PHYSICAL REVIEW D 68, 044015(2003

Noncommutative self-dual gravity
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Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory
in four dimensions. In order to do that, we use the Seiberg-Witten map. A procedure is outlined that allows one
to find the solution of the noncommutative torsion constraint through the vanishing of the commutative one.
Finally, the noncommutative corrections to the action are computed up to second order.
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I. INTRODUCTION Hamiltonian Ashtekar formulation8] can be obtained
[9,10]. The properties of this formulation have allowed the
Nowadays, there are two main candidates for a quanturaxploration of quantum gravity in the framework of loop
theory of the gravitational field: string theoti! theory) and  quantum gravity and quantum geometfpr a review, see
loop quantum gravity. From the description of the low en-[7]). In this context also, it would be interesting to explore
ergy excitations of open strings, in the presence of a Neveuaoncommutative quantum gravity.
Schwarz(NS) constant backgrounB field, a noncommuta- On the other hand, there are proposals for a noncommu-
tive effective low energy gauge actidi,2] appears in a tative formulation of gravitatiori11], motivated by the un-
natural way. It is known, from Natrix) theory that, at low derstanding of the short distance behavior of the gravita-
energies, the coordinates of a gas of DO-branes are describ&dnal field[12]. Proposals based on the recent developments
by matrices, which cause virtual effedi3,4]. Such effects are given in[13-17. In particular, in[15—-17 a Seiberg-
give rise to a supergravity interaction in 11 dimensions.Witten map for the tetrad and the Lorentz connection is
Thus, gravity seems to arise from noncommutativity. given, where these fields are taken as components of a
Along these lines, noncommutative gauge theory, as &0(4,1) connection in the first work, and of a(2,2) con-
continuous deformation of the usual theory, has attracted mection in the others. In these works a MacDowell-Mansouri
lot of attention. Although gravitation does not arise in the(MM) type of action is considered, invariant under the sub-
low energy limit of open string theory as a gauge theorygroup U(1,1)xU(1,1), and the excess of degrees of free-
some interesting effects of gravity procesdsach as the dom, additional to the ones of the commutative theory, is
graviton—graviton—D-brane scattering, in the presence of &andled by means of constraints. For other recent proposals
constantB field) can be computel5]. However, a deeper of noncommutative gravity, sed8]. In particular, in[17],
study of the deformations of pure gravitational theories isfrom the chosen constraints, a consistent noncommutative
still needed. Thus, the study of models of nhoncommutativeSsQ(3,1) extension arises.
gravity, independently of how they could arise from string or  On the other hand, ifl9] it was shown that noncommu-
M theory, might be important. Such models could be ob-tative gauge theories, based on the Seiberg-Witten map, for
tained starting from those formulations of gravitation that areany commutative theory invariant under a gauge giGugan
based on a gauge principle. One of these formulations ibe constructed. The resulting noncommutative theory can be
self-dual gravity(for a review, sed6,7]), from which the seen as an effective theory, invariant under the noncommu-
tative enveloping algebra transformations, and also under the
commutative transformations &. This results from the fact
*Electronic address: compean@fis.cinvestav.mx that the Seiberg-Witten map may be seen as a sort of gauge
TPermanent address: Instituto dsiEa de la Universidad de Gua- fixing, in which the degrees of freedom added by noncom-
najuato, P.O. Box E-143, 37150 Ledto., Mexico. Electronic ad- mutativity to the fields and to the transformation parameters
dress: octavio@ifug3.ugto.mx are mapped to expressions depending on the commutative
*Permanent address: Facultad de Cienciasc&1Matemticas,  fields, in such a way that in the commutative limit the origi-
Universidad Autmoma de Puebla, P.O. Box 1364, 72000 Pueblanal theory is obtained. In this way, a minimal version of the
Mexico. Electronic address: cramirez@fcfm.buap.mx noncommutative standard model with the gauge group
SElectronic address: msabido@ifug3.ugto.mx SU(3)XSU(2)xU(1) has been proposgaaq].
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Following these ideas, starting from a @IC) self-dual tions, by the introduction of noncommutative coordinatés
connection, in a previous worlRk1] we gave a formulation satisfying
for quadratic noncommutative topological gravitation, which
contains the S(,1) topological invariants, namely, the sig- [x*,x"]=i0"", (1)
nature and Euler characteristic. In fact, the noncommutative i ) )
signature can be straightforwardly obtained, but the EuIeV"?erf x* are linear operators acting on the Hilbert space
invariant cannot, as it involves the same difficulty as the MmL"(R"), and#”"=— 6" are real numbers. Given this linear
action, which contains a contraction with the Levi-Civiém- operat'or algebr'aﬁl, the WgyI—ngner-Moyal cqrrespondence
sor, instead of the S@,1) trace. However, both invariants establishes an isomorphic relation between it and the algebra

. N o . .
can be combined into an expression given by the signaturgf functions onR", with an associative and noncommutative

with a SA3,1) self-dual connection, which amounts to the star_prr?dyct, the Moyad product. Thus, the Moyal algebra
SL(2,C) signature. A,=R] is, under certain conditions, equivalent to the

In this paper, taking the same &,C) connection as in Heisenberg algebrél). The Moyal product is given by

[21], considering the Plebaki formulation[22], we make a .

proposal for a noncommutative theory of gravity, which is f(x)*g(x)=| ex I_g,u.vi J
2 det an”

X f(x+e)g(x+7n)

fully invariant under the noncommutative gauge transforma-
tions[23]. The Plebaski formulation is written as a S2,C)
topological BF formulation, given by the trace of the two-
form B times the field strengtfi24]. The contact with Ein-
stein gravitation is done through constraints on Ehéeld,
which are solved using the square of the tetrad one-form ) o [
[22]. This theory can be restated in terms of self-dualUnder complex conjugation it satisfiebxg) =g*f.
SQ(3,1) fields, the connection, and the antisymmetric tensor Since we will be working with a non-Abelian group, we
B. After the identification of theéd two-form with the tetrad Must include also matrix multiplication, so an * product will
one-form squared, a variation of this action with respect td?€ used as the external product of matrix multiplication with
the connection gives the vanishing of the torsion. The resultthe* product. In this case, Hermitian conjugation is given by
ing action contains Einstein gravitation plus an imaginary(f*9)"=g™f". Inside integrals on closed manifolds, this
term, which is identically zero due to the Bianchi identities. Product has the cyclicity property Tfif;f3---*f,
The noncommutative version is obtained at the level of the=Tr [f3f7f5f5---*f,_1.  In  particular, TiffIf,
SL(2,C) theory, by the application of the Moyal product and =Tr [f,f,. From now on we will understand that the multi-
the Seiberg-Witten map. In this way, a highly nonlinearplication of noncommutative quantities is given by this *
theory is obtained, which depends on the commutativeproduct.
SL(2,C) fields. These fields are then written in terms of the Thus, with any expression containing space-time func-
SQO3,)) fields, the self-dual connection, and tBdield, and  tions, a noncommutative expression can be associated by
then the connection is written in terms of the tetrads. Thesubstitution of the usual product by this * product. However,
consistency of the last step is ensured by the fact that ththis procedure has the well known ambiguity of the ordering
variation of the action with respect to the noncommutativeof the resulting expression, which could be fixed by physical
SL(2,C) connection gives an equation which is solved by theconsiderations. In particular, in the case of gauge theories,
vanishing of the commutative torsion. Other terms in thiswe wish to have a noncommutative theory, invariant under a
equation seem to vanish on shell, a fact explicitly shown tcsuitable generalization of the gauge transformations. This
first order in the noncommutativity parameter. generalization frequently is used to fix, to some extent, the
The paper is organized as follows. In Sec. Il we brieflyordering ambiguities.
overview the Seiberg-Witten map and enveloping algebra Let us consider a theory, invariant under the action of the
and state some results concerning noncommutative covariabte group G, with gauge fieldsA,, and matter fieldsb
equations. In Sec. lll we formulate the commutative self-which transform under the adjoint representataah
dual gravity theory from which the noncommutative one is
obtained. In Sec. IV the noncommutative theory is formu- A= NFI[NA,]
lated and corrections are computed. Finally, Sec. V contains
our conclusions. HP=i[N,D], 3

@

e=n=0

whereAx=\'T;, andT;(i=1,...,dimG) are the generators
II. NONCOMMUTATIVE GAUGE SYMMETRY AND THE of the Lie algebraj of G, in the adjoint representation. These
SEIBERG-WITTEN MAP transformations are generalized for the noncommutative con-

_ _ _ ) nection[2] and for the adjoint representation as
In this section, a few conventions and properties of non-

commutative spaces will be given for future reference. For S A =g X+i[X*AM], ()
recent reviews, see, e.25]. ’

Noncommutative spaces can be understood as generaliza- P
tions of the usual quantum mechanical commutation rela- SRP=i[AT D] 5
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The commutatof A*B]=A*B—B*A, satisfies the Leibnitz matrix we have the correspondenke-X the Moyal com-
rule when acting on products of noncommutative fields. Duenmutator will not correspond simply to the commutator of two
to noncommutativity, commutators Iil{é\fAM] take values transformations buf19]

in the enveloping algebr&(G,ad) of the adjoint representa-

tion of G. ThereforeX and the gauge field&,, will also take [N 7]=[N" n]+i(8n—8,\N). 9
values in this algebra. In general, for some represent&ion
we will denote byl/(G,R) the section of the enveloping al- If we write that there is an expansion lik8) for these
gebral/ of G that corresponds to the representatiin matrices,
Let us write, for instance\ =\'T, andA=A'T,; then A
N=N+ 0N D o groN?) 4 (10)
o 1 ... 1 ...
[AFAL]= E{)‘I,*Af»}[Tl Tl E[AITAiHTI ok (6) then a solution for the coefficients can be obtaif2d9:
Thus all the products of the generatdrswill be needed in A 1 v )
order to close the algebi#(G,ad). Its structure can be ob- AN A =N Za {9 N A} +O(67). 1D
tained by successively computing the commutators and anti-
commutators starting from the generatorstoin the corre- Further, the Seiberg-Witten map determines thé)
sponding representation, until it closes, terms in Eq.(8), from the fact that the noncommutative
K K transformations are given by Eq4), (5) and consequently,
[Ty, Tol=if 3Tk, T Tap=d, Tk Eq. (7). These functions in Eq8) can be expressed in terms

. R . o of the commutative fields and their derivatives. For the
The field strength i$2] F,,=d,A,—d,A,—i[A, A, gauge fields, one solution is given (3]
hence it also takes values #(G,ad). From Eq.(5) it turns
out that . 1 )
A (A)=A,— ZGVP{A AL TF, 1 +0(6%, (12

v @pfpu

S\F L, =i(A*F,,—F, *}). (7)

nv

. . from which, for the field strength, it turns out that
We see that these noncommutative transformation rules 9

can be obtained from the commutative ones, just by replac- 1

ing the ordinary product of functions by the Moyal product, |”:M: Fut = 0°7(2{F,, F ot —{A,,(Dy+3d,)F .}

with a suitable product ordering. This allows us to construct 4

invariant quantities in a simple way. +0O(6?). (13)
If we wish to have a continuous commutative limit, the

noncommutative fields> must be power series expansions  For fields in the adjoint representation we have the solu-
of the noncommutativity parameté@r starting from the com-  tjon

mutative ones,

R 1
b=+ gD+ orrerod @) 4. (8) O(0,A)= D= Z26""{A, (D, +9,)P}+O(6%). (19

vpo

.Thus, n such an expansion, t_he noncommutative fieldg jg el known that these solutions are not unique; other
will have in general an infinity of independent components.oms even depending on continuous parameters can be
Moreover, the noncommutative gauge fields will take valuesadded to them. 1126 this freedom has been related to the
in the enveloping algebra and, unless the enveloping algebig o majizability properties. However, it can also be used in
poincides with the Lie algebrq of the commutfative theory, agy qer to simplify the structure of the t,heo[rgO]. In particu-
is the case 0G=U(N), they will also have a bigger number lar, it allows one to give simple forms of Eqg4.3) and(14),

of matrix components. As this is also the case for the transypich have the interesting property that if the commutative
formation parameters, it will be possible to eliminate a lot Of e |45 yanish, the first order corrections will also vanish. In

degrees of freedom by fixing the gauge. this case, there is a solution for which all higher order terms
In fact, the Seiberg-Witten maj2] e.fstabhshes a ONe-to- ot the expansion8) vanish as well. In fact, for a noncom-
one correspondence among the physical degrees of freedom

of the noncommutative fields and the physical degrees OFhUtat'VG f:eldd), v;/e c,:[an e%wayz adhq ﬁoc\j/arlané terrphs, tW't?
freedom of the commutative fields. This fact is used in Ref!1€ S@ME€ ENSOr structure@s and which depend on theta a

: e o nrinleast to first order.
19] to construct noncommutative gauge theories, in prin- : .
[19] gaug P These higher order terms can be obtained from the

ciple, for any Lie groupG. "

The main point is that the Seiberg-Witten map allows forSeiberg-Witten  maps for which d(96“*)A(6) and
field dependent transformations. This means that if we com¢d/96*")d () are solutions, i.e., from the solutions of the
bine two transformations the gauge parameters will be transquations that result from the corresponding gauge transfor-
formed as well. Thus, if for an infinitesimal transformation mations, given by th& derivatives of Eqs(10) and (5),
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w5 J . 5 J .
Ry
| |~ R - )
:| —_— —_ s
IOV 7 ’aewn IO 7
i .
+§{aﬂ>\fayn}) (15
and
J . d .. . R
SN <I>=|0’”( AND |+ \*
IO*Y IOrY T
i .
+§{07M)\fay<b}) : (16)

where theg*” factor is included in order to take into account
the antisymmetry i andv. A solution to this equation can
be obtained 2] from the first order solutionbﬁ},}. Indeed,

PHYSICAL REVIEW D 68, 044015(2003

which at 6=0 are identically satisfied. In fact, E§R1) is
more general; it is valid also for the connectif#], and as
well for any field transforming under a linear representation.
From it, together with Eq(20), by successive derivations
with respect tof, a solution for all higher terms of the
Seiberg-Witten map can be computed.

Now we see that, if the first order terd!) vanishes, by

constructiond®) will also vanish, and consequently in this

cased=0 is a consistent solution fab=0.

The fact that the components of the noncommutativity
parameterd are constant has the important consequence that
Lorentz covariance and general covariance under diffeomor-
phisms of the underlying manifold are spoiled. The answer
that is usually given to this question is that, at the scale
where noncommutativity is relevant, it is possible that nature
does not have the same symmetries as in the commutative
limit.

Ill. DESCRIPTION OF SELF-DUAL GRAVITY

One of the main features of the tetrad formalism of the

from this first order term, by substitution of the commutativetheory of gravitation[27] is that it introduces local Lorentz
fields by the noncommutative ones, with multiplication givenSQ(3,1) transformations. In this case, the generalized

by the* product, the full Seiberg-Witten mapped fie@
and@ can be constructed. Hence, from E¢l) and(14),
we have

- 1 cpn
0N, = 209N ALL, (17)

— 1 ’s A A
o o®,,=—204{A,*(D,+3,)P}. (18)

Hilbert-Palatini formulation is written as
fea”ebVRWab(w)d“x, wheree,* is the inverse tetrad, and
Rwab(w) is the s@3,1) valued field strength. The decompo-
sition of the Lorentz group as SO(3z2p5L(2C)
®SL(2C), and the geometrical structure of four-
dimensional space-time, makes it possible to formulate
gravitation as a complex theory, as[$22]. These formula-
tions take advantage of the properties of the fundamental or
spinorial representation of $2,C), which allows a simple
separation of the action on the fields of both factors of
SQ(3,1), as shown in great detail {r22]. All the Lorentz Lie

Now, after some algebra, taking into account the noncommug|gebra valued quantities, in particular the connection and

tative gauge transformatiorid), (5), and(9), we get

—_ ~

04" 8, 7’(1)#]}_ 577)\(1);“}]: i 9’“’( [)\(1)#”,* ;7]+[)"\* 77(1),uv]
D ! ST
=[N 7]+ E{a#x, a,m |,

0#1/5)\(1)(1)/“}

—jgn

(XD, &1+ [R5 00, ]+ 5 (7,A* a,cb}) .
(19

These equations give solutions for E¢s5) and(16), if the
following identifications are madg2]:

J . ——
i S 20
Jd . ——
pm L L @y

the field strength, decompose into self-dual and anti-self-dual
parts, in the same way as the Lie algebra soEdlj2,C)
®sl(2C). However, Lorentz vectors, like the tetrad, trans-
form under mixed transformations of both factors and so this
formulation cannot be written as a chiral @.C) theory.
Various proposals in this direction have been méde a
review, sed6]). In an early formulation, this problem was
solved by Plebaski [22], where by means of a constrained
Lie algebra valued two-forny, the theory can be formulated
as a chiral SI2,C) invariant BF theory, Tf%/\R(w). In
this formulationX, has two SI(2,C) spinorial indices, and it
is symmetric on theniAB=3BA Jike any such sl(Z) val-
ued quantity. The constraints are given BABASCP
=%5§3A5§)EEF/\EEF and, as shown i22], their solution
implies the existence of a tetrad one-form, which squared
gives the two-form. In the language of S@,1), this two-
form is a second rank antisymmetric self-dual two-form,
3 rab=qrtab sed wherell "2 ;=1(825—i8%",y). In this
case, the constraints can be recast into the equivalent form
S tabAy ted= iy rabedy refASE with the solution
33b=2e?/\ P,

For the purpose of the noncommutative formulation, we
will consider self-dual gravity in a somewhat different way
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from the paper$8,22]. In this section we will fix our nota-
tion and conventions.

Let us take the self-dual S8,1) BF action, defined on a

(3+1)-dimensional pseudo-Riemannian manifoki§,,,),

b(w)d4x,

(22)

I=iTrf 2*/\R+=if PSR
X X

poa

where R, =TI15R, ,cq, is the self-dual SG,1) field
strength tensor. This action can be rewritten as

1 ) 1
| = EJXSMVPU< IzﬂyabRpoab—l— EsabcdzﬂvabRpUCd d“x.
(23

If now we take the solution of the constraints Bn which
we now write as

PHYSICAL REVIEW D 68, 044015 (2003
| =i fxs”VPU[E;S‘Rme*)+E;LJRpai,-(w)]d“x

=—4i LSWUEW‘RPUi(w)d“x. (29)

Therefore, if we choose the algebra s{p,to satisfy
[Ti,Tj1=—2¢;*Tx and Tr(TT;) = — 26 , we have that Eq.
(22) can be rewritten as the self-dual acti@?]

|=2i Trj SAR, (30
X

which is invariant under the §2,C) transformationss, ,,
zaﬂ)\+i[)\,_wl,:] and 5)\.2uvz_i[)\12_uv]'

If the variation of this action with respect to the @IC)
connectionw is set to zero, we get the equations

WH=ghoD 3 T=en#7(5,3 420 w,)3,, =0,

b_ b b
3, 0=e,%, e, %, (24) (3D
then Taking into account separately both real and imaginary parts,
we get, in terms of the S@,1) connection,
= f deteR+ig”""’R d*x. 25
X( }wpg) ( ) e""PD vzpoab: S#Vpg(avzpaab_l_ wvaczpucb_ wvbczpoca)
The real and imaginary parts of this action must be varied =0, (32)
independently because the fields are real. The first part rep- . ) o )
resents the Einstein action in the Palatini formalism, fromWhich after the identificatiort24) can be written as
which, after variation of the Lorentz connection, a vanishing . . . .
torsionT,,?=0 results. As a consequence, the second term e""7(0,8,%, — .8, e, + ®, e e, — v, %€,e,”)
vanishes due to Bianchi identities.
=e""(T %, >~ T,re,")=0. (33

The action(22) can be written as

=i [ oS LR 0t (26)

where R”Vab(er)=8ﬂw:ab—&vwzab+w;acwicb
—w, %0}, From the decomposition SO(325L(2C)

X SL(2C), it turns out thatw ;= w+ " is a SL2,C) connec-
tion. Further, if we take into account

scdabeCdZ 2i w;ab, we getw =

—ie'kw £ Therefore,
o o e
R, (0")=0,0,—d,0,+2ico,0,=R,  (0),

27
Rﬂyij(er):&ij” _‘71»“’;” +2(wﬂiw,,j— wyiw,))

=—ie}R,, (w), (28)
whereR,, is the SI(2,C) field strength.

Similarly, we define% ,,' =3 "%, which transforms in the
SL(2,C) adjoint representation. From it we ge‘E;,') =
—is'{(El'fV. Thus the actiorf26) can be written as a $2,C)
BF action

self-duality,

vp-o vp-o

From this the vanishing torsion condition once more appears.

IV. THE NONCOMMUTATIVE ACTION

We start from the S(2,C) invariant action(30). From it,
the noncommutative action can be obtained straightfor-
wardly as

1=2i Trf SAR. (34)
X

This action is invariant under the noncommutative(5C)
transformations

Sw,=d N[N 0,], (35

52 =N S,,) (36

Actually, in order to obtain the noncommutative generali-
zation of the Einstein equation, we could consider the real
part of Eq.(34),
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Te=—i Trfx[z/\ﬁ—(z/\?e)*], (37) Wr=pH— ‘1—19"”[{(%,(Dp-l-(?p)\I”‘}—{R,,p,‘If”}
which is also invariant under Eqé&35) and (36). —284e77D {R,4,2 1]+ O(67). (41)

In order to obtain a result corresponding to the torsion
condition, aw variation of Eq.(34) must be done. Although
we are considering the commutative fields as the fundamerdence, if the zeroth order terms vanigh{=0, then the first
tal ones, the action is written in terms of the noncommutativéwo terms in Eqg.(41) will vanish. These equatiorn¥#=0
ones. Furthermore, the relation between the commutative arate equivalent to setting the commutative torsion equal to
the noncommutative physical degrees of freedom is one taero, that is, after the substitutidn,,**=e % °—e % °,
one[2]. So the equivalent to the variation of the action with their solution is given by

respect taw will be the variation with respect te. Thus we
write

C
14

1
ab__ avab c
w, =~ 5€ "e*le,q(d,e,—d,e

C C
" )—eyc(apeﬂ—ﬂﬂep

521 =8i Tr J 099 S il *S )% 80, =0,
X

38) —e,(d,e, —ayeﬂ)]. (42

from which we obtain the noncommutative version of Eq. . .
(32): Furthermore, at first order, a computation of the last term

in Eq. (41) shows that it is proportional tG’”ap(e‘lGV”),
whereG,,, is the Einstein tensor. If we now substitute Eq.
(42) back into the action(37), the equations of motion to
zeroth order will give the vanishing of the Einstein tensor,
These equations are covariant under the noncommutativand the last term in Eq41) will be automatically satisfied.
transformations(35) and (36), which means that their In order to explore more general, theta dependent solutions,
Seiberg-Witten expansion should be similar to that of a matto first and higheré orders, a more detailed and involved
ter field in the adjoint representatidid4). In this case we analysis is forthcoming28].
would have that, if the commutative field vanishes, the first With this in mind, the corrections to the noncommutative
order term of the noncommutative one will also vanish. Ifaction (37) can be computed as follows. First we write the

this happens, as shown at the end of Sec. Il, all the higheﬁeiberg-Witten expansion of the G.C) fields S and .

orders vanish as WeII._ Thus, we could expect that a SOIUﬁO'?—'urthermore, the commutative GLC) fields are written by
to Eq. (39) would be given by the solution of the commuta- means of the self-dual S8,1) fields, » '=w*° ands |
d ’ M Y72 mv

tive equation¥#=0. Making use of the ambiguity of the. _+oi rpon e decompose these self-dual fields into the
Seiberg-Witten map, we make the following choice ar real ones 2 and 3 2 and then substitutes 2P
o v v

—n ap b an b ; ; R
=e,“e,’—e,“e,” and write the connection as in E@-2). In

a 1 this case we have a noncommutative action that depends
= — — QP —_
2= 300, (P00t 0Tt (R 20t oo o e tetrad.

If we consider the real part, as in E@7), the first order

Wi=grrop 3 =0, (39)

2 X X ;
+0(6°), (40) correction vanishes, and, after a lengthy calculation, the sec-
ond order one turns out to be, already written in terms of
from which it turns out that commutative S@3,1) fields,

.1
2= P 67007 f d*x[4e{4R; *(R,,*R cap— ©,°0:R,yap) + 0,070,020 R yant RIS @, 2%(95w ap+ R, cap) ]

0 b b C a b b
+ 2w—yp Iaﬁ( Rpra Ro’§ab_ wra &‘proab)} + et r(4e[ 675&5Rp0 B( R 4 Rvgab_ wra agR,uvab)

wT

b b d b d b d f
+ 2€16pR0 " RyrabRys ™1+ €ancd ARpoys( R, 2R, 0, 7%9,R , SO + 4R, R CY 2R 56— 0 edc(e,%€,1)]

bp cd b d f b d b d
—20,,,05(R,, R, = 0,0 R ) =20 F R peid 2R, 170,58 — 0,0 (€8, )]

b d f b d f b d
—20,R,, IS 2R = weidg(€,5,) ]~ 0,,,0,057 0RO 0 TR, ged,0 57 0 (,5€,%)

—0,2°R,,%0,050194(e,50,") — 4R, PR e, 2%0:( S0 ,H)], (43)
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where the connectiomﬂab is given by Eq.(42). From these veloped there to construct the noncommutative versions of
correction terms, the explicit computation of deformedthe standard model and grand unified theories. In the present

known gravitational metrics could be done. paper, the Seiberg-Witten map for matter fields in the adjoint
representation of any gauge group has been constructed in
V. CONCLUSIONS order to get the Seiberg-Witten map for thefield.

The physical consequences of the noncommutative exten-

In this work we propose an ansatz to obtain a noncommusjon of standard general relativity remain to be studied. An
tative formulation of standard four-dimensional EinStEininteresting poss|b|||ty seems to be the Study of inflation in
gravitation. We start from a self-dual $81) BF action,  this model. It is well known, in a very different physical
which is equivalent to Einstein gravitation after SUbStitUtiOﬂsetting' that the trace anoma|y that leads to h|gher derivative
of the B field in terms of the tetrad. This action is reformu- corrections in the Corresponding effective action could pro-
lated as the chiral SR,C) invariant self-dual action(30), duce inflation[29,30.
from which the noncommutative actio34) is straightfor- Finally, the results presented here can be regarded as a
Wardly obtained. This chiral action allows us to find an al- pre"minary Step for the construction of a noncommutative
ternative noncommutative gravity action in four dimensions,version of the Ashtekar Hamiltonian formulation through a
which generalizes the usual general relatiidy). As men-  noncommutative Legendre transformation. Moreover, it
tioned, there are other proposals already introduced in th@ould be interesting to search for a quantization of the re-
literature[14—-17. In our proposed action the noncommuta- sylts obtained in the present paper and proceed to find the
tive spin connection variation gives the n0ncommutativecorresponding loop quantum gravity. Furthermore, the com-
“torsion condition” (39), which seems to be solved, at any pytation of noncommutative gravitational effects can be
order, by Eq.(42), as explicitly shown to first order. This done, for instance, from the corrections to known metrics.
allows us to introduce the tetrad at the commutative level irDetai|s of work in these directions will be reported else-
a consistent way24). For this solution, the second order where.
corrections to the action are computed after laborious algebra
[Eq. (43)]. More generalg dependent solutions for the spin
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