by Wald] as the “physical In terms of U,V), A, can be written as

process version” and the “equilibrium state version.” The

“physical process version” of the first law is obtained by A= i _ i(dU) n l(dV) )
changing a stationary black hole by sorfiafinitesima) a 2kr| U ay al

physical process. The black hole is assumed to have settled

down to a new stationary final state. Then Ef.is derived ~We see immediately thak, is divergent at the bifurcation
by comparing the final state of the black hole with the initial U=V=0. Although A, is divergent on the future horizon
one[2]. The “equilibrium state” version of the first law sim- U=0, V>0, the pullback ofA, to the future horizor(the

ply compares the areas of two infinitesimally nearby stationsestriction ofA, to vectors tangent to the horizpis smooth.
ary black hole solutions. The original derivation was givenSinceA, falls off as 1f at infinity, it will have no contribu-

by Bardeeret al.[3]. However, since only a perfect fluid in tion to the canonical energy. As we shall see, the charge
circular orbit around a black hole was considered, the firsterm in Eq.(1) emerges as an integration on the horizon. This
law in [3] has a different form Eq1). A simple derivation in  modification also enables us to apply the result to black holes
a general manner was given by Iyer and Wgddi from the  without a bifurcation surface, such as extremal black holes. A
Lagrangian formulation of general relativity. The derivation vector potential which is smooth through the horizon can
makes essential use of the bifurcation two-sphere where theasily be constructed by the gauge transformation

horizon Killing vector field vanishes. This treatment requires

that all fields be smooth on the bifurcation surface, and con- y Q(dt) i g(dt) ®)
sequently the “potential-charge” term does not appear ex- a r &l

plicitly in the first law. The first task of this paper is to extend

the work of[4] to a general charged and rotating black holewherer . is the radial coordinate of the event horizon. Since
where fields are not necessarily smooth through the horizorfa is smooth through the horizofidentically zero, the
The major modification is that, instead of choosing the bifur-potential-charge term will not appear in the integral over the
cation surface as the boundary of a hypersurface extending twrizon. HoweverA, in Eq. (8) does not drop to zero at
spatial infinity, we replace it with any cross section of theinfinity; the potential-charge term will arise from infinity as
event horizon to the future of the bifurcation surfdfeone  part of the canonical energy.

exist9. We require that only the pullbadl8] of the vector The second task of this paper is to generalize the method
potential A, to the horizon in the future of the bifurcation above to Einstein-Yang-MillSEYM) black holes. The dis-
surface be smooth. Now we present such an example. Theovery of “colored black holes,” such as black hole solu-
vector potential in the Reissner-Nordstrospacetime is tions in the Einstein-Yang-Mills theory, has been a great
given by[8] challenge to the traditional “no hair” conjecture. The first
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law of black hole mechanics in the EYM case was discussetl of [7] and thaté? is an asymptotic symmetry. Then there
by Sudarsky and Walfb] and the following result was ob- exists a conserved quantity;, associated witlt®. Let 5¢
tained: satisfy the linearized equations of motion in the neighbor-
1 hood of infinity. ThendH, is given by[7]

gK&Az M+VEQ*—Oyéd, 9) o
5H§:f (6Q[£]—-¢-0). (16)
whereV andQ” are the Yang-Mills potential and the charge N

evaluated at infinity. The presence of this term is due to thesince ¢2 is treated as a fixed background, it should not be

non-Abelian nature of the Yang-Mills field. The calculation varied in the expression above. So we usedto denote the

also makes use of the bifurcation two-sphere and all field§/ariation that has no effect off, in distinction to the total

are required to be smooth there. Again, we make no refer\’/ariation “5.” Let S be a hypersurface that extends to infin-

ence to the bifurcation surface, and an additional surfac and has an inner boundas,. Now we consider the case
term evaluated on any cross section of the horizon is foun&/y y

here £ is a symmetry of all the dynamical fields, i.e.,
[see Eq(69)] L:»=0, andé¢ satisfies the linearized equations of motion.
Then Eq.(76) in [4] shows that the integral in E16) over

ll. FIRST ORDER VARIATION OF STATIONARY infinity can be turned into one on the inner boundary, i.e.,

SPACETIMES

In this section, we briefly introduce a general variation 5H§:f (5Q[&£]—£-9). 17
theory for stationary spacetimes in the framework4f We I3

start with the general issue of calculating the first order varia- ) o

tion of conserved quantities. Consider a diffeomorphism co¥hen¢® is taken to be an asymptotic time translatidrand
variant theory in four dimensions derived from a Lagrangianfotation¢?, respectively, we obtain the variations of canoni-
L, where the dynamical fields consist of a Lorentz signaturéal energye and canonical angular momentuhj4]:
metricg,, and other fieldsy. We follow the notational con-

ventions of[4], and, in particular, we collectively refer to 5g:f (5Q[t]—t-O), (18)
(g9ap, %) as ¢ and use boldface letters to denote differential %

forms. According td/4], the first order variation of the La-

rangian can always be expressed as -
grang ys be exp 2=~ [ (30161~ ¢-0). 19
OL=E(¢)5p+dO(,5¢) (10
whereE(¢) is locally constructed out o and its deriva- . THE FIRST LAW OF BLACK HOLE MECHANICS
tives and® is locally constructed out of,5¢ and their IN EM THEORY

derivatives. The equations of motion can then be read off as . . .
q We now specialize to Einstein-Maxwell theory. The dy-

E(¢)=0. (12) namical fields are d5,,A,;) and the Einstein-Maxwell La-
grangian is
The symplectic current three-form is defined by 1
_ __ _~acybd
o $,814,8,0)= 3,0(h,6,6) ~ 5,0($,51¢). (12) L= 765 (R~ €070 FanFeo). 20
The Noether current three-form associated with @ smooth The Noether charge two-for® and® have been calcu-
vector field¢ is defined by lated in[2] as

1 1
. o Qap=— E 6abchC§d_ 8_ fabchCdAefe (21)
where “-” denotes contraction of the vector fieklinto the ™
first index ofL. A simple calculation yields

and
dJ=—E4L:¢. (14 1
- d
It was proved in the Appendix 48] that there exists a No- Oand 4, 0¢)= g €and’” 22
ether charge two-forn@, which is locally constructed from
¢, &2 and their derivatives, such that where
J€]=dQ[£]+£°C, (15 v4=V°8ge— 9"VadG1e— 4F JOA, . (23

whereC, is a three-form an€,=0 when the equations of Let (g.,,A,) be a stationary solution to the Einstein-
motion are satisfied. Now suppose that the spacetime satiMaxwell equations derived from the Lagrangig??). If the
fies asymptotic conditions at infinity corresponding to “caseblack hole possesses a bifurcation surface, we require that
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the pullback ofA, to the future of the bifurcation surface be

smooth, but not necessarily smooth on the bifurcation sur- O5he= 16 Edabc( 4F ) A, (33
face. Let
We first consider the term involvin@SR. On the horizon,
E=t+ Qe @9 e have[4] Qe
denote the horizon Killing field of this black hof&]. Let X, V.éq= Keoy, (34)

be an asymptotic hypersurface which terminates on the por-

tion of the event horizorH to the future of the bifurcation wherex is the surface gravity ane.q is the binormal taS,,
surface. Denote the cross section on the horizonShy (see[4] for further detail. Then
which is the inner boundary &. Now consider a stationary

perturbationd¢ that generates a slightly different stationary GR
axisymmetric black hole. When comparing two spacetimes, LHQab[ﬁ]= g KA
there is a certain freedom in which points are chosen to cor-

respond. We shall adopt the gauge choice[3h i.e., we \yhereA is the area of the black hole. Remember tiats a

make the hypersurface, the event horizons, and the Killing fixed background quantity relative to the variation.” Us-
vectorst? and ¢? the same in the two solutions. Thus, ing the identity

(35

St?=5¢p?=0, (25 -
5|_oSfta-s|_oSta- | ogiten. e

5E2= 50, ¢°. (26) S S SH

Although the conditions above cannot be imposed on the' e have

bifurcation surface wherg® vanishes, our derivation will not . 1 1

be affected since we shall make no use of the bifurcation 5f QSN £]= o— 8(kA) + —j €abcdV ©5E¢

surface. If we assume that boty and A, fall off as fast as Si 8w 16mJs,

1/r at infinity, as in the case in the Introduction, then the EM

field contributes to neithef& nor §J in Eqs.(18) and(19).

Thus the variation of the canonical energy is the same as that

of the Arnowitt-Deser-MisnefADM) massM and we shall

RER mf iy
_87T (K ) 16 SHEade ¢

rewrite € asSM. Combining Egs(18), (19), (24), and(17), 1
we have = 8_775( kA)+ 601y, (37)
SM _QH5‘]:J (5Q[§]—§-®). 27) where Egs. (35 and (26) were used and Jy
Sy E(l/lﬁﬂ)fSHeabchccpd can be interpreted as the angular

] ) momentum of the black holg8]. The computation i3]
Now we concentrate on the right-hand side of E¥). We | eyeals

shall consider the contributions from the gravitational field

and the EM field separately. From EQ1), we splitQ as
J & 16’7TJ E*€egand""(Ve0ghe—9'*VhoGre)
Qab Q Qab ) (28)
where L
:gA(sK—F 80ydy . (38
1
SR=— Eeabcdvc‘gd, (29 Thus, combining Eqs(37) and(38), we have
1 f EQGR—g-(aGRziKaA. (39
ab' =~ g €ancd™Act®. (30 S 8
o ] This result can be viewed as the net contribution from the
Similarly, we rewrite® as gravitational field. We now consider the EM field. By using
the smoothness of the pullback Af and the stationary con-
® anc=O g5t O e, (81 dition, one can show thabEM=—£A |, is a constant in
the portion of the horizon to the future of the bifurcation
where surfacg 2]. If A, is smooth over the entire horizo®=" will

be identically zero on the horizon sin¢@ vanishes on the
32) bifurcation surfacg(in this case, the result i4] is recov-

K ered. Together with Eq(30), we have

abc 167 6dab<9 (Ve5ghe_gfevh5gfe)a
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PEM 1
J, tti=T | eane 40 Qe [ e
In the asymptotic region, the total electric charge can be :_ij e FOUSAL) £5— o0y
expressed ag8] 8m)g, abcd e 8w
1 cd Xf €ap dFCdA QDe
sr weabch =Q. (41) Sy ape ©
1 50
Since the Einstein-Maxwell Lagrangian we considered cor- = 8—f €ar/\Ng/\ E4FCIECSA,— 8 L
responds to the sourceless electromagnetic field, the same TSy m
result must hold if the integral is performed on the horizon.
Therefore XLHGabchCdAe<Pe
EM_ 5EM 2
=P . 42
,LHQab Q (“42) = QJ'SHGabFCchgdfe@Ae
Similar to the identity in Eq(36), we have SOy cdn o
- SHeabch Acp

3 asters_ attte- [, oo
fSHQb[g] fSHQb[sﬂ fSHQb[ ¢l :f g,@)em_%j eancdF IAg".

Su T 7S
= S(PEMQ) “

1 g Using Eq.(43), we have
+ g&QHJ Eabchc AegDe. (43)
> f SQEN— & OFM=DEV5Q. (50
Now we compute >
Substitution of Eqs(50) and(39) into the right-hand side of
1 Eq. (27) yields Eq.(1), the desired first law of black hole
j £ OFM=— EJ €cdatF °E90A . (44 mechanics in Einstein-Maxwell theory. As pointed out in the
S S Introduction section, the potential-charge tef60) would
have vanished if the EM field were smooth on the horizon

We first express the volume element in the form and the integral were performed on the bifurcation surface.

€cdab= &c/\Na/\€ap, (45) IV. THE FIRST LAW IN EYM THEORY
where e, is the volume element 08,, andN? is the “in- In this section, we shall extend our derivation in the pre-
going” future directed null normal t&,,, normalized so that Vious section to the EYM case. The assumptions and argu-
N2¢,=—1 [8]. Thus, we have ments will be similar to those in the previous section. The
a ' EYM Lagrangian takes the form
g.@EM_i FCeE.5A (46) 1 1 acybde A
s, _477 SHeab c e- L= EER— Efg g FachdA , (51)
By using the fact that on the horizd#fe = ¢° [2], together ~ WhereFap is the Yang-Mills field strength:
with N2&,=—1, we get immediately ng: 2V[aA§]+c?AA£A§, (52)
e e\ (477  wherecy, denotes the structure tensor for the (8ULie
algebra and the Lie algebra indices are raised and lowered
and hence with the Killing metricgrs = —3ciyci, .

Similarly to the EM case, the Lagrangian can be split into
“GR” and “YM” parts. The contribution from the YM field

. EM:i cf e .
o £ O, caF N oA (4B gives

1
On the other hand Opou=— EeabchéA‘e‘SAé : (53
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1
2=~ g €ancd A Ao £°. (54
Then
1 cdp A
OcQ[t]: - g chabchA Ag - (55

PHYSICAL REVIEW D68, 044016 (2003
Note that the ADM mass on the left-hand side of E2y) has

been replaced by. The canonical angular momentuiris
defined by[4]

= atel (64)

Combining Egs(29) and(54), we have

We choose a stationary solution of the EYM equations and

then A is asymptotically constar{s]. The constanV is
defined by

V= lim (A} Agp) 2

r—oo

(56)

The electric field, viewed as a tensor density of weight, is

(57)

wheren* is the unit normal to the spacelike hypersurface
Referencé5] shows that, asymptoticallyyy andEX point in
the same Lie algebra direction and therefore

E3=VhF2,n*,

| ar-ve~ (58)

where the Yang-Mills charge measured at infinity is defined

by

1
= 59

1

ced 1 cdp A ge
J= Efmfabcdv &+ gfwfabchA A€, (65)
This formula agrees with that {5]. This first term is just the
expression for angular momentum in the vacuum case.
Since EQq.(39) also holds for the EYM case, we use it to
rewrite the right-hand side of E§63):

56— 0y 8)=

g KOA+ JSH(EQYM[g]—g-@)YM).

(66)

The same treatment used for the EM field gives
5[ owra-s|_omrea- | outee
Si Si Sy

1

T 8n 5jstabch?\dA[e} &°

1
+ —

8 oy fs}ifabch(/:\dA/e\‘Pe

wherer? denotes the unit radial vector and vertical bars de-

note the Lie algebra norm. On the other hand,

ft.aYM=— !

Efm fabcdtbF ie5Aé

1
| Etraom

41
=Q~4V. (60)
Therefore, the “YM” contribution t0d€ is
&=V 56Q~. (62)

Since the “GR”contribution gives the ADM mashl, we
have the total variation of the canonical energy

6E= M +V 8Q~, (62
which agrees with the result ib].

By using the arguments parallel to that in Sec. lll, we
obtain an expression similar to EQ7):

SE— 0 8T= J%@Q[g]—s-@). (63)

1
~ & J o Ao £ oleancd )

8WszfabchRd5(A£§e)

1
+ —

5 0 fSHeabchi"AQw. (67)

Replacing the second term of E(7) by an expression
analogous to Eq49), we get

Y YM __i A ge cd
5fSHQab[§]— 87TLHA9§ 6<eabchA>+LH§-®YM.
(68)

Then, from Eqs(66) and (68), we obtain the first law for a
stationary EYM black hole:

1
g KOA= 06— 080~ ELHA%%( €ancdF ).

(69)

This expression agrees with that[ihl]. We cannot further
evaluate the integral in the form of#5Q” as in the EM
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case because of the complicity of &) Lie algebra. Ash-
tekar, et al. [9] chose the following gauge conditiorisee
also Corichiet al. [10]).
(i) The Yang-Mills potential
OM=—& Al (70)

is constant on the horizon.
(ii) The dual of the field strength*(F) and (¢- A) point in
the same Lie algebra direction
(&A= (%e-*F)*, (71)

where 2¢ is the pullback to the horizon o,,.q. Under
these two conditions, the integral in E@9) can be evalu-
ated as

1
e f o Aol eancd ) =0TMOQI" (72

where Q'M= —(1/47) [ | *F| is the electric Yang-Mills
H Sy, 9

PHYSICAL REVIEW D 68, 044016 (2003

dence that our stationary gauge choice is consistent with con-
ditions (i) and (ii) above. Therefore, Eq69) is our final
form of the first law in EYM theory.

V. CONCLUSIONS

The first law of black hole mechanics for the EM and

EYM cases is derived in the framework [&f]. In contrast to

[4], we make no reference to the bifurcation surface. In the
EM case, when the pullback &, to the future horizon is
smooth, the desired charge-potential term is obtained. In the
EYM case, a corresponding surface integral on the horizon is
found. Since we avoid using the bifurcation surface, the deri-
vation and conclusions in this paper apply to extremal black
holes simply by takingc=0.
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