
PHYSICAL REVIEW D 68, 044011 ~2003!
Large-N collective fields and holography
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We propose that the Euclidean bilocal collective field theory of critical large-N vector models provides a
complete definition of the proposed dual theory of higher spin fields in anti–de Sitter spaces. We show how this
bilocal field can be decomposed into an infinite number of even spin fields in one more dimension. The
collective field has a nontrivial classical solution which leads to anO(N) thermodynamic entropy character-
istic of the lower dimensional theory, as required by general considerations of holography. A subtle cancellation
of the entropy coming from the bulk fields in one higher dimension withO(1) contributions from the classical
solution ensures that the subleading terms in thermodynamic quantities are of the expected form. While the
spin components of the collective field transform properly under dilatational, translational, and rotational
isometries of AdS, special conformal transformations mix fields of different spins indicating a need for a
nonlocal map between the two sets of fields. We discuss the nature of the propagating degrees of freedom
through a Hamiltonian form of collective field theory and argue that nonsinglet states which are present in an
Euclidean version are related to nontrivial backgrounds.
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I. INTRODUCTION AND SUMMARY

It has been known for a long time that theories ofN3N
matrices, e.g., gauge theories, become string theories at
N, with 1/N playing the role of string coupling constant@1#.
A new element of this correspondence was learned in
early 1990, viz., the string theory lives in a higher dime
sional space. An early example is the quantum mechanic
a single Hermitian matrixMi j (t)—the c51 matrix model.
In this case the string theory is in 111 dimensions, whose
only dynamical field is a massless scalar. This scalar is
lated to the density of eigenvaluesf(x,t) of the matrix, so
that the space of eigenvaluesx provides the extra coordinat
@2#. The Hamiltonian for this collective field can be writte
down following @3#. The classical value off(x,t) corre-
sponds to the linear dilaton background of string the
while the fluctuations are related to the massless sca1

Thus the singlet sector of the model contains the propaga
degrees of freedom of the two-dimensional string theo
This is, in a sense, holography@5#. However, the singlet sec
tor thermodynamic entropy of the collective field theory
O(1) rather thanO(N2) and is that of a (111)-dimensional
theory rather than that of a (011)-dimensional theory@2#.
This is different from what one expects from the holograp
principle @5#. In fact the contribution of nonsinglet state
should be significant in the thermodynamic partition functi
at high temperatures which is precisely the regime wher
(011)-dimensional behavior with entropy proportional

*Email address: das@pa.uky.edu
†Email address: antal@het.brown.edu
1The detailed relationship betweenf(x,t) and the scalar which

couples simply to the worldsheet is, however, rather complica
@4#.
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N2 is expected. Such nonsinglet states are, however, not
of the perturbative string theory spectrum.

The most concrete example of holography is of course
AdS/conformal field theory~CFT! correspondence@6,7#.
Here, the high temperature thermodynamics is domina
by AdS black holes@8#. For AdSd11 with length scaleR, and
a (d11)-dimensional Newton constantG, the entropy of
a black holeSbulk is related to the temperatureT by the
relation

SbulkG;~TR2!d21. ~1.1!

On the other hand, the conformal field theory on the bou
ary at the same temperature should have an entropySboundary
given by

Sboundary;Nf~TR!d21, ~1.2!

whereNf is the number of degrees of freedom. These t
expressions agree if

G

Rd21 ;
1

Nf
, ~1.3!

a relation which is satisfied for all known examples of Ad
CFT.

There are black holes in (111)-dimensional string theory
as well @9#. However, despite considerable effort@10#, such
black holes are not fully understood in the matrix mod
though there has been significant recent progress@11#. The
above discussion shows that these black holes are intima
related to nonsinglet states, along the lines of@11#. In the
AdS/CFT examples all the physical states are singlets in
case, which may be the reason why the thermodynamic
reproduced faithfully.
d
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In models with matrices, there are an exponentially gro
ing number of single trace singlet operators, which is o
reason why they represent string theories. In this paper
will consider models with fields in the vector representat
of groups likeO(N) or U(N). These models are known t
be solvable in the large-N limit @12#. The singlet operators
can involve products of pairs of fields and therefore there
no exponentially growing number of ‘‘single particle’’ state
Indeed, the Feynman diagrams are made of bubbles an
semble branched polymers rather than string worldsheet

In a recent work, Klebanov and Polyakov@13# have pro-
posed that critical vector models are dual to certain hig
spin gauge theories@14,15# defined on AdS spaces. Suc
higher spin fields include gravity, but are not string theori
~Higher spin gauge theory withN58 supersymmetry in
AdS5 is, however, related tofree N54 Yang-Mills theory
and hence toa8→` limit of IIB string theory @16,17#.! The
complete set of interaction in these theories is still n
known.

Of particular interest is the critical three~Euclidean! di-
mensionalO(N) vector model

S5E d3xF ~]fW !•~]fW !1
l

2N
~fW •fW !2G . ~1.4!

This has two fixed points. In terms of a running coupli
l(k) these are atl(k)50 andl(k)54k. According to the
proposal of@13#, the three dimensional conformal field the
ries at these fixed points are dual to a theory of higher s
fields with one field for each even spin defined on AdS4 in
two different senses. The correspondence of bulk and bou
ary quantities for the theory at the nontrivial fixed point
standard, with the generating functional for correlators
singlet operators being equal to the effective action in
bulk with the boundary values of the fields set equal to
currents. For the theory at the Gaussian fixed point the
respondence proceeds via a Legendre transform of the
erating functional as in@18#.

In this paper we show that standard methods of collec
field theory can be used to start with a vector model in E
clidean space andconstructa theory of even spins in on
higher dimension. The main ingredient is the fact that
singlet correlations of the model may be expressed in te
of a bilocal fields(xW ,yW ) @19,20#

s~xW ,yW !5
1

N
fW ~xW !•fW ~yW !. ~1.5!

The higher dimensional space is made out of the cente
mass coordinate

uW 5
1

2
~xW1yW ! ~1.6!

and the magnituder of the relative coordinate

vW 5
1

2
~xW2yW !, r 25vW •vW . ~1.7!
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A spherical harmonic decomposition in the angles of the
ordinatevW then yields a collection of higher spin fields in on
higher dimension. The symmetry of the collective fie
s(xW ,yW ) under interchanges ofxW and yW implies that these
spins are zero or even integers. While this construct
works for any number of dimensions and for generic valu
of the coupling, things become more interesting when
theory is conformally invariant. By examining the transfo
mation properties of the fields(xW ,yW ) under conformal trans-
formations we find that the various spin components
s(u,v) transform as tensors under translation, rotation, a
dilatation isometries of~Euclidean! AdS space, wherer is a
coordinate in the following form of the AdS metric:

ds25
1

r 2 @dr21duW •duW #. ~1.8!

However, these componentsdo nottransform properly under
special conformal isometries. We suspect that this indica
that these modes are related to the standard fields in AdS
a field redefinition which is possibly nonlocal. This is simil
to the fact that in thec51 matrix model the collective field
is not really the field which follows from a worldsheet fo
mulation of the dual string theory. Our considerations may
easily extended to vector models with other symmetries
which case one would get even spins as well.

From the point of view of the vector model, the biloc
collective field represents a collection of local composite o
erators. This may be seen by performing a Taylor expans
in the coordinatevW so that one has

s~xW ,yW !5fW ~xW !fW ~xW !1@fW ~xW !] i] jfW ~xW !

2„] ifW ~xW !…„] jfW ~xW !…#v iv j1¯ . ~1.9!

The coefficients of powers ofv in this expansion are related
but not identical, to the infinite set of conserved currents
the free theory which are conjectured to be the operators
to the higher spin fields. The nontrivial relationship betwe
these currents and the coefficients in the expansion~1.9! is
another indication of the fact that the relationship betwees
and the higher spin fields is nonlocal. Nevertheless, si
these currents are all contained in the bilocal field one
construct bulk fields in AdS by folding in with the appropr
ate bulk-boundary Green’s function as in@17#.

In this paper we construct the Euclidean collective fie
theory with special attention to subleading effects in 1/N. As
is well known, the collective field has a nontrivial classic
solution. In our interpretation this provides the four dime
sional ‘‘spacetime’’ on which the physical excitations prop
gate. By considering fluctuations around the classical so
tion we demonstrate the existence of a nontrivial IR sta
fixed point in three dimensions and reproduce the w
known results for conformal dimensions of composite ope
tors at this fixed point.

One finiteN effect which is not discussed in this paper
detail is the emergence of anexclusion principle. Consider
the problem on a finite lattice withM sites in each of thed
directions. Then the functional integral overf i is a multiple
1-2
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LARGE-N COLLECTIVE FIELDS AND HOLOGRAPHY PHYSICAL REVIEW D68, 044011 ~2003!
integral overNMd variables. However, the functional inte
gral over the collective fields(xW ,yW ) is a multiple integral
over M2d variables. Thus ifN,Md there are too many de
grees of freedom in the collective field. This would lead
rather nontrivial constraints ons. In terms of Fourier modes
of s this means that all these modes are not independ
Roughly speaking, for each component of the momenta,
may regard the firstN1/d values to be independent, while th
remaining modes are related to these by nontrivial relatio
For the bulk theory this is a kind of exclusion princip
which has appeared in the context of AdS/CFT corresp
dence and which arises because of the same reason@21#.

One of our main results relates to the thermodynamics
the model. From the point of view of the critical vecto
model defined ind Euclidean dimensions, the finite temper
ture properties are those appropriate tod dimensions. Fur-
thermore, one would expect that the leading free energy
the entropy are both proportional toN. This, however, ap-
pears quite mysterious from the point of view of
(d11)-dimensional theory, where 1/AN appears as acou-
pling constant, so that the natural expectation is that in a 1N
expansion the leading entropy comes from the free the
and hence ofO(1). We show that the leading thermody
namic behavior is aclassicalcontribution in the collective
field theory coming from the presence of a nontrivial clas
cal solution. Perhaps more significantly, there is a par
cancellation between theO(1) contribution obtained by in-
tegrating out fluctuations and aO(1) term present in the
classical action. In particular, for the Gaussian fixed po
this cancellation is complete and ensures that the entire
swer is O(N) as expected. We speculate that this resul
indicative of the presence of black holes in the bulk theo
The fact that the thermodynamics is reproduced correctl
an indication that these models, like string theory examp
have the right ingredients to provide a holographic desc
tion of theories containing gravity. Unlike string theory e
amples, however, we have an explicit construction of
higher dimensional theory in terms of the fields of the low
dimensional theory. The hope is that this will facilitate
better understanding of holography.

This explicit construction in fact shows a special featu
of the bulk theory. We show that the interactions of the c
lective field theory have a coupling constant 1/AN with no
other free parameter. On the other hand, the bulk theory h
a priori two dimensional parameters, the Newton constanG
and the AdS scaleR. The collective field theory seems t
indicate, however, that the bulk theory must be character
by only the dimensionless combinationG/R2. This should
be exactly 1/N. Indeed, this is exactly what is required
d53 from Eq.~1.3!. This is related to the fact that the con
formal field theory of the vector model lives atfixed points
rather than onfixed lines. There is no free coupling constan
which would be the analog of the gauge coupling const
for string theory on AdS53S5. In this sense this is similar to
M-theory examples of holography.

The Euclidean collective field, however, containsmore
than propagatingdegrees of freedom. This is related to t
fact that the collective field is made out of currents of t
vector model which are conserved. Thus all the norm
04401
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modes of the current do not create independent and orth
nal states. This feature is in fact well known in the AdS/C
correspondence. For example, the operator in the dual th
which represents the bulk graviton is the energy momen
tensor which seems to have more components than the g
ton. However, the energy momentum tensor is conserv
which reduces the number of independent modes to the
rect value.

To formulate the theory in terms of the physical propag
ing degrees of freedom it is more useful to consider a Ham
tonian formulation of collective field theory where the d
namical variables arec( x̃,ỹ,t), wherex̃ andỹ denote points
in spaceand t is the time. These have canonical conjuga
momentaP( x̃,ỹ,t) and one can derive a Hamiltonian whic
reproduces the correlators of such singlet operators. H
ever, like other examples of Hamiltonian collective fiel
~notably thec51 matrix model!, it is difficult to describe
nontrivial backgroundsand to describe the finite temperatu
thermodynamics fully.

In Sec. II we derive the Euclidean collective field actio
for any dimension after a careful derivation of the Jacobi
and discuss the saddle point solution at largeN, the action for
quadratic fluctuations and theO(1) partition function, the
nature of interactions, and the appearance of the nontri
fixed point ind53. In Sec. III we discuss the implications o
our results for the holographic correspondence: the fin
temperature thermodynamics, the identification of dilatati
rotation, and translation isometries of the bulk, the nature
interactions in the bulk theory, and the question of physi
propagating modes and its relationship to Hamiltonian c
lective field theory. Section IV contains conclusions a
comments.

II. EUCLIDEAN COLLECTIVE FIELD THEORY: SADDLE
POINT SOLUTION AND FLUCTUATIONS

We start with the following action ind Euclidean dimen-
sions:

S@fW #5E ddxF ~]fW !•~]fW !1m2fW •fW 1
l

2N
~fW •fW !2G .

~2.1!

The collective field is defined as in Eq.~1.5!. The collective
field actionS@s# is then defined via the relation

E DfW ~x!e2S@fW #5E Ds~xW ,yW !e2S@s~xW ,yW !#. ~2.2!

A. Derivation of the action

The actionS has a pieceS0 which comes from rewriting
Eq. ~2.1! in terms ofs and a second piece coming from th
JacobianJ in the change of variables in the path integr
measure,

S5S02 logJ. ~2.3!

S0 may be written down easily from Eq.~2.1!
1-3
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S05NE ddxH 2@¹x
2s~xW ,yW !#xW5yW1m2s~xW ,xW !

1
l

2
„s~xW ,xW !…2J . ~2.4!

To treat singular terms which appear inJ we will work on
a square lattice withM points in each direction. The fieldsf
will be also rescaled appropriately to make them dimensi
less, so that the lattice spacing disappears from the exp
sions. At the end of the calculation one may of course res
the lattice spacing and take the continuum and thermo
namic limit. A point on the lattice will be denoted by a
integer-valued vectormW . The Jacobian can be then dete
mined by comparing Dyson-Schwinger equations for inva
ant correlators obtained from the ensembles on the two s
of Eq. ~2.2! @20,22,23#. First consider the identity

E @Df#
d

df i~mW !
„f i~mW 8!F@s#…e2S@fW #50 ~2.5!

for some arbitrary functionalF@s# of the bilocal collective
field. This leads to the equation

^NdmW ,mW 8F@s#&1 K f i~mW 8!
dF

df i~mW !L
2 K f i~mW 8!

dS

df i~mW !
F@s#L 50, ~2.6!

where the averages are evaluated with the actionS@fW #.
Using

d

df i~mW !
5 (

mW 1 ,mW 2

ds~mW 1 ,mW 2!

df i~mW !

d

ds~mW 1 ,mW 2!

5(
mW 1

f i~mW 1!F d

ds~mW 1 ,mW !
1

d

ds~mW ,mW 1!G ,
~2.7!

Eq. ~2.6! becomes

NdmW ,mW 8^F&12(
mW 1

s~mW 1 ,mW 8!F dF

ds~mW 1 ,mW !
2F

dS

ds~mW 1 ,mW !G
50. ~2.8!

Next consider a change of variables to the collective fie
s(mW ,mW 8) and consider the identity

(
mW 1

E @Ds#
d

ds~mW 1 ,mW !
„s~mW 1 ,mW 8!J@s#F@s#e2S

…50,

~2.9!

whereJ@s# is the Jacobian that we want to determine. T
averageŝ^•&& are defined in the ensemble with the actionS
and measure@Ds#J@s#. Note that for any observableA one
has the identity
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Then Eq.~2.9! becomes

MddmW ,mW 8^̂ F&&1(
mW 1

K K s~mW 1 ,mW 8!
d logJ

ds~mW 1 ,mW !
F L L

1(
mW 1

K K s~mW 1 ,mW 8!
dF

ds~mW 1 ,mW !L L
2(

mW 1

K K s~mW 1 ,mW 8!F
dS

ds~mW 1 ,mW !L L 50. ~2.11!

SinceF is arbitrary, comparing Eq.~2.11! with Eq. ~2.8! one
gets an equation forJ

(
mW 1

s~mW 1 ,mW 8!
d logJ

ds~mW 1 ,mW !
5

1

2
~N22Md!dmW ,mW 8 ,

~2.12!

which may be solved by

logJ5
1

2
~N22Md!Tr logs ~2.13!

up to a constant. Here the trace is taken over the indicesmW .
The final expression~2.13! can be, of course, written in con
tinuum notation, in which the role of the factorMd is given
by Vdd(0), where V is the volume of thed dimensional
space.

B. The saddle point solution

Since both terms in Eq.~2.3! have pieces proportional to
N, the functional integral may be performed by a sad
point method atN→`. It is convenient to work in momen
tum space by defining Fourier components for any bilo
field A(mW 1 ,mW 2) by

A~mW 1 ,mW 2!5 (
nW 1 ,nW 2

Ã~nW 1 ,nW 2!e~2p i /M !~nW 1•mW 11nW 2•mW 2!.

~2.14!

Then the actionS becomes

S5NMdF(
nW

~pn
21m0

2!s̃~nW ,2nW !

1
l0

2 (
nW 1 ,nW 2 ,nW 3

s̃~nW 1 ,nW 2!s̃„nW 3 ,2~nW 11nW 21nW 3!…G
2

1

2
~N22Md!Tr logs, ~2.15!

wherem0 and l0 are the dimensionless mass and coupl
constant, respectively~with appropriate powers of the cutof
multiplying the dimensional quantitiesm andl! and

pn
254 sin2

n

2
, n5unW u. ~2.16!
1-4
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The saddle point is translationally invariant so that

s̃~nW 1 ,nW 2!5j~nW 1!dnW 1 ,2nW 2
. ~2.17!

With this ansatz, the term in the action becomes

S5NFMd(
nW

~pn
21m0

2!j~nW !1Md
l0

2 (
nW ,nW 8

j~nW !j~nW 8!

2
1

2 (
nW

logj~nW !G1O~1/N! ~2.18!

so that the saddle point becomes

j~nW !5
1

2Md

1

pn
21m0

21l0s
, ~2.19!

where

s5(
nW

j~nW !. ~2.20!

Equation~2.20! is of course the lowest order~in 1/N) propa-
gator ^fW (xW )•fW (yW )& in momentum space. The gaps is then
determined by a gap equation

s5
1

2Md (
nW

1

pn
21m0

21l0s
. ~2.21!

In the continuum limit the equation~2.21! reads

s5
1

2 E ddp

~2p!d

1

p21m21ls
. ~2.22!

The saddle point value of the action is then given by

S05
N

2 F(
nW

log~pn
21m0

21l0s!2Mdl0s2G ~2.23!

up to an unimportant constant.
The theory is on the critical surface when the renorm

ized mass vanishes. In this critical theory, one has

jc~p!5
1

2upu2
. ~2.24!

For any dimensiond the point l050 is of course a fixed
point. For d53 this Gaussian fixed point is unstable a
there is an IR stable fixed point at a finite value ofl0 , as will
be explained in a following section.

C. Leading 1ÕN correction and propagator

The ‘‘classical’’ actionS evaluated at the saddle poin
already has anO(1) piece which is given by

S1
~1!52Md(

nW
log~pn

21m0
21l0s!. ~2.25!
04401
l-

As we will see below, the extra power of the number
lattice pointsMd in Eq. ~2.25! is significant, as is its sign
Other contributions to this order are obtained by expand
the collective field as

s̃~nW 1 ,nW 2!5s̃0~nW 1 ,nW 2!1
1

AN
h̃~nW 1 ,nW 2!. ~2.26!

Then the quadratic action forh̃ is

dS5
l0Md

2 (
nW 1 ,nW 2 ,nW 3

h̃~nW 1 ,nW 2!h̃„nW 3 ,2~nW 11nW 21nW 3!…

1
1

4 (
nW 1 ,nW 2

j21~2nW 1!j21~nW 2!h̃~nW 1 ,nW 2!h̃~2nW 2 ,2nW 1!.

~2.27!

The continuum expression for the quadratic action is

dS5
1

4 E ddp1ddp2ddp3ddp4

~2p!2d H 2l

~2p!d d~d!~pW 11pW 21pW 3

1pW 4!1d~d!~pW 31pW 2!d~d!~pW 41pW 1!s0
21

3~pW 1!s0
21~pW 2!J h̃~p1 ,p2!h̃~p3 ,p4!, ~2.28!

where

s0~pW !5Mdj~nW !, pW 5
2pnW

Ma
. ~2.29!

From Eq.~2.28! one can calculate the two-point function o
the fluctuations@23#

^h̃~p1 ,p2!h̃~p3 ,p4!&5dd~p11p4!dd~p21p3!s0~p1!

3s0~p2!2G~p1 ,p2 ,p3 ,p4!,

~2.30!

where

G~p1 ,p2 ,p3 ,p4!5
2ls0~p1!s0~p2!s0~p3!s0~p4!

112l*
ddk

~2p!d s0~2k!s0~k2p12p2!

3dd~p11p21p31p4!. ~2.31!

D. O„1… partition function

As advertised in the Introduction, there is an interest
cancellation between contributions coming from theO(1)
terms in the ‘‘classical’’ action and those coming from int
grating out the fluctuations. Consider, for example, the f
theory atl050. Then from the formulation in terms of th
fields fW the partition function may be exactly evaluated

logZ5
N

2 F( log~pn
21m0

2!G . ~2.32!

nW

1-5
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Clearly this exact answer is reproduced by theO(N) classi-
cal value of the collective field action in Eq.~2.23!. There-
fore theO(1) contributions from Eq.~2.25! should cancel
whatever one gets by integrating out the fluctuationsh̃. This
is straightforward to check. TheO(1) contribution to the
effective action coming from the fluctuations is given by~for
l050)

S1
~2!5

1

2 (
nW 1 ,nW 2

log~pnW 1

2 pnW 2

2 !5Md(
nW

log pnW
2. ~2.33!

Adding the contributionS1
(1) from Eq. ~2.25! ~with m05l0

50) we see that the totalO(1) contribution to the partition
function is

~ logZ!152~S1
~1!1S1

~2!!50 ~2.34!

as expected. From the collective field theory point of view
any stage of the (1/N) expansion, there are two contribu
tions, one from the ‘‘classical’’ action and one from the flu
tuations. For the free theory these should cancel precise

For l0Þ0 the situation is more complicated. Here the
are nonzero subleading terms in the partition function. N
contributions from the classical actionpartially cancel those
coming from the fluctuations. Significantly, in the continuu
limit the ultraviolet divergent terms cancel at the level
leading 1/N correction—this is evident from the fact that
this level the effect of a nonzerol0 is to simply change the
mass gap, and this does not affect the ultraviolet behav
These cancellations have important consequences for a h
graphic interpretation.

E. Nature of interactions

The cubic and higher order interactions in the collect
field theory come entirely from the Jacobian factor. On
finite lattice this has the structure

~N22Md!TrF logs02 (
k52

`
~21!k

kNk/2 ~s0
21h!kG . ~2.35!

In each order of 1/AN there are generically two terms whic
come from the two terms in the overall coefficient.

The interactions have an interesting scale invariant fo
in the critical theory. In this case the classical value of
collective fields0 is simply the massless propagator and it
straightforward to see that the term which containsk factors
of the fluctuationh has the following form in the continuum
and thermodynamic limits:

E )
i 51

k

~ddxi !@]x1
]x2

h~x1 ,x2!]x2
]x3

3h~x2 ,x3!¯]xk
]x1

h~xk ,x1!#. ~2.36!

It is interesting to note that the cubic and higher order int
actions do not depend onl. The coupling constant of the
collective field theory is 1/AN as expected.
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F. Fixed points for dÄ3

For the special case ofd53 there is a nontrivial fixed
point away froml50. This may be seen in the collectiv
theory in the following way.

To arrive at the IR fixed point one has to first put th
theory on the critical surface by tuning the renormaliz
mass to zero. In this case the saddle point value of the bilo
field is, in momentum space

s0~p!5
1

2p2 . ~2.37!

The momentum space propagator for the bilocal field fl
tuation now reads

^h̃~p1 ,p2!h̃~p3 ,p4!&

5
1

p1
2p2

2 F dd~p11p4!dd~p21p3!

2
2l

p3
2p4

2

dd~p11p21p31p4!

112l*
ddk

~2p!d

1

~p11p22k!2k2
G .

~2.38!

It is clear from the form of the classical solution that there
no anomalous dimension for the fundamental fieldf i ,
whereas the expression~2.38! shows that there would be
anomalous dimensions for composite operators in gene
The first term in Eq.~2.38! is the contribution of free field
theory. Thus the second term may be used to define a dim
sional running coupling constant

a~p!5
l

112l*
ddk

~2p!d

1

~p2k!2k2

. ~2.39!

The basic integral is given by

I ~p!5E ddk

~2p!d

1

~p2k!2k2 5
1

8upu
~2.40!

so that

a~p!5
l

11
l

4upu

. ~2.41!

Clearly in the infrared

limp→0 a~p!54upu, ~2.42!

the running coupling becomes independent of the origi
bare coupling of the theory. Thedimensionlessrunning cou-
pling a(p)/p approaches a constant nemerical value, 4.
ternatively one may define a dimensionless renormali
coupling at some scalem, g(m) by the relation
1-6
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mg~m!5
l0L

11
l0L

4m

, ~2.43!

where L denotes the momentum space cutoff of the b
theory andl0 the bare dimensionless coupling. Then as o
approaches the continuum limitL→` the renormalized cou
pling g tends to a fixed value 4 independently ofl0 . Thus
g54 is an infrared fixed point. The full beta function,
leading order of large-N expansion can be read off from
~2.43!

b~g!5m
]g

]m
52gS 12

1

4
gD . ~2.44!

The scaling behavior of the correlators~2.38! at this IR
fixed point may be read off by considering the continuu
limit approached by starting with any arbitrary bare coupli
l0 . Instead of considering the bilocal field by itself it
instructive to consider various moments which define lo
composite operators as in Eq.~1.9!. Consider the simples
such operator which is the scalar composite

s~xW ,xW !5fW ~xW !•fW ~xW !. ~2.45!

The Fourier components of this composite may be expres
in terms of the Fourier componentss̃(p,q) as

s̃~k!5E @d3x#eikW•xWs~xW ,xW !5E d3q

~2p!3 s̃~k2q,q!.

~2.46!

Thus the connected two-point function of the composite
erator is given by

^z̃~k1!z̃~k2!&5E d3q

~2p!3

d3q8

~2p!3

3^h̃~k12q,q!h̃~k22q8,q8!&,

~2.47!

where z̃(k) denotes the fluctuation ins̃(k). Using Eqs.
~2.38! and ~2.41! this may be easily evaluated to yield

^z̃~k1!z̃~k2!&5
d~k11k2!

8uk1u F 12
1

8uk1u
2l

11
2l

8uk1u
G

5
d~k11k2!

l18uk1u
. ~2.48!

At the trivial fixed point one gets

^z̃~k1!z̃~k2!&5
d~k11k2!

8uk1u
, ~2.49!

which implies that the dimension of the operators(xW ,xW ) is 1.
To see the behavior at the nontrivial fixed point one has
rewrite this expression in terms of the bare dimensionl
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coupling l0 and the momentum cutoffL and perform the
continuum limit with nonzerol0 . This yields

^z̃~k1!z̃~k2!&5d~k11k2!F 1

l0L
2

8uk1u
l0L2 1OS uk1u2

L3 D G .
~2.50!

In the limit L→` the first term gives rise to a short distan
contact term which has to be subtracted in the renormali
theory. The nontrivial part scales asuk1u which means that
the dimension of the operator is 2 at the nontrivial fix
point.

III. HOLOGRAPHIC CORRESPONDENCE

Our proposal is that the collective field theory describ
above provides a description of the singlet sector of the v
tor model in terms of a (d11)-dimensional theory of highe
spins. The basic idea is to write the collective field as
function of the center of mass coordinatesuW and the relative
coordinatevW as in Eqs.~1.6! and~1.7!. One can then expand
the fields as

s~uW ,vW !5(
l ,m

s lmW ~uW ,r !YlmW ~u i !, ~3.1!

where we have written thed relative coordinatesvW in terms
of its magnituder and (d21) anglesu1¯ud21 . YlmW (u i)
denote the spherical harmonics onSd21. Since the original
field s(xW ,yW ) is symmetric under interchange ofxW and yW , it
should be symmetric undervW→2vW . This means that only
even~or zero! values ofl appear in the expansion~3.1!. Thus
the collective field is equivalent to a collection of higher sp
fields living in d11 dimensions spanned by (uW ,r ) and there
is exactly one field for each even spin. Note that if we ha
U(N) rather than aO(N) symmetry one would have od
spins as well.

For d53 we thus have a four dimensional theory. Wh
the vector model is at one of its fixed points, the theory
conformally invariant and has a symmetry groupSO(4,1). It
is then natural to expect that the four dimensional theory
defined on AdS4 which has the same isometry. We will se
later in what sense this is true.

In the remaining part of this section we will discuss se
eral issues which point towards an interpretation of the c
lective field theory for the fixed point models as aholo-
graphic theory defined on the boundary of AdS4 .

A. Finite temperature thermodynamics

One of the crucial aspects of holography is that the h
temperature thermodynamics of the bulk theory in (d11)
dimensions is appropriate to a theory ind dimensions. Fur-
thermore, the result involvesN which is the coupling con-
stant of the bulk theory. This leading result cannot co
from counting of the states of the bulk theory sinceN ap-
pears in the latter only through the coupling constant and
a 1/N expansion one would expect anO(1) answer which
reflects that the propagating modes live in (d11) dimen-
sions. In known examples of holography, however,
1-7
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N-dependent answer characteristic of ad dimensional theory
comes from the fact that the bulk theory is typically a theo
of gravity and its high temperature properties are domina
by black holes whose entropies are proportional to their a
and whose thermodynamics is appropriate to that of theor
d dimensions. Furthermore, the black hole entropy is a ‘‘cl
sical’’ effect and goes as the inverse of the square of
coupling constant and therefore contains the right powe
N.

In the previous section we have calculated the lead
order and the (1/N) corrections to the partition function o
the collective field theory defined on a periodic lattice w
M sites in each direction. We now use these results to dis
the finite temperature behavior. To do this all we have to
is takeM large but consider different lattice spacings in t
‘‘space’’ and the ‘‘Euclidean time’’ directions. Finally we
have to consider a continuum limit and a thermodynam
limit in which the physical extent of the Euclidean time d
rection is a finite quantityb51/T while those in the space
directions areL with L@b.

First consider the Gaussian fixed point atl50 in any
number of dimensions. The finite temperature free ene
may be read off from Eq.~2.23! in a standard fashion. Th
expression~2.23! has a leading divergent term which is e
tensive, proportional toLd21b—the coefficient being the
ground state energy density. The next subleading term, w
we denote byS8, is proportional toLd21 and has the form

S852NLd21E dd21p

~2p!d21 log~12e2bupu!. ~3.2!

This is then related to the thermodynamic free energyF by

F5
1

b
S8. ~3.3!

It is clear that

F;NLd21Td, ~3.4!

which is nothing but the free energy ofN species of massles
particles ind21 space dimensions. In particular the entro
scales as

S;NLd21Td21. ~3.5!

From the point of view of the vector model this result
of course obvious. However, from the point of view of th
collective field theory this is a rather nontrivial result. As w
saw, we can interpret this theory as a theory of higher s
fields ind11 dimensions. Naively one would expect that t
thermodynamics would be the one appropriate tod, rather
than (d21), space dimensions and should be ofO(1) as
explained above.

The point is that all these expectations are based on
usual situation where the leading thermodynamic free ene
comes from the ‘‘one loop’’ contribution. In the present co
text this is the leading 1/N correction, which actually gives
anO(1) contribution to the free energy. What we saw abo
however, is that there is aclassicalcontribution to the free
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energy which is proportional toN which leads not only to a
nontrivial internal energy, but a nontrivial entropy propor
tional to N. In fact there are no 1/N corrections to this resul
for the l50 theory due to the complete cancellation d
cussed above. ForlÞ0 the cancellation is not complete an
there are finiteO(1) corrections. However, the divergen
terms which contribute to the vacuum energy cancels. T
finite temperature behavior of the interactingO(N) model
was discussed a long time ago in@24# and more recently in
@25#.

The fact that the leading thermodynamics comes from
classical contribution to the action is reminiscent of t
Gibbons-Hawking calculation of the entropy of a black ho
As will be seen below, the space-time interpretation of
four dimensional collective field theory does not appear to
straightforward and it is difficult to identify what kind o
space-time configurations give rise to this classical contri
tion. Nevertheless our result strongly suggests that the
dimensional bulk theory of higher spin fields have bla
holes.

B. Conformal transformations and AdS

While the fieldss lm(uW ,r ) do represent higher spin field
in d11 dimensions, they are not the standard higher s
fields as discussed in@14#, but related by some field redefi
nition. This may be seen from the fact that the quadra
action is not diagonal in the spins. A spinl field mixes with
spinsl 62. We do not know what is the exact field redefin
tion which relates these components to the standard field
higher spin theories.

An important indication of this fact comes from an exam
nation of the transformation properties of the collective fie
under conformal transformations on the boundary. Cons
for example the theory at the Gaussian fixed point. From
known conformal transformations it follows that the transfo
mations of the bilocal fields(xW ,yW ) are given by

dDs52aS xi
]

]xi 1yi
]

]yi 1D Ds~xW ,yW !,

dTs5t i S ]

]xi 1
]

]yi Ds,

dRs5u i j S xi
]

]xj2xj
]

]xi 1yi
]

]yj2yj
]

]yi Ds,

dSs5H @2~e•x!xi2uxu2e i #
]

]xi 1@2~e•y!yi

2uyu2e i #
]

]yi 1De•~x1y!J s. ~3.6!

HereD is the scaling dimension ofs anda, t i , u i j ande i are
the parameters of dilatations, translations, rotations, and
cial conformal transformations, respectively. Rewriting the
expressions in terms ofuW andvW we get
1-8
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dDs52S ui
]

]ui 1r
]

]r
1D Ds,

dTs5t i
]

]ui s, ~3.7!

dRs5u i j S ui
]

]uj2uj
]

]ui 1Li j Ds,

dSs5H @2~e•u!ui2uuu2e i2r 2e i #
]

]ui 12~e•u!r
]

]r

12D~e•u!1~e jui2uje i !L ji J s

12~e•v !v i
]

]ui s, ~3.8!

where

Li j 5v i
]

]v j2v j
]

]v i . ~3.9!

To see the action on the individual componentss lm(uW ,r ) one
needs to substitute these expressions in the expansion~3.1!.
It is clear from the above expressions that the dilatatio
translations, and rotations act on the componentss lm(uW ,r )
diagonally, i.e., the action does not mix up various spins. T
factor of Li j in the transformationdRs mixes fields of dif-
ferentm for thesame lexactly as rotation generators shou
On the other hand, the last term in the special conform
transformation ons shows that this mixes up fields wit
differentspin.

In fact, if we define new component fields

x lm~uW ,r !5r l 1Ds lm~u,r ! ~3.10!

the generators for dilatations, translations, and rotations
x lm are exactly the generators of the corresponding isom
tries on tensor fields of rankl defined on an AdS space, wit
the metric given in Eq.~1.8!,

ds25
1

r 2 @dr21duW •duW #. ~3.11!

In particular this means that the magnitude of the relat
coordinate behaves as a scale, as it should.

For special conformal transformations, the story is diff
ent. Here all the terms in Eq.~3.8!, except the last term, are
the correct expressions for generators of the correspon
isometries of the metric~3.11!. The last term, however
clearly mixes different spins.

The correct higher spin fields@14–17#, however, trans-
form homogeneously under the Killing isometries of Ad
and do not mix up fields with different spin. This shows th
the fieldss lm(uW ,r ), while containing the complete physics o
higher spin theories, are not themselves the correct hig
spin fields.
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In fact there are indications that the correct higher s
fields are related to the componentss lm(uW ,r ) by nonlocal
transformations. This may be seen from various points
view. The exercise we have done above is in fact an atte
to rewrite conformal transformations on a pair of vecto
(xW ,yW ) as isometries in an AdS space by identifying the c
rect coordinates in the latter. It is straightforward to see t
this works for dilatations, translations, and rotations with t
identification ofuW and r as the coordinates in AdS as in th
metric ~3.11!. However, this cannot work for the special co
formal transformation. To see this consider the case od
51. In this case the collective field should contain only o
field in AdS since there is no spin in AdS2. The special
conformal transformations are then

dx5ex2, dy5ey2, ~3.12!

which leads to

du5e~u21v2!, dv52euv. ~3.13!

This is to be compared with the corresponding Killing isom
etry of the metric~3.11! for d51, viz.,

d8u5e~u22v2!, dv52euv. ~3.14!

Another indication comes from the relationship of th
componentss lm with the infinite set of conserved currents
the vector model~at l50) @26,17#. These currents are sym
metric and traceless and given by~in d53)

Ji 1¯ i s
5 (

k50

s ~21!k~] i 1
¯] i k

f!~] i k11
¯] i s

f!

G~k11!GS k1
1

2DG~s2k11!GS s2k1
1

2D
2traces. ~3.15!

These currents are conserved

] i 1Ji 1¯ i s
50. ~3.16!

These currents can be expressed in terms of the collec
field. Consider for example the first few currents. These m
be expressed as follows:

J05s~u,v !v50 ,

Ji j 5F ]2

]v i]v j2
1

3
d i j

]2

]vk]vk
Gs~uW ,vW !uv50

2
1

2 F ]2

]ui]uj2
1

3
d i j

]2

]uk]uk
Gs~u,0!. ~3.17!

These currents transform homogeneously under confor
transformations.

The collective field expansion in Eq.~3.1! can be also
reorganized in terms of derivatives of the form which app
in Eqs. ~3.17!, since spherical harmonics are in one-to-o
correspondence with traceless symmetric tensors made o
products ofv i . Thus we have expansions of the form
1-9
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s~uW ,vW !5Fs~uW ,0!1
1

6
r 2S ]2s

]v2 D
v50

1O~r 4!G
1

1

2
r 2S v̂ i v̂ j2

1

3
d i j D F S ]2s

]v i]v j D
v50

2
1

3
d i j S ]2s

]v2 D
v50

1O~r 2!G , ~3.18!

where we have performed a Taylor expansion inv i and re-
organized it in terms of traceless symmetric products of
unit vectorsv̂ i . Thus the componentss l ,m are given by

s00;Fs~uW ,0!1
1

6
r 2S ]2s

]v2 D
v50

1O~r 4!G ,

s1m;F S ]2s

]v i]v j D
v50

2
1

3
d i j S ]2s

]v2 D
v50

1O~r 2!G .

~3.19!

Comparing Eqs.~3.19! and ~3.17! it is clear that the fields
s lm(u,0) do not reduce to the currentsJi 1¯ i l

. This is the
basic reason why these components do not transform p
erly under special conformal transformations.

It must be emphasized that the collective field theory c
tains all the information contained in the vector model s
glet correlators and hence serves as acomplete definitionof
the higher spin theory, including all interactions. Howev
the relationship between the components of the collec
field and the higher spin fields which propagate indep
dently atN5` appears to be rather nontrivial. The key
uncovering the precise relationship is conformal invarian
We hope to report results about this connection soon@27#.

C. Interactions and the bulk theory

As shown in the previous section, for the critical theo
the interactions of the collective field theory are charac
ized by a coupling constant which is 1/AN and independen
of the bare couplingl0 of the underlying vector model. We
now make several comments about how this may come a
in a bulk theory defined on AdS space.

Since the bulk theory contains gravity, it is characteriz
by a Newton’s gravitational constantG which has dimen-
sions of~length!2 in four dimensions. In flat space, the inte
action terms in the theory have coefficients which depend
the coupling constantAG and the terms have a number
derivatives which make the action dimensionless. Typica
again for four dimensions, eachAG is accompanied by a
single derivative. In AdS space, however, there is anot
length scaleR, where 1/R2 is the constant curvature. Cons
quently, instead of derivatives there could be inverse pow
of R which account for the correct dimensions. This is fam
iar in supergravity in, e.g., AdS53S5. Here, there is a clas
of couplings which do not depend onG andR individually,
but only on the dimensionless combinationG/R3. By virtue
of the AdS/CFT correspondence one hasG/R3;1/N2, where
the four dimensional dual super-Yang-Mills theory has
04401
e

p-

-
-

,
e
-

.

r-

ut

d

n

,

er

rs
-

gauge groupSU(N). Since the gauge theory couplinggY M is
related to the bulk parameters by the relationgY M

5G1/4R5/4l s
22, such bulk couplings are computed in terms

gauge theory three-point functions which are completely
dependent ofgY M and only depends onN. This is possible
since one is computing three-point functions of compos
operators which have nonzero values in free field theo
Indeed in this particular case, the underlying supersymm
ensures that the three-point functions of a class of opera
are given exactly by their free field values@28#.

For the vector model the conformal field theory is at
fixed point rather than on a line of fixed points, so that the
is no analog of a gauge theory coupling constant. This is
reason why the couplings in the collective field theory a
characterized only byN and by no other parameter. Th
value of the bare coupling drops out since in the continu
limits one approaches the infrared fixed point.

This fact therefore implies that if the dual theory is
higher spin theory in AdS, thenall the couplings of that
theory are characterized by the dimensionless combina
G/R2. This is a rather nontrivial prediction for the highe
spin theory.

D. Propagating modes and Hamiltonian collective theory

We have so far considered the Euclidean version of
collective field theory as derived in@20#. For the three di-
mensional vector model this is a collection of higher sp
fields in four dimensions—one field for each even spin.
component fields lm(uW ,r ) has 2l 11 components. However
if all the four dimensional fields of the dual theory a
massless—as conjectured—there are precisely two propa
ing polarizations for each spin.s lm clearly contains too
many independent propagating modes.

The key reason behind this overcounting is the fact t
the Euclidean collective field is a way to organize an infin
set of higher spin currents in the boundary theory, as in
cated above. These are symmetric and traceless in the
dimensional indices, with the spin-l current containingl in-
dices, leading to (2l 11) components. However, these cu
rents areconservedin the l50 theory, and conserved t
leading order in 1/N in the interacting theory, so that ther
are 2(l 21)11 conditions relating the components. Thus t
number of independent components is (2l 11)2@2(l 21)
11#52, which is the correct value for the number of prop
gating modes for each spin. This counting can be easily s
to work in any number of dimensions.

The meaning of all this is that the Euclidean collecti
field theory must have a gauge invariance which follo
from the current conservation conditions in the vector mod
We do not know how to display this symmetry, but we kno
it is there because of the one-to-one correspondence betw
the spin components of the collective field and the curre

This situation is not new and has been encountered be
in other examples of the AdS/CFT correspondence. Cons
the cases where the bulk theory on AdSd11 contains a mass
less graviton. This has (d11)(d22)/2 propagating compo
nents. The operator which is dual to the graviton is the
ergy momentum tensor of the boundary theory which h
1-10
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(d21d22)/2 components because of the tracelessn
However, the energy-momentum tensor is conserved so
the number of independent polarizations is (d21d22)/2
2d5(d11)(d22)/2. In the coordinates of Eq.~3.11!, the
CFT is defined on the boundary atr 50. The energy momen
tum tensor then computes correlators of the graviton fi
hmn in a gauge wherehrm50, but this gauge still retains
some gauge symmetries.

Our situation is rather similar. In fact, given the conserv
currents in the vector model one may construct bulk fie
using a bulk-to-boundary propagator. As shown in@17#, the
conservation of currents then lead to gauge conditions on
bulk fields.

It is not surprising to find that the Euclidean collectiv
field contains redundant degrees of freedom. The collec
field theory we have considered reproduces all singlet c
elators of the theory. However, among these correlators
those which receive contributions fromnonsingletinterme-
diate states. The simplest example is^s(x,y)& itself, which
is the propagator of the elementary fieldfW . On the other
physical propagating states in the bulk must be singlet sta

To look at the propagating modes it is instructive to co
sider the Hamiltonian version of collective field theo
@3,29#. In this formulation the collective fields are Schr¨-
dinger picture operatorsc( x̃,ỹ) defined by

c~ x̃,ỹ!5
1

N
fW ~ x̃!•fW ~ ỹ! ~3.20!

and their canonically conjugate momentaP( x̃,ỹ). Here x̃,ỹ
denote thespatial @i.e., (d21) dimensional# components of
the space-time locations. These operators create all the
glet states of the theory, whose dynamics is governed by
collective field Hamiltonian,

H52Tr~PcP!1Vcoll , ~3.21!

with

Vcoll5
1

2 E dxF2¹x
2c~ x̃,ỹ!u x̃5 ỹ1m2c~ x̃,x̃!1

l

2
„c~ x̃,x̃!…2G

1
1

8
Trc21 ~3.22!

and

P~ x̃,ỹ!5
d

dc~ x̃,ỹ!
~3.23!

being the canonically conjugate variable. In Eqs.~3.21!,
~3.23! c should be regarded as a matrix inx̃,ỹ and the trace
refers to the trace of this matrix.

One may expand the corresponding Heisenberg pic
operator in a manner similar to the spherical harmonic
pansion of the Euclidean collective field

c~ x̃,ỹ;t !5(
l ,m

c lm~ ũ,r ,t !Ylm , ~3.24!
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where as usual

ũ5
1

2
~ x̃1 ỹ!, ṽ5

1

2
~ x̃2 ỹ!, r 25 ṽ• ṽ. ~3.25!

In Eq. ~3.24! Ylm are spherical harmonics on aSd22 rather
than onSd21. Consequently the number of components
c lm for a givenl is exactly the same as the number of prop
gating polarizations of a massless spin-l field in d11 dimen-
sions. For example, ford53 for a givenl we have precisely
two values ofm, i.e., m56 l which count the two polariza-
tions of massless four dimensional fields with any spin. T
Hamiltonian collective field theory therefore correctly coun
the propagating modes of higher spin fields.

The manner in which the action formulation reduces
the canonical. Hamiltonian representation is interesting
rather nontrivial. The Langragian formulation was charact
ized by being bilocal in time as well as in space while t
canonical, Hamiltonian formulation is local in time. The r
duction from one to another

s~ x̃,t; x̃8,t8!→c~ x̃,x̃8;t ! ~3.26!

involves a formal reduction in the number of degrees of fr
dom as we have seen. One has indications that this re
tion can be understood in terms of a gauge principle in an
ogy with a connection between a covariant and canon
gauge description of gravity. We should also emphasize
plications on thermodynamics contained in the two desc
tions. By its nature the canonical description naturally lea
to a thermodynamics with entropy of order one rather than
orderN and would seemingly miss one of the main ingre
ents of holography.@There is a vacuum energy ofO(N) but
not an entropy.# The reason behind this may be gleaned fro
an understanding of the free theory. Here the exact entrop
of orderN and clearly counts the number of states created
the elementary fieldsfW . In other words this leading classica
contribution to the thermodynamics comes from thenon-
singlet states of the theory. Analogous states have an in
pretation of winding modes in matrix theories and they a
not contained in the Hamiltonian collective theory. On t
other hand, as we have seen the Euclidean collective fi
theory does capture the contribution from these nonsin
states. The importance of nonsinglet states for thermodyn
ics also makes its appearance in thed51 matrix model@11#.

We therefore see that the nonsinglet states of the ve
model correspond to nonpropagating modes in the bulk.
thermodynamics in the bulk description comes from a cl
sical contribution in the Euclidean collective field theory a
hence from these nonpropagating modes. This is consis
with the conjecture that in this model, like in other strin
theory examples, the thermodynamics is dominated by bl
holes, which are, of course, examples of condensates of
propagating modes. The relationship between nonsin
states, nonpropagating modes, black holes, etc., has be
matter of considerable discussion in matrix models. For v
tor models, the availability of a tractable Euclidean collecti
theory provides an opportunity to understand this import
issue.
1-11
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IV. CONCLUSIONS

We have argued that theEuclideanbilocal collective field
is capable of describing a higher spin theory of a single fi
for each even spin in one higher dimension. However, wh
the spherical harmonic decomposition of the bilocal fie
gives the correct count of the higher spins, these arenot the
standard higher spin fields. We suspect that there is poss
a nonlocal field redefinition betweens lm and the standard
fields.

We have also argued that the Euclidean collective fi
contains more degrees of freedom than thepropagating
modes. On the other hand, the Hamiltonian collective the
precisely counts the propagating modes. The distinction
important, since as we have found, the leading thermo
namics in fact receives contributions from nonsinglet sta
In the bulk description this means that nonpropagating ba
grounds dominate the thermodynamics~which is why the
result isclassical!. One of course knows examples of this
string theory realizations of the AdS/CFT duality: here bla
holes provide the right thermodynamics.

One of the most interesting aspects of the duality betw
vector models and higher spin theories is that one has a
consistent quantum theory in four dimensions which cont
gravity—and this is not a string theory. In string theory, ho
ever, higher spin fields are massive with the masses d
mined by the string length. Thus at distances much lar
than the string length, string theory is essentially~super!
gravity. In this case, there is no analog of a string leng
This means that there is no separation of the spin-2 field w
all the other higher spin fields. In other words, considered
a theory of gravity there is no reason to expect that t
theory has nice locality properties.
n

.
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Nevertheless, it is conceivable that due to unknown r
sons there is a sense in which this theory may be consid
as a theory of gravity.2 This may happen as in the AdS5

3S5–Yang-Mills duality. Here at the AdS scale, the bu
theory cannot bea priori described in terms of a five dimen
sional theory of gravity, since the Kaluza-Klein modes fro
the S5 have the same scale. However, it turns out that o
does much better than this naive expectation. For many
poses, the theory can indeed be regarded as five dimens
gravity even at the AdS scale. This is evidenced by the f
that the thermodynamics of the Yang-Mills theory is co
rectly reproduced byfive dimensionalAdS-Schwarzschild
black holes. We have no idea whether a similar decoup
holds in this case.
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