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Nonlinear multidimensional cosmological models with form fields:
Stabilization of extra dimensions and the cosmological constant problem
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We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in
the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spon-
taneous compactification to a warped product manifold. Particular attention is paid to models with quadratic
scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain
parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the
internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological
constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy
density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they
follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.
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I. INTRODUCTION

Two of the most intriguing problems of modern cosmo
ogy are the problem of additional dimensions and the c
mological constant problem~CCP!. The first problem fol-
lows from theories which unify different fundament
interactions with gravity, such as M or string theory@1#, and
which have their most consistent formulation in spacetim
with more than four dimensions. The problem can be na
rally formulated as the following question: if we live in
multidimensional spacetime, why do we not observe the
tra dimensions? Within the ‘‘old’’ Kaluza-Klein~KK ! frame-
work and the early (E83E8)-heterotic string phenomeno
ogy, the question is answered by assuming the e
dimensions are so small~i.e., with a characteristic sizer
between the Planck and the Fermi scales 10233cm&r
&10217cm) that they are not accessable by present-day
lider experiments. New concepts with the possibility for ri
phenomenology opened up with the uncovering
D2branes by Polchinski@2# in 1995. In ‘‘brane-world’’ sce-
narios of the Universe the usual four-dimensional phys
with its SU(3)3SU(2)3U(1) standard model~SM! fields
is localized on a three-dimensional space-like hypersurf
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~our world-brane!, whereas the gravitational field propagat
in the whole~bulk! spacetime. Depending on the concre
scenario, there are different types of masking of the ad
tional dimensions. Whereas in Arkani-Hamed–Dval
Dimopoulos~ADD! models@3–5# the extra dimensions ar
curled up to sizes smaller than 1022 cm, so that they are in
agreement with present table-top Cavendish-type tests
gravity @6#, they can be infinite in the Randall-Sundrum
~RS II! @7# and Dvali-Gabadadze-Porrati~DGP! @8# models.
In the latter models, the four-dimensionality of low-ener
physics is achieved by inducing appropriate effective gra
tational potentials on the world-brane. In addition to th
interesting phenomenology, brane-world models provide
possible resolution of the hierarchy problem. In ADD-typ
models this is due to the connection between the Pla
scale M Pl(4) and the fundamental scaleM* (41D8) of the
four-dimensional and the (41D8)-dimensional spacetimes
respectively:

M Pl(4)
2 ;VD8M* (41D8)

21D8 . ~1!

VD8 denotes the volume of the compactifiedD8 extra dimen-
sions. It was realized in@3–5# that localizing the SM fields
on a 3-brane allows one to lowerM* (41D8) down to the
electroweak scaleMEW;1 TeV without contradiction with
present observations. Therefore, the compactification sca
the internal space can be of order

r;VD8
1/D8;10(32/D8)217 cm. ~2!

19,
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With MEW;1 TeV, physically acceptable values correspo
to D8>3 @3# ~for astrophysical and cosmological boun
see, e.g.,@9#; experimental bounds from table-top Cavendis
type experiments are given in@6#!, and forD853 one arrives
at a submillimeter compactification scaler;1025 mm of the
internal space. If we shiftM* (41D8) to 30 TeV, as suggeste
in @9# ~see also@10#!, then theD852 case satisfies all afore
mentioned bounds and leads tor;102321022 mm. In or-
der not to exclude thisD852 with its largest possible com
pactification scaler, we assume that the fundamental sc
M* (41D8) can be of order 30 TeV. Additionally, the geom
etry in the ADD approach is assumed to be factorizable a
a standard Kaluza-Klein model. That is, the topology is
direct product of a nonwarped external spacetime mani
and internal space manifolds with warp factors which dep
on the external coordinates.1

According to observations, the internal space should
static or nearly static at least from the time of primord
nucleosynthesis~otherwise the fundamental physical co
stants would vary, see, e.g.,@12,13#!. This means that at the
present evolutionary stage of the Universe the compactifi
tion scale of the internal space should either be stabilized
trapped at the minimum of some effective potential, or
should be slowly varying~similar to the slowly varying cos-
mological constant in the quintessence scenario@14#!. In
both cases, small fluctuations over stabilized or slowly va
ing compactification scales~conformal scales/geometrica
moduli! are possible.

Stabilization of extra dimensions~moduli stabilization! in
models with large extra dimensions~ADD-type models! has
been considered in a number of papers~see, e.g., Refs
@5,15–21#!.2 In the corresponding approaches, a product
pology of the (41D8)-dimensional bulk spacetime was co
structed from Einstein spaces with scale~warp! factors de-
pending only on the coordinates of the external fo
dimensional component. As a consequence, the confo
excitations had the form of massive scalar fields living in
external spacetime. Within the framework of multidime
sional cosmological models~MCM!, such excitations were
investigated in@22–24# where they were called gravitationa
excitons. Later, since the ADD compactification approa
these geometrical moduli excitations are known as radi
@5,16#.

Most of the aforementioned papers are devoted to the
bilization of large extra dimension in theories with a line
multidimensional gravitational action. String theory sugge
that the usual linear Einstein-Hilbert action should be

1The M theory inspired RS scenarios@7,11# use a nonfactorizable
geometry with D851. Here, the four-dimensional spacetime

warped with a factorṼ which depends on the extra dimension a

Eq. ~1! is modified asM Pl(4);Ṽ21MEW . In our paper we concen
trate on the factorizable geometry of ADD-type models.

2In most of these papers, moduli stabilization was conside
without regard to the energy-momentum localized on the bran
that the dynamics of the multidimensional universe was mainly
fined by the energy-momentum of the bulk matter. A brane ma
contribution was taken into account, e.g., in@21#.
04401
d

-

e

in
e
ld
d

e
l

a-
nd
t

-

-

-
al

e

h
s

ta-

s
-

tended with higher-order nonlinear curvature terms. In a p
vious paper@25# we considered a simplified model with
multidimensional Lagrangian of the formL5 f (R), where
f (R) is an arbitrary smooth function of the scalar curvatu
Without connection to stabilization of the extra dimension
such models~four-dimensional as well as multidimension
ones! were considered, e.g., in Refs.@26–28#. There, it was
shown that the nonlinear models are equivalent to mod
with linear gravitational action plus a minimally coupled sc
lar field with self-interaction potential. In@25#, we advanced
this equivalence towards investigating the stabilization pr
lem for extra dimensions. Particular attention was paid
models with quadratic scalar curvature terms. It was sho
that for certain parameter ranges, the extra dimensions
stabilized if the internal spaces have negative constant
vature. In this case, the four-dimensional effective cosm
logical constantLe f f as well as the bulk cosmological con
stant LD become negative. As a consequence,
homogeneous and isotropic external space is asymptotic
AdS4. Because the considered nonlinear model is a pure g
metrical one~only with a bare cosmological constantLD as
an exotic matter source included! the equivalent linear mode
contains only a minimally coupled scalar field as bulk matt
The null energy condition~NEC! TabN

aNb>0 for this field
readsTabN

aNb5(Na]af)2>0 ~with N a future directed null
vector! and is satisfied only marginally when the intern
spaces are completely stabilized and the scalar field is fro
out. Moreover, the weak energy condition~WEC!
TabW

aWb>0 ~with W a future directed timelike vector! is
violated in this case because the energy densityr of the
scalar field is negative definiter,0. As a result, the afore
mentioned parameters~the internal space scalar curvature
LD andLe f f) are negative in the case of stabilized intern
spaces~see also@17,20,24#!.

However, a negative cosmological constant leads to a
celeration of the Universe instead of to an accelerated exp
sion, as recent observational data indicate. According
these data our Universe is dominated by a dark energy c
ponent with negative pressure. For example, from obse
tions of the clusters of galaxies it follows that the ener
density of the matter components which can clump in va
ous structures is significantly undercritical. But, the positi
of the first acoustic peak in the angular power spectrum
the cosmic microwave background~CMB! radiation implies
that the Universe is, on large scales, nearly flat. In ot
words, the energy density in the Universe is very close to
critical value. Thus, there must exist a homogeneously
tributed exotic~dark! energy component@29#. This observa-
tion is in agreement with the conclusion following from th
Hubble diagram of type Ia supernovae~SN-Ia! at high red-
shifts, which also indicate that our Universe currently und
goes an accelerated expansion. Under the assumption of
ness, using the data of the CMB anisotropy measureme
high redshift SN-Ia observations, and from local clus
abundances, the authors of Ref.@30# found a constraint on
the equation of state parametervQ5P/r,20.85 at 68%
confidence level. They concluded that this result is in perf
agreement with thevQ521 cosmological constant case an

d
so
-
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NONLINEAR MULTIDIMENSIONAL COSMOLOGICAL . . . PHYSICAL REVIEW D 68, 044010 ~2003!
gives no support to a quintessential field scenario withvQ

.21. Results obtained in@31# also favorvQ'21 at the
present epoch.

In Ref. @25# we already indicated that the effective co
mological constant can be shifted from negative values
positive ones by including into the nonlinear model mat
fields which satisfy the NEC. In the present paper, we de
onstrate this effect explicitly by endowing the extra dime
sions with real-valued solitonic form fields@32#. Such fields
naturally arise as Ramond-Ramond~RR! form fields in type
II string theory and M theory. Within a generalized Freun
Rubin setting@33# their influence on the evolutionary dy
namics of the Universe has been considered, e.g., in R
@34–37# and due to its simplicity we adopt this ansatz he
for the stability analysis of our nonlinear model. From Eq
~9!, ~10! below, it can be easily seen that the real-valu
form fields satisfy the NEC as well as the WEC. Howev
the strong energy condition~SEC! is violated in our model
by the cosmological constant.3 The presence of two types o
fields in our equivalent linear model—the minimally coupl
scalar field~which satisfies the NEC only marginally an
which can violate the WEC! and the form fields~which sat-
isfy both of these conditions!—leads to a rich and interestin
picture of stable configurations with various sign combin
tions for the allowed cosmological constants as well as
the constant curvatures of the internal space. Beside stab
regions with negative four-dimensional effective cosmolo
cal constantLe f f,0 the parameter space contains also
gions withLe f f.0 which can ensure an accelerated exp
sion of the Universe.

As mentioned at the very beginning of the Introductio
there still remains the problem of the incredible smallness
the cosmological constant@39,40#. Moreover, it is com-
pletely unclear why its energy density is comparable with
energy density of matter just at the present time~the cosmic
coincidence problem!. Modern reviews on the cosmologica
constant problem can be found, for example, in@29,41,42#.
In our paper, we show that for stabilized internal space
small positive cosmological constant of the external~our!
space can arise from ADD- and KK-type multidimension
models. We demonstrate that the smallness of the effec
cosmological constant can follow from a natural parame
choice of the considered nonlinear ansatz. Unfortunately,
extremely small value of the observed cosmological cons
requires a very strong fine tuning of the parameters.

The paper is structured as follows. The general setup
our model is given in Sec. II. There we make the geometry
the spacetime manifold explicit—endowing the intern
space with the structure of a warped product ofn factor
spaces~due to spontaneous compactification!. Furthermore,
we specify the generalized Freund-Rubin ansatz for the f
fields. In Sec. III, we present a detailed analysis of the s
bilization problem for a model with one internal space. T
main results are summarized and discussed in the conclu
Sec. IV.

3For a critical discussion of the different ECs, we refer the rea
to @38#.
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II. GENERAL SETUP

We consider aD5(41D8)-dimensional nonlinear gravi
tational theory with action

S5
1

2kD
2 EM

dDxAuḡu f ~R̄!

2
1

2EM
dDxAuḡu(

i 51

n
1

di !
~F ( i )!2, ~3!

where f (R̄) is an arbitrary smooth function with mass d
mensionO(m2) (m has the unit of mass! of the scalar cur-
vatureR̄5R@ ḡ# constructed from theD-dimensional metric
ḡab(a,b51, . . . ,D),

kD
2 58p/M

* (41D8)
21D8 ~4!

denotes theD-dimensional gravitational constant~subse-
quently, we assume thatM* (41D8);MEW). In action ~3!,
F ( i )5Fmini . . . qi

( i ) , i 51, . . . ,n is an antisymmetric tenso

field of rankdi ~a di-form-field strength! with indices from
an index set s( i )5$mi :max(mi)2min(mi)5di%, where
mi ,ni , . . . ,qiPs( i ) . For simplicity, we suppose that the in
dex setss( i ) ,s( j ) of tensorsF ( i ),F ( j ) with iÞ j contain no
common elements as well as no indices corresponding to
coordinates of theD0-dimensional external spacetime~usu-
ally D054). Additionally, we assume that for the sum of th
ranks holds( i 51

n di5D2D0ªD8. Obviously, this model
can be generalized to tensor configurationsF ( i ), F ( j ) with
intersecting~overlapping! index sets. In this case explic
field configuration can be obtained, e.g., when the indi
satisfy special overlapping rules@36#. Such a generalization
is beyond the scope of the present paper. Furthermore
assume in our subsequent considerations that the index
mi ,ni , . . . ,qiÞ0 do not contain the coordinates of the e
ternal spacetimeM0 and, hence, the field strengthsF ( i ) can
be associated with a magnetic~solitonic! p-brane system lo-
cated in the extra dimensions as discussed, e.g., in R
@32,35,36#.

The equation of motion for the gravitational sector of E
~3! reads

f 8R̄ab2
1

2
f ḡab2¹̄a¹̄bf 81ḡabh̄ f 85kD

2 Tab@F,ḡ#, ~5!

where a,b51, . . . ,D, f 85d f /dR̄, R̄ab5Rab@ ḡ#, and R̄

5R@ ḡ#. ¹̄a and h̄ denote the covariant derivative and th
Laplacian with respect to the metricḡab ,

h̄5h@ ḡ#5ḡab¹̄a¹̄b5
1

Auḡu
]a~Auḡu ḡab]b!. ~6!

Equation~5! can be rewritten in the form
r

0-3
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f 8Ḡab1
1

2
ḡab~R̄f 82 f !2¹̄a¹̄bf 81ḡabh̄ f 8

5kD
2 Tab@F,ḡ#, ~7!

whereḠab5R̄ab2 1
2 R̄ḡab , and its trace

~D21!h̄ f 85
D

2
f 2 f 8R̄1kD

2 T@F,ḡ# ~8!

can be considered as a connection betweenR̄ and f. The
energy momentum tensor~EMT! Tab@F,ḡ# is defined in the
standard way as

Tab@F,ḡ#[
1

Auḡu

dSAuḡu(
i 51

n
1

di !
~F ( i )!2D

dḡab

5(
i 51

n

Tab@F ( i ),ḡ#, ~9!

where

Tab@F ( i ),ḡ#5
1

di !
S 2

1

2
ḡabFmini•••qi

( i ) F ( i ) mini•••qi

1diFani•••qi

( i ) Fb
( i ) ni•••qi D . ~10!

For the trace of this tensor we obtain

T@F,ḡ#5(
i 51

n

T@F ( i ),ḡ# ~11!

with

T@F ( i ),ḡ#5
2di2D

2~di ! !
Fmini•••qi

( i ) F ( i )mini•••qi. ~12!

The field strengthsF ( i ) satisfy the equations of motion

F ( i ) mini•••qi
;q

i
50⇔

1

Auḡu
~AuḡuF ( i )mini•••qi ! ,q

i
50,

i 51,•••,n ~13!

and the Bianchi identities

F [mini•••qi ,a]
( i ) 50, i 51, . . . ,n. ~14!

Following Refs.@26–28#, we perform a conformal transfor
mation

gab5V2ḡab ~15!

with
04401
V5@ f 8~R̄!#1/(D22) ~16!

and reduce the nonlinear gravitational theory to a linear
with an additional scalar field. This transformation is we
defined for f 8(R̄).0 ~concerning the casef 8<0, see foot-
note 6!. The equivalence of the theories can be easily pro
with the help of the auxiliary formulas

h5V22@h̄1~D22!ḡabV21V ,a]b#,

h̄5V2@h2~D22!gabV21V ,a]b#, ~17!

Rab5R̄ab1
D21

D22
~ f 8!22¹̄af 8¹̄bf 82~ f 8!21¹̄a¹̄bf 8

2
1

D22
ḡab~ f 8!21h̄ f 8, ~18!

and

R5~ f 8!2/(22D)H R̄1
D21

D22
~ f 8!22ḡab]af 8]bf 8

22
D21

D22
~ f 8!21h̄ f 8J . ~19!

Defining the scalarf by the relation

f 85
d f

dR̄
ªeAf.0, AªAD22

D21
~20!

and making use of Eqs.~17!–~19!, Eqs. ~7! and ~8! can be
rewritten as

Gab5kD
2 Tab@F,f,g#1Tab@f,g# ~21!

and

hf5
1

A~D21!~D22!
expS 2D

A~D21!~D22!
f D

3S D

2
f 2 f 8R̄D1

1

A~D21!~D22!
kD

2 T@F,f,g#.

~22!

The EMTs read

Tab@f,g#5f ,af ,b2
1

2
gabg

mnf ,mf ,n2
1

2
gab

3expS 2D

A~D21!~D22!
f D ~R̄f 82 f !,

~23!

Tab@F,f,g#5(
i 51

n

expS 2di2D

A~D21!~D22!
f D Tab@F ( i ),g#,

~24!
0-4
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and

T@F,f,g#5(
i 51

n

expS 2di2D

A~D21!~D22!
f D T@F ( i ),g#,

~25!

whereTab@F ( i ),g#, T@F ( i ),g# are given by replacingḡ→g in
Eqs. ~10!, ~12!. The indices of the field strengthsF ( i ) are
now raised and lowered with the metricg.

The equations of motion~13! for F ( i ) transform to

1

Augu
FAuguexpS 2di2D

A~D21!~D22!
f D F ( i )mini•••qiG

,qi

50,

i 51, . . . ,n, ~26!

whereas the Bianchi identities~14! do not change.
It can be easily checked that Eqs.~21!, ~22!, and~26! are

the equations of motion for the action

S5
1

2kD
2 E

M
dDxAugu H R@g#2gabf ,af ,b22U~f!2kD

2

3(
i 51

n
1

di !
expS 2di2D

A~D21!~D22!
f D Fmini•••qi

( i ) F ( i )mini•••qiJ ,

~27!

where

U~f!ª
1

2
e2Bf@R̄~f!eAf2 f „R̄~f!…#, ~28!

Bª
D

A~D21!~D22!

and Eq.~20! is used to expressR̄ as a function off: R̄

5R̄(f). The scalar fieldf is the result and the carrier of th
curvature nonlinearity of the original theory4 ~3!. Corre-
spondingly, Eq.~22! has a twofold interpretation. It is th
equation of motion for the fieldf and at the same time it ca
be considered as a constraint equation following from
reduction of the nonlinear theory~3! to the linear one~27!.
Furthermore, we note that in the linear theory~27! the form
fields are nonminimally coupled with the nonlinearity fie
f. @A minimal coupling occurs only for a model withn
51, d15D0, where according to Eq.~12! the trace of the
form field EMT vanishes.# A comparison of the action func
tional with Eq. ~24! shows that the last term in Eq.~27!
coincides with the expression for the energy dens
2T0

0@F,f,g# of the solitonic form field~due to F0ni•••qi

( i )

[0 by the definition ofF ( i )).
Let us consider what happens if, in some way, the sc

field f tends asymptotically to a constant:f→f0 @precisely

4Thus, for brevity, we shall refer to the fieldf as a nonlinearity
scalar field.
04401
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this situation should hold when the internal space underg
a ~freezing! stabilization#. From Eq.~20! we see that in this
limit the nonlinearity in Eq.~3! disappears:f (R̄)'c1(R̄
2R̄0)1 f (R̄0)[c1R̄1c2, where c1ª f 8(R̄0)5exp(Af0),
R̄0[R̄(f0), and2c2 /(2c1) plays the role of a cosmologi
cal constant. In the case of homogeneous and isotro
spacetime manifolds, linear purely geometrical theories w
a constantL term necessarily imply an~A!dS geometry so
that the manifolds are Einstein spaces. In our model,
additional form fields destroy this asymptotical behavior.
stead, we obtain from Eqs.~8! and ~7!

R̄→2
D

D22

c2

c1
2

1

c1

2

D22
kD

2

3(
i 51

n
2di2D

2~di ! !
~F ( i )! ḡ

2
~29!

and

R̄ab→F2
1

D22

c2

c1
2

1

c1

2

D22
kD

2

3(
i 51

n
di21

2~di ! !
~F ( i )! ḡ

2G ḡab

1
1

c1
kD

2 (
i 51

n
2di

2~di ! !
~Fani•••qi

( i ) Fb
( i )ni•••qi ! ḡ , ~30!

where the form field product

~F ( i )! ḡ
2
ªFmini•••qi

( i ) F ( i )mini•••qi ~31!

is defined with respect to the metricḡ. For a form field,
which asymptotically tends to a constant, the scalar curva
and the Ricci tensor also approach constant values.
whereasR̄ and R are asymptotically connected by the rel
tion @see Eqs.~19!, ~21!, and~29!#

R→c1
22/(D22)R̄, ~32!

the Ricci tensorR̄ab will not be proportional to the metric
ḡab and, hence, the space will not be Einsteinian. This is
obvious contrast to a nonlinear model of purely geometri
type @25# where the stabilization will result in an asymptot
cal ~A!dSD spacetime.

In the rest of the paper we consider for simplicity a t
model5 with a quadratic curvature term,

f ~R̄!5R̄1aR̄222LD , ~33!

5For considerations on higher-order corrections to the gravity s
tor of M string theory, we refer the reader to@28,43#.
0-5
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where the parametera has dimensionO(m22). For this
model we obtain

f 8~R̄!5112aR̄5eAf⇔R̄5
1

2a
~eAf21! ~34!

and

U~f!5
1

2
e2BfF 1

4a
~eAf21!212LDG . ~35!

The condition6 f 8.0 implies 112aR̄.0. In the limit a
→0, the nonlinearity is switched off and the linear theory
recovered. Correspondingly, it holdsf 8→1 with the impli-
cationc151, f0→0 so that alsoR̄→R @in accordance with
Eq. ~32!# andU(f→0)→LD . The corresponding region o
weak nonlinearity is defined by the conditionaR̄5eAf21
!1.

Furthermore, we assume that the multidimensional spa
time manifold undergoes a spontaneous compactification

M→M5M03M13•••3Mn ~36!

in accordance with the block-orthogonal structure of the fi
strengthF, and that the form fieldsF ( i ), each nested in its
own di-dimensional factor spaceMi , respect a generalize
Freund-Rubin ansatz@33# ~see also@34–37#!. This allows us
to perform a dimensional reduction of our model along
lines of Refs.@22–25,45,46#. The factor spacesMi are then
Einstein spaces with metricsg( i )[e2b i (x)g ( i ) which depend
only through the warp factorsai(x)ªe2b i (x) on the coordi-
natesx of the external spacetimeM0. For the corresponding
scalar curvatures holds

R@g ( i )#5l idi[Ri;kri
22 , ~37!

6Obviously, the conformal transformation~15!,~16! becomes sin-

gular when f 8(R̄) vanishes. The transformation itself can be e
tended from thef 8.0 branch to thef 8,0 branch with the help of

an ansatz@27# V5u f 8(R̄)u1/(D22) and a corresponding redefinitio
of the nonlinearity fieldf: eAf5u f 8u. As a result, one obtains a
action functional for thef 8,0 branch which differs from action
~27! for f 8.0 in its total sign and in the relative signs of the sing
terms as well as in the potentialU(f). Most important, for a fixed
sign of the Einstein-Hilbert term the kinetic term of the nonlinear
field has the correct sign, whereas the kinetic terms of additio
matter fields~in our case the form fields! have the wrong relative
sign. This leads to a set of equations of motions which differ fr
Eqs.~21!,~22!. For details we refer to@27#. Unfortunately, the sign
switch occurs for all additional matter fields simultaneously and i
not controllable for some selected fields separately. Otherwis
could have provided a natural mechanism for the generation
phantom energy component with equation of state parametervQ

,21 ~and a corresponding super-acceleration of the observ
Universe! in the sense of@44#.
04401
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wherek50,61. The effective radiir i are defined from the
volumes7

Vdi
[E

Mi

ddiyAug ( i )u;r i
di , i 51, . . . ,n, ~38!

whereVdi
have dimensionsO(m2di). For technical details

of the dimensional reduction with subsequent conform
transformation from the intermediate Brans-Dicke frame
the Einstein frame of the external spacetimeM0, as well as
for notations we refer to Sec. III of our previous paper@25#.
According to the corresponding approach the warped prod
of Einstein spaces leads to a scalar curvatureR̄ which de-
pends only on the coordinatex of the D0-dimensional exter-
nal spacetimeM0 : R̄@ ḡ#5R̄(x). This implies that the non-
linearity field f is also a function only ofx: f5f(x).

In the rest of the present section we restrict our attent
to the form-field components which were not part of t
purely geometrical model of Ref.@25#. We choose them in
the generalized Freund-Rubin ansatz as

Fmini•••qi

( i ) 5A2Aug( i )u«mini•••qi
f ( i )~x!, ~39!

F ( i )mini•••qi5~A2/Aug( i )u!«mini•••qi f ( i )~x!.

For the Levi-Civita symbol«mini•••qi
we use conventions

where for Riemann spaces hold«mini•••qi
5«mini•••qi and

«mini•••qi
«mini•••qi5di !. It can be easily seen that the ansa

~39! satisfies Eq.~26! ~becausef andf depend only onx and
theAug ( i )u factors cancel!. The Bianchi identities~14! reduce
to the equations

]@ai
di~x! f ( i )~x!#

]xm
50 ~40!

with solutions

f ( i )~x!5
f i

ai
di

~41!

al

s
it
a

le

7The volumes are well defined for positive curvature spacesk
511). For compact negative and zero curvature spaces (k5
21,0), i.e., compact hyperbolic spaces~CHSs! Mi5Hdi/G i and tori
Tj5Rdj /G j , we interpret them as scaled volumes of the cor
sponding fundamental domains~‘‘elementary cells’’! Vdi

;r i
di

3VFD( i ) ~see, e.g.,@47# and references therein!. HereHdi, Rdj are
hyperbolic and flat universal covering spaces, andG i , G j are ap-
propriate discrete groups of isometries. Furthermore, we assum

the scale factors of the metricsg i;r i ĝ
i with ĝ i scaled in such a

way thatVFD( i );O(1). Thus, the volumeVdi
is mainly defined by

r i . In all three cases (k561,0), the limit r i→` results in an
effective decompactification of the internal space withVdi

→`. In
accordance with Eq.~37!, this means that the positive and negati
constant curvature spaces flatten:Rdi

→0. Clearly, for compact
Ricci-flat spaces holdsRdi

[0 by definition and without relation to
the compactification scale of the torus.
0-6
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and f i[const . We choose the warp factorsai dimensionless
so that the constantsf i

2 have dimensionO(m41D8) and
kD

2 f i
2;O(m2). With Eq. ~41! the energy density of the soli

tonic form field, and correspondingly the last term in acti
~27!, reads

2T0
0@F,f,g#5

1

2 (
i 51

n
1

di !
expS 2di2D

A~D21!~D22!
f D

3Fmini•••qi

( i ) F ( i ) mini•••qi

5(
i 51

n

expS 2di2D

A~D21!~D22!
f D f i

2

ai
2di

ªr~b,f!, ~42!

where for real form fieldsf i
2>0. Again we see that for mod

els with n51 and d15D0 this energy density decouple
from the nonlinearity scalar fieldf: r(b1,f)→r(b1).

In the case of a freezing stabilization of the intern
spaces withb i50, we obtain the nonzero components of t
asymptotic Ricci tensor~30! as

R̄mn→qḡmn , ~43!

R̄mini
→S q1

2

c1
kD

2 f i
2V0

2di D ḡmini
, ~44!

where

qª2
1

D22

c2

c1
2

1

c1

2

D22
kD

2 (
j 51

n

~dj21! f j
2V0

2dj ~45!

and V05(eAf0)1/(D22). Thus, the asymptotic multidimen
sional spacetime is built up from Einstein-space blocks,
is itself a non-Einsteinian space due to the additional term
Eq. ~44!.

III. STABILIZATION OF THE INTERNAL SPACE

Without loss of generality,8 we consider in the presen
section a model with only oned1-dimensional internal space
After dimensional reduction and subsequent conformal tra
formation to the Einstein frame~along the lines of Ref.@25#!,
the action functional~27! reads

S5
1

2k0
2EM0

dD0xAug̃(0)u$R@ g̃(0)#2g̃(0)mn]mw]nw

2g̃(0)mn]mf]nf22Ue f f~w,f!%, ~46!

where

8The difference between a general model withn.1 internal
spaces and the particular one withn51 consists in an additiona
diagonalization of the geometrical moduli excitations.
04401
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wª2Ad1~D22!

D022
b1 ~47!

and

k0
2
ª

kD
2

Vd1

~48!

denotes theD02dimensional ~four-dimensional! gravita-
tional constant. If we take the electroweak scaleMEW and
the Planck scale M Pl(4) as fundamental ones fo
D-dimensional @see Eq.~4!# and four-dimensional space
times (k0

258p/M Pl(4)
2 ), respectively, then we reproduc

Eqs. ~1! and ~2! with D85d1. A stable compactification of
the internal spaceM1 is ensured when its scale factorw is
frozen at one of the minima of the effective potential,

Ue f f~w,f!5expS 2wA d1

~D22!~D022!
D

3F2
1

2
R1expS 2wA D022

d1~D22!
D

1U~f!1kD
2 r~w,f!G . ~49!

The value of the effective potential at the minimum plays t
role of the effectiveD0-dimensional cosmological constan
Ue f fumin[Le f f . The potentialU(f) of the nonlinearity sca-
lar field is given by Eq.~35! and the energy density~42! of
the solitonic form field reads

kD
2 r~w,f!5kD

2 f 1
2expS 2d12D

A~D21!~D22!
f D

3expS 2wAd1~D022!

D22 D . ~50!

For brevity of notation, we introduce

aª2A D022

d1~D22!
, bª2A d1

~D22!~D022!
,

cª
2d12D

A~D21!~D22!
, hªkD

2 f 1
2 ~51!

so that the effective potential reads

Ue f f5ebwF2
1

2
R1eaw1U~f!1hecfead1wG . ~52!

From Eq.~51! we see that a real-valued form fieldf 1 implies
a non-negativeh5kD

2 f 1
2>0. For the rest of the paper, w

continue to work with dimensionless scalar fieldsw,f in-
stead of passing to canonical ones~modulo 8p): w̃

5wM Pl(4) , f̃5fM Pl(4) , and Ũe f f5M Pl(4)
2 Ue f f . The res-

toration of the correct dimensionality is obvious.
0-7
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In order to ensure a stabilization and asymptotical fre
ing of the internal spaceM1, the effective potential should
have a minimum with respect to the scalar fieldw,

]wUe f fuextr50, ~53!

so that for a minimum position atw050 ~which corresponds
to a compactification scaleb150 at the present time! it
should hold

a1b

2
R15bU~f!1~ad11b!hecf. ~54!

This formula shows that the potentialUe f f(w,f) must also
have a minimum with respect tof, because without stabili
zation off the right hand side remains a dynamical functi
whereas the left hand side is a constant. This second e
mum condition

]fUe f fuextr50 ~55!

yields

@]fU1hcecf#uextr50. ~56!

Additionally, the eigenvalues of the mass matrix of t
coupled (w,f)-field system, i.e., the Hessian of the effecti
potential at the minimum position,

JªS ]ww
2 Ue f f ]wf

2 Ue f f

]fw
2 Ue f f ]ff

2 Ue f f
D U

extr

, ~57!

should be positive definite,

m1,2
2 5

1

2
@Tr~J!6ATr2~J!24det~J!#.0. ~58!

According to the Sylvester criterion, this is equivalent to t
conditions

J11.0, J22.0, det~J!.0. ~59!

From Eq. ~57! we see that in the special case
]wf

2 Ue f fuextr50 the Hessian is diagonal and the excitati
modes of the fields decouple. The eigenvalues ofJ coincide
in this case with the masses squared of the scale factor e
tations~gravitational excitons@22#! m1

25mw
2 and the excita-

tions of the nonlinearity fieldm2
25mf

2 .
Let us now analyze the stability conditions~54!, ~56!, and

~59! explicitly. For this purpose we introduce the auxilia
notations

f0ªfuextr , XªeAf0>0, qª8aLD ~60!

and rewrite the potentialsU, Ue f f , and the derivatives o
Ue f f at a possible minimum position (w050,f0) as

U0[Uuextr5
1

8a
X2D/(D22)@~X21!21q#, ~61!
04401
-

re-

ci-

Ue f fuextr52
1

2
R11U0~X!1hX(2d12D)/(D22), ~62!

]wUe f fuextr52
a1b

2
R11bU0~X!1~d1a1b!

3hX(2d12D)/(D22)50, ~63!

]fUe f fuextr5
1

8a
X2D/(D22)@~2A2B!X222~A2B!X

2~q11!B#1hcX(2d12D)/(D22)50, ~64!

]ww
2 Ue f fuextr52

a22b2

2
R12b2U0~X!1@~d1a!22b2#

3hX(2d12D)/(D22), ~65!

]wf
2 Ue f fuextr5cd1ahX(2d12D)/(D22), ~66!

]ff
2 Ue f fuextr5

1

8a
X2D/(D22)@~2A2B!2X222~A2B!2X

1~q11!B2#1c2hX(2d12D)/(D22). ~67!

@The constantsA, B are defined in Eqs.~20! and~28!, respec-
tively.# We see that, for fixed dimensionsD0 andd1, the two
equations~63!,~64! describe a three-dimensional algebra
variety V,M in the five-dimensional parameter~moduli!
space9 M5R33R1

2 {(a,LD ,R1 ,h,X). On the variety, in-
equalities~59! of the Sylvester criterion define then the p
rameter regionY,V of stable compactifications. A natura
strategy for extracting detailed information about the loc
tion of this stability region would consist in solving Eq.~64!
for X with subsequent back-substitution of the found ro
into the inequalities~59! and Eq.~63!. In the following con-
sideration we restrict our attention to the three simplest n
trivial cases which are easy to handle analytically.

A. Zero effective cosmological constant:LeffÆ0

By definition, we haveLe f f[Ue f fuextr so that in the par-
ticular caseLe f f[0, Eq.~62! yields the additional constrain

Ue f fuextr52
1

2
R11U0~X!1hX(2d12D)/(D22)50.

~68!

Combining this constraint with Eq.~63!, we obtain the rela-
tion

R152d1hX(2d12D)/(D22)5
2d1

d121
U0~X! ~69!

9The compactification scale~modulus! r 1 of the internal spaceM1

entersV,M via curvature scalarR1 @see Eq.~37!#.
0-8
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which can be used to eliminate thehX(2d12D)/(D22) term
from Eq. ~64!. As a result, we arrive at a simple quadra
equation inX with physically sensible solutions,

eAf0[X5H 211A11~d122!d1~11q!

d122
, d1.2,

11q, d152.
~70!

With the help of Eqs.~69!, ~70! and repeated use of
substitution-elimination technique, the potentialU0 and the
second derivatives~65!–~67! of the effective potential can b
rewritten in the simpler form

U0~X!5
d121

4ad1
X22/(D22)~X21! ~71!

and

J11[]ww
2 Ue f fuextr5a2d1U0~X!, ~72!

J22[]ff
2 Ue f fuextr

5
B2

4aD2
X22/(D22)@EX14~D021!#, ~73!

J12[]wf
2 Ue f fuextr5

cd1a

d121
U0~X!, ~74!

whereE[(D24)214(d122).0 for d1>2. For the deter-
minant of the Hessian~57! we get

det~J!5
1

a~d121!

D022

D21

3U0~X!X22/(D22)@~d122!X11#. ~75!

With Eqs.~69!–~75! at hand, we are well prepared to expli
itly describe the location of the stability regionY in the
parameter spaceM. Let us start with relation~69!. From the
non-negativity conditionsh>0 andeAf0[X>0 we imme-
diately conclude that for stable spacesM1 it should hold
R1>0 andU0(X)>0. Furthermore, we see from the latt
condition and the Sylvester criterionJ22.0, det(J).0 @ap-
plied to Eqs.~73! and~75!# that for internal spaces of dimen
sion d1>2 the parametera is restricted to positive values10

a.0 ~the limiting casea→0 we discuss below!. Finally, we
note that Eq.~71! together withU0(X)>0 anda.0 implies
X>1 and, hence, we find the following ford1.2 and d1
52 from the roots~70!: q[8aLD>0 and alsoLD>0.

10Obviously, a negativea would yield a maximum of the effective
potentialUe f f instead of a minimum and our model would becom
unstable with respect to the conformal excitations of the inter
space. The conditiona.0 is also required in otherR2 models@48#
to ensure tachyon-free configurations.
04401
Summarizing the obtained restrictions, we can descr
the partQ of the parameter spaceM where the stability
regionY of the varietyV is located:

Y,VùQ,Q5~a>0,LD>0,R1>0,h>0,X>1!,M.
~76!

It remains to clarify what happens in the various limitin
cases when the parameters reach the boundary]Q.

~L.1.1! q→10. According to Eq.~70!, this limit implies
X→1, f0→0. Because ofq58aLD , we have to distin-
guish the two casesa→0 andLD→0. In these limits we
obtainU0(X)→LD andU0(X)→0, respectively.

~L.1.2! a→10, LDÞ0. The casea→0 describes the
transition to a linear model. Here we haveU(f)→LD , R1
→@2d1 /(d121)#LD , andLD→(d121)h. In this limit, the
mass of thef-field excitations tends to infinitym2

2→mf
2

→J22→` and the field itself becomes frozen at the positi
f0→0. The stabilization of the internal space occurs
R1 ,h, LD.0 with the gravexciton massesm1

2→mw
2→J11

54@(D022)/(D22)#LD . This is in accordance with the
results of Ref.@22#, where a linear model with monopol
terms was considered.

~L.1.3! LD→0, aÞ0. Due to Eq.~70! and ~L.1.1! this
limit implies X→1, f0→0, andU0(X)→0 so that accord-
ing to Eq.~74! the excitation massesm1 , m2 decouple (J12

→0) and the gravexciton mass vanishesm1
2→mw

2→0.
Hence, the limitLD→0 is connected with a destabilizatio
of the internal spaceM1. The mass of the nonlinearity field
excitationsmf remains finite,m2

2→mf
2 ;1/a for a.0.

~L.1.4! h→10, aÞ0. From Eqs.~69!–~71! we see that
this limit of a vanishing form field is connected withR1 ,
U0(X), LD→10. Thus the excitations of the nonlinearit
field f decouple from gravexcitons (J12→0). Simulta-
neously, because ofR1→10⇒r 1→`, the internal space
M1 undergoes a decompactification and due toU0(X)→0
the effective potentialUe f f becomes flat in thew direction
(J11→0⇒mw→0). This means that the internal space des
bilizes, whereasUe f f remains well behaved with respect
f. These results completely confirm the conclusions of
per @25# for a nonlinear gravitational model without form
fields where a stabilization is only possible forLe f f,0.

Finally, we note that for a model withd15D0 ~and,
hence, a vanishing trace of the form field EMT! the excita-
tions of nonlinearity fieldf decouple from the gravexcitons
J1250 because ofc50 in Eqs.~51!, ~74!.

B. Traceless EMT of the form field: d1ÄD0

The easy handling of nonlinear models with a tracel
form-field EMT as well as of models with a two-dimension
internal spaceM1 is connected with the structure of Eq.~64!.
For X.0, aÞ0 we obtain from Eqs.~51!,~64! and the defi-
nitions of A andB

1

8a
@~D24!X214X2~q11!D#

1~2d12D !hX2d1 /(D22)50. ~77!

l

0-9



qu

r

f

n

f

y

ca

n-
iv
-

r

h

ing

/

l
on
the

ts

e
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This algebraic equation reduces to a simple quadratic e
tion in X either when the last term vanishes due to 2d12D
[d12D050 ~the case of a traceless form field EMT! or
when its degreel (d1)ª2d1 /(D22) equals 0,1, or 2. Fo
D054, we havel (d150)50, l (d152)51, andl (d1→`)
→2 so that only the model withD054, d152 is of physical
interest. It will be the subject of Sec. III C.

For d15D054, we find a physically sensible solution o
Eq. ~77!,

X5
1

2
~A918q21!. ~78!

We use this solution as well as the extremum condition~63!
to rewrite Eqs.~61!–~63! and ~65!–~67! in the simpler form

U0~X!5
3

16a
X21/3~X21!, ~79!

Le f f~X!5
1

3
U0~X!2h, ~80!

R154F1

3
U0~X!1hG , ~81!

J115]ww
2 Ue f fuextr5

2

3
@9h2U0~X!#, ~82!

J225]ff
2 Ue f fuextr5

1

14a
X21/3~2X11!, ~83!

J125]wf
2 Ue f fuextr50. ~84!

Obviously, there is no mixing of the excitations of the no
linearity field f with gravexcitons (J1250) in this case:
mw

25J11, mf
2 5J22. Further, we read off fromJ22.0, X

>0 that stable internal spaces are again only possible
a.0 and from Eq.~78! andX>0 thatq is restricted to the
half-line q>21. Additional information can be extracted b
combining the conditionJ11.0 with relations ~80!,~81!,
which gives

16h.R1.16U0~X!/9.8Le f f . ~85!

For the realistic case of a positive effective cosmologi
constant we find according to Eqs.~80!, ~85! the conditions

Le f f.0: h.R1/16.U0~X!/9.h/3.0, ~86!

and, hence, from Eqs.~78!,~79! also the implicationU0(X)
.0 ⇒ X.1 ⇒ q.0. We therefore conclude that such co
figurations are only possible for internal spaces with posit
scalar curvatureR1.0 and positive bulk cosmological con
stantLD.0.

Let us briefly comment on some limiting cases.
~L.2.1! h→10. In this case we recover the result of@25#

that stable configurations are only possible forR1 ,LD ,Le f f
,0 @see the inequality chain~85!#.
04401
a-

-

or

l

e

~L.2.2! a→10, LDÞ0. For this transition to the linea
model with freezing of the nonlinearity field atf0→0 and
diverging excitation massmf

2 →`, the stability sector
Q,M can be read off from Eq.~85! via substitution
U0(X)→LD .

~L.2.3! LD→0, aÞ0. The limit is connected withq
→0, X→1, f0→0, U0(X)→0 and we have to distinguish
two special cases. For a nonvanishing form field strength
Þ0 according to Eqs.~82!,~83! inequalitiesJ11,J22.0 hold
so that both excitation masses remain finite. For vanish
field strengthh→10 we obtainR1→0, J11→0, m1

25mw
2

→0 and the internal spaceM1 undergoes a destabilization
decompactification withr 1→`.

C. Two-dimensional internal spaces:d1Ä2

According to Eqs.~64!,~77!, the extremum condition
]fUe f fuextr50 for models with two-dimensional interna
spaceM1, andD054 can be reduced to a quadratic equati
and, hence, allows for an easy analytical handling of
models. Introducing the notation

zª4ah, ~87!

Eq. ~77! reads

X222~z21!X23~q11!50 ~88!

and has solutions

X1,25z216A~z21!213~q11!. ~89!

Furthermore, Eq.~77! can be used to simplify the elemen
of the HessianJ. SettingD054 and d152 everywhere in
Eqs. ~51!,~65!–~67! and eliminatingq with the help of Eq.
~88!, we obtain11

J11[]ww
2 Ue f fuextr5

1

6a
X21/2~5z112X!, ~90!

J22[]ff
2 Ue f fuextr5

1

10a
X21/2~X2z11!, ~91!

J12[]wf
2 Ue f fuextr52

1

2A5a
X21/2z, ~92!

as well as

det~J!52
1

60a2X
~X226zX18z224z21!. ~93!

It is now easy to describe the partQ of the parameter spac
M where the stability regionY,V is located. We start by
substituting the solutions~89! into J22. Taking into account
that X>0, we get from the conditionJ22.0 for X1 , X2

11The curvature term inJ11 of Eq. ~65! cancels because ofa5b
51 for D054, d152.
0-10
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6A~z21!213~q11!/a.0. ~94!

Thus, the rootsX1 and X2 correspond toa.0 anda,0,
respectively. Because ofz54ah, h>0 this leads to negative
values forX2 so that this root is unphysical and stable co
figurations are restricted toX5X1(z,q) anda.0. The lim-
iting casea→10 will be considered separately below.

Furthermore, we see from the structure of Eqs.~90!–~93!
that the Sylvester criterion selects a regionQ (z,X) from the
(z,X) plane which can be interpreted as the projection of
stability regionY on this plane. Explicitly we have

J11.0 ⇒ X,5z11, ~95!

J22.0 ⇒ X.z21, ~96!

det~J!.0 ⇒ H X,3z1Az214z11,

X.3z2Az214z11,
~97!

where the inequalities~97! are easily derived from Eq.~93!
by calculating the critical valuesXc(z) for which
det„J@z,Xc(z)#…50. The intersectionQ (z,X) of the sectors
defined by the conditions~95!–~97! and X.0, z>0 is
shown in Fig. 1.

In order to obtain information about the values ofq
58aLD ~and LD) which allow for a stable internal spac
M1, it proves convenient to map the regionQ (z,X) via the
quadratic equation~88! or its solution X1(z,q) from the
(z,X) plane on an equivalent regionQ (z,q) of the (z,q)
plane. For this purpose it is sufficient to transform the
equalities~95!–~97! and X>0, z>0 for X and z into an
equivalent inequality set forq andz. Let us demonstrate th
mapping, e.g., for inequality~95!. SubstitutingX5X1(z,q)
5z211A(z21)213(q11) into the equation for the criti-
cal lineX5Xc(z)55z11 and solving forq, we obtain as an
image of this line Xc(z) a corresponding critical curve
04401
-

e

-qc(z)5z(5z16) on the (z,q) plane.@The same curve can b
obtained by substitution ofXc(z) into the quadratic equation
~88!.# With the help of two test pointsP15@z1 ,q1
.qc(z1)#, P25@z2 ,q2,qc(z2)# above and below the criti-
cal curveqc(z), e.g.,P15(1,26),P25(2,0), it is then easily
seen thatX1(z,q),5z11 maps intoq,z(5z16). Applying
the same technique to Eqs.~96!,~97! we obtain

FIG. 1. ProjectionQ (z,X) of the stability regionY,V,M on
the (z,X) plane~shaded areas!. The two linesLe f f50 andR150
@given in Eqs. ~104!# separate the stable regions with@X
.X(z,Le f f50): (Le f f.0, R1.0)], @X(z,Le f f50).X.X(z,R1

50): (Le f f,0, R1.0)] and @X,X(z,R150): (Le f f,0, R1

,0)].
J11.0 ⇒ q,z~5z16!, ~98!

J22.0 ⇒ q.212
1

3
~z21!2, ~99!

det~J!.0 ⇒ H q,211@4z2110z1112~2z11!Az214z11#/3,

q.211@4z2110z1122~2z11!Az214z11#/3.
~100!
Additionally we find fromX>0

q>212
1

3
~z21!2 for z>1,

q>21 for 0<z<1. ~101!
The resulting intersection regionQ (z,q) of Eqs.~98!–~101! is
depicted in Fig. 2.

Let us now turn to the scalar curvatureR1 and the four-
dimensional effective cosmological constantLe f f
5Ue f fuextr . The structure of Eqs.~61!,~62!, and ~63! sug-
gests to considerR1 and Le f f as functions of (z,X,q,a).
Eliminatingq from Eqs.~62!, ~63! @with the help of~88!#, we
obtain
0-11
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R15
1

6a
X21/2~X14z21!, ~102!

Le f f5
1

12a
X21/2~X22z21!. ~103!

The graphics of the functions

R1~z,X!50 ⇒ Xu(R150)5124z,

Le f f~z,X!50 ⇒ Xu(Le f f50)5112z
~104!

are included in Fig. 1. For completeness, we map them
on the (z,q) plane. Following the same scheme as above,
obtain

R1~z,q!50 ⇒ qu(R150)52z~4z23!, 0<z,1/4

Le f f50 ⇒ qu(Le f f50)52z ~105!

and the correspondences

R1.0 for X.124z, q.2z~4z23!,

Le f f.0 for X.112z, q.2z. ~106!

From Fig. 1 and Fig. 2 we see that the nonlinear model w
two-dimensional internal spaceM1 allows for stable con-
figurations only in the cases

FIG. 2. ProjectionQ (z,q) of the stability regionY,V,M on
the (z,q) plane~shaded areas!. The two linesLe f f50 andR150
@given in Eqs. ~105!# separate the stable regions with@q
.q(z,Le f f50): (Le f f.0, R1.0)], @q(z,Le f f50).q.q(z,R1

50): (Le f f,0, R1.0)] and @q,q(z,R150): (Le f f,0, R1

,0)].
04401
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Le f f>0 for R1.0,

Le f f,0 for sgn~R1!561,0. ~107!

It contains no stable configurations with an accelerated
pansion of the Universe (Le f f.0) for internal spaces o
negative or vanishing scalar curvatureR1.

Finally, we comment on some limiting cases.
~L.3.1! h→10, qÞ0. According to Figs. 1 and 2 this

limit corresponds to a vanishing form fieldz→10, and a
stabilization is possible in the case ofR1,0. Furthermore,
for z→0 we can approximateX5X1(z,q)'(v21)(1
1z/v) with vªA413q.1 and the masses of the norm
excitation modes of the coupled (w2f) field system follow
from Eqs.~58!,~90!–~92! as

m1
25

1

6a
~v21!21/2F22v1

9

2
z1O~z2!G ,

m2
25

1

10a
~v21!21/2Fv2

21v
2v

z1O~z2!G .
~108!

In the special casez50 we completely reproduce our earlie
results @25# on nonlinear stabilized models without form
fields (d152): mw

25m1
252U0(X), mf

2 5m2
25X21/2(X

11)/(10a).
~L.3.2! a→10; LD ,hÞ0. For this transition to a linea

model we have as in~L.1.1! U(X)→LD as well as a freezing
of the nonlinearity field atf0→0, X→1. Using the approxi-
mation

X5X1~z,q!

511z1~3q22z!/42~3q22z!2/641z2/41O~a3!

~109!

we obtain the excitation masses as

mf
2 →m1

25
a2122h

5
1O~a!→`,

mw
2→m2

253h2LD1O~a!.0 ~110!

so that the freezing is clearly seen from the diverging m
of the nonlinearity field. Additionally, we find from Eqs
~102!,~103!

R15LD13h2
a

6
@27~h1LD!228h2#1O~a2! ~111!

Le f f5
LD2h

2
1

3

4
a@~h1LD!224LD

2 #1O~a2!, ~112!

which in the special case of a vanishing effective cosmolo
cal constantLe f f50 reproduces the results of Ref.@22# for a
linear model with a Freund-Rubin form field:h5LD

5R1/4, mw
252h.

~L.3.3! LD→0; a,hÞ0. In this case we haveq→0. A
substitution of the approximationX5X1(z,q)5z211@(z
21)213#1/213@(z21)213#21/2q/22O(q2) into the Hes-
0-12
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sian shows that there is no special behavior of the excita
masses connected with this limit.

~L.3.4! LD ,h→0, aÞ0. From Eq.~90! it follows in this
limit J11→0, so that beside a decoupling of the excitatio
the gravexciton mass vanishesm1

2→mw
2→0 and the internal

spaceM1 destabilizes. This is in full agreement with@25#
where a stabilization forh50 requiresLD,0.

~L.3.5! R1→0. In the limit R1→0 one observes a regula
behavior similar to~L.3.3!. For parameter points near th
line X0(z)ªX(R150)(z)5124z, 0<z,1/4 we find from

Eq. ~102! X5X0(z)16aR1X0
1/21O(a2R1

2) so that the Hes-
sian yields excitation masses of the formm1,2

2 (R1'0)
5m1,2

2 (R150,z)1s1,2(z)aR11O(a2R1
2) with some regular

coefficientss1,2(z) and

m1,2
2 ~R150,z!5

1

40a
X0

21/2@925X0

7A4~325X0!215~X021!2#. ~113!

The massesm1,2
2 (R150,z) have finite values except at th

limiting points X0(z→1/4)→0 ~or f0→2`) and X0(a
→0)→1 ~or f0→0), where both or one of the masses d
verge. We see that, with the exception of the limiting poin12

X0(aÞ0)→1, there occurs no destabilization of the intern
spaceM1 for vanishing scalar curvaturesR1. Due to the
smooth behavior of the excitation masses under the trans
R1→0 we can identify this limit with a stable decompacti
cation r 1→` of an internal spaceM1 with fixed topology.
Clearly, in our local approach a stable decompactified sp
with r 1→` is indistinguishable from a stabilized intern
space which is Ricci-flat from the very beginning.

IV. CONCLUSIONS AND DISCUSSION

In the present paper we investigated multidimensio
gravitational models with a non-Einsteinian form of the a
tion. In particular, we assumed that the action is an arbitr
smooth function of the scalar curvaturef (R). Additionally,
the D-dimensional spacetime was endowed with solito
form fields of generalized block-orthogonal Freund-Rub
type. This bulk matter ansatz leads to a naturally factori
geometry and a spontaneous compactification can be as
ated with it. For the considered models, we concentrated
the stabilization problem for the extra dimensions. As a te
nique we used a reduction of the nonlinear gravitatio
model to a linear one with an additional self-interacting s
lar field ~nonlinearity scalar field!. The factorized geometry
as well as the generalized Freund-Rubin ansatz for the
tonic form field allowed for a dimensional reduction of th
considered models and a transition to the Einstein frame
a result, we obtained an effective four-dimensional mo

12According to Eq. ~113!, the limit X0(aÞ0)→1 gives m1
2

→mw
2→0, m2

2→mf
2 →1/(5a). On the other hand,X0(aÞ0)→1

implies z54ah→0 and according to Eq.~89! alsoLD→0. Thus,
the results of~L.3.1! and~L.3.4! can be used to reproduce the sam
behavior of the excitation masses via Eq.~108!.
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with nonlinearity scalar field and additional minimall
coupled scalar fields which describe conformal excitations
the scale factors of the internal space.

A detailed stability analysis was carried out for the thr
simplest configurations of a model with one internal fac
spaceM1 and a quadratic curvature term:f (R)5R1aR2

22LD , whereLD plays the role of aD-dimensional bare
~bulk! cosmological constant. These three configurations
characterized respectively by~1! a vanishing four-
dimensional effective cosmological constantLe f f , ~2! a
traceless form-field EMT, or~3! a (d152)-dimensional in-
ternal factor spaceM1. For all three configurations, a stab
lization of the internal space is only possible in the case o
non-negative nonlinearity parametera>0 and a bulk cosmo-
logical constantLD restricted by the conditionq[8aLD.
21. The transition (LD→0,h→0) is connected with a de
compactification (R1→0,r 1→`) of the internal spaceM1.
At the same time, it leads to a flattening of the effecti
potential in the direction of the scale factor excitations a
hence, to a destabilization ofM1 ~for a similar limiting be-
havior, see also Ref.@25#!.

From the three configurations, the model with the tw
dimensional internal space shows the richest features. I
lows for stable configurations in the cases (Le f f>0,R1.0)
and (Le f f,0, any sign ofR1) as well as for Ricci-flat inter-
nal spaces (R150). Interestingly, the various stable config
rations belong to a connected region in the parameter sp
M and one can smoothly pass from one type of configu
tion to another one, including a transition to stable Ricci-fl
internal spaces which can be described as ‘‘stable decom
tifications:’’ R1→0, r 1→`. As pointed out in the Introduc-
tion, such a rich picture became possible due to the prese
of the real-valued form fields which satisfy the NEC and t
WEC and which compete with the nonlinearity scalar fie
The latter satisfies the NEC only marginally and can viol
the WEC.

Interestingly, for (d152)-dimensional internal space
there exist parameter configurations witha,LD ,h,R1.0
that can provide positive values of the effective fou
dimensional cosmological constantLe f f.0 @see, e.g., Eqs
~106!,~107!#. Thus, an accelerated expansion of the Unive
seems possible in accordance with observational data. Le
assume that the values of the bulk cosmological constantLD

and the form field strengthh are set at some characterist

scale LD;h;M̄2. Then we find for the parametersq

;8aM̄2, z;4aM̄2, and, hence,q;2z. The latter corre-

sponds toX;112z;118aM̄2 @see Eq.~89!# and compari-
son with ~105! shows that such configurations should yie
an almost vanishing effective cosmological constantLe f f

;0. With the help of Eq.~102! we can estimate the scala
curvatureR1 of the internal space as

R1;
z

a
X21/2;

1

a

z

A112z
;

4M̄2

A118aM̄2
. ~114!
0-13
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On the other hand, its value is connected with the fundam
tal scalesM* (41d1) , M Pl(4) by the relations~1!, ~2!, and
~37!:

R1;r 1
22;S M* (41d1)

M Pl(4)
D 4/d1

M
* (41d1)
2 . ~115!

As mentioned in the discussion after Eq.~35!, the value ofX
can be used as a measure of the nonlinearity of the orig
model:aR̄5eAf021[X21. We see that weakly nonlinea
configurations correspond toX'1, whereasX@1 leads to a
strongly nonlinear regime. With the help of Eqs.~114! and
~115! we express this dimensionless nonlinearity parameteX
in terms of the different scales contained in our model:

X;118aM̄2;16S M̄

M* (41d1)
D 4S M Pl(4)

M* (41d1)
D 8/d1

.

~116!

From Eq.~116! we see that settingM̄;M* (41d1) we obtain

X@1 for ADD-type TeV-scale models whereasX;1 can
only be achieved for standard KK models withM Pl(4)
;M* (41d1) . Stably compactified internal spaces in ADD
type models can be obtained within a weakly nonlinear
gime X;1 if the bulk cosmological constantLD and the
form field strengthh are related with the fundamental scal
as

LD;h;M̄2,

M̄;
1

2
M* (41d1)S M* (41d1)

M Pl(4)
D 2/d1

. ~117!

For M* (41d1);1230 TeV and d152 this implies M̄

;102421021 eV. It is interesting to note that this mas
scale is of the same order as the lowest possible super
metry breaking scalem;MSUSY

2 /M Pl(4) in the minimal su-
persymmetric extension of the standard model~MSSM! @49#
with MSUSY;1 TeV.

Above, we demonstrated that the assumptionLD;h can
result in a small effective cosmological constantLe f f . Let us
now estimate the relation betweenLe f f and LD ,h in more
detail and compare it with the observable value13 of Le f f
;102123LPl(4) . For simplicity, we will restrict our consid-
eration to a weak nonlinearity regime withX'1, a*0,
where the approximations~111! and ~112! of ~L.3.2! are
valid. From Eq.~112!, we see that to ensure a sufficient
small Le f f the bulk cosmological constantLD and the field
strengthh of the solitonic form field should be connected b

h5~11e!LD . ~118!

13In our normalization conventions holdsc5\51 and LPl(4)

;M Pl(4)
2 ;LPl(4)

22 .
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The value ofe can be estimated as follows. With the help
relations~111! and ~117!, we find

102123LPl(4);Le f f'eLD~126aLD!/2, ~119!

LD;M̄2;R1

and, hence,

102123;eS M* (41d1)

M Pl(4)
D 4/d112

~120!

so that

e;10265 ~121!

for d152, M* (41d1);30 TeV. According to Eq.~119!, this

value of e is not sensitive to changes of the nonlinear
parametera in a weakly nonlinear curvature regime. Thu
we arrive at the conclusion that the ADD scenario in
simplest extended version can provide a simultaneous s
lization of the extra dimensions together with an adjustm
of the effective cosmological constant to its observed va
only in the case of a strong fine tuning. Although the soli
nic form fields of our model are located in the compactifi
extra dimensions, the tuning of their effective energy dens
h to the bulk cosmological constantLD , h5(11e)LD , is
of a similar type as the four-form-tuning discussed in We
berg’s no-go theorem@40# for a resolution of the cosmologi
cal constant problem~CCP!. A shifting of the CCP to a pa-
rameter fine tuning is a rather general feature of models w
compactified additional dimensions and form fields.14 In a
slightly reshaped form it also appears in the recently p
posed brane-world model with two-dimensional ‘‘football’
shaped large extra dimensions@51# ~see also@52#! where the
adjustment of the on-brane cosmological constant is shi
to an adjustment of the parameters of the off-brane ‘‘fo
ball.’’ A possible resolution of the CCP for similar highe
dimensional models with form fields following from a
M-theory setup was presented in Ref.@53#. Proposals for a
resolution of the CCP within other scenarios comprise va
ous anthropic approaches@50,54#, shifting of the CCP to a
singularity problem@55#, possible graviton compositenes
@56#, a holographic approach@57# as well as nonlocal modi-
fications of gravity@58#. However, there is still no satisfac
tory and comprehensive solution of the CCP. The probl
will probably continue to challenge the scientific commun
until a final understanding of quantum gravity is achieved
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