
PHYSICAL REVIEW D 68, 044015 ~2003!
Noncommutative self-dual gravity

H. Garcı́a-Compea´n*
Departamento de Fı´sica, Centro de Investigacio´n y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Me´xico D.F., Mexico

O. Obrego´n†

Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

C. Ramı´rez‡

Instituto de Fı´sica de la Universidad de Guanajuato, P.O. Box E-143, 37150 Leo´n Gto., Mexico

M. Sabido§

Instituto de Fı´sica de la Universidad de Guanajuato, P.O. Box E-143, 37150 Leo´n Gto., Mexico
~Received 12 March 2003; revised manuscript received 26 June 2003; published 21 August 2003!

Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory
in four dimensions. In order to do that, we use the Seiberg-Witten map. A procedure is outlined that allows one
to find the solution of the noncommutative torsion constraint through the vanishing of the commutative one.
Finally, the noncommutative corrections to the action are computed up to second order.
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I. INTRODUCTION

Nowadays, there are two main candidates for a quan
theory of the gravitational field: string theory~M theory! and
loop quantum gravity. From the description of the low e
ergy excitations of open strings, in the presence of a Nev
Schwarz~NS! constant backgroundB field, a noncommuta-
tive effective low energy gauge action@1,2# appears in a
natural way. It is known, from M~atrix! theory that, at low
energies, the coordinates of a gas of D0-branes are desc
by matrices, which cause virtual effects@3,4#. Such effects
give rise to a supergravity interaction in 11 dimensio
Thus, gravity seems to arise from noncommutativity.

Along these lines, noncommutative gauge theory, a
continuous deformation of the usual theory, has attracte
lot of attention. Although gravitation does not arise in t
low energy limit of open string theory as a gauge theo
some interesting effects of gravity processes~such as the
graviton–graviton–D-brane scattering, in the presence o
constantB field! can be computed@5#. However, a deepe
study of the deformations of pure gravitational theories
still needed. Thus, the study of models of noncommuta
gravity, independently of how they could arise from string
M theory, might be important. Such models could be o
tained starting from those formulations of gravitation that
based on a gauge principle. One of these formulation
self-dual gravity~for a review, see@6,7#!, from which the
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Hamiltonian Ashtekar formulation@8# can be obtained
@9,10#. The properties of this formulation have allowed th
exploration of quantum gravity in the framework of loo
quantum gravity and quantum geometry~for a review, see
@7#!. In this context also, it would be interesting to explo
noncommutative quantum gravity.

On the other hand, there are proposals for a noncom
tative formulation of gravitation@11#, motivated by the un-
derstanding of the short distance behavior of the grav
tional field @12#. Proposals based on the recent developme
are given in@13–17#. In particular, in @15–17# a Seiberg-
Witten map for the tetrad and the Lorentz connection
given, where these fields are taken as components o
SO~4,1! connection in the first work, and of a U~2,2! con-
nection in the others. In these works a MacDowell-Manso
~MM ! type of action is considered, invariant under the su
group U(1,1)3U(1,1), and the excess of degrees of fre
dom, additional to the ones of the commutative theory,
handled by means of constraints. For other recent propo
of noncommutative gravity, see@18#. In particular, in@17#,
from the chosen constraints, a consistent noncommuta
SO~3,1! extension arises.

On the other hand, in@19# it was shown that noncommu
tative gauge theories, based on the Seiberg-Witten map
any commutative theory invariant under a gauge groupG can
be constructed. The resulting noncommutative theory can
seen as an effective theory, invariant under the noncom
tative enveloping algebra transformations, and also under
commutative transformations ofG. This results from the fact
that the Seiberg-Witten map may be seen as a sort of ga
fixing, in which the degrees of freedom added by nonco
mutativity to the fields and to the transformation paramet
are mapped to expressions depending on the commuta
fields, in such a way that in the commutative limit the orig
nal theory is obtained. In this way, a minimal version of t
noncommutative standard model with the gauge gro
SU(3)3SU(2)3U(1) has been proposed@20#.

,
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Following these ideas, starting from a SL~2,C! self-dual
connection, in a previous work@21# we gave a formulation
for quadratic noncommutative topological gravitation, whi
contains the SO~3,1! topological invariants, namely, the sig
nature and Euler characteristic. In fact, the noncommuta
signature can be straightforwardly obtained, but the Eu
invariant cannot, as it involves the same difficulty as the M
action, which contains a contraction with the Levi-Civita` ten-
sor, instead of the SO~3,1! trace. However, both invariant
can be combined into an expression given by the signa
with a SO~3,1! self-dual connection, which amounts to th
SL~2,C! signature.

In this paper, taking the same SL~2,C! connection as in
@21#, considering the Pleban´ski formulation@22#, we make a
proposal for a noncommutative theory of gravity, which
fully invariant under the noncommutative gauge transform
tions @23#. The Pleban´ski formulation is written as a SL~2,C!
topological BF formulation, given by the trace of the tw
form B times the field strength@24#. The contact with Ein-
stein gravitation is done through constraints on theB field,
which are solved using the square of the tetrad one-fo
@22#. This theory can be restated in terms of self-du
SO~3,1! fields, the connection, and the antisymmetric ten
B. After the identification of theB two-form with the tetrad
one-form squared, a variation of this action with respec
the connection gives the vanishing of the torsion. The res
ing action contains Einstein gravitation plus an imagina
term, which is identically zero due to the Bianchi identitie
The noncommutative version is obtained at the level of
SL~2,C! theory, by the application of the Moyal product an
the Seiberg-Witten map. In this way, a highly nonline
theory is obtained, which depends on the commuta
SL~2,C! fields. These fields are then written in terms of t
SO~3,1! fields, the self-dual connection, and theB field, and
then the connection is written in terms of the tetrads. T
consistency of the last step is ensured by the fact that
variation of the action with respect to the noncommutat
SL~2,C! connection gives an equation which is solved by
vanishing of the commutative torsion. Other terms in t
equation seem to vanish on shell, a fact explicitly shown
first order in the noncommutativity parameter.

The paper is organized as follows. In Sec. II we brie
overview the Seiberg-Witten map and enveloping alge
and state some results concerning noncommutative cova
equations. In Sec. III we formulate the commutative se
dual gravity theory from which the noncommutative one
obtained. In Sec. IV the noncommutative theory is form
lated and corrections are computed. Finally, Sec. V conta
our conclusions.

II. NONCOMMUTATIVE GAUGE SYMMETRY AND THE
SEIBERG-WITTEN MAP

In this section, a few conventions and properties of n
commutative spaces will be given for future reference. F
recent reviews, see, e.g.,@25#.

Noncommutative spaces can be understood as genera
tions of the usual quantum mechanical commutation re
04401
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tions, by the introduction of noncommutative coordinatesxm

satisfying

@xm,xn#5 iumn, ~1!

where xm are linear operators acting on the Hilbert spa
L2(Rn), andumn52unm are real numbers. Given this linea
operator algebraA, the Weyl-Wigner-Moyal correspondenc
establishes an isomorphic relation between it and the alg
of functions onRn, with an associative and noncommutativ
star product, the Moyal! product. Thus, the Moyal algebr
A![R!

n is, under certain conditions, equivalent to th
Heisenberg algebra~1!. The Moyal product is given by

f ~x!!g~x![FexpS i

2
umn

]

]«m

]

]hnD
3 f ~x1«!g~x1h!G

«5h50

. ~2!

Under complex conjugation it satisfies (f !g)5ḡ! f̄ .
Since we will be working with a non-Abelian group, w

must include also matrix multiplication, so an * product w
be used as the external product of matrix multiplication w
the! product. In this case, Hermitian conjugation is given
( f * g)†5g†* f †. Inside integrals on closed manifolds, th
product has the cyclicity property Tr* f 1* f 2* f 3* •••* f n

5Tr * f n* f 1* f 2* f 3* •••* f n21. In particular, Tr* f 1* f 2

5Tr * f 1f 2. From now on we will understand that the mult
plication of noncommutative quantities is given by this
product.

Thus, with any expression containing space-time fu
tions, a noncommutative expression can be associated
substitution of the usual product by this * product. Howev
this procedure has the well known ambiguity of the order
of the resulting expression, which could be fixed by physi
considerations. In particular, in the case of gauge theor
we wish to have a noncommutative theory, invariant unde
suitable generalization of the gauge transformations. T
generalization frequently is used to fix, to some extent,
ordering ambiguities.

Let us consider a theory, invariant under the action of
Lie group G, with gauge fieldsAm , and matter fieldsF
which transform under the adjoint representationad,

dlAm5]ml1 i @l,Am#,

dlF5 i @l,F#, ~3!

wherel5l iTi , and Ti( i 51, . . . ,dimG) are the generators
of the Lie algebraG of G, in the adjoint representation. Thes
transformations are generalized for the noncommutative c
nection@2# and for the adjoint representation as

dl̂Âm5]ml̂1 i @ l̂ ,* Âm#, ~4!

dl̂F̂5 i @ l̂ ,* F̂#. ~5!
5-2
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The commutator@A,* B#[A* B2B* A, satisfies the Leibnitz
rule when acting on products of noncommutative fields. D
to noncommutativity, commutators like@ l̂ ,* Âm# take values
in the enveloping algebraU(G,ad) of the adjoint representa
tion of G. Therefore,l̂ and the gauge fieldsÂm will also take
values in this algebra. In general, for some representationR,
we will denote byU(G,R) the section of the enveloping a
gebraU of G that corresponds to the representationR.

Let us write, for instance,l̂5l̂ ITI and Â5ÂITI ; then

@ l̂ ,* Âm#5
1

2
$l̂ I

,* Âm
J %@TI ,TJ#1

1

2
@ l̂ I

,* Âm
J #$TI ,TJ%. ~6!

Thus all the products of the generatorsTI will be needed in
order to close the algebraU(G,ad). Its structure can be ob
tained by successively computing the commutators and a
commutators starting from the generators ofG in the corre-
sponding representation, until it closes,

@TI ,TJ#5 i f IJ
K TK , $TI ,TJ%5dIJ

KTK .

The field strength is@2# F̂mn5]mÂn2]nÂm2 i @Âm,* Ân#;
hence it also takes values inU(G,ad). From Eq.~5! it turns
out that

dlF̂mn5 i ~ l̂* F̂mn2F̂mn* l̂ !. ~7!

We see that these noncommutative transformation r
can be obtained from the commutative ones, just by rep
ing the ordinary product of functions by the Moyal produ
with a suitable product ordering. This allows us to constr
invariant quantities in a simple way.

If we wish to have a continuous commutative limit, th
noncommutative fieldsF̂ must be power series expansio
of the noncommutativity parameteru, starting from the com-
mutative ones,

F̂5F1umnFmn
(1)1umnursFmnrs

(2) 1•••. ~8!

Thus, in such an expansion, the noncommutative fie
will have in general an infinity of independent componen
Moreover, the noncommutative gauge fields will take valu
in the enveloping algebra and, unless the enveloping alg
coincides with the Lie algebra of the commutative theory,
is the case ofG5U(N), they will also have a bigger numbe
of matrix components. As this is also the case for the tra
formation parameters, it will be possible to eliminate a lot
degrees of freedom by fixing the gauge.

In fact, the Seiberg-Witten map@2# establishes a one-to
one correspondence among the physical degrees of free
of the noncommutative fields and the physical degrees
freedom of the commutative fields. This fact is used in R
@19# to construct noncommutative gauge theories, in pr
ciple, for any Lie groupG.

The main point is that the Seiberg-Witten map allows
field dependent transformations. This means that if we co
bine two transformations the gauge parameters will be tra
formed as well. Thus, if for an infinitesimal transformatio
04401
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matrix we have the correspondencel→l̂ the Moyal com-
mutator will not correspond simply to the commutator of tw
transformations but@19#

@l,h#ˆ 5@ l̂ ,* ĥ#1 i ~dlĥ2dhl̂!. ~9!

If we write that there is an expansion like~8! for these
matrices,

l̂5l1umnlmn
(1)1umnurslmnrs

(2) 1•••, ~10!

then a solution for the coefficients can be obtained@2,19#:

l̂~l,A!5l1
1

4
umn$]ml,An%1O~u2!. ~11!

Further, the Seiberg-Witten map determines theF (a)

terms in Eq. ~8!, from the fact that the noncommutativ
transformations are given by Eqs.~4!, ~5! and consequently
Eq. ~7!. These functions in Eq.~8! can be expressed in term
of the commutative fields and their derivatives. For t
gauge fields, one solution is given by@2#

Âm~A!5Am2
1

4
unr$An ,]rAm1Frm%1O~u2!, ~12!

from which, for the field strength, it turns out that

F̂mn5Fmn1
1

4
urs~2$Fmr ,Fns%2$Ar ,~Ds1]s!Fmn%!

1O~u2!. ~13!

For fields in the adjoint representation we have the so
tion

F̂~F,A!5F2
1

4
umn$Am ,~Dn1]n!F%1O~u2!. ~14!

It is well known that these solutions are not unique; oth
terms even depending on continuous parameters can
added to them. In@26# this freedom has been related to th
renormalizability properties. However, it can also be used
order to simplify the structure of the theory@20#. In particu-
lar, it allows one to give simple forms of Eqs.~13! and~14!,
which have the interesting property that if the commutat
fields vanish, the first order corrections will also vanish.
this case, there is a solution for which all higher order ter
of the expansion~8! vanish as well. In fact, for a noncom
mutative fieldF̂, we can always add covariant terms, wi
the same tensor structure asF, and which depend on theta a
least to first order.

These higher order terms can be obtained from
Seiberg-Witten maps for which (]/]umn)l̂(u) and
(]/]umn)F̂(u) are solutions, i.e., from the solutions of th
equations that result from the corresponding gauge trans
mations, given by theu derivatives of Eqs.~10! and ~5!,
5-3
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GARCÍA-COMPEÁN et al. PHYSICAL REVIEW D 68, 044015 ~2003!
umnFdl

]

]umn
ĥ2dh

]

]umn
l̂G

5 iumnS F ]

]umn
l̂ ,* ĥG1F l̂ ,*

]

]umn
ĥG2

]

]umn
@l,h#ˆ

1
i

2
$]ml̂ ,* ]nĥ% D ~15!

and

umndl

]

]umn
F̂5 iumnS F ]

]umn
l̂ ,* F̂G1F l̂ ,*

]

]umn
F̂G

1
i

2
$]ml̂ ,* ]nF̂% D , ~16!

where theumn factor is included in order to take into accou
the antisymmetry inm andn. A solution to this equation can
be obtained@2# from the first order solutionFmn

(1) . Indeed,
from this first order term, by substitution of the commutati
fields by the noncommutative ones, with multiplication giv

by the* product, the full Seiberg-Witten mapped fieldslmn
(1)̂

andFmn
(1)̂ can be constructed. Hence, from Eqs.~11! and~14!,

we have

umnl (1)̂
mn5

1

4
umn$]ml̂ ,* Ân%, ~17!

umnF (1)̂
mn52

1

4
umn$Âm,* ~D̂n1]n!F̂%. ~18!

Now, after some algebra, taking into account the noncom
tative gauge transformations~4!, ~5!, and~9!, we get

umn@dlh (1)̂
mn2dhl (1)̂

mn#5 iumnS @l (1)̂
mn,* ĥ#1@ l̂ ,* h (1)̂

mn#

2@l,h# (1)̂
mn1

i

2
$]ml̂ ,* ]nĥ% D ,

umndlF (1)̂
mn

5 iumnS @l (1)̂
mn,* F̂#1@ l̂ ,* F (1)ˆ

mn#1
i

2
$]ml̂ ,* ]nF̂% D .

~19!

These equations give solutions for Eqs.~15! and ~16!, if the
following identifications are made@2#:

]

]umn
l̂5l (1)̂

mn , ~20!

]

]umn
F̂5F (1)̂

mn , ~21!
04401
u-

which at u50 are identically satisfied. In fact, Eq.~21! is
more general; it is valid also for the connection@2#, and as
well for any field transforming under a linear representatio
From it, together with Eq.~20!, by successive derivation
with respect tou, a solution for all higher terms of the
Seiberg-Witten map can be computed.

Now we see that, if the first order termF (1) vanishes, by

constructionF (1)̂ will also vanish, and consequently in th
caseF50 is a consistent solution forF̂50.

The fact that the components of the noncommutativ
parameteru are constant has the important consequence
Lorentz covariance and general covariance under diffeom
phisms of the underlying manifold are spoiled. The answ
that is usually given to this question is that, at the sc
where noncommutativity is relevant, it is possible that nat
does not have the same symmetries as in the commuta
limit.

III. DESCRIPTION OF SELF-DUAL GRAVITY

One of the main features of the tetrad formalism of t
theory of gravitation@27# is that it introduces local Lorentz
SO~3,1! transformations. In this case, the generaliz
Hilbert-Palatini formulation is written as
*ea

meb
nRmn

ab(v)d4x, whereea
m is the inverse tetrad, and

Rmn
ab(v) is the so~3,1! valued field strength. The decompo

sition of the Lorentz group as SO(3,1)5SL(2,C)
^ SL(2,C), and the geometrical structure of fou
dimensional space-time, makes it possible to formul
gravitation as a complex theory, as in@8,22#. These formula-
tions take advantage of the properties of the fundamenta
spinorial representation of SL~2,C!, which allows a simple
separation of the action on the fields of both factors
SO~3,1!, as shown in great detail in@22#. All the Lorentz Lie
algebra valued quantities, in particular the connection a
the field strength, decompose into self-dual and anti-self-d
parts, in the same way as the Lie algebra so(3,1)5sl(2,C)
% sl(2,C). However, Lorentz vectors, like the tetrad, tran
form under mixed transformations of both factors and so t
formulation cannot be written as a chiral SL~2,C! theory.
Various proposals in this direction have been made~for a
review, see@6#!. In an early formulation, this problem wa
solved by Pleban´ski @22#, where by means of a constraine
Lie algebra valued two-formS, the theory can be formulate
as a chiral SL~2,C! invariant BF theory, Tr*S`R(v). In
this formulationS has two SL~2,C! spinorial indices, and it
is symmetric on them,SAB5SBA, like any such sl(2,C) val-
ued quantity. The constraints are given bySAB`SCD

5 1
3 d (A

C dB)
D SEF`SEF and, as shown in@22#, their solution

implies the existence of a tetrad one-form, which squa
gives the two-formS. In the language of SO~3,1!, this two-
form is a second rank antisymmetric self-dual two-for
S1ab5P cd

1ab Scd, whereP cd
1ab 5 1

4 (dcd
ab2 i« cd

ab ). In this
case, the constraints can be recast into the equivalent f
S1ab`S1cd52 1

3 P1abcdS1e f`S e f
1 , with the solution

Sab52ea`eb.
For the purpose of the noncommutative formulation,

will consider self-dual gravity in a somewhat different wa
5-4
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from the papers@8,22#. In this section we will fix our nota-
tion and conventions.

Let us take the self-dual SO~3,1! BF action, defined on a
~311!-dimensional pseudo-Riemannian manifold (X,gmn),

I 5 i TrE
X
S1`R15 i E

X
«mnrsS mn

1abRrsab
1 ~v!d4x,

~22!

where Rrsab
1 5Pab

1cdRrscd , is the self-dual SO~3,1! field
strength tensor. This action can be rewritten as

I 5
1

2EX
«mnrsS iSmn

abRrsab1
1

2
«abcdSmn

abRrs
cdDd4x.

~23!

If now we take the solution of the constraints onS, which
we now write as

Smn
ab5em

aen
b2em

ben
a , ~24!

then

I 5E
X
~deteR1 i«mnrsRmnrs!d4x. ~25!

The real and imaginary parts of this action must be var
independently because the fields are real. The first part
resents the Einstein action in the Palatini formalism, fro
which, after variation of the Lorentz connection, a vanish
torsionTmn

a50 results. As a consequence, the second t
vanishes due to Bianchi identities.

The action~22! can be written as

I 5 i E
X
«mnrsSmn

1abRrsab~v1!d4x, ~26!

where Rmn
ab(v1)5]mvn

1ab2]nvm
1ab1vm

1acvnc
1b

2vn
1acvmc

1b . From the decomposition SO(3,1)5SL(2,C)
3SL(2,C), it turns out thatvm

i 5vm
10i is a SL~2,C! connec-

tion. Further, if we take into account self-dualit
«cd

abvm
1cd52ivm

1ab , we getvm
1 i j 52 i« k

i j vm
k . Therefore,

Rmn
0i~v1!5]mvn

i 2]nvm
i 12i« jk

i vm
j vn

k5Rmn
i~v!,

~27!

Rmn
i j ~v1!5]mvn

1 i j 2]nvm
1 i j 12~vm

ivn
j2vn

ivm
j !

52 i« i j
kRmn

k~v!, ~28!

whereRmn
i is the SL~2,C! field strength.

Similarly, we defineSmn
i5Smn

10i , which transforms in the
SL~2,C! adjoint representation. From it we get,Smn

1 i j 5

2 i« k
i j Smn

k . Thus the action~26! can be written as a SL~2,C!
BF action
04401
d
p-

m

I 5 i E
X
«mnrs@Smn

10iRrs0i~v1!1Smn
1 i j Rrs i j ~v1!#d4x

524i E
X
«mnrsSmn

iRrs i~v!d4x. ~29!

Therefore, if we choose the algebra sl(2,C) to satisfy
@Ti ,Tj #522« i j

kTk and Tr(TiTj )522d i j , we have that Eq.
~22! can be rewritten as the self-dual action@22#

I 52i TrE
X
S`R, ~30!

which is invariant under the SL~2,C! transformationsdlvm
5]ml1 i @l,vm# anddlSmn5 i @l,Smn#.

If the variation of this action with respect to the SL~2,C!
connectionv is set to zero, we get the equations

Cm i5«mnrsDnSrs
i5«mnrs~]nSrs

i12i« jk
i vn

jSrs
k!50.

~31!

Taking into account separately both real and imaginary pa
we get, in terms of the SO~3,1! connection,

«mnrsDnSrs
ab5«mnrs~]nSrs

ab1vn
acSrsc

b2vn
bcSrsc

a!

50, ~32!

which after the identification~24! can be written as

«mnrs~]ner
aes

b2]ner
bes

a1vn
acerces

b2vn
bcerces

a!

5«mnrs~Tnr
aes

b2Tnr
bes

a!50. ~33!

From this the vanishing torsion condition once more appe

IV. THE NONCOMMUTATIVE ACTION

We start from the SL~2,C! invariant action~30!. From it,
the noncommutative action can be obtained straight
wardly as

Î 52i TrE
X
Ŝ`R̂. ~34!

This action is invariant under the noncommutative SL~2,C!
transformations

dl̂v̂m5]ml̂1 i @ l̂ ,* v̂m#, ~35!

dl̂Ŝmn5 i @ l̂ ,* Ŝmn#. ~36!

Actually, in order to obtain the noncommutative genera
zation of the Einstein equation, we could consider the r
part of Eq.~34!,
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I Ê52 i TrE
X
@Ŝ`R̂2~Ŝ`R̂!†#, ~37!

which is also invariant under Eqs.~35! and ~36!.
In order to obtain a result corresponding to the tors

condition, av variation of Eq.~34! must be done. Although
we are considering the commutative fields as the fundam
tal ones, the action is written in terms of the noncommutat
ones. Furthermore, the relation between the commutative
the noncommutative physical degrees of freedom is on
one@2#. So the equivalent to the variation of the action w
respect tov will be the variation with respect tov̂. Thus we
write

dv̂ Î 58i TrE
X
«mnrs~]rŜmn2 i @v̂r,* Ŝmn#!* dv̂s50,

~38!

from which we obtain the noncommutative version of E
~32!:

Cm̂5«mnrsD̂nŜrs50. ~39!

These equations are covariant under the noncommuta
transformations~35! and ~36!, which means that thei
Seiberg-Witten expansion should be similar to that of a m
ter field in the adjoint representation~14!. In this case we
would have that, if the commutative field vanishes, the fi
order term of the noncommutative one will also vanish.
this happens, as shown at the end of Sec. II, all the hig
orders vanish as well. Thus, we could expect that a solu
to Eq. ~39! would be given by the solution of the commut
tive equationCm50. Making use of the ambiguity of the
Seiberg-Witten map, we make the following choice forŜ:

Ŝmn5Smn2
1

4
urs@$vr ,~Ds1]s!Smn%2$Rmn ,Srs%#

1O~u2!, ~40!

from which it turns out that
04401
n

n-
e
nd
to

.

ve

t-

t
f
er
n

Ĉm5Cm2
1

4
unr@$vn ,~Dr1]r!Cm%2$Rnr ,Cm%

22dn
m«stuzDs$Rtu ,Srz%#1O~u2!. ~41!

Hence, if the zeroth order terms vanish,Cm50, then the first
two terms in Eq.~41! will vanish. These equationsCm50
are equivalent to setting the commutative torsion equa
zero, that is, after the substitutionSmn

ab5em
aen

b2en
aem

b ,
their solution is given by

vm
ab52

1

2
eanebr@emc~]ner

c2]ren
c!2enc~]rem

c2]mer
c!

2erc~]men
c2]nem

c!#. ~42!

Furthermore, at first order, a computation of the last te
in Eq. ~41! shows that it is proportional toumn]r(e21Gn

r),
whereGmn is the Einstein tensor. If we now substitute E
~42! back into the action~37!, the equations of motion to
zeroth order will give the vanishing of the Einstein tens
and the last term in Eq.~41! will be automatically satisfied.
In order to explore more general, theta dependent soluti
to first and higheru orders, a more detailed and involve
analysis is forthcoming@28#.

With this in mind, the corrections to the noncommutati
action ~37! can be computed as follows. First we write th

Seiberg-Witten expansion of the SL~2,C! fields Ŝ and v̂.
Furthermore, the commutative SL~2,C! fields are written by
means of the self-dual SO~3,1! fields, vm

i5vm
10i and Smn

i

5Smn
10i . Then we decompose these self-dual fields into

real ones vm
ab and Smn

ab and then substituteSmn
ab

5em
aen

b2en
aem

b and write the connection as in Eq.~42!. In
this case we have a noncommutative action that depe
only on the tetrad.

If we consider the real part, as in Eq.~37!, the first order
correction vanishes, and, after a lengthy calculation, the s
ond order one turns out to be, already written in terms
commutative SO~3,1! fields,
Î u25
1

24
ugdutjE d4x@4e$4Rd

r~Rrt
abRgjab2vt

ab]jRrgab!1vg
rs]tvd

ab]jRrsab1R]d@vt
ab~]jvgab1Rgjab!#

12vg
rs]d~Rrt

abRsjab2vt
ab]jRrsab!%1emnrs

„4e@egdabRrs
ab~Rmt

abRnjab2vt
ab]jRmnab!

12etjabRmn
abRrsabRgd

ab#1eabcd$4Rrsgd~Rmt
abRnj

cd2vt
ab]jRmn

cd!14Rmn
abRrs

cd@2Rgdtj2vte f]j~eg
eed

f !#

22vgmn]d~Rrt
abRsj

cd2vt
ab]jRrs

cd!22vg
e fRrse f]d@2Rmn

abet
cej

d2vt
ab]j~em

cen
d!#

22vg
abRrs

cd]d@2Rmntj2vte f]j~em
een

f !#2vgmn]tvd
ab]jRrs

cd2vg
e fRrse f]tvd

ab]j~em
cen

d!

2vg
abRrs

cd]tvde f]j~em
een

f !24Rmn
e fRrse fvt

ab]j~eg
ced

d!%…#, ~43!
5-6
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where the connectionvm
ab is given by Eq.~42!. From these

correction terms, the explicit computation of deform
known gravitational metrics could be done.

V. CONCLUSIONS

In this work we propose an ansatz to obtain a noncomm
tative formulation of standard four-dimensional Einste
gravitation. We start from a self-dual SO~3,1! BF action,
which is equivalent to Einstein gravitation after substituti
of the B field in terms of the tetrad. This action is reform
lated as the chiral SL~2,C! invariant self-dual action~30!,
from which the noncommutative action~34! is straightfor-
wardly obtained. This chiral action allows us to find an
ternative noncommutative gravity action in four dimensio
which generalizes the usual general relativity~37!. As men-
tioned, there are other proposals already introduced in
literature@14–17#. In our proposed action the noncommut
tive spin connection variation gives the noncommutat
‘‘torsion condition’’ ~39!, which seems to be solved, at an
order, by Eq.~42!, as explicitly shown to first order. Thi
allows us to introduce the tetrad at the commutative leve
a consistent way~24!. For this solution, the second orde
corrections to the action are computed after laborious alge
@Eq. ~43!#. More general,u dependent solutions for the sp
connection, as well as the consequences of the higher o
terms corresponding to the last term in Eq.~41!, will be
studied elsewhere@28#.

In the process we have used the results from@19,20#, de-
rg

’’

y

J.

’’

’

l

04401
-

-
,

e

e

n

ra

er

veloped there to construct the noncommutative versions
the standard model and grand unified theories. In the pre
paper, the Seiberg-Witten map for matter fields in the adjo
representation of any gauge group has been constructe
order to get the Seiberg-Witten map for theS field.

The physical consequences of the noncommutative ex
sion of standard general relativity remain to be studied.
interesting possibility seems to be the study of inflation
this model. It is well known, in a very different physica
setting, that the trace anomaly that leads to higher deriva
corrections in the corresponding effective action could p
duce inflation@29,30#.

Finally, the results presented here can be regarded
preliminary step for the construction of a noncommutat
version of the Ashtekar Hamiltonian formulation through
noncommutative Legendre transformation. Moreover,
would be interesting to search for a quantization of the
sults obtained in the present paper and proceed to find
corresponding loop quantum gravity. Furthermore, the co
putation of noncommutative gravitational effects can
done, for instance, from the corrections to known metri
Details of work in these directions will be reported els
where.
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