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First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories
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The first law of black hole mechanics is derived from the Einstein-Maxwell Lagrangian by comparing two
infinitesimally nearby stationary black holes. With similar arguments, the first law of black hole mechanics in
Einstein-Yang-Mills theory is also derived.
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I. INTRODUCTION

According to the ‘‘no hair’’ theorem, a general stationa
black hole is a charged and rotating black hole. The first
of black hole mechanics shows that the first order variati
of the areaA, massM, angular momentumJ, and chargeQ
are related by

1

8p
kdA5dM2VHdJ2FbhdQ, ~1!

wherek denotes the surface gravity of the black hole,VH
denotes the angular velocity of the horizon, andFbh denotes
the electrostatic potential of the horizon. There are two v
sions of this law, referred to by Wald@1# as the ‘‘physical
process version’’ and the ‘‘equilibrium state version.’’ Th
‘‘physical process version’’ of the first law is obtained b
changing a stationary black hole by some~infinitesimal!
physical process. The black hole is assumed to have se
down to a new stationary final state. Then Eq.~1! is derived
by comparing the final state of the black hole with the init
one@2#. The ‘‘equilibrium state’’ version of the first law sim
ply compares the areas of two infinitesimally nearby stati
ary black hole solutions. The original derivation was giv
by Bardeenet al. @3#. However, since only a perfect fluid i
circular orbit around a black hole was considered, the fi
law in @3# has a different form Eq.~1!. A simple derivation in
a general manner was given by Iyer and Wald@4# from the
Lagrangian formulation of general relativity. The derivatio
makes essential use of the bifurcation two-sphere where
horizon Killing vector field vanishes. This treatment requir
that all fields be smooth on the bifurcation surface, and c
sequently the ‘‘potential-charge’’ term does not appear
plicitly in the first law. The first task of this paper is to exten
the work of@4# to a general charged and rotating black ho
where fields are not necessarily smooth through the horiz
The major modification is that, instead of choosing the bif
cation surface as the boundary of a hypersurface extendin
spatial infinity, we replace it with any cross section of t
event horizon to the future of the bifurcation surface~if one
exists!. We require that only the pullback@8# of the vector
potentialAa to the horizon in the future of the bifurcatio
surface be smooth. Now we present such an example.
vector potential in the Reissner-Nordstro¨m spacetime is
given by @8#
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Aa52
Q

r
~dt!a . ~2!

To see the behavior ofAa on the horizon, we introduce th
Kruskal coordinates (U,V):

U52e2ku, ~3!

V5ekv, ~4!

where

u5t2r * , ~5!

v5t1r * . ~6!

In terms of (U,V), Aa can be written as

Aa52
Q

2kr F2
1

U
~dU!a1

1

V
~dV!aG . ~7!

We see immediately thatAa is divergent at the bifurcation
U5V50. Although Aa is divergent on the future horizon
U50, V.0, the pullback ofAa to the future horizon~the
restriction ofAa to vectors tangent to the horizon! is smooth.
SinceAa falls off as 1/r at infinity, it will have no contribu-
tion to the canonical energyE. As we shall see, the charg
term in Eq.~1! emerges as an integration on the horizon. T
modification also enables us to apply the result to black ho
without a bifurcation surface, such as extremal black holes
vector potential which is smooth through the horizon c
easily be constructed by the gauge transformation

Ãa52
Q

r
~dt!a1

Q

r 1
~dt!a , ~8!

wherer 1 is the radial coordinate of the event horizon. Sin
Aa is smooth through the horizon~identically zero!, the
potential-charge term will not appear in the integral over
horizon. However,Ãa in Eq. ~8! does not drop to zero a
infinity; the potential-charge term will arise from infinity a
part of the canonical energy.

The second task of this paper is to generalize the met
above to Einstein-Yang-Mills~EYM! black holes. The dis-
covery of ‘‘colored black holes,’’ such as black hole sol
tions in the Einstein-Yang-Mills theory, has been a gre
challenge to the traditional ‘‘no hair’’ conjecture. The fir
©2003 The American Physical Society16-1
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law of black hole mechanics in the EYM case was discus
by Sudarsky and Wald@5# and the following result was ob
tained:

1

8p
kdA5dM1VdQ`2VHdJ, ~9!

whereV andQ` are the Yang-Mills potential and the charg
evaluated at infinity. The presence of this term is due to
non-Abelian nature of the Yang-Mills field. The calculatio
also makes use of the bifurcation two-sphere and all fie
are required to be smooth there. Again, we make no re
ence to the bifurcation surface, and an additional surf
term evaluated on any cross section of the horizon is fo
@see Eq.~69!#.

II. FIRST ORDER VARIATION OF STATIONARY
SPACETIMES

In this section, we briefly introduce a general variati
theory for stationary spacetimes in the framework of@4#. We
start with the general issue of calculating the first order va
tion of conserved quantities. Consider a diffeomorphism
variant theory in four dimensions derived from a Lagrang
L , where the dynamical fields consist of a Lorentz signat
metric gab and other fieldsc. We follow the notational con-
ventions of @4#, and, in particular, we collectively refer t
(gab ,c) asf and use boldface letters to denote different
forms. According to@4#, the first order variation of the La
grangian can always be expressed as

dL5E~f!df1dQ~f,df! ~10!

whereE(f) is locally constructed out off and its deriva-
tives andQ is locally constructed out off,df and their
derivatives. The equations of motion can then be read of

E~f!50. ~11!

The symplectic current three-formv is defined by

v~f,d1f,d2f!5d1Q~f,d2f!2d2Q~f,d1f!. ~12!

The Noether current three-form associated with a smo
vector fieldj is defined by

J5Q~f,Ljf!2j•L , ~13!

where ‘‘• ’’ denotes contraction of the vector fieldj into the
first index ofL . A simple calculation yields

dJ52EfLjf. ~14!

It was proved in the Appendix of@6# that there exists a No
ether charge two-formQ, which is locally constructed from
f,ja and their derivatives, such that

J@j#5dQ@j#1jaCa ~15!

whereCa is a three-form andCa50 when the equations o
motion are satisfied. Now suppose that the spacetime s
fies asymptotic conditions at infinity corresponding to ‘‘ca
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I’’ of @7# and thatja is an asymptotic symmetry. Then the
exists a conserved quantityHj , associated withja. Let df
satisfy the linearized equations of motion in the neighb
hood of infinity. ThendHj is given by@7#

dHj5 È ~ d̄Q@j#2j•Q!. ~16!

Sinceja is treated as a fixed background, it should not
varied in the expression above. So we used ‘‘d̄ ’’ to denote the
variation that has no effect onja, in distinction to the total
variation ‘‘d. ’’ Let S be a hypersurface that extends to infi
ity and has an inner boundary]S. Now we consider the cas
where ja is a symmetry of all the dynamical fields, i.e
Ljf50, anddf satisfies the linearized equations of motio
Then Eq.~76! in @4# shows that the integral in Eq.~16! over
infinity can be turned into one on the inner boundary, i.e

dHj5E
]S

~ d̄Q@j#2j•Q!. ~17!

Whenja is taken to be an asymptotic time translationta and
rotationfa, respectively, we obtain the variations of canon
cal energyE and canonical angular momentumJ @4#:

dE5 È ~ d̄Q@ t#2t•Q!, ~18!

dJ52 È ~ d̄Q@w#2w•Q!. ~19!

III. THE FIRST LAW OF BLACK HOLE MECHANICS
IN EM THEORY

We now specialize to Einstein-Maxwell theory. The d
namical fields are (gab ,Aa) and the Einstein-Maxwell La-
grangian is

L5
1

16p
~eR2egacgbdFabFcd!. ~20!

The Noether charge two-formQ andQ have been calcu-
lated in @2# as

Qab52
1

16p
eabcd¹

cjd2
1

8p
eabcdF

cdAej
e ~21!

and

Qabc~f,df!5
1

16p
edabcv

d, ~22!

where

vd5¹edgde2gf e¹ddgf e24Fd
bdAb . ~23!

Let (gab ,Aa) be a stationary solution to the Einstein
Maxwell equations derived from the Lagrangian~20!. If the
black hole possesses a bifurcation surface, we require
6-2
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the pullback ofAa to the future of the bifurcation surface b
smooth, but not necessarily smooth on the bifurcation s
face. Let

ja5ta1VHwa ~24!

denote the horizon Killing field of this black hole@1#. Let S
be an asymptotic hypersurface which terminates on the
tion of the event horizonH to the future of the bifurcation
surface. Denote the cross section on the horizon bySH ,
which is the inner boundary ofS. Now consider a stationary
perturbationdf that generates a slightly different stationa
axisymmetric black hole. When comparing two spacetim
there is a certain freedom in which points are chosen to
respond. We shall adopt the gauge choice in@3#, i.e., we
make the hypersurfaceS, the event horizons, and the Killin
vectorsta andwa the same in the two solutions. Thus,

dta5dwa50, ~25!

dja5dVHwa. ~26!

Although the conditions above cannot be imposed on
bifurcation surface whereja vanishes, our derivation will no
be affected since we shall make no use of the bifurca
surface. If we assume that bothAa anddAa fall off as fast as
1/r at infinity, as in the case in the Introduction, then the E
field contributes to neitherdE nor dJ in Eqs.~18! and ~19!.
Thus the variation of the canonical energy is the same as
of the Arnowitt-Deser-Misner~ADM ! massM and we shall
rewritedE asdM . Combining Eqs.~18!, ~19!, ~24!, and~17!,
we have

dM2VHdJ5E
SH

~ d̄Q@j#2j•Q!. ~27!

Now we concentrate on the right-hand side of Eq.~27!. We
shall consider the contributions from the gravitational fie
and the EM field separately. From Eq.~21!, we splitQ as

Qab5Qab
GR1Qab

EM , ~28!

where

Qab
GR52

1

16p
eabcd¹

cjd, ~29!

Qab
EM52

1

8p
eabcdF

cdAej
e. ~30!

Similarly, we rewriteQ as

Qabc5Qabc
GR1Qabc

EM , ~31!

where

Qabc
GR5

1

16p
edabcg

dh~¹edghe2gf e¹hdgf e!, ~32!
04401
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Qabc
EM5

1

16p
edabc~24Fdb!dAb . ~33!

We first consider the term involvingQab
GR . On the horizon,

we have@4#

¹cjd5kecd , ~34!

wherek is the surface gravity andecd is the binormal toSH
~see@4# for further details!. Then

E
SH

Qab
GR@j#5

1

8p
kA ~35!

whereA is the area of the black hole. Remember thatja is a
fixed background quantity relative to the variation ‘‘d̄. ’’ Us-
ing the identity

d̄E
SH

Qab
GR@j#5dE

SH
Qab

GR@j#2E
SH

Qab
GR@dj#, ~36!

we have

d̄E
SH

Qab
GR@j#5

1

8p
d~kA!1

1

16pESH
eabcd¹

cdjd

5
1

8p
d~kA!1

dVH

16p E
SH

eabcd¹
cwd

5
1

8p
d~kA!1dVHJH , ~37!

where Eqs. ~35! and ~26! were used and JH
[(1/16p)*SHeabcd¹

cwd can be interpreted as the angul
momentum of the black hole@8#. The computation in@3#
reveals

E
SH

j•QGR5
1

16pESH
jaedabcg

dh~¹edghe2gf e¹hdgf e!

5
1

8p
Adk1dVHJH . ~38!

Thus, combining Eqs.~37! and ~38!, we have

E
SH

d̄QGR2j•QGR5
1

8p
kdA. ~39!

This result can be viewed as the net contribution from
gravitational field. We now consider the EM field. By usin
the smoothness of the pullback ofAa and the stationary con
dition, one can show thatFEM[2jaAauH is a constant in
the portion of the horizon to the future of the bifurcatio
surface@2#. If Aa is smooth over the entire horizon,FEM will
be identically zero on the horizon sinceja vanishes on the
bifurcation surface~in this case, the result in@4# is recov-
ered!. Together with Eq.~30!, we have
6-3
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E
SH

Qab
EM5

FEM

8p E
SH

eabcdF
cd. ~40!

In the asymptotic region, the total electric charge can
expressed as@8#

1

8p È eabcdF
cd5Q. ~41!

Since the Einstein-Maxwell Lagrangian we considered c
responds to the sourceless electromagnetic field, the s
result must hold if the integral is performed on the horizo
Therefore

E
SH

Qab
EM5FEMQ. ~42!

Similar to the identity in Eq.~36!, we have

d̄E
SH

Qab
EM@j#5dE

SH
Qab

EM@j#2E
SH

Qab
EM@dj#

5d~FEMQ!

1
1

8p
dVHE

SH
eabcdF

cdAew
e. ~43!

Now we compute

E
SH

j•QEM52
1

4pESH
ecdabF

cejddAe . ~44!

We first express the volume element in the form

ecdab5jc`Nd`eab , ~45!

whereeab is the volume element onSH and Na is the ‘‘in-
going’’ future directed null normal toSH , normalized so that
Naja521 @8#. Thus, we have

E
SH

j•QEM5
1

4pESH
eabF

cejcdAe . ~46!

By using the fact that on the horizonFcejc}je @2#, together
with Naja521, we get immediately

Fcejc5Fc fNcj fj
e, ~47!

and hence

E
SH

j•QEM5
1

4pESH
eabF

c fNcj fj
edAe . ~48!

On the other hand,
04401
e

r-
me
.

QdFEM52
1

8pESH
eabcdF

cdd~Aej
e!

52
1

8pESH
eabcdF

cd~dAe!j
e2

dVH

8p

3E
SH

eabcdF
cdAew

e

5
1

8pESH
eab`Nc`jdFcdjedAe2

dVH

8p

3E
SH

eabcdF
cdAew

e

5
2

8pESH
eabF

cdNcjdjedAe

2
dVH

8p E
SH

eabcdF
cdAew

e

5E
SH

j•QEM2
dVH

8p E
SH

eabcdF
cdAew

e.

~49!

Using Eq.~43!, we have

E
SH

d̄Qab
EM2j•QEM5FEMdQ. ~50!

Substitution of Eqs.~50! and~39! into the right-hand side of
Eq. ~27! yields Eq. ~1!, the desired first law of black hole
mechanics in Einstein-Maxwell theory. As pointed out in t
Introduction section, the potential-charge term~50! would
have vanished if the EM field were smooth on the horiz
and the integral were performed on the bifurcation surfac

IV. THE FIRST LAW IN EYM THEORY

In this section, we shall extend our derivation in the p
vious section to the EYM case. The assumptions and a
ments will be similar to those in the previous section. T
EYM Lagrangian takes the form

L5
1

16p
eR2

1

16p
egacgbdFab

L FcdL , ~51!

whereFab
L is the Yang-Mills field strength:

Fab
L 52¹[aAb]

L 1cGD
L Aa

GAb
D , ~52!

where cGD
L denotes the structure tensor for the SU~2! Lie

algebra and the Lie algebra indices are raised and lowe
with the Killing metric gGS52 1

2 cGS
L cSL

S .
Similarly to the EM case, the Lagrangian can be split in

‘‘GR’’ and ‘‘YM’’ parts. The contribution from the YM field
gives

ubcd
Y M52

1

4p
eabcdFD

aedAe
D , ~53!
6-4
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Qab
Y M52

1

8p
eabcdFL

cdAe
Lje. ~54!

Then

È Q@ t#52
1

8p È eabcdFL
cdA0

L . ~55!

We choose a stationary solution of the EYM equations a
then A0

L is asymptotically constant@5#. The constantV is
defined by

V5 lim
r→`

~A0
LA0L!1/2. ~56!

The electric field, viewed as a tensor density of weight, i

EL
a 5AhFmL

a nm, ~57!

wherenm is the unit normal to the spacelike hypersurface`.
Reference@5# shows that, asymptotically,A0

L andEa
L point in

the same Lie algebra direction and therefore

È Q@ t#5VQ`, ~58!

where the Yang-Mills charge measured at infinity is defin
by

Q`5
1

4p È uEL
a r au, ~59!

wherer a denotes the unit radial vector and vertical bars
note the Lie algebra norm. On the other hand,

È t•uY M52
1

4p È eabcdt
bFD

aedAe
D

5
1

4p È ED
a r adA0

D

5Q`dV. ~60!

Therefore, the ‘‘YM’’ contribution todE is

dEY M5VdQ`. ~61!

Since the ‘‘GR’’contribution gives the ADM massM, we
have the total variation of the canonical energy

dE5dM1VdQ`, ~62!

which agrees with the result in@5#.
By using the arguments parallel to that in Sec. III, w

obtain an expression similar to Eq.~27!:

dE2VHdJ5E
SH

~ d̄Q@j#2j•Q!. ~63!
04401
d

d

-

Note that the ADM mass on the left-hand side of Eq.~27! has
been replaced byE. The canonical angular momentumJ is
defined by@4#

J52 È Q@w#. ~64!

Combining Eqs.~29! and ~54!, we have

J5
1

16p È eabcd¹
cjd1

1

8p È eabcdFL
cdAe

Lje. ~65!

This formula agrees with that in@5#. This first term is just the
expression for angular momentum in the vacuum case.

Since Eq.~39! also holds for the EYM case, we use it t
rewrite the right-hand side of Eq.~63!:

dE2VHdJ5
1

8p
kdA1E

SH
~ d̄QY M@j#2j•QY M!.

~66!

The same treatment used for the EM field gives

d̄E
SH

Qab
Y M@j#5dE

SH
Qab

Y M@j#2E
SH

Qab
Y M@dj#

52
1

8p
dE

SH
eabcdFL

cdAe
Lje

1
1

8p
dVHE

SH
eabcdFL

cdAe
Lwe

52
1

8pESH
Ae

Ljed~eabcdFL
cd!

2
1

8pESH
eabcdFL

cdd~Ae
Lje!

1
1

8p
dVHE

SH
eabcdFL

cdAe
Lwe. ~67!

Replacing the second term of Eq.~67! by an expression
analogous to Eq.~49!, we get

d̄E
SH

Qab
Y M@j#52

1

8pESH
Ae

Ljed~eabcdFL
cd!1E

SH
j•QY M.

~68!

Then, from Eqs.~66! and ~68!, we obtain the first law for a
stationary EYM black hole:

1

8p
kdA5dE2VHdJ2

1

8pESH
Ae

Ljed~eabcdFL
cd!.

~69!

This expression agrees with that in@11#. We cannot further
evaluate the integral in the form of ‘‘FdQ’’ as in the EM
6-5
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case because of the complicity of SU~2! Lie algebra. Ash-
tekar, et al. @9# chose the following gauge conditions~see
also Corichiet al. @10#!.

~i! The Yang-Mills potential

FY M52uj•Au ~70!

is constant on the horizon.
~ii ! The dual of the field strength (* F) and (j•A) point in

the same Lie algebra direction

~j•A!S}~2e• * F!S, ~71!

where 2e is the pullback to the horizon ofeabcd. Under
these two conditions, the integral in Eq.~69! can be evalu-
ated as

2
1

8pESH
Ae

Ljed~eabcdFL
cd!5FY MdQH

Y M ~72!

where QH
Y M52(1/4p)*SHu * Fu is the electric Yang-Mills

charge evaluated on the horizon. However, there is no
nd
,

th

04401
i-

dence that our stationary gauge choice is consistent with c
ditions ~i! and ~ii ! above. Therefore, Eq.~69! is our final
form of the first law in EYM theory.

V. CONCLUSIONS

The first law of black hole mechanics for the EM an
EYM cases is derived in the framework of@4#. In contrast to
@4#, we make no reference to the bifurcation surface. In
EM case, when the pullback ofAa to the future horizon is
smooth, the desired charge-potential term is obtained. In
EYM case, a corresponding surface integral on the horizo
found. Since we avoid using the bifurcation surface, the d
vation and conclusions in this paper apply to extremal bla
holes simply by takingk50.
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