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Large-N collective fields and holography
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We propose that the Euclidean bilocal collective field theory of critical I&gector models provides a
complete definition of the proposed dual theory of higher spin fields in anti—de Sitter spaces. We show how this
bilocal field can be decomposed into an infinite nhumber of even spin fields in one more dimension. The
collective field has a nontrivial classical solution which leads tdO¢iN) thermodynamic entropy character-
istic of the lower dimensional theory, as required by general considerations of holography. A subtle cancellation
of the entropy coming from the bulk fields in one higher dimension Wifti) contributions from the classical
solution ensures that the subleading terms in thermodynamic quantities are of the expected form. While the
spin components of the collective field transform properly under dilatational, translational, and rotational
isometries of AdS, special conformal transformations mix fields of different spins indicating a need for a
nonlocal map between the two sets of fields. We discuss the nature of the propagating degrees of freedom
through a Hamiltonian form of collective field theory and argue that nonsinglet states which are present in an
Euclidean version are related to nontrivial backgrounds.
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[. INTRODUCTION AND SUMMARY N? is expected. Such nonsinglet states are, however, not part
of the perturbative string theory spectrum.
It has been known for a long time that theoriesNok N The most concrete example of holography is of course the

matrices, e.g., gauge theories, become string theories at largglS/conformal field theory(CFT) correspondencd6,7].

N, with 1/N playing the role of string coupling constai]. Here, the high temperature thermodynamics is dominated

A new element of this correspondence was learned in thBY AdS black hole$8]. For AdS;,; with length scaleR, and

early 1990, viz., the string theory lives in a higher dimen-a (d+1)-dimensional Newton constai@, the entropy of

sional space. An early example is the quantum mechanics & black holeS is related to the temperatur® by the

a single Hermitian matri®;;(t)—the c=1 matrix model. ~ relation

In this case the string theory is i1l dimensions, whose

only dynamical field is a massless scalar. This scalar is re- SpuiG~(TR?)4 1. (1.9

lated to the density of eigenvaluegx,t) of the matrix, so .

that the space of eigenvalurprovides the extra coordinate On the other hand, the conformal field theory on the bound-

[2]. The Hamiltonian for this collective field can be written ary atthe same temperature should have an enBg@yqary

down following [3]. The classical value ofp(x,t) corre-  given by

sponds to the linear dilaton background of string theory i1

while the fluctuations are related to the massless stalar. Shoundary™ N¢(TR)" "7, (1.2

Thus the singlet sector of the model contains the propagating .

degrees of freedom of the two-dimensional string theoryWhereNs is the number of degrees of freedom. These two

This is, in a sense, holograph§]. However, the singlet sec- €Xpressions agree if

tor thermodynamic entropy of the collective field theory is

O(1) rather tharO(N?) and is that of a (# 1)-dimensional G B i (1.3

theory rather than that of a (01)-dimensional theory2]. RI-T T Ng '

This is different from what one expects from the holographic

principle [5]. In fact the contribution of nonsinglet states a relation which is satisfied for all known examples of AdS/

should be significant in the thermodynamic partition functionCFT.

at high temperatures which is precisely the regime where a There are black holes in (11)-dimensional string theory

(0+1)-dimensional behavior with entropy proportional to as well[9]. However, despite considerable eff¢ii], such

black holes are not fully understood in the matrix model,
though there has been significant recent progf&éss The

*Email address: das@pa.uky.edu above discussion shows that these black holes are intimately
TEmail address: antal@het.brown.edu related to nonsinglet states, along the lineqd 1f]. In the
The detailed relationship betweeh(x,t) and the scalar which AdS/CFT examples all the physical states are singlets in any

couples simply to the worldsheet is, however, rather complicatedcase, which may be the reason why the thermodynamics is

[4]. reproduced faithfully.
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In models with matrices, there are an exponentially grow-A spherical harmonic decomposition in the angles of the co-
ing number of single trace singlet operators, which is oneordinatev then yields a collection of higher spin fields in one
reason why they represent string theories. In this paper wkigher dimension. The symmetry of the collective field
will consider models with fields in the vector representationos(X,y) under interchanges of and y implies that these
of groups likeO(N) or U(N). These models are known to spins are zero or even integers. While this construction
be solvable in the larghtlimit [12]. The singlet operators works for any number of dimensions and for generic values
can involve products of pairs of fields and therefore there aref the coupling, things become more interesting when the
no exponentially growing number of “single particle” states. theory is conformally invariant. By examining the transfor-
Indeed, the Feynman diagrams are made of bubbles and reration properties of the field(X,y) under conformal trans-
semble branched polymers rather than string worldsheets. formations we find that the various spin components of

In a recent work, Klebanov and Polyakpi3] have pro-  o(u,v) transform as tensors under translation, rotation, and
posed that critical vector models are dual to certain highedilatation isometries ofEuclidean AdS space, where is a
spin gauge theorief14,15 defined on AdS spaces. Such coordinate in the following form of the AdS metric:
higher spin fields include gravity, but are not string theories.
(Higher spin gauge theory wittiN=8 supersymmetry in
AdS; is, however, related tdree N=4 Yang-Mills theory
and hence tax’ —« limit of 1I1B string theory[16,17.) The

Complete set of interaction in these theories is still nOtHo\Never, these Componerdg nottransform proper|y under

1
ds’=5[dr?+da-da). (1.9

known. _ _ N _ _ special conformal isometries. We suspect that this indicates
Of particular interest is the critical thr¢&uclidean di-  that these modes are related to the standard fields in AdS by
mensionalO(N) vector model a field redefinition which is possibly nonlocal. This is similar

\ to the fact that in the=1 matrix model the collective field

- - - = is not really the field which follows from a worldsheet for-

S= J x| (9¢)- (9¢) + W(d)' $)%. (1.4 mulation ofythe dual string theory. Our considerations may be
easily extended to vector models with other symmetries, in

This has two fixed points. In terms of a running couplingWhich case one would get even spins as well.

A (k) these are ak (k)=0 and\ (k) =4k. According to the From the point of view of the vector model, the bilocal

proposal of13], the three dimensional conformal field theo- collective field represents a collection of local composite op-

ries at these fixed points are dual to a theory of higher spigrators. This may be seen by performing a Taylor expansion

fields with one field for each even spin defined on Ad@$  in the coordinates so that one has

two different senses. The correspondence of bulk and bound-

ary quantities for the theory at the nontrivial fixed point is o (X,) = (%) $(X) +[ $(X) 4;; H(X)
standard, with the generating functional for correlators of . . o
singlet operators being equal to the effective action in the — (3 (X))@ p(X)]v'v +- - (1.9

bulk with the boundary values of the fields set equal to the
currents. For the theory at the Gaussian fixed point the corfhe coefficients of powers af in this expansion are related,
respondence proceeds via a Legendre transform of the gehut not identical to the infinite set of conserved currents of
erating functional as ifi18]. the free theory which are conjectured to be the operators dual
In this paper we show that standard methods of collectivdo the higher spin fields. The nontrivial relationship between
field theory can be used to start with a vector model in Euthese currents and the coefficients in the expanglo®) is
clidean space andonstructa theory of even spins in one another indication of the fact that the relationship between
higher dimension. The main ingredient is the fact that alland the higher spin fields is nonlocal. Nevertheless, since
singlet correlations of the model may be expressed in termthese currents are all contained in the bilocal field one can
of a bilocal fieldo(X,y) [19,20 construct bulk fields in AdS by folding in with the appropri-
ate bulk-boundary Green’s function as[it7].
. . In this paper we construct the Euclidean collective field
d(X)- B(Y). (1.5  theory with special attention to subleading effects iN.1As
is well known, the collective field has a nontrivial classical
0§olution. In our interpretation this provides the four dimen-
sional “spacetime” on which the physical excitations propa-
gate. By considering fluctuations around the classical solu-
tion we demonstrate the existence of a nontrivial IR stable
(X+Y) (1.6) fixed point in three dimensions and reproduce the well
known results for conformal dimensions of composite opera-
) ) ] tors at this fixed point.
and the magnitude of the relative coordinate One finiteN effect which is not discussed in this paper in
detail is the emergence of axclusion principle Consider
the problem on a finite lattice witM sites in each of thel
directions. Then the functional integral ovél is a multiple

Z| -

o(X,y)=

The higher dimensional space is made out of the center
mass coordinate

U=

N| -

1
=5 (X-Y), r?=0-5, (1.7
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integral overNM¢ variables. However, the functional inte- modes of the current do not create independent and orthogo-
gral over the collective fieldr(X,y) is a multiple integral nal states. This feature is in fact well known in the AdS/CFT
over M?9 variables. Thus iN<M?Y there are too many de- correspondence. For example, the operator in the dual theory
grees of freedom in the collective field. This would lead towhich represents the bulk graviton is the energy momentum
rather nontrivial constraints om. In terms of Fourier modes tensor which seems to have more components than the gravi-
of o this means that all these modes are not independenton. However, the energy momentum tensor is conserved,
Roughly speaking, for each component of the momenta, onehich reduces the number of independent modes to the cor-
may regard the firshi*® values to be independent, while the rect value.
remaining modes are related to these by nontrivial relations. To formulate the theory in terms of the physical propagat-
For the bulk theory this is a kind of exclusion principle ing degrees of freedom it is more useful to consider a Hamil-
which has appeared in the context of AdS/CFT correspontonian formulation of collective field theory where the dy-
dence and which arises because of the same rda@ddn namical variables ar¢(X,y,t), wherex andy denote points

One of our main results relates to the thermodynamics ofn spaceandt is the time. These have canonical conjugate
the model. From the point of view of the critical vector momentall(X,y,t) and one can derive a Hamiltonian which
model defined ird Euclidean dimensions, the finite tempera- reproduces the correlators of such singlet operators. How-
ture properties are those appropriatedtaimensions. Fur- ever, like other examples of Hamiltonian collective fields
thermore, one would expect that the leading free energy anghotably thec=1 matrix mode), it is difficult to describe
the entropy are both proportional . This, however, ap- nontrivial backgroundsind to describe the finite temperature
pears quite mysterious from the point of view of athermodynamics fully.
(d+1)-dimensional theory, where JIN appears as aou- In Sec. Il we derive the Euclidean collective field action
pling constantso that the natural expectation is that in Bl 1/ for any dimension after a careful derivation of the Jacobian,
expansion the leading entropy comes from the free theorgnd discuss the saddle point solution at laxgy¢he action for
and hence of0(1). We show that the leading thermody- quadratic fluctuations and th®(1) partition function, the
namic behavior is a&lassical contribution in the collective nature of interactions, and the appearance of the nontrivial
field theory coming from the presence of a nontrivial classi-fixed point ind=3. In Sec. Il we discuss the implications of
cal solution. Perhaps more significantly, there is a partiabur results for the holographic correspondence: the finite
cancellation between th®(1) contribution obtained by in- temperature thermodynamics, the identification of dilatation,
tegrating out fluctuations and @(1) term present in the rotation, and translation isometries of the bulk, the nature of
classical action. In particular, for the Gaussian fixed pointinteractions in the bulk theory, and the question of physical
this cancellation is complete and ensures that the entire afropagating modes and its relationship to Hamiltonian col-
swer isO(N) as expected. We speculate that this result idective field theory. Section IV contains conclusions and
indicative of the presence of black holes in the bulk theorycomments.
The fact that the thermodynamics is reproduced correctly is
an indication that these models, like string theory examples); EUCLIDEAN COLLECTIVE FIELD THEORY: SADDLE
have the right ingredients to provide a holographic descrip- POINT SOLUTION AND FLUCTUATIONS
tion of theories containing gravity. Unlike string theory ex-
amples, however, we have an explicit construction of the We start with the following action il Euclidean dimen-
higher dimensional theory in terms of the fields of the lowerSions:
dimensional theory. The hope is that this will facilitate a
better understanding of holography. - - - N .

This explicit construction ign fgctyshows a special feature S["ﬂ:f A (96) - () +m2p- -+ ﬁ(d" ¢)?|.
of the bulk theory. We show that the interactions of the col- (2.1
lective field theory have a coupling constant/l/ with no
other free parameterOn the other hand, the bulk theory has The collective field is defined as in E(L.5). The collective
a priori two dimensional parameters, the Newton cons@nt field actionS[ o] is then defined via the relation
and the AdS scal®. The collective field theory seems to
indicate, however, that the bulk theory must be characterized - o R
by only the dimensionless combinati@/R?. This should f Dg(x)e SM:I Do(%,y)e 7Y (2.2
be exactly IN. Indeed, this is exactly what is required in
d=3 from Eq.(1.3. This is related to the fact that the con-
formal field theory of the vector model lives fiked points A. Derivation of the action
rather than orfixed lines There is no free coupling constant  The actionS has a pieceS, which comes from rewriting
which would be the analog of the gauge coupling constankg, (2.1) in terms ofo and a second piece coming from the
for string theory on Ad$X S. In this sense this is similar to - jacobiand in the change of variables in the path integral
M-theory examples of holography. measure,

The Euclideancollective field, however, containsiore
than propagatingdegrees of freedom. This is related to the S=8p—logJ. (2.3
fact that the collective field is made out of currents of the
vector model which are conserved. Thus all the normalS, may be written down easily from E¢2.1)
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So= Nf ddx[ —[Via(X,¥)Iz-y+ MPa(X,X)

(2.4)
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(A)=((IA).
Then Eq.(2.9 becomes

(2.10

A
+ = (0(%,% 2]. . ., OlogJ
2( %) M98 (F>>+2 <<U(m1,m’)WirmF>>
To treat singular terms which appeardnve will work on SF
a square lattice witlM points in each direction. The fields + E << o(hy,m )f> >
will be also rescaled appropriately to make them dimension- da(my,m)
less, so that the lattice spacing disappears from the expres-
sions. At the end of the calculation one may of course restore . 2 < < (i, M)F 65 > > -0
the lattice spacing and take the continuum and thermody- ' Sa(my,m) '
namic limit. A point on the lattice will be denoted by an
integer-valued vectorm. The Jacobian can be then deter- SinceF is arbitrary, comparing Eq2.11) with Eq. (2.8) one
mined by comparing Dyson-Schwinger equations for invari-gets an equation fa¥
ant correlators obtained from the ensembles on the two sides

(2.11

of Eq. (2.2) [20,22,23. First consider the identity E (g, M) %: %(N—ZM d)5rﬁ’rﬁ, ,
my 1
5 . s 2.1
| P01 G IFLeDe S0 @25 212
which may be solved by
for some arbitrary functiondF[ o] of the bilocal collective 1
field. This leads to the equation logd= = (N 2M9Trlog o (2.13

up to a constant. Here the trace is taken over the indites
The final expressiof2.13 can be, of course, written in con-
tinuum notation, in which the role of the factv? is given
by V590), whereV is the volume of thed dimensional
space.

s
8¢'(m)

{omgo-
S (M) 5o FLO

where the averages are evaluated with the acti{)&].
Using

(NS i FLo])+ < (M) ——=

(2.6

B. The saddle point solution

Since both terms in Eq2.3) have pieces proportional to
N, the functional integral may be performed by a saddle
point method alN— . It is convenient to work in momen-
tum space by defining Fourier components for any bilocal

1) 50’(rﬁ1,m2) o

5P (M) ok, 04 (M)  So(my,my)

o P) P) field A(hy,m,) by
:Z ¢I(ml) 5 > > +5 > = ’
my o(my,m) o(m,m,) ~ [,
Ay fig) = D, A(Tiy i) e27/M) (Nt nz-Ma),
2.7 iy
(2.19
Eq. (2.6) becomes
Then the actiorS becomes
NGz i (F)+2>, o(my,m’) oF F2S }
N m! o(m ,m = Y = =
m,m & 1 Sa(my,m) da(my,m) S= NMd{E (pn+m0)~( 1)
=0. (2.8
No 2
Next consider a change of variables to the collective fields Tt P (N, Nz)G (g, — (Ay+ Mz + Ng))
112,13

o(m,m’) and consider the identity

1
— = (N=2MTrl ,
% [DO']Wsl,m)(U(nﬁl,m’)‘][o.]F[a_]e—S):ol 2( )Trlog o

(2.9  wheremg and\, are the dimensionless mass and coupling
constant, respectivelwith appropriate powers of the cutoff
whereJ[ o] is the Jacobian that we want to determine. Themultiplying the dimensional quantitie® and\) and
averages(-) are defined in the ensemble with the acti®n
and measurg€Dao |J[ o]. Note that for any observabke one
has the identity

(2.15

n
=4 sian, n=|n. (2.16
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The saddle point is translationally invariant so that
(2.17

o(N1,N2) = &E(N1) S5, -,

With this ansatz, the term in the action becomes

A
S=N|MIZ (P mp) &)+ MO 3 E()E()

1
—5 2 log&(f) | +O(IN) (2.18
n
so that the saddle point becomes
L 1 1 o1
€)= 5y pa+m3+\os’ 219
where

s=2, &(n). (2.20

n

Equation(2.20 is of course the lowest ord¢in 1/N) propa-

gator (H(X) - ¢(¥)) in momentum space. The gags then
determined by a gap equation

1

_ > 2.2
ST oM< pZrmEings' (22
In the continuum limit the equatio(2.21) reads
1 d% 1
s= (2.22

“2) 2m)9 pZ+mitas

The saddle point value of the action is then given by
N 2 2 d 2
80=§ En: log(pp+mg+NgsS) —M%\gs (2.23

up to an unimportant constant.

PHYSICAL REVIEW D68, 044011 (2003

As we will see below, the extra power of the number of
lattice pointsM? in Eq. (2.25 is significant, as is its sign.
Other contributions to this order are obtained by expanding
the collective field as

1
o (Ay,0,)=0g(A1,A,)+ —=7(fiy,A,). 2.2
(A1,N5) o(My,N5) \/Nﬂ( 1,M3) (2.2

Then the quadratic action fGj is

oM@
O2 Eé

ﬁl,ﬁz,ns

o0S=

7(ny,N5) (A3, — (A + A+ ng))

1
+3 2 & HADE M)A F(— iy, — ).

nqy,No
(2.27)

The continuum expression for the quadratic action is

1 [ d%,d%p,dpadip, [ 2) d
— — (B of of
68 4J (277)2d [(277)616( (p1+p2+p3
+P4) + 8D (P3+P) 8Pyt Pr)og
X(P1)og l(ﬁz)]"i](pl,pz)’iy(p3,p4), (2.28
where
- dorm _ 2mn
oo(P)=ME(N), P=Va- (2.29

From Eq.(2.28 one can calculate the two-point function of
the fluctuationg23]

(7(P1,P2)7(P3,P4)) = 8%(P1+ Pa) 3%(Pa+ P3) ao(P1)

X ao(P2) —G(P1,P2,P3,P4),
(2.30

where

The theory is on the critical surface when the renormal-

ized mass vanishes. In this critical theory, one has

1
&c(p)= 2P (2.24

For any dimensiord the pointAy=0 is of course a fixed

point. Ford=3 this Gaussian fixed point is unstable and

there is an IR stable fixed point at a finite valuexgf as will
be explained in a following section.

C. Leading ¥N correction and propagator

The “classical” action S evaluated at the saddle point
already has a®(1) piece which is given by

SP==MY log(pZ+m3+Xes). (2.25
n

2N oo(P1)oo(P2)0o(P3)o0o(Pa)
G(P1,P2,P3,P4)= a%

1+ ZXIWUO(_k)Uo(k_pl_pz)

X 8%(py+ Pt Pt pa). (2.30

D. O(1) partition function

As advertised in the Introduction, there is an interesting
cancellation between contributions coming from 1B¢1)
terms in the “classical” action and those coming from inte-
grating out the fluctuations. Consider, for example, the free
theory at\,=0. Then from the formulation in terms of the

fields ¢ the partition function may be exactly evaluated

logZ=

N
5 . (2.32

; log(p3+mj)
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Clearly this exact answer is reproduced by @EN) classi- F. Fixed points for d=3
cal value of the collective field action in ER.23. There-
fore the O(1) contributions from Eq(2.25 should cancel
whatever one gets by integrating out the fluctuatigng his

For the special case af=3 there is a nontrivial fixed
point away from\ =0. This may be seen in the collective
theory in the following way.

is straightforward to check. Th®(1) contribution to the To arrive at the IR fixed point one has to first put the
effective action coming from the fluctuations is givenyr  heory on the critical surface by tuning the renormalized
Ao=0) mass to zero. In this case the saddle point value of the bilocal

1 field is, in momentum space
S'=5 2 log(p;p;) =M logpf. (233

ﬂl,nz

1
oo(p)= 207" (2.37)

Adding the contributiorS(ll) from Eq. (2.295 (with mg= 2\,

=0) we see that the tot&d(1) contribution to the partition The momentum space propagator for the bilocal field fluc-

tuation now reads

function is
(logZ),;=—(SP+S)=0 (2.34 (7(p1,P2)7(P3.P4))
1
as expected. From the collective field theory point of view, at = W 84 (p1+pa) 8P+ pa)
1M2

any stage of the (N) expansion, there are two contribu-
tions, one from the “classical” action and one from the fluc-
tuations. For the free theory these should cancel precisely. 2\ 89(py+Pat Ps+pa)

For \o# 0 the situation is more complicated. Here there - K 1
are nonzero subleading terms in the partition function. Now P3Ps 142\
contributions from the classical actigrartially cancel those (2m)® (py+po—k)*k?
coming from the fluctuations. Significantly, in the continuum (2.38

limit the ultraviolet divergent terms cancel at the level of

leading 1N correction—this is evident from the fact that at It is clear from the form of the classical solution that there is
this level the effect of a nonzeng, is to simply change the no anomalous dimension for the fundamental fiebd,
mass gap, and this does not affect the ultraviolet behaviowhereas the expressioi2.38 shows that there would be
These cancellations have important consequences for a holanomalous dimensions for composite operators in general.

graphic interpretation. The first term in Eq(2.38 is the contribution of free field
theory. Thus the second term may be used to define a dimen-
E. Nature of interactions S|Ona| runn|ng COUp|Ing Constant
The cubic and higher order interactions in the collective A
field theory come entirely from the Jacobian factor. On the a(p)= K 1 . (2.39
finite lattice this has the structure I4+2N) =3 —— 22
i T (pae
d (—D* -1_\k . .
(N=2M%Tr| log 7o~ 2, W(UO 7). (2.39  The basic integral is given by
I h order of 1N th ically two t hich [(p) J d% ! ! (2.40
n each order o ere are generically two terms whic = = .
g y P= ] @m? (-1~ 8lp|

come from the two terms in the overall coefficient.

The interactions have an interesting scale invariant formS
. o ; . o that
in the critical theory. In this case the classical value of the

collective fieldog is simply the massless propagator and it is A
straightforward to see that the term which contdirfactors a(p)=——. (2.4
of the fluctuationyn has the following form in the continuum 14—
and thermodynamic limits: 4lp|
k Clearly in the infrared
d9%)[ 9y Ay (X1 ,X2) Iy 0
|];[1( Dl X, x277( 1,X2) Xy g |imp_,oa(p)=4|p|, (2.42
X 7(X2,X3)" " Iy, Iy, Xk, X1) |- (236 the running coupling becomes independent of the original

bare coupling of the theory. Thdimensionlessunning cou-
It is interesting to note that the cubic and higher order interpling a(p)/p approaches a constant nemerical value, 4. Al-
actions do not depend ox. The coupling constant of the ternatively one may define a dimensionless renormalized
collective field theory is IN as expected. coupling at some scalg, g(u) by the relation
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NoA coupling A\ and the momentum cutofh and perform the
HY(p)= TOA (2.43  continuum limit with nonzero\,. This yields
14—
4p 1 8lky] |kq|?
(L)1 (k)= (kg +ky) Aol )\OA2+O A% ||

where A denotes the momentum space cutoff of the bare (2.50

theory and\( the bare dimensionless coupling. Then as one '

approaches the continuum limit—c the renormalized cou- |n the limit A— o the first term gives rise to a short distance

pling g tends to a fixed value 4 independentlyXf. Thus  contact term which has to be subtracted in the renormalized

g=4 is an infrared fixed point. The full beta function, at theory. The nontrivial part scales agﬂ which means that

Lzafé)ng order of large-N expansion can be read off from Edthe dimension of the operator is 2 at the nontrivial fixed
point.

B(g)zﬂﬁ_gz _g( 1— ‘l_lg). (2.44) IIl. HOLOGRAPHIC CORRESPONDENCE
P

Our proposal is that the collective field theory described

The scaling behavior of the correlatof.39 at this IR above provides a description of the singlet sector of the vec-
fixed point may be read off by considering the continuumtor model in terms of ad+ 1)-dimensional theory of higher
limit approached by starting with any arbitrary bare couplingspins. The basic idea is to write the collective field as a
N\o. Instead of considering the bilocal field by itself it is function of the center of mass coordinateand the relative
instructive to consider various moments which define locakoordinates as in Eqs(1.6) and(1.7). One can then expand
composite operators as in E@L.9. Consider the simplest the fieldo as
such operator which is the scalar composite

o(%,%)=d(%)- (X). (2.45 U(U,v):;n o1H(G,N)Ym(6), (3.1
The Fourier components of this composite may be expresseghere we have written the relative coordinates in terms
in terms of the Fourier componeri#igp,q) as of its magnituder and d—1) anglesf; --04_1. Yi7(6)
denote the spherical harmonics 8. Since the original
U(k)_f [dSX]elk X f_gg k—q,q). field o(X,y) is symmetric under interchange gfandy, it
(2 should be symmetric undef— —v. This means that only

(2.49 even(or zerg values ofl appear in the expansidB.1). Thus
the collective field is equivalent to a collection of higher spin
fields living ind+1 dimensions spanned byi,f) and there
is exactly one field for each even spin. Note that if we had a

Thus the connected two-point function of the composite op-
erator is given by

39 dq’ U(N) rather than aO(N) symmetry one would have odd
(L(kp) (ko)) = f 2m? (2n)? spins as well.
For d=3 we thus have a four dimensional theory. When
X{(7(ki—9,9)7(k.—q',q")), the vector model is at one of its fixed points, the theory is

conformally invariant and has a symmetry grdsif(4,1). It
(2.47) is then natural to expect that the four dimensional theory is
defined on Adg which has the same isometry. We will see
later in what sense this is true.
In the remaining part of this section we will discuss sev-

where 7(k) denotes the fluctuation i@ (k). Using Egs.
(2.38 and(2.41) this may be easily evaluated to yield

o S(ky+Ky) 1 o\ eral_ issu_es which point towa_rds an i_nterpretation of the col-
(¢(k1) (ko)) = 1- lective field theory for the fixed point models ashalo-
8[k4| 8[k4| 2_)‘ graphictheory defined on the boundary of AdS
8|kl
8(ky+ky) A. Finite temperature thermodynamics
- N+8lky| (2.48 One of the crucial aspects of holography is that the high
temperature thermodynamics of the bulk theory th+(1)
At the trivial fixed point one gets dimensions is appropriate to a theorydrdimensions. Fur-
thermore, the result involvel which is the coupling con-
~ 11+k2) stant of the bulk theory. This leading result cannot come
(¢(kp)é(ka))= ~8lky| (249 from counting of the stgtes of the bu?k theory sirdeap-

pears in the latter only through the coupling constant and in
which implies that the dimension of the operatdiX,X) is 1. a 1N expansion one would expect &y(1) answer which
To see the behavior at the nontrivial fixed point one has tageflects that the propagating modes live th+1) dimen-
rewrite this expression in terms of the bare dimensionlessions. In known examples of holography, however, an
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N-dependent answer characteristic af dimensional theory energy which is proportional thl which leads not only to a
comes from the fact that the bulk theory is typically a theorynontrivial internal energy, but a nontrivial entropy propor-
of gravity and its high temperature properties are dominatetional to N In fact there are no ¥ corrections to this result
by black holes whose entropies are proportional to their area®r the =0 theory due to the complete cancellation dis-
and whose thermodynamics is appropriate to that of theory icussed above. For# 0 the cancellation is not complete and
d dimensions. Furthermore, the black hole entropy is a “clasthere are finiteO(1) corrections. However, the divergent
sical” effect and goes as the inverse of the square of théerms which contribute to the vacuum energy cancels. The
coupling constant and therefore contains the right power ofinite temperature behavior of the interacti@{N) model
N. was discussed a long time ago[i24] and more recently in
In the previous section we have calculated the leading25].
order and the (N) corrections to the partition function of The fact that the leading thermodynamics comes from the
the collective field theory defined on a periodic lattice with classical contribution to the action is reminiscent of the
M sites in each direction. We now use these results to discussibbons-Hawking calculation of the entropy of a black hole.
the finite temperature behavior. To do this all we have to doAs will be seen below, the space-time interpretation of the
is takeM large but consider different lattice spacings in thefour dimensional collective field theory does not appear to be
“space” and the “Euclidean time” directions. Finally we straightforward and it is difficult to identify what kind of
have to consider a continuum limit and a thermodynamicspace-time configurations give rise to this classical contribu-
limit in which the physical extent of the Euclidean time di- tion. Nevertheless our result strongly suggests that the four
rection is a finite quantity3=1/T while those in the space dimensional bulk theory of higher spin fields have black
directions ard. with L> . holes.
First consider the Gaussian fixed pointat0 in any
number of dimensions. The finite temperature free energy
may be read off from Eq(2.23 in a standard fashion. The
expression2.23 has a leading divergent term which is ex- ~ While the fieldso,(d,r) do represent higher spin fields
tensive, proportional td_9"!B—the coefficient being the in d+1 dimensions, they are not the standard higher spin
ground state energy density. The next subleading term, whicfields as discussed ii14], but related by some field redefi-
we denote byS’, is proportional toL9"* and has the form  nition. This may be seen from the fact that the quadratic
action is not diagonal in the spins. A sdiffield mixes with
, d-1 _ spinsl = 2. We do not know what is the exact field redefini-
§'=-NL J (277)3*1 log(1—e ﬁlpl)' (3.2 tion which relates these components to the standard fields of
higher spin theories.
This is then related to the thermodynamic free end¥dy An important indication of this fact comes from an exami-
nation of the transformation properties of the collective field

B. Conformal transformations and AdS

d-1

F= ES’ 3.3 under conformal transformations on the boundary. Consider
B ' for example the theory at the Gaussian fixed point. From the
_ known conformal transformations it follows that the transfor-
It is clear that mations of the bilocal fieldr(X,y) are given by
F~NLO 1T, (3.4)

opo=—«a

- d .
X'W+y'F+A) o(X,¥),
which is nothing but the free energy Nfspecies of massless y
particles ind—1 space dimensions. In particular the entropy

scales as
0-1

— J J
5-|—0'—t W + W
S~NLI-Td- 1, (3.5

From the point of view of the vector model this result is
of course obvious. However, from the point of view of the
collective field theory this is a rather nontrivial result. As we
saw, we can interpret this theory as a theory of higher spin
fields ind+1 dimensions. Naively one would expect that the 5502([2(€'X)Xi— Ix|2€'] ir+[2(6_y)yi
thermodynamics would be the one appropriatedtaather Ix
than d—1), space dimensions and should beQ@fl) as P
explained above. —|yl?é]—+Ae- (x+y)

The point is that all these expectations are based on the ay
usual situation where the leading thermodynamic free energy
comes from the “one loop” contribution. In the present con- HereA is the scaling dimension of anda, t', 61 ande are
text this is the leading N correction, which actually gives the parameters of dilatations, translations, rotations, and spe-
anO(1) contribution to the free energy. What we saw abovecial conformal transformations, respectively. Rewriting these
however, is that there is @éassicalcontribution to the free expressions in terms af andv we get

PPV S RV R R
ax! ox' ay! oy'| "’

o. (3.6)
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In fact there are indications that the correct higher spin
o, fields are related to the componentg,(G,r) by nonlocal

transformations. This may be seen from various points of
P view. The exercise we have done above is in fact an attempt
Sro=t—o, (3.7 to rewrite conformal transformations on a pair of vectors
au (X,y) as isometries in an AdS space by identifying the cor-

rect coordinates in the latter. It is straightforward to see that

Sno= 0 ( ui—&—— uj_5_+ L. ) o this works for dilatations, translations, and rotations with the

au! ou - YT identification ofd andr as the coordinates in AdS as in the

metric (3.11). However, this cannot work for the special con-

: o o formal transformation. To see this consider the casel of
[2(e-wu'~|u[*e'=r%€'] - +2(e-Wr—— =1 In this case the collective field should contain only one
field in AdS since there is no spin in AdS The special
conformal transformations are then

NP
Spo=—|U—+r—+A
Y (uau' ar

530':

+2A(e~u)+(ejui—ujei)Lji}a'

Sx=ex?, Sy=ey? (3.12
. d
+2(e-v)v'o o, (3.8 which leads to
Where Su=e(u?+v?), Sv=2euv. (3.13
P P This is to be compared with the corresponding Killing isom-
Lij=v'——vi—. (3.9  etry of the metric(3.1) for d=1, viz.,
dv Jv

S'u=e(u’—v?), Sv=2euv. (3.149
To see the action on the individual componemnis(U,r) one
needs to substitute these expressions in the expaf3ibn Another indication comes from the relationship of the
It is clear from the above expressions that the dilatationsgomponentsr,, with the infinite set of conserved currents in
translations, and rotations act on the componentgd,r) the vector modelat A =0) [26,17]. These currents are sym-
diagonally, i.e., the action does not mix up various spins. Thenetric and traceless and given by d=3)
factor of Lj; in the transformationSzo mixes fields of dif- .
ferentm for the same lexactly as rotation generators should. (=101, ¢) (01, i &)
On the other hand, the last term in the special conformal Jil--~iS:k2

= 1 1
transformation ono shows that this mixes up fields with 0 I'(k+ 1)F(k+ > I'(s—k+ 1)F(s—k+ >
differentspin.

In fact, if we define new component fields —traces. (3.15
Xim(G,1)=1"" 20 (u,r) (3.10  These currents are conserved
the generators for dilatations, translations, and rotations on (7i13i1~~i520- (3.16

Xim are exactlythe generators of the corresponding isome-

tries on tensor fields of rankdefined on an AdS space, with These currents can be expressed in terms of the collective

the metric given in Eq(1.8), field. Consider for example the first few currents. These may
be expressed as follows:

ds? ! dr’+da-dd 3.1
—r_2[ r<+aud- U]. ( . :D JO:U(uuv)vzov
In particular this means that the magnitude of the relative 3 & 1 S A .
coordinate behaves as a scale, as it should. = avTaul 37 gvkav, o(0.0)],=0
For special conformal transformations, the story is differ- 5 5
ent. Here all the terms in E@3.8), except the last terpare 1 g }5” d w0, (317
the correct expressions for generators of the corresponding 2|autou) 37 auou, THE: ’
isometries of the metriq3.11). The last term, however,
clearly mixes different spins. These currents transform homogeneously under conformal

The correct higher spin fieldsl4—17, however, trans- transformations.
form homogeneously under the Killing isometries of AdS The collective field expansion in E¢3.1) can be also
and do not mix up fields with different spin. This shows thatreorganized in terms of derivatives of the form which appear
the fieldso,,(U,r), while containing the complete physics of in Egs. (3.17), since spherical harmonics are in one-to-one
higher spin theories, are not themselves the correct highaorrespondence with traceless symmetric tensors made out of
spin fields. products ofv'. Thus we have expansions of the form
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1 (%0 gauge grouB U(N). Since the gauge theory coupligg,, is
o(U,0)=|o(0,0)+ grz(w) +O(r4)} related to the bulk parameters by the relati@yy
v=0 =G R4 2, such bulk couplings are computed in terms of
1, fin] 1 i o gauge theory three-point functions which are completely in-
torfjves §5 ERED] dependent ofjy,, and only depends oN. This is possible
v since one is computing three-point functions of composite
1 i 2 5 operators which have nonzero values in free field theory.
3 J g 70+O(r )| (3.1 Indeed in this particular case, the underlying supersymmetry

ensures that the three-point functions of a class of operators

where we have performed a Taylor expansionirand re-  are given exactly by their free field valug2s].

organized it in terms of traceless symmetric products of the For the vector model the conformal field theory is at a

unit vectorso'. Thus the components, ., are given by fixed point rather than on a line of fixed points, so that there
is no analog of a gauge theory coupling constant. This is the

0 5 Fo o(r reason why the couplings in the collective field theory are
oo (U, )+5r 2 70+ | characterized only byN and by no other parameter. The

value of the bare coupling drops out since in the continuum

Po 1 (2o limits one approaches the infrared fixed point.
O 1m~ (—l—r) __5'J<_2. +0(r?)|. This fact therefore implies that if the dual theory is a
], _o 3 VT g higher spin theory in AdS, theall the couplings of that

(3.19 theory are characterized by the dimensionless combination
G/R2. This is a rather nontrivial prediction for the higher

Comparing Eqgs(3.19 and (3.17) it is clear that the fields spin theory.

o1m(u,0) do notreduce to the currentd; ...; . This is the

basic reason Why these components do, not transform prop- D. Propagating modes and Hamiltonian collective theory
erly under special conformal transformations. ) i i

It must be emphasized that the collective field theory con- We have so far considered the Euclidean version of the
tains all the information contained in the vector model sin-collective field theory as derived if20]. For the three di-
glet correlators and hence serves amplete definitioof ~ Mensional vector model this is a collection of higher spin
the higher spin theory, including all interactions. However,fields in four dimensions—one field for each even spin. A
the relationship between the components of the collectivéomponent fieldr,,(U,r) has 2+1 components. However,
field and the higher spin fields which propagate indepenif all the four dirr_lensional fields of the QUaI theory are
dently atN=c0 appears to be rather nontrivial. The key to Massless—as conjectured—there are precisely two propagat-
uncovering the precise relationship is conformal invarianceing polarizations for each spinr, clearly contains too

We hope to report results about this connection S@. many independent propagating modes.
The key reason behind this overcounting is the fact that

the Euclidean collective field is a way to organize an infinite
set of higher spin currents in the boundary theory, as indi-
As shown in the previous section, for the critical theory cated above. These are symmetric and traceless in the three
the interactions of the collective field theory are characterdimensional indices, with the spineurrent containing in-
ized by a coupling constant which is\IM and independent dices, leading to (2+1) components. However, these cur-
of the bare coupling, of the underlying vector model. We rents areconservedin the A\=0 theory, and conserved to
now make several comments about how this may come abou$ading order in M in the interacting theory, so that there
in a bulk theory defined on AdS space. are 2(— 1)+ 1 conditions relating the components. Thus the
Since the bulk theory contains gravity, it is characterizedhumber of independent components id €2)—[2(1—1)
by a Newton's gravitational constai@ which has dimen- +1]=2 which is the correct value for the number of propa-
sions of(length? in four dimensions. In flat space, the inter- gating modes for each spin. This counting can be easily seen
action terms in the theory have coefficients which depend ofo work in any number of dimensions.
the coupling constant/G and the terms have a number of  The meaning of all this is that the Euclidean collective
derivatives which make the action dimensionless. Typicallyfield theory must have a gauge invariance which follows
again for four dimensions, eacliG is accompanied by a from the current conservation conditions in the vector model.
single derivative. In AdS space, however, there is anothewe do not know how to display this symmetry, but we know
length scaleR, where 1R? is the constant curvature. Conse- it is there because of the one-to-one correspondence between
quently, instead of derivatives there could be inverse powerthe spin components of the collective field and the currents.
of Rwhich account for the correct dimensions. This is famil-  This situation is not new and has been encountered before
iar in supergravity in, e.g., AdX S°. Here, there is a class in other examples of the AdS/CFT correspondence. Consider
of couplings which do not depend @k andR individually,  the cases where the bulk theory on Ad$ contains a mass-
but only on the dimensionless combinatiGnR3. By virtue  less graviton. This hasd@+1)(d—2)/2 propagating compo-
of the AdS/CFT correspondence one &R~ 1/N?, where  nents. The operator which is dual to the graviton is the en-
the four dimensional dual super-Yang-Mills theory has aergy momentum tensor of the boundary theory which has

C. Interactions and the bulk theory
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(d®+d—2)/2 components because of the tracelessnessvhere as usual
However, the energy-momentum tensor is c;znserved so that
the number of independent polarizations &*¢d—2)/2 _1r_ 1 _ -~
—d=(d+1)(d—2)/2. In the coordinates of Eq3.1D), the U=5(X+y), T=5(X=y), r’=3-5. (3.29
CFT is defined on the boundaryrat 0. The energy momen-
tum tensor then computes correlators of the graviton fieldn Eq. (3.24 Y,,, are spherical harmonics onS{~ 2 rather
h,, in a gauge wheréd,,=0, but this gauge still retains than onS? 1. Consequently the number of components of
some gauge symmetries. m for a givenl is exactly the same as the number of propa-
Our situation is rather similar. In fact, given the conservedgating polarizations of a massless spiield ind+ 1 dimen-
currents in the vector model one may construct bulk fieldssions. For example, fat=3 for a givenl we have precisely
using a bulk-to-boundary propagator. As showr{1], the  two values ofm, i.e., m= =1 which count the two polariza-
conservation of currents then lead to gauge conditions on thgons of massless four dimensional fields with any spin. This
bulk fields. Hamiltonian collective field theory therefore correctly counts
It is not surprising to find that the Euclidean collective the propagating modes of higher spin fields.
field contains redundant degrees of freedom. The collective The manner in which the action formulation reduces to
field theory we have considered reproduces all singlet corthe canonical. Hamiltonian representation is interesting and
elators of the theory. However, among these correlators argither nontrivial. The Langragian formulation was character-
those which receive contributions frononsingletinterme-  jzed by being bilocal in time as well as in space while the
diate states. The simplest exampleig(x,y)) itself, which  canonical, Hamiltonian formulation is local in time. The re-
is the propagator of the elementary fiefid On the other duction from one to another
physical propagating states in the bulk must be singlet states.
To look at the propagating modes it is instructive to con- o(X,6X" ) = (XX ;1) (3.26
sider the Hamiltonian version of collective field theory
[3,29]. In this formulation the collective fields are Schro involves a formal reduction in the number of degrees of free-
dinger picture operatorg(X,y) defined by dom as we have seen. One has indications that this reduc-
tion can be understood in terms of a gauge principle in anal-
o e ogy with a connection between a covariant and canonical
(%) - () (320 gauge description of gravity. We should also emphasize im-
plications on thermodynamics contained in the two descrip-
and their canonically conjugate momerigX,y). HereX,y  tions. By its nature the canonical description naturally leads
denote thespatial[i.e., (d—1) dimensiondl components of to a thermodynamics with entropy of order one rather than of
the space-time locations. These operators create all the sifrderN and would seemingly miss one of the main ingredi-
glet states of the theory, whose dynamics is governed by thents of holography.There is a vacuum energy @i(N) but
collective field Hamiltonian, not an entropy. The reason behind this may be gleaned from
an understanding of the free theory. Here the exact entropy is
H=2Tr(ITI1)+ Vo, (3.21 of orderN and clearly counts the number of states created by

. the elementary fieldé;. In other words this leading classical
with contribution to the thermodynamics comes from then-

1 N singlet states of the theory. Analogous states have an inter-
vV :_f dX| — V2(RX.Y) |z v+ m2(X3) + = (h(X,X))2 pretation of winding modes in matrix theories and they are
coll™"2 W RY) eyt MEURR) 7 WXX) not contained in the Hamiltonian collective theory. On the
1 other hand, as we have seen the Euclidean collective field
+ = Try L (3.22  theory does capture the contribution from these nonsinglet
8 states. The importance of nonsinglet states for thermodynam-
ics also makes its appearance in the1l matrix model11].

and We therefore see that the nonsinglet states of the vector
s model correspond to nonpropagating modes in the bulk. The
X

Zl -

(XY

_ (3.23 thermodynamics in the bulk description comes from a clas-
oPY(Xy) sical contribution in the Euclidean collective field theory and
) ) ) ] hence from these nonpropagating modes. This is consistent
being the canonically conjugate variable. In E@8.21,  jth the conjecture that in this model, like in other string
(3.23 ¢ should be regarded as a matrixXry and the trace  theory examples, the thermodynamics is dominated by black
refers to the trace of this matrix. . ~ holes, which are, of course, examples of condensates of non-
One may expand the corresponding Heisenberg picturgropagating modes. The relationship between nonsinglet
Operator in @ manner similar to the Spherical harmonic exstateS, nonpropagating modes, black holes, etc., has been a

I(xy)=

pansion of the Euclidean collective field matter of considerable discussion in matrix models. For vec-
tor models, the availability of a tractable Euclidean collective
(X Y/'UZE DT DY m (3.24) theory provides an opportunity to understand this important

I,m issue.
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IV. CONCLUSIONS Nevertheless, it is conceivable that due to unknown rea-
sons there is a sense in which this theory may be considered

is capable of describing a higher spin theory of a single fieldS ? theory c_)f gravit_fl.This may happen as in the AgS
for each even spin in one higher dimension. However, while* S —Yang-Mills duality. Here at the AdS scale, the bulk
the spherical harmonic decomposition of the bilocal fieldth€0ry cannot be priori described in terms of a five dimen-

gives the correct count of the higher spins, thesenatdhe sional theory of gravity, since the Kaluzg—KIein modes from

standard higher spin fields. We suspect that there is possibljie S° have the same scale. However, it turns out that one

a nonlocal field redefinition betweem,,, and the standard does much better than this naive expectation. For many pur-

fields. poses, the theory can indeed be regarded as five dimensional
We have also argued that the Euclidean collective fieldjravity even at the AdS scale. This is evidenced by the fact

contains more degrees of freedom than threpagating that the thermodynamics of the Yang-Mills theory is cor-

modes. On the other hand, the Hamiltonian collective theoryectly reproduced byfive dimensionalAdS-Schwarzschild

precisely counts the propagating modes. The distinction islack holes. We have no idea whether a similar decoupling

important, since as we have found, the leading thermodyholds in this case.

namics in fact receives contributions from nonsinglet states.

In the bulk description this means that nonpropagating back-
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