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Collapse of charged scalar fields

Yonatan Oren and Tsvi Piran
The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904 Israel

~Received 30 May 2003; published 14 August 2003!

We explore numerically the evolution of a collapsing spherical shell of a charged, massless scalar field. We
obtain an external Reissner-Nordstro¨m space-time, and an inner space-time that is bounded by a singularity on
the Cauchy horizon. We compare these results with previous analyses and discuss some of the numerical
problems encountered.
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I. INTRODUCTION

The most general analytic, stationary, and asymptotic
flat solution of the Einstein equations is the Kerr-Newm
metric, which is characterized by three parameters—m
charge and angular momentum. The no-hair theorem@1# sug-
gests that at asymptotically late times after the collapse
massive body to a black hole, the external metric of the bl
hole relaxes to the Kerr-Newman metric. However, the fi
state of the inner region is not generally determined and
been the subject of research for some time. Also, it is
interest, especially to gravitational wave astronomers, to
dict the specific details of the relaxation of the ‘‘hair.’’

This appearance of a timelike singularity and a ‘‘chain’’
asymptotically flat regions in the maximally extend
Reissner-Nordstro¨m metric ~Fig. 1! ~and also in the Kerr
metric! opened up the discussion of the existence and sta
ity of ‘‘wormholes.’’ The Reissner-Nordstro¨m metric is prob-
lematic as a realistic black hole picture because the par
space-time that lies in the future of the Cauchy horizon
unpredictable by a set of Cauchy initial conditions given
a spacelike surface in the asymptotically flat region. T
happens because events in the region beyond the Ca
horizon are in causal connection to the timelike singulari

Consequently we would expect that in a dynamic colla
the space-time will not extend beyond the Cauchy horiz
but would rather be bounded there by a singularity of so
sort. This scenario was predicted by Penrose@3# as early as
1968. The physical mechanism leading to this singularity
known as the ‘‘mass inflation’’ scenario@4#, and is connected
to the infinite blueshift of in-falling radiation on the Cauch
horizon.

Previous results@5–7# concerning the stability of the
Cauchy horizon were acquired either by linear perturbat
theory or by numerically evolving a neutral perturbation c
lapsing on a preexisting Reissner-Nordstro¨m black hole
@8–10#. The latter model is relatively easy to solve nume
cally since it does not contain charges and dynamical e
tromagnetic fields, but on the other hand it does not give
complete picture of the evolution of the black hole and
Cauchy horizon beginning with a flat space-time. Previo
work dealing with a fully dynamical charged collapse mod
@11–14# focused mainly on the behavior near the origin a
outside the horizon, i.e., at relatively large values of retar
time but moderate values of advanced time, on the or
10M . These works indicated that in a charged collapse
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Cauchy horizon is replaced by a weak, null singular segm
connected to a space-like singularity at the origin~Fig. 2!. In
this work we follow the evolution of a charged matter sh
that collapses to form a black hole, and determine the fi
structure of the inner metric, and the Cauchy horizon atlarge
values of advanced time, deep inside the black hole inte

In Sec. II, we formulate our basic equations, starting fro
the gauge-invariant Lagrangian of the complex scalar fi
and casting these equations into the double-null coordin
system. In Sec. III we discuss the numerical scheme, its

FIG. 1. A Penrose diagram for the maximally extend
Reissner-Nordstro¨m space-time. The Cauchy horizon is marked
r 5r 2 ; the event horizon asr 5r 1 ~courtesy Ref.@2#!.
©2003 The American Physical Society13-1
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curacy and the difficulties that arise in this kind of calcu
tion. In Sec. IV we discuss the numerical results and th
implications regarding several aspects of black hole phys
such as mass inflation, cosmic censorship, wave tails and
no-hair theorem, and the nature of the Cauchy horizon
gularity.

II. FORMULATION OF THE PROBLEM

A. The equations

We begin with the gauge-invariant Lagrangian for t
complex scalar fieldc and the electromagnetic gauge fie
Am @15#:

L52~c ;a1 ieAac!gab~ c̄ ;b2 ieAbc̄ !2
m2

\2
c̄c

2
1

8p
FabFcdg

acgbd, ~1!

FIG. 2. A Penrose diagram for a charged collapse scenario.
dashed lines indicate singularities along the origin and Cauchy
rizon ~courtesy Ref.@2#!.
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where we defineFmn5An;m2Am;n . We are dealing with a
massless field so we will omit the middle term from now o
From this Lagrangian we can derive the Euler-Lagran
equations for the scalar and electromagnetic field, and
the energy-momentum tensor to be used in the Einstein e
tions. The wave equations for the scalar field are

c ;abg
ab1 ieAagab~2c ;b1 ieAbc!1 ieAa;bgabc50, ~2!

and its complex conjugate. The Maxwell equations take
form

1

2p
Fab;cg

bc1 iec~c̄ ;a2 ieAac̄ !2 iec̄~c ;a1 ieAac!50.

~3!

The energy-momentum tensor is given by

Tab5
1

2
~c;ac̄ ;b1c̄ ;ac ;b!1

1

2
~2c ;aieAbc̄1c̄ ;bieAac

1c̄ ;aieAbc2c ;bieAac̄ !1
1

4p
FacFbdg

cd

1e2AaAbcc̄1
1

2
Lgab . ~4!

We choose the~212! spherically symmetric, double-nul
coordinate system. The line element in these coordinates
be written as

ds252a~u,v !2dudv1r ~u,v !2dV2, ~5!

with r being the area coordinate. Note that any coordin
gauge of the formu→ f (u),v→g(v) will preserve the null
character ofu and v. We will fix this gauge freedom late
when discussing the initial conditions.

We need also to fix the gauge freedom of the electrom
netic field Am . In our symmetry and coordinate choice th
only nonvanishing components ofF are Fuv52Fvu . This
means that onlyAu andAv may be nonzero. We can elimi
nate one of these using the electromagnetic field gauge f
domAm→Am1F ;m , whereF is an arbitrary scalar function
We choose to eliminateAv by takingF52*Avdv, and so
we are left withAm5(Au,0,0,0). We shall call this quantity
a[Au from now on.

We now proceed to write our equations in an expli
form. We begin with the Maxwell equations. Since we r
duced the potential to one component using the gauge f
dom, we need only one equation for this field. Equation~3! is
a vector equation with two nonvanishing componentsu and
v, and we may choose either one to evolve the electrom
netic field. We choose thev component, and will use theu
component later when checking charge conservation. Thv
component then becomes~we are using from now on the
conventionZm5]Z/]xm)

S r 2av

a2 D
v

1
1

2
ier2p~c̄cv2cc̄v!50. ~6!
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3-2



ge

rm

of
om

t of

to
al
of
of

on,
ull

y at

he
ee-
e

i-
ell
on-

se

far

COLLAPSE OF CHARGED SCALAR FIELDS PHYSICAL REVIEW D68, 044013 ~2003!
We define

q[
2r 2av

a2
, ~7!

and thus separate the 2nd order equation fora into two sim-
pler 1st order equations:

av5
a2q

2r 2

qv52p iear2~cc̄v2c̄cv!. ~8!

The functionq(u,v) defined above is the amount of char
within ~i.e. at smaller radii than! a sphere of radiusr (u,v) on
some spacelike hypersurface that contains (u,v).

The mutually independent elements ofGmn read

Guu52
2aur u2ar uu

ar

Gvv52
2avr v2ar vv

ar

Guv5
a214r ur v14rr uv

2r 2

Guu54
r 2auav2r 2aauv2a2rr uv

a4
. ~9!

By combining Eq.~9! and the Einstein tensorGmn we arrive
at the field equations

r vv22r v

av

a
14pr c̄vcv50

r uu22r u

au

a
14pr @c̄ucu1 iea~cc̄u2c̄cu!1e2a2c̄c#50

rr uv1r ur v1
a2

4
2

a2q2

4r 2
50

auv

a
2

auav

a2
1

r uv

r
1

a2q2

4r 4
12p~c̄ucv1c̄vcu!

12p iea~cc̄v2c̄cv!50. ~10!

Finally we evaluate the wave equation and arrive at the fo

rcuv1r ucv1r vcu1 iearcv1 iearvc1 ie
a2q

4r
c50.

~11!

We are now in a position to write down the full set
equations to be solved. For this purpose we introduce s
new notations:
04401
e

s[A4pc

w[su , z[sv

f [r u , g[r v . ~12!

Rearranging and substituting we arrive at the following se
equations:

E1: rr uv1 f g1
a2

4
2

a2q2

4r 2
50 ~13a!

E2: ~ ln a!uv2
f g

r 2
2

a2

4r 2
1

a2q2

2r 4
1

1

2
~wz̄1w̄z!

1
1

2
iea~sz̄2 s̄z!50 ~13b!

C1: gv22
av

a
g1rz̄z50 ~13c!

C2: f u22
au

a
f 1rw̄w1 iea~sw̄2 s̄w!1e2a2s̄s

~13d!

M1: av2
a2q

2r 2
50 ~13e!

M2: qv2
1

2
ier2~sz̄2 s̄z!50 ~13f!

S: rsuv1 f z1gw1 iearz1 ieags1 ie
a2q

4r
s50.

~13g!

B. The initial conditions

Having specified the equations to be solved, we turn
discuss the formulation of the initial conditions. The physic
situation we wish to describe is the gravitational collapse
a shell of in-falling charged matter. We choose the domain
integration to be a rectangle in theu2-v plane ~see Sec.
III B, where we describe the numerical scheme!. We can ex-
pect the event horizon to be inside the domain of integrati
but not the Cauchy horizon since it is located at infinite n
coordinatev ~we are not using Kruskal-like coordinates!. We
can however approach the Cauchy horizon asymptoticall
large values ofv.

When we come to specify the metric functions on t
initial hypersurface, we must fix the coordinate gauge fr
dom mentioned in Sec. II A. In a Minkowsky space-time w
usually chooseu5t2r ,v5t1r . Space-time around a grav
tating spherical shell is flat in two regions—inside the sh
and at asymptotically large radii. Since we have one c
straint equation, Eq.~13c!, that relatesr , a and the scalar
field on the initial hypersurface, we can choose two of the
functions arbitrarily. We would like to taker to be linear with
v in order to reflect the fact that we start our integration
3-3
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Y. OREN AND T. PIRAN PHYSICAL REVIEW D68, 044013 ~2003!
from the event horizon, where the metric is nearly flat. T
fact that this is only an approximation will be pronounced
the deviation ofa from its flat-space value. We can furthe
specify the shape of the matter shell on the initial hypers
face, and integrate Eq.~13c! to obtain a on that surface.
Using the conventional flat-space dependence ofr on u
andv,

r i5
v i2ui

2
, ~14!

we conclude thatgi50.5, and given an initial distribution o
the scalar field that we will soon elaborate on, we get fr
Eq. ~13c! the following ordinary-differential equation fora:

av

a
5rz̄z. ~15!

We choose for the initial field distribution a compactly su
ported function, which is basically one half period of a c
sine. Studying Eq.~13f! we see that in order to have a no
vanishing charge distribution we must use for the real a
imaginary parts of the field two pulses offset inv by some
amount. The exact form we choose is

Re@si #5H 0, v1.v.v2

ArS 11cosS p
v2vc

Dv D
2

D 2

v1,v,v2

Re@sr #55
0, v18.v.v28

AiS 11cosS p
v2vc8

Dv8
D

2
D 2

v18,v,v28 .

~16!

Having specified the two fieldsr ands on the initial hyper-
surface, we can analytically derivez andg ~which are simply
g5 1

2 andz5]s/]v), and numerically integrate the remain
ing quantitiesf, a, a, q andw using Eqs.~13a!, ~13c!, ~13e!,
~13f!, and~13g!, respectively.

We also need to specify the boundary conditions on
ray v5v i . Since the metric on the boundary, which is a
ways inside the collapsing shell, is flat, we can select
conventional flat-space values for the fields there:

r 5
v i2ui

2

a51

s5z5q5A50. ~17!

In selecting these values for the metric functions on
boundary we specify the physical meaning of the me
functions: The choice ofa implies that (u1v)/2 is the
proper time for an observer located at the origin, whiler is
the proper surface area of a sphere of a radiusr (u,v).
04401
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For monitoring the mass content in our space-time we
the mass function

m~u,v !5
r

2 S 11
q2

r 2
14

r ur v

a2 D , ~18!

which represents the total mass in a sphere of radiusr (u,v).

III. THE NUMERICAL SCHEME

A. Domain of integration

The main consideration in choosing the domain of in
gration is whether or not to include the origin. The orig
will be important when discussing critical phenomena@17#,
however, we are only interested in effects that occur at la
values of v and at a finite radius, so we can choose t
domain to be a rectangle as shown in Fig. 3. The advan
of this approach is that the origin, while being regular, is
coordinate singularity, and this would force us to make
series expansion of the fields near the origin in order
maintain numerical precision.

B. Numerical algorithm

We construct a 2-dimensional grid in thev,u space and
integrate in increasingv and u direction. Since our equal
coordinate surfaces lie on the light cone, there are
Courant-like stability limits on the step size. We implemen

FIG. 3. Illustration of the domain of integration in relation to th
expected structure of the space-time. The Cauchy horizon cann
actually included in the domain because it is in null infinity~cour-
tesy Ref.@16#!.
3-4
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FIG. 4. Adaptive grid refinement. The left figure features the development ofu along a typical grid, showing how most of th
computational effort is concentrated at the neighborhood of the horizon. The figure on the left is the differenceDu, showing thatDu changes
by many orders of magnitude.
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Runge-Kutta-like scheme by making a trial step to t
middle of the cell and using this information to make a 2nd

order full step. We have found this scheme to be simple
efficient.

We use Eq.~13a! to evolver , f , andg. Equation~13b! is
used to evolvea, and Eq.~13g! evolvess, z, andw. Finally
Eqs.~13e! and~13f! evolvea andq, respectively. Note, tha
this scheme is a free evolution scheme, since only the
namical equations are used for evolving the space-time.
constraint equations are used for monitoring the accurac

C. Adaptive grid refinement

A major problem in black hole numerics is the behav
near the event horizon. Although the double-null coordina
we have chosen ensure regularity of the fields even as
cross the horizon, there is nevertheless a fundamental d
culty in following the evolution numerically because of th
physical behavior near the horizon. Consider two outgo
null rays starting at the origin, slightly above and below t
event horizon. One is destined to escape to infinity while
other will remain trapped inside the horizon. This means t
regardless of how close the two rays were initially, th
distance will diverge as their advanced timev grows. The
numerical implication is that the metric functionf 5r u di-
verges along the event horizon, andr becomes ‘‘discontinu-
ous’’ asymptotically. If we want to maintain a fixed relativ
04401
d
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r
s
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g

e
t

r

change in the area coordinater, we have to make the grid
denser as we approach the horizon. The step size ha
decrease with the distance form the horizon. This decay tu
out to be exponential, and the exponent increases as w
creasevmax. It would be best to change bothDu andDv as
we approach the horizon and reach large values ofv, respec-
tively, but we choose in this work to change onlyDu because
while this is significantly simpler to implement, it gives re
sonable results. The choice of having the refinement a
rithm maintainDr /r constant, instead of some other loc
indicator of accuracy, is not trivial and was made after tr
and error indicated that it was the best strategy, and a
because r is always finite in the region of interest so it p
vides a good scale for measuring error. This scheme dicta
for relatively high values ofvmax'100M , a condensation of
about 10 orders of magnitude inDu in the vicinity of the
event horizon relative to the initial value ofDu. This is
illustrative of the difficulty in numerically crossing the eve
horizon at large values ofv. Figure 4 shows an example o
the evolution ofDu on a typical space-time.

D. Numerical tests

Our first test would have been a comparison of the
merical results with a known analytical solution. Unfort
nately, there are no suitable analytical solutions. Therefo
3-5
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Y. OREN AND T. PIRAN PHYSICAL REVIEW D68, 044013 ~2003!
we will have to check our code by other means. We be
with a test of convergence, i.e. we verify that the vario
fields converge to some value in the expected order of c
vergence. We evolve the same initial conditions on th
grids,g1 , g2 andg3 which have fixed grid densities~in both
u and v directions! d1 , 2d1 and 4d1 . We need three grids
because we do not know the exact solution, so we can c
pare only the relative error. In Fig. 5 we plot, for examp
the functions Re(c12c2) and 4Re(c22c3). We expect,
and verify, that the two curves be nearly but not exactly
same, because higher order terms also have a small co
bution to the error. The data in this figure is from a sing
row (u5const) but it is representative of the entire grid.

Although convergence is crucial, it still does not guara
tee that the results are correct, because if there is an err
the equations, either in the original equations or as they
implemented in the code, the scheme will still converge
to the wrong solution. We are in a unique situation where
constraint equations provide us with a measure of con
tency. The Einstein equations preserve the constraints, in
sense that if the initial conditions satisfy the constraint eq
tions, then they will be satisfied also under evolution of t
dynamical equations. This is true analytically, but since
solution is numerical we cannot solve exactly either the c
straint equations on the initial hypersurface or the dynam
equations through the evolution. Therefore we can only
mand that theerror in the constraint will converge to zero a
we make our solution more accurate by condensing the g

i.e. C ——→
stepsize→0

0. This is verified in Fig. 6.
Next we check that our code reproduces known featu

such as the location of the horizons, mass and charge
servation etc. Comparing the location of the horizons to
Reissner-Nordstro¨m solution r 65M6AM22q2, we find a
correspondence of about one part in 105 between the com-
puted and expected radii.

FIG. 5. Re(c12c2) and 4Re(c22c3) for the real part of the
scalar field on one of the outgoing rays. The two curves are alm
indistinguishable, which shows that the scheme converges nice
2nd order.
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Finally we observe that global mass and charge are c
served. Actually this is not exactly the case since some of
field is scattered by the gravitational and electromagn
potential as the shell approaches its gravitational radius,
this is in most cases~whenQ,M ) an insignificant amount
and the conservation laws seem to hold. Figure 7 shows
massM and the chargeQ at the last gridpoint vsu. Also
shown isQ8 which is Q compensated for the charge lost
the last grid point due to outgoing flux:

Q8~u!5Q~u!1E
u0

u

r 2~u8,vmax!Ju~u8,vmax!du8, ~19!

st
to

FIG. 6. The maximum constraint error along outgoing ra
maxv(C1), maxv(4C2) and maxv(16C3) as a function ofu on the
same 3 grids as in Fig. 5. The three curves are again almost in
tinguishable, showing that the constraint violation displays 2nd or-
der convergence to zero. The initial error in the constraint gro
with u because of unavoidable accumulation of numerical error

FIG. 7. Global charge and mass conservation. Upper figure:Q is
the chargeq(u,v), Q8 is the charge compensated for the outgoi
current density at the last grid point~outgoing flux!. Lower figure:
the relative change 12Q/Q0 and 12Q8/Q0, which is four orders
of magnitude smaller.
3-6
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FIG. 8. Right panel: The metric functionr vs v for several outgoing null rays, on 3 different gridsg1,2,3 with grid spacing 4h, 2h, and
h respectively. The three grids are compared to a solution extrapolated from them, taking into account the 2nd order convergence. This
solution is much more accurate than the three others and can be taken to as the ‘‘accurate’’ solution for the purpose of comparis
curves are almost indistinguishable. Left panel: detail of the leftmost ray.
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which follows from the conservation equation for the ele
tromagnetic current,

Jm
m50. ~20!

It should be noted that the mass inside the domain
integration is not generally conserved, since the reflec
waves carry off some mass, as well as charge. The subje
mass conservation is more delicate than charge conserv
since the total mass contains also the energy momentum
the gravitational field, which does not enter into the Noet
current related to the energy-momentum tensor. We will
frain from dealing with this topic here.

E. Numerical error

To summarize, we can obtain a measure of the rela
numerical errors from the tests we discussed. The first te
to use the convergence test and compare the difference i
fields between different grids. There is a difficulty here b
cause this test can only be performed without using adap
grids. This substantially limits the precision that can be
tained in this test, but as Fig. 8 illustrates, even with t
limitation we get good results:;1023 maximum relative
error. As we indicate below, the error will be lower by a
order of magnitude or more if we employ the grid refineme
algorithm.
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The next test is charge conservation. We can see in Fi
that the charge conservation error is less than 1024 for the
most dense grid. We can also see that the error converg
zero. These results are taken from refined grids, becaus
this case we are not comparing rows against each other s

FIG. 9. 12Q8/Q0 for three different grids vsu. The dashed line
indicates the position of the event horizon. The legend indicates
relative step size used in each grid.
3-7



n
o

l.
an
ir

av

-
u

r-
o

to
g
th

g

so
it

s
the
ain
t e,
ck
aller
that

uter
nal
them

ds

of
null
ate
ate
the
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do not need to match rows exactly in theu value. This test
was done withvmax520M . In this case the same calculatio
on an unrefined grid gave an error larger by an order
magnitude. This ratio will be larger as we increasevmax,
making the use of grid refinement more and more crucia

The last test we perform is constraint violation. We c
split Eq. ~13c! in Eq. ~12! into two terms and compare the
relative error:

A5gv22
av

a
g ~21!

B52rz̄z. ~22!

Now we can take (uAu2uBu)/(uAu1uBu) to be the relative
error. However there is a problem sinceuAu1uBu has no
definite scale and it often intersects zero, so the error beh
very badly. Therefore we will compare (A2B) in eachu
5const segment to the rms. of (A1B) along the same seg
ment. The results are given in Fig. 10, and show a maxim
error level of;1025 in the finest grid used.

IV. RESULTS

A. Formation of the black hole

We begin Fig. 11 with a null-ray diagram giving an ove
view of the space-time. The diagram shows the formation
an event horizon and then a Cauchy horizon at asymp
cally largev. Looking closely at the null rays approachin
the Cauchy horizon we see that it is not stable, as
asymptotic (v→`) value of r decreases asu increases. Fi-
nally at large enough values ofu the rays reach the origin
(r 50), which signals the appearance of a spacelike sin
larity.

FIG. 10. The relative error in the constraint, maxv@(A
2B)/A^(A1B)2&v) vs u. The three curves are for the same 3 gri
as in Fig. 8.
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B. Charge dynamics

The cosmic censorship conjecture@18# states that all sin-
gularities in nature are contained within an event horizon,
there are no ‘‘naked singularities.’’ It follows from this that
is impossible to overcharge a black hole~i.e. to increase its
charge-to-mass ratio above 1! since there is no black hole
solution with this ratio. It is interesting to check if this hold
in our collapse scenario by increasing the initial charge of
collapsing shell. It can be seen in Fig. 12 that, for a cert
initial configuration, as we increase the coupling constan
and with it the initial charge to mass ratio, the final bla
hole charge-to-mass ratio reaches a maximal value sm
than 1 and then decreases. The physical mechanism
causes this behavior is the electrostatic repulsion of the o
parts of the shell, which increases relative to the gravitatio
pull they experience as the charge increases, and causes

FIG. 11. Null rays. The top figure shows the entire domain
integration and the three classes of rays: type-1 rays reach
infinity, type-2 approach the Cauchy horizon and type-3 termin
at the singular origin. The dashed line signifies the approxim
location of the apparent horizon. The two lower figures focus on
vicinities of rays approaching the Cauchy horizon~left! and the
event horizon~right!.
3-8
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to be reflected back towards large radii at the early stage
the collapse and radiate part of the initial charge away. T
can be understood as a scattering process, where at
instant in time the shell encounters some potential bar
with certain reflection and transmission coefficients. As lo
as the charge-to-mass ratio will be greater than unity,
horizon will form, and charged matter will be able to esca
Ordinarily the charge and mass become equal some fi
time before the shell crosses its gravitational radius an
Horizon forms, so the final charge-to-mass ratio decrea
further and ends up smaller than unity.

This process can be seen by inspecting the movemen
charges on the computational grid. The outgoing current d
sity, in our coordinates, is proportional to theu component of
the 4-currentJm . Note that this is a matter of interpretatio
since normally the charge density would be the timel
component of the 4-current, and the current density would
the spacelike component. In our coordinate systemu and v
are both null, but we treatv and u as the ‘‘spatial’’ and
‘‘temporal’’ coordinates because we are dealing with an
falling shell. Figure 13 shows a contour of this quantity f
the caseQ0 /M051.7 .

C. Wave tails

Next we observe the mechanism behind the no-hair th
rem, mentioned in Sec. I. We inquire how the black ho
radiates away the hair, i.e. any feature of the collapsing m
ter except its charge, mass and angular momentum. We
to compare this decay to theoretical results predicting a
tain power law decay of the tails at late times. Note that
perform this analysis along the event horizon, which is a n
hypersurface with a constant radius. Hod and Piran@13# pre-
dicted in this case the following behavior on the horizon:

c;eieQ/r 1v2b; b511A~2l 11!224~eQ!2, ~23!

wherel is the multipole moment of the scalar perturbation.
our casel 50 because we deal with spherical symmetry. T

FIG. 12. The charge to mass ratio on the event horizon
different initial conditions.
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first term in Eq.~23! is an oscillation term with angular fre
quencyeQ/r . The second term is a power-law decay of t
field magnitude. Typically the field magnitude on the horiz
begins to decay with quasi-normal ringing~exponentially de-
caying oscillations! which decays exponentially. Then th
power-law tail sets in and continues to asymptotically lar
advanced timev where it dominates the behavior of the fiel
This can be clearly seen in Fig. 14.

The above expression for the oscillation and power l
index were checked over a range of the parametereQ, by
changinge and leaving all other parameters constant. T
results in Fig. 15 show good correspondence with both te
in Eq. ~23!.

D. The Cauchy horizon

We now turn to examine the behavior of the space-ti
near the Cauchy horizon. First we try to verify that null ra

r FIG. 13. The dynamical ejection of excess charge. Most of
charge is removed well before the shell reaches the horizon~upper
edge,u'250), atu'150.

FIG. 14. A typical configuration of the scalar field amplitude o
the horizon, showing quasi-normal ringing followed by a power-la
decay~the ‘‘tail’’ !. The thick line is the amplitude of the field, th
thin line is the absolute value of the real part of the field.
3-9
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of type-2 actually reach an asymptotically fixed radius, rat
than assuming a course that would ultimately bring them
very large values ofv, to the origin. In order to do this we
must extend our domain of integration, so that we can
serve the decay ofr v over at least one order of magnitud
and establish the asymptotic behavior. In Fig. 16 and Fig
such an analysis is made, showing thatr v;v22. This con-
firms the existence of a Cauchy horizon.

The next thing we want to know is whether the Cauc
horizon is singular, and if so, how much. One indication o
singularity is an exponential divergence of the mass funct
This can be seen in Fig. 18, for a typical space-time. T
divergence is dominated by an exponential decay ofa with
v, which makes the mass function diverge exponentially,
cause it depends ona asa22. This can be interpreted phys
cally as an infinite blue shift of in-falling radiation at th
Cauchy horizon, sincea is alsogtt if we shift to a time-space
~113! coordinate frame. The theoretical prediction for ma
inflation is m;ekv, wherek is the surface gravity on the

FIG. 15. Upper figure: The real part of the power law index
spherical charged perturbations vs the theoretical prediction. Lo
figure: The phase oscillation frequency vs the theoretical va
eQ/r 1.
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inner horizon. For a static Reissner-Nordstro¨m black hole
this is given by@9# Eq. ~24!, and it agrees numerically to
about 10–20 % with the measured exponent,

k5

A12S Q

M D 2

F12A12S Q

M D 2G2 . ~24!

The singularity also manifests itself in the Ricci curvatu
scalar,R. The Ricci scalar is a purely geometrical entit
which can be written only with the metric functions and the
derivatives. However, we can use our dynamical equation
express this quantity through the physical fields in the pr
lem. We arrive at this form:er

e,

FIG. 16. The behavior ofr v along a null ray approaching th
Cauchy horizon. The power-law decay can be seen clearly at
times.

FIG. 17. The local power-law index ofr v at the approach to the
Cauchy horizon.r v behaves likev22 at largev, signifying thatr
itself approaches a constant value asv21. The noise at largev is
only a numerical artifact.
3-10
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R52
4

a2
@~w̄z1wz̄!1 iea~sz̄2 s̄z!#. ~25!

R can be seen to diverge exponentially on the horizon w
oscillating at some definite frequency~see Fig. 19!. This be-
havior indicates the existence of some kind of curvature
gularity, but does not tell us whether it is strong or weak,
whether the tidal forces felt by an observer crossing it
infinite or finite. The divergence inR is caused by the expo
nential decay ofa, and the oscillation is caused by the o
cillatory behavior of the scalar field. We can observe
frequency of this oscillation by looking atRa2 which con-
tains the oscillating term without the exponential divergen
Figure 20 shows this oscillation and its Fourier transform
strong oscillation with period 0.5M is accompanied by a
weaker component with period 0.6M , and an oscillation with
‘‘beat’’ is produced.

FIG. 18. Mass inflation near the Cauchy horizon. Each curv
for a constantu; u is increasing from lower to higher lines.

FIG. 19. The Ricci scalar on an outgoing null ray intersect
the Cauchy horizon. The cusps indicate points whereR changes
sign.
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It is interesting to note here, that as the curvature radiu
the Horizon of a black hole is on the order of magnitude
its gravitational radius, which is;104m for a solar mass
black hole, and the planck scale is;10235m, the Ricci cur-
vature can grow by'40 orders of magnitude before
reaches Planckian scales. This means that our analysis b
us well into the Planckian regime, where quantum grav
tional effects are expected to become dominant.

V. SUMMARY AND CONCLUSIONS

We have developed a numerical code that solves
coupled Einstein-Maxwell equations in a dynamical collap
situation. This has enabled us to explore phenomena
volved in black hole formation that was previously handl
by analytic or numerical perturbative analysis. The difficu
in this kind of numerical code is in maintaining small n
merical errors in spite of extreme gradients near the ev
horizon. We have solved this problem by using a nonunifo
grid that covers the difficult areas with dense grid points. T
scheme was shown to converge and gave results accura
better than than 1 part in 103, even in areas deep inside th
black hole.

We have shown that in a dynamical collapse of charg
matter, some of the charge is radiated away because of e
trostatic repulsion and scattering on the gravitational pot
tial. This is in accord with the cosmic censorship conjectu
which forbids the charge in the black hole to surpass
mass. We also observed the radiative tails that are left on
horizon after the black hole is formed. These were shown
have the well known structure of an initial decaying oscil
tion ~quasi-normal ringing! followed by a power law decay
that continues asymptotically.

Finally we ventured deep inside the black hole inter
and examined the properties of the inner horizon. We h
found that before being completely destroyed and turn
into a strong spacelike~i.e. Schwarzschild-like! singularity, it
behaves as a weak, null singularity. Since the Cauchy h

is FIG. 20. The oscillatory part of the Ricci scalar. Top pan
shows an oscillation with a weak ‘‘beat.’’ The bottom panel sho
the Fourier transform of the curve in the top panel.
3-11
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zon is located atv5`, in our scheme we cannot reach it b
numerical evolution. However, physically it is reached in
finite proper time by an in-falling observer@This is true since
a2(u,v)dt which is the proper time differential for an ob
server at (u,v), decays exponentially asv→`, giving a fi-
d

.

04401
nite lapse of proper time until reaching the Cauchy horizo#
The weakness of the singularity thus leaves open the q
tion of the traversability of the ‘‘Kerr tunnel,’’ making it
unclear whether it is physically possible for matter to cro
the Cauchy horizon into a another asymptotically flat regi
f
n-
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