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Collapse of charged scalar fields
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We explore numerically the evolution of a collapsing spherical shell of a charged, massless scalar field. We
obtain an external Reissner-Nordsirgpace-time, and an inner space-time that is bounded by a singularity on
the Cauchy horizon. We compare these results with previous analyses and discuss some of the numerical
problems encountered.
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[. INTRODUCTION Cauchy horizon is replaced by a weak, null singular segment
connected to a space-like singularity at the origiig. 2). In

The most general analytic, stationary, and asymptoticalljhis work we follow the evolution of a charged matter shell
flat solution of the Einstein equations is the Kerr-Newmanthat collapses to form a black hole, and determine the final
metric, which is characterized by three parameters—mass$tructure of the inner metric, and the Cauchy horizolawe
Charge and angu|ar momentum. The no-hair thec[[dmug- values of advanced time, deep inside the black hole interior.
gests that at asymptotically late times after the collapse of a In Sec. II, we formulate our basic equations, starting from
massive body to a black hole, the external metric of the blackhe gauge-invariant Lagrangian of the complex scalar field
hole relaxes to the Kerr-Newman metric. However, the finaland casting these equations into the double-null coordinate
state of the inner region is not generally determined and hasystem. In Sec. Ill we discuss the numerical scheme, its ac-
been the subject of research for some time. Also, it is of
interest, especially to gravitational wave astronomers, to pre:
dict the specific details of the relaxation of the “hair.”

This appearance of a timelike singularity and a “chain” of
asymptotically flat regions in the maximally extended
Reissner-Nordstra metric (Fig. 1) (and also in the Kerr
metric) opened up the discussion of the existence and stabil-
ity of “wormholes.” The Reissner-Nordstrm metric is prob- %
lematic as a realistic black hole picture because the part o
space-time that lies in the future of the Cauchy horizon is
unpredictable by a set of Cauchy initial conditions given on
a spacelike surface in the asymptotically flat region. This
happens because events in the region beyond the Cauct
horizon are in causal connection to the timelike singularity.

Consequently we would expect that in a dynamic collapse
the space-time will not extend beyond the Cauchy horizon,
but would rather be bounded there by a singularity of some
sort. This scenario was predicted by Penrf@eas early as
1968. The physical mechanism leading to this singularity is
known as the “mass inflation” scenarfd], and is connected
to the infinite blueshift of in-falling radiation on the Cauchy
horizon.

Previous result§5-7] concerning the stability of the
Cauchy horizon were acquired either by linear perturbation
theory or by numerically evolving a neutral perturbation col-
lapsing on a preexisting Reissner-Nordsirdolack hole
[8—1Q]. The latter model is relatively easy to solve numeri-
cally since it does not contain charges and dynamical elec:
tromagnetic fields, but on the other hand it does not give the
complete picture of the evolution of the black hole and the
Cauchy horizon beginning with a flat space-time. Previous
work dealing with a fully dynamical charged collapse model
[11-14 focused mainly on the behavior near the origin and
outside the horizon, i.e., at relatively Iarge values of retarded F|IG. 1. A Penrose diagram for the maximally extended
time but moderate values of advanced time, on the ordeRreissner-Nordstra space-time. The Cauchy horizon is marked as
10M. These works indicated that in a charged collapse the=r_; the event horizon as=r, (courtesy Ref[2]).

.- -

0556-2821/2003/68)/04401312)/$20.00 68 044013-1 ©2003 The American Physical Society



Y. OREN AND T. PIRAN PHYSICAL REVIEW D68, 044013 (2003

',._0' where we definé=,,=A,. ,—A,.,. We are dealing with a
=t massless field so we will omit the middle term from now on.
From this Lagrangian we can derive the Euler-Lagrange
equations for the scalar and electromagnetic field, and also
the energy-momentum tensor to be used in the Einstein equa-
tions. The wave equations for the scalar field are

0920+ 1€ A0 (24 HieAnih) +ieAgpg®Py=0, (2)

and its complex conjugate. The Maxwell equations take the
form

1 _ _ _
ZFab;cgbC"" ie(//( ‘//;a_ ieAal//) - iel//( ’//;a+ ieAa‘//) =0.
3

The energy-momentum tensor is given by

1 - — 1 — =
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=0 e
+aeApy—pieAg) + EFachdgc

— 1
+ ezAaAb';b‘/H' Eﬁgab . (4)

We choose thé€2+2) spherically symmetric, double-null
coordinate system. The line element in these coordinates can
be written as

ds’=—a(u,v)?dudy +r(u,v)?dQ?, (5)

with r being the area coordinate. Note that any coordinate
gauge of the formu—f(u),v—g(v) will preserve the null
character ofu andv. We will fix this gauge freedom later
FIG. 2. A Penrose diagram for a charged collapse scenario. Thghen discussing the initial conditions.
qashed lines indicate singularities along the origin and Cauchy ho- \ve need also to fix the gauge freedom of the electromag-
rizon (courtesy Ref[2]). netic field A, . In our symmetry and coordinate choice the
only nonvanishing components &f are F,,=—F,,. This
curacy and the difficulties that arise in this kind of calcula-means that onlyA, and A, may be nonzero. We can elimi-
tion. In Sec. IV we discuss the numerical results and theihate one of these using the electromagnetic field gauge free-
implications regarding several aspects of black hole physicsiomA ,—A ,+®.,,, where® is an arbitrary scalar function.
such as mass inflation, cosmic censorship, wave tails and thgle choose to eliminaté,, by taking®=— A, dv, and so
no-hair theorem, and the nature of the Cauchy horizon singe are left withA = (A,,0,0,0). We shall call this quantity
gularity. a=A, from now on.
We now proceed to write our equations in an explicit
form. We begin with the Maxwell equations. Since we re-
IIl. FORMULATION OF THE PROBLEM duced the potential to one component using the gauge free-
A. The equations dom, we need only one equation for this field. Equati®ns
a vector equation with two nonvanishing componantnd
v, and we may choose either one to evolve the electromag-
netic field. We choose the component, and will use the

We begin with the gauge-invariant Lagrangian for the
complex scalar fields and the electromagnetic gauge field

A, [15] component later when checking charge conservation.uThe
m2 component then becoméwe are using from now on the
L= — (ot ieAh) G (Fo— i€ At — ﬁdﬂ// conventionZ , = 9Z/ Ix*)
1 o) s Dot a - dip=0.  ®
— =ierw (Y, — ip,)=0.
- gFachdgacgbd: (1) a2 v 2
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We define

()

and thus separate théd%order equation for into two sim-
pler 1% order equations:

q,=2miear? (Y, — dip,). ®)

The functiong(u,v) defined above is the amount of charge
within (i.e. at smaller radii thgra sphere of radius(u,v) on
some spacelike hypersurface that containg J.

The mutually independent elements@®f,, read

2, ,— ar
GUUZZ utu uu

arl

2a,r

v arl

v

arl

vv

G,,=2

a?+4r r, +4rr,
2r2

uv

rlaya,—rlaa,,—arr,

C¥4

Gpo=4 9)

By combining Eq«(9) and the Einstein tens@,, we arrive
at the field equations

«a, —_
rUU—ZrUE+4wrwv¢U=O

ruu_zru%+4ﬂ-r[lu‘//u+iea( IPEU_EEDU)'FGZE‘ZE’;HZO

2

a®  acq
rruu+ruru+7_ 4r2 =0
2~2
ay, aua, Iy, a™q — —
o - o2 +—+ art +2m(Yyib, + )

+2miea(yip,— iy, ) =0. (10)
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s=\amy

W=s,,
(12

Rearranging and substituting we arrive at the following set of
equations:

2 242

. o o q .
El: rry,+fg+ 7 e (133
E2: (Ina) fg_ o a2q2+1( 2+ W2Z)
: nNa)y,————+——+5(wztwz
Woy2 g2 ppt 2
1.
+§|ea(sz—sz)=0 (13b)
a, —
C1l: gv—2;g+rzz=0 (130
ay — . — — —
C2: fu—sz+rww+|ea(sw—sw)+e2azss
(13d
M1 % (138
Do, ——=
2r2
M2: q,— Eierz(s?—Ez):o (13f)
_ _ g
S rqu+fz+gw+|earz+|eags+|eTs=0.
(139

B. The initial conditions

Having specified the equations to be solved, we turn to
discuss the formulation of the initial conditions. The physical
situation we wish to describe is the gravitational collapse of
a shell of in-falling charged matter. We choose the domain of
integration to be a rectangle in the--v plane (see Sec.

11l B, where we describe the numerical schem&e can ex-
pect the event horizon to be inside the domain of integration,
but not the Cauchy horizon since it is located at infinite null
coordinatey (we are not using Kruskal-like coordinajegve

can however approach the Cauchy horizon asymptotically at
large values ob.

When we come to specify the metric functions on the

Finally we evaluate the wave equation and arrive at the forninitial hypersurface, we must fix the coordinate gauge free-

2
o
r¢UU+ru¢U+rku+iearzpv+iearvzp+ie4—rq¢=0.

(11)

We are now in a position to write down the full set of

dom mentioned in Sec. Il A. In a Minkowsky space-time we
usually choosei=t—r,v=t+r. Space-time around a gravi-
tating spherical shell is flat in two regions—inside the shell
and at asymptotically large radii. Since we have one con-
straint equation, Eq(130), that relates, a and the scalar
field on the initial hypersurface, we can choose two of these

equations to be solved. For this purpose we introduce somiinctions arbitrarily. We would like to taketo be linear with

new notations:

v in order to reflect the fact that we start our integration far
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from the event horizon, where the metric is nearly flat. The =0 singularity %

fact that this is only an approximation will be pronounced by N\ Yy,
the deviation ofa from its flat-space value. We can further S °°%,>.
specify the shape of the matter shell on the initial hypersur- & s
face, and integrate Eq130 to obtain « on that surface. .
Using the conventional flat-space dependencer ain u

andv, v
4

Domain
of integration

Ui~ U;
2 1

ri= (14

we conclude thag);=0.5, and given an initial distribution of
the scalar field that we will soon elaborate on, we get from
Eq. (130 the following ordinary-differential equation fat:

initial
pulse

%

$
3

.

nonsingular origin r=0
N

—~=rzz. (15)

We choose for the initial field distribution a compactly sup-

ported function, which is basically one half period of a co-

sine. Studying Eq(13f) we see that in order to have a non-

vanishing charge distribution we must use for the real and
imaginary parts of the field two pulses offsetdnby some

amount. The exact form we choose is u
( 0, vi>v>vy
_ 2
Res;]=1 1+ co{ Wv UC) FIG. 3. lllustration of the domain of integration in relation to the
Ar Av <y expected structure of the space-time. The Cauchy horizon cannot be
L 2 V1SUSU2 actually included in the domain because it is in null infinitpur-
tesy Ref.[16]).
( 0, vi>v>v, o _ _
) 2 For monitoring the mass content in our space-time we use
Rds,]= 1+co WU_Uc the mass function
=
) Av’ , , )
Ai v1<v<v,. r q rafy
| 2 m(uv)=5| 1+ +4—-|, (18)
(16) 2 r @

Having specified the two fieldsands on the initial hyper-  which represents the total mass in a sphere of ratiug).
surface, we can analytically derizeandg (which are simply

g=3 andz=4s/dv), and numerically integrate the remain- IIl. THE NUMERICAL SCHEME
ing quantities, «, a, g andw using Eqs(13a), (130, (13e, _ _ _
(13f), and(13g), respectively. A. Domain of integration

We also need to specify the boundary conditions on the The main consideration in choosing the domain of inte-
ray v=v;. Since the metric on the boundary, which is al- yration is whether or not to include the origin. The origin
ways in_side the collapsing shell, is fla_t, we can select thgyij pe important when discussing critical phenomdna],
conventional flat-space values for the fields there: however, we are only interested in effects that occur at large

values ofv and at a finite radius, so we can choose the

r= vi— Ui domain to be a rectangle as shown in Fig. 3. The advantage
2 of this approach is that the origin, while being regular, is a
coordinate singularity, and this would force us to make a
a=1 series expansion of the fields near the origin in order to
maintain numerical precision.
s=z=q=A=0. (17

In selecting these values for the metric functions on the B. Numerical algorithm

boundary we specify the physical meaning of the metric We construct a 2-dimensional grid in tlweu space and
functions: The choice ofw implies that (4+v)/2 is the integrate in increasing andu direction. Since our equal-
proper time for an observer located at the origin, whiie  coordinate surfaces lie on the light cone, there are no
the proper surface area of a sphere of a rad{usv). Courant-like stability limits on the step size. We implement a
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FIG. 4. Adaptive grid refinement. The left figure features the development along a typical grid, showing how most of the
computational effort is concentrated at the neighborhood of the horizon. The figure on the left is the diffaresbewing that\u changes
by many orders of magnitude.

Runge-Kutta-like scheme by making a trial step to thechange in the area coordinatewe have to make the grid
middle of the cell and using this information to make 2 denser as we approach the horizon. The step size has to
order full step. We have found this scheme to be simple andecrease with the distance form the horizon. This decay turns
efficient. out to be exponential, and the exponent increases as we in-
We use Eq(13a to evolver, f, andg. Equation(13b) is  creaseym,y. It would be best to change bottu andAv as
used to evolver, and Eq.(13g) evolvess, z, andw. Finally  \e approach the horizon and reach large valuas éspec-
Egs.(13¢ and(13f) evolvea andg, respectively. Note, that tjyely, but we choose in this work to change oty because
this scheme is a free evolution scheme, since only the dygile this is significantly simpler to implement, it gives rea-

namical equations are used for evolving the space-time. Thgynapie results. The choice of having the refinement algo-
constraint equations are used for monitoring the accuracy. fithm maintainAr/r constant, instead of some other local

indicator of accuracy, is not trivial and was made after trial
and error indicated that it was the best strategy, and also
A major problem in black hole numerics is the behaviorbecause r is always finite in the region of interest so it pro-
near the event horizon. Although the double-null coordinatesides a good scale for measuring error. This scheme dictates,
we have chosen ensure regularity of the fields even as wkr relatively high values of ,,,~100M, a condensation of
cross the horizon, there is nevertheless a fundamental diffabout 10 orders of magnitude iu in the vicinity of the
culty in following the evolution numerically because of the event horizon relative to the initial value afu. This is
physical behavior near the horizon. Consider two outgoing|iystrative of the difficulty in numerically crossing the event

null rays starting at the origin, slightly above and below theporizon at large values af. Figure 4 shows an example of
event horizon. One is destined to escape to infinity while thgo evolution ofAu on a typical space-time.

other will remain trapped inside the horizon. This means that
regardless of how close the two rays were initially, their
distance will diverge as their advanced timegrows. The
numerical implication is that the metric functidn=r di- Our first test would have been a comparison of the nu-
verges along the event horizon, anbecomes “discontinu- merical results with a known analytical solution. Unfortu-
ous” asymptotically. If we want to maintain a fixed relative nately, there are no suitable analytical solutions. Therefore,

C. Adaptive grid refinement

D. Numerical tests

044013-5



Y. OREN AND T. PIRAN PHYSICAL REVIEW D68, 044013 (2003

x 10 x 10
T T T T T

22 =

051 1.39

o /
16k 1.37/

1.36
14f

sr

1.35

(3]

100 100.5 101

12fF

al 08|

0.6

795 800 805 810 815 820

15 n n . n n
200 400 600 800 1000 1200 1400
v

0.4 &

-250 -200 -150 -100 -50 0 50 100 150
u

FIG. 5. Regy— i) and 4Re.(1127$3) for the real part of the FIG. 6. The maximum constraint error along outgoing rays
scalar field on one of the outgoing rays. The two curves are almost ;
T . . max,(C,), max,(4C,) and may(16Cs) as a function ofu on the
indistinguishable, which shows that the scheme converges nicely to ) e . -
2nd order same 3 grids as in Fig. 5. The three curves are again almost indis-
' tinguishable, showing that the constraint violation displaj/ @-
der convergence to zero. The initial error in the constraint grows
we will have to check our code by other means. We begirwith u because of unavoidable accumulation of numerical errors.

with a test of convergence, i.e. we verify that the various Finall b that alobal d ch
fields converge to some value in the expected order of con- inally we observe that giobal mass and charge are con-
served. Actually this is not exactly the case since some of the

vergence. we evolve.the same mma[ condlt_|9n_s, on thre(?ield is scattered by the gravitational and electromagnetic
grids, g, 92 a_ndgg which have fixed grid densitiein both potential as the shell approaches its gravitational radius, but
uandv directions dy, 2d, and 4. We need three grids s s in most caseévhen Q<M) an insignificant amount
because we do not know the exact solution, S0 we can Comynq the conservation laws seem to hold. Figure 7 shows the
pare only the relative error. In Fig. 5 we plot, for example, ,assM and the charg® at the last gridpoint vai. Also

the functions Ref;— ) and 4Ref,—y3). We expect, ghown isQ’ which isQ compensated for the charge lost at
and verify, that the two curves be nearly but not exactly thene |ast grid point due to outgoing flux:
same, because higher order terms also have a small contri-
bution to the error. The data in this figure is from a single
row (u=const) but it is representative of the entire grid.
Although convergence is crucial, it still does not guaran-
tee that the results are correct, because if thereisanerrori  «f___ = = LT e
the equations, either in the original equations or as they are °%f M i
implemented in the code, the scheme will still converge but zoc: |
to the wrong solution. We are in a unique situation where the 3 osl i
constraint equations provide us with a measure of consis- o7t S
tency. The Einstein equations preserve the constraints, in th  °7f 5
sense that if the initial conditions satisfy the constraint equa- °® % =5 = =25 =2 5 1 05 0 o5 1
tions, then they will be satisfied also under evolution of the
dynamical equations. This is true analytically, but since our ‘ : ; . . -
solution is numerical we cannot solve exactly either the con- oo} 1
straint equations on the initial hypersurface or the dynamical oosr
equations through the evolution. Therefore we can only de-:‘; 0.02f deliald 1
mand that thearror in the constraint will converge to zero as g ooif 1

[}

we make our solution more accurate by condensing the grid~ © e
. stepsize-0 L . . . _001} ]
i.,e. C——— 0. This is verified in Fig. 6. o ~ —~ - . :

Next we check that our code reproduces known features, u
such as the location of the horizons, mass and charge con- gy 7. Global charge and mass conservation. Upper figis:
servation etc. Comparing the location of the horizons to thene chargey(u,v), Q' is the charge compensated for the outgoing
Reissner-Nordstra solutionr..=M*{M“—q*, we find a current density at the last grid poifautgoing fluy. Lower figure:
correspondence of about one part ir® I&tween the com- the relative change 2Q/Q, and 1-Q’/Q,, which is four orders
puted and expected radii. of magnitude smaller.

Q’(u)=Q(u)+furz(u’,vmax)Ju(u’,vmaX)du’, (19

Up

1
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FIG. 8. Right panel: The metric functianvs v for several outgoing null rays, on 3 different grids, ; with grid spacing 4, 2h, and
h respectively. The three grids are compared to a solution extrapolated from them, taking into accouitdtie convergence. This
solution is much more accurate than the three others and can be taken to as the “accurate” solution for the purpose of comparison. The 4
curves are almost indistinguishable. Left panel: detail of the leftmost ray.

which follows from the conservation equation for the elec-
tromagnetic current,

J“=0, (20)

The next test is charge conservation. We can see in Fig. 9
that the charge conservation error is less than*1for the
most dense grid. We can also see that the error converges to
zero. These results are taken from refined grids, because in
this case we are not comparing rows against each other so we

It should be noted that the mass inside the domain of
integration is not generally conserved, since the reflectec
waves carry off some mass, as well as charge. The subject ¢
mass conservation is more delicate than charge conservatic
since the total mass contains also the energy momentum ¢
the gravitational field, which does not enter into the Noether
current related to the energy-momentum tensor. We will re-
frain from dealing with this topic here.

E. Numerical error °

To summarize, we can obtain a measure of the relative
numerical errors from the tests we discussed. The first test it
to use the convergence test and compare the difference in th
fields between different grids. There is a difficulty here be-

35

25

0.5

0

cause this test can only be performed without using adaptive -os

grids. This substantially limits the precision that can be at-
tained in this test, but as Fig. 8 illustrates, even with this
limitation we get good results>~10"3 maximum relative

error. As we indicate below, the error will be lower by an

044013-7

-1

4

,
-2

-1

FIG. 9. 1-Q'/Q, for three different grids va. The dashed line
order of magnitude or more if we employ the grid refinementindicates the position of the event horizon. The legend indicates the
algorithm. relative step size used in each grid.
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FIG. 10. The relative error in the constraint, A =
—B)/\((A+B)?),) vs u. The three curves are for the same 3 grids 1o}
as in Fig. 8.

100

do not need to match rows exactly in thevalue. This test
was done withy ;.= 20M. In this case the same calculation  sof
on an unrefined grid gave an error larger by an order of
magnitude. This ratio will be larger as we increasg,y, E
making the use of grid refinement more and more crucial.  *

The last test we perform is constraint violation. We can s}
split Eq. (130 in Eqg. (12) into two terms and compare their
relative error:

A=g — 222 21
_gvi ;g ( )

L L ' L '
0.57 0.572 0.574 0.576 0578

FIG. 11. Null rays. The top figure shows the entire domain of
integration and the three classes of rays: type-1 rays reach null
infinity, type-2 approach the Cauchy horizon and type-3 terminate
Now we can take |&|—|B|)/(|A|+|B|) to be the relative at the singular origin. The dashed line signifies the approximate

location of the apparent horizon. The two lower figures focus on the

error. However there is a problem sin¢&|+|B| has no .- . .
definite scale and it often intersects zero, so the error behavc\a/!s(f inities of rays approaching the Cauchy horiz6eft) and the

very badly. Therefore we will compareA¢-B) in eachu event horizon(right.
=const segment to the rms. oA B) along the same seg-
ment. The results are given in Fig. 10, and show a maximum
error level of~10"° in the finest grid used. The cosmic censorship conjectUrs] states that all sin-
gularities in nature are contained within an event horizon, so
there are no “naked singularities.” It follows from this that it
IV. RESULTS is impossible to overcharge a black hdle. to increase its
charge-to-mass ratio above 4ince there is no black hole
solution with this ratio. It is interesting to check if this holds
We begin Fig. 11 with a null-ray diagram giving an over- in our collapse scenario by increasing the initial charge of the
view of the space-time. The diagram shows the formation otollapsing shell. It can be seen in Fig. 12 that, for a certain
an event horizon and then a Cauchy horizon at asymptotinitial configuration, as we increase the coupling constant e,
cally largev. Looking closely at the null rays approaching and with it the initial charge to mass ratio, the final black
the Cauchy horizon we see that it is not stable, as théole charge-to-mass ratio reaches a maximal value smaller
asymptotic ¢ —«) value ofr decreases as increases. Fi- than 1 and then decreases. The physical mechanism that
nally at large enough values of the rays reach the origin causes this behavior is the electrostatic repulsion of the outer
(r=0), which signals the appearance of a spacelike singuparts of the shell, which increases relative to the gravitational
larity. pull they experience as the charge increases, and causes them

B=—rzz (22

B. Charge dynamics

A. Formation of the black hole
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FIG. 12. The charge to mass ratio on the event horizon for FIG. 13. The dynamical ejection of excess charge. Most of the
different initial conditions. charge is removed well before the shell reaches the hofzpper
edge,u~250), atu~150.

to be reflected back towards large radii at the early stages @frst term in Eq.(23) is an oscillation term with angular fre-
the collapse and radiate part of the initial charge away. Thiguencye Q/r. The second term is a power-law decay of the
can be understood as a scattering process, where at eagdld magnitude. Typically the field magnitude on the horizon
instant in time the shell encounters some potential barriepegins to decay with quasi-normal ringitexponentially de-
with certain reflection and transmission coefficients. As longcaying oscillations which decays exponentially. Then the
as the charge-to-mass ratio will be greater than unity, n@ower-law tail sets in and continues to asymptotically large
horizon will form, and charged matter will be able to escapeadvanced time where it dominates the behavior of the field.
Ordinarily the charge and mass become equal some finit€his can be clearly seen in Fig. 14.
time before the shell crosses its gravitational radius and a The above expression for the oscillation and power law
Horizon forms, so the final charge-to-mass ratio decreasggdex were checked over a range of the paramet@y by
further and ends up smaller than unity. changinge and leaving all other parameters constant. The
This process can be seen by inspecting the movement (pesults in Fig. 15 show good correspondence with both terms
charges on the computational grid. The outgoing current deri Eg. (23).
sity, in our coordinates, is proportional to theomponent of
the 4-current,, . Note that this is a matter of interpretation
since normally the charge density would be the timelike We now turn to examine the behavior of the space-time
component of the 4-current, and the current density would baear the Cauchy horizon. First we try to verify that null rays
the spacelike component. In our coordinate systeand v
are both null, but we treat and u as the “spatial” and i
“temporal” coordinates because we are dealing with an in- 10'¢ E
falling shell. Figure 13 shows a contour of this quantity for
the caseQy/My=1.7 . 1ok

D. The Cauchy horizon

C. Wave tails -

Next we observe the mechanism behind the no-hair theog \
rem, mentioned in Sec. I. We inquire how the black hole z | H( | (\“ -
radiates away the hair, i.e. any feature of the collapsing mat " y \ | \ ‘\ Hl fm e
ter except its charge, mass and angular momentum. We war | . '
to compare this decay to theoretical results predicting a cer-
tain power law decay of the tails at late times. Note that we
perform this analysis along the event horizon, which is a null ¢ 3
hypersurface with a constant radius. Hod and Pijids8) pre-
dicted in this case the following behavior on the horizon: ; m

10° 10
v

107 F

_aleQlr -B. =1+ + 2_ 2
y~e 0T B=1+3(2141)°-4(eQ% (23 FIG. 14. Atypical configuration of the scalar field amplitude on

. _ _ the horizon, showing quasi-normal ringing followed by a power-law
wherel is the multipole moment of the scalar perturbation. Indecay(the “tail” ). The thick line is the amplitude of the field, the

our casd =0 because we deal with spherical symmetry. Thethin line is the absolute value of the real part of the field.
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181 E

16 b

power law

14 1

and

log(v)

FIG. 16. The behavior of , along a null ray approaching the
Cauchy horizon. The power-law decay can be seen clearly at late
J times.

inner horizon. For a static Reissner-Nordstrdlack hole
. this is given by[9] Eqg. (24), and it agrees numerically to
about 10—-20 % with the measured exponent,

eQ/R+, w

(24)

] The singularity also manifests itself in the Ricci curvature
_ scalar,R. The Ricci scalar is a purely geometrical entity,

0 0. 02 03 04 05 06 07 08 which can be written only with the metric functions and their

eQ . . . .
derivatives. However, we can use our dynamical equations to

FIG. 15. Upper figure: The real part of the power law index for express this quantity through the physical fields in the prob-
spherical charged perturbations vs the theoretical prediction. Lowdem. We arrive at this form:
figure: The phase oscillation frequency vs the theoretical value,
eQir™. ofF 7 y y T T T y y T T ™

of type-2 actually reach an asymptotically fixed radius, rather %[
than assuming a course that would ultimately bring them, ats
very large values of, to the origin. In order to do this we £ [ |
must extend our domain of integration, so that we can ob-£
serve the decay af, over at least one order of magnitude
and establish the asymptotic behavior. In Fig. 16 and Fig. 17e
such an analysis is made, showing that-v ~2. This con-
firms the existence of a Cauchy horizon. _
The next thing we want to know is whether the Cauchy
horizon is singular, and if so, how much. One indication of ag 8
singularity is an exponential divergence of the mass function.
This can be seen in Fig. 18, for a typical space-time. This -25¢
divergence is dominated by an exponential decawy ofith
v, which makes the mass function diverge exponentially, be- o o 7 & % 00 1o 0 1o
cause it depends amasa 2. This can be interpreted physi- v
cally as an infinite blue shift of in-falling radiation at the  FiG. 17. The local power-law index of, at the approach to the
Cauchy horizon, since is alsogy, if we shift to a time-space  cauchy horizonr, behaves likew 2 at largev, signifying thatr
(1+3) coordinate frame. The theoretical prediction for massitself approaches a constant valuewas'. The noise at large is
inflation is m~e*?, where x is the surface gravity on the only a numerical artifact.

15 A

—2fF

ays terminati

index of r:
®
L

Tl
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Rralpha?
o
\

3, 3
3

T T

fit{R"alpha®)

4 8 8 10 12 14 16 18 20 01 02 03 04 05 06 07 08 09 1 11 12
v lambda/M

FIG. 18. Mass inflation near the Cauchy horizon. Each curve is
for a constanu; u is increasing from lower to higher lines.

FIG. 20. The oscillatory part of the Ricci scalar. Top panel
shows an oscillation with a weak “beat.” The bottom panel shows
the Fourier transform of the curve in the top panel.

It is interesting to note here, that as the curvature radius at
the Horizon of a black hole is on the order of magnitude of
its gravitational radius, which is-10*m for a solar mass
R can be seen to diverge exponentially on the horizon whilgyjack hole, and the planck scale-is10-3%m, the Ricci cur-
oscillating at some definite frequen¢see Fig. 19 This be-  \ature can grow by~40 orders of magnitude before it
havior indicates the existence of some kind of curvature sinreaches Planckian scales. This means that our analysis brings
gularity, but does not tell us whether it is strong or weak, i.e.ys well into the Planckian regime, where quantum gravita-

whether the tidal forces felt by an observer crossing it argjong| effects are expected to become dominant.
infinite or finite. The divergence iR is caused by the expo-

nential decay ofx, and the oscillation is caused by the os-
cillatory behavior of the scalar field. We can observe the
frequency of this oscillation by looking &a? which con- We have developed a numerical code that solves the
tains the oscillating term without the exponential divergencecoumed Einstein-Maxwell equations in a dynamical collapse
Figure 20 shows this oscillation and its Fourier transform. Agi,ation. This has enabled us to explore phenomena in-
strong oscillation with period 0N is accompanied by & yolved in black hole formation that was previously handled

Rz—iz[(Werw?)ﬂea(s?—Ez)]. (25)
o

V. SUMMARY AND CONCLUSIONS

weaker component with period O/ and an oscillation with

“beat” is produced.

by analytic or numerical perturbative analysis. The difficulty
in this kind of numerical code is in maintaining small nu-
merical errors in spite of extreme gradients near the event

Riccei scalar
5,
T

horizon. We have solved this problem by using a nonuniform
grid that covers the difficult areas with dense grid points. The
scheme was shown to converge and gave results accurate to
better than than 1 part in $0even in areas deep inside the
black hole.

We have shown that in a dynamical collapse of charged
matter, some of the charge is radiated away because of elec-
trostatic repulsion and scattering on the gravitational poten-
tial. This is in accord with the cosmic censorship conjecture
] which forbids the charge in the black hole to surpass its
mass. We also observed the radiative tails that are left on the
horizon after the black hole is formed. These were shown to
have the well known structure of an initial decaying oscilla-
tion (quasi-normal ringingfollowed by a power law decay
that continues asymptotically.

'
20
v

'
25

)
30

'
35

) Finally we ventured deep inside the black hole interior
and examined the properties of the inner horizon. We have

FIG. 19. The Ricci scalar on an outgoing null ray intersectingfound that before being completely destroyed and turning

the Cauchy horizon. The cusps indicate points whHerehanges

sign.

into a strong spacelike.e. Schwarzschild-likesingularity, it
behaves as a weak, null singularity. Since the Cauchy hori-
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zon is located at =, in our scheme we cannot reach it by nite lapse of proper time until reaching the Cauchy horifzon.
numerical evolution. However, physically it is reached in aThe weakness of the singularity thus leaves open the ques-
finite proper time by an in-falling observEFhis is true since tion of the traversability of the “Kerr tunnel,” making it
«?(u,v)dt which is the proper time differential for an ob- unclear whether it is physically possible for matter to cross
server at (,v), decays exponentially as—o, giving a fi-  the Cauchy horizon into a another asymptotically flat region.
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