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We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in
the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spon-
taneous compactification to a warped product manifold. Particular attention is paid to models with quadratic
scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain
parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the
internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological
constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy
density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they
follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.
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[. INTRODUCTION (our world-brang whereas the gravitational field propagates
in the whole (bulk) spacetime. Depending on the concrete
Two of the most intriguing problems of modern cosmol- scenario, there are different types of masking of the addi-
ogy are the problem of additional dimensions and the costional dimensions. Whereas in Arkani-Hamed-Dvali—
mological constant probleICCP. The first problem fol- Dimopoulos(ADD) models[3—5] the extra dimensions are
lows from theories which unify different fundamental curled up to sizes smaller than 1cm, so that they are in
interactions with gravity, such as M or string the¢fy, and  agreement with present table-top Cavendish-type tests of
which have their most consistent formulation in spacetimegravity [6], they can be infinite in the Randall-Sundrum Il
with more than four dimensions. The problem can be natu{RS Il) [7] and Dvali-Gabadadze-PorrdidGP) [8] models.
rally formulated as the following question: if we live in a In the latter models, the four-dimensionality of low-energy
multidimensional spacetime, why do we not observe the exphysics is achieved by inducing appropriate effective gravi-
tra dimensions? Within the “old” Kaluza-KleilKK) frame-  tational potentials on the world-brane. In addition to their
work and the early EgX Eg)-heterotic string phenomenol- interesting phenomenology, brane-world models provide a
ogy, the question is answered by assuming the extra@ossible resolution of the hierarchy problem. In ADD-type
dimensions are so small.e., with a characteristic size  models this is due to the connection between the Planck
between the Planck and the Fermi scales *fém=r scale Mp4y and the fundamental scal, 4.p/ of the
=10 Ycm) that they are not accessable by present-day cofour-dimensional and the (4D’)-dimensional spacetimes,
lider experiments. New concepts with the possibility for rich respectively:
phenomenology opened up with the uncovering of
D — branes by Polchinski2] in 1995. In “brane-world” sce-
narios of the Universe the usual four-dimensional physics
with its SU(3)XSU(2)x U(1) standard modelSM) fields
is localized on a three-dimensional space-like hypersurfac®y, denotes the volume of the compactified extra dimen-
sions. It was realized if3-5] that localizing the SM fields
on a 3-brane allows one to lowevl, 4. p/y down to the
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With Mgw~1 TeV, physically acceptable values correspondtended with higher-order nonlinear curvature terms. In a pre-
to D’'=3 [3] (for astrophysical and cosmological boundsvious paperf25] we considered a simplified model with a
see, e.g9]; experimental bounds from table-top Cavendish-multidimensional Lagrangian of the forin=f(R), where
type experiments are givenif]), and forD’ =3 one arrives  f(R) is an arbitrary smooth function of the scalar curvature.
at a submillimeter compactification scale 10"°> mm of the ~ Without connection to stabilization of the extra dimensions,
internal space. If we shitl, 4, p+) to 30 TeV, as suggested such modelgfour-dimensional as well as multidimensional
in [9] (see alsd10]), then theD’' =2 case satisfies all afore- oneg were considered, e.g., in Ref26-28. There, it was
mentioned bounds and leadsite- 10 2—10"2 mm. In or-  shown that the nonlinear models are equivalent to models
der not to exclude thi®’ =2 with its largest possible com- with linear gravitational action plus a minimally coupled sca-
pactification scale, we assume that the fundamental scalelar field with self-interaction potential. If25], we advanced

M, 4+p’) can be of order 30 TeV. Additionally, the geom- this equivalence towards investigating the stabilization prob-
etry in the ADD approach is assumed to be factorizable as ifem for extra dimensions. Particular attention was paid to
a standard Kaluza-Klein model. That is, the topology is themodels with quadratic scalar curvature terms. It was shown
direct product of a nonwarped external spacetime manifoldhat for certain parameter ranges, the extra dimensions are
and internal space manifolds with warp factors which dependapjlized if the internal spaces have negative constant cur-

on the external coordinates. vature. In this case, the four-dimensional effective cosmo-

¢ ﬁccorrdrllng r}o otb?'e rva:tllons,t tfhe 'niﬁm? spac;e S.hOUIg. l:;‘i’ogical constantA .¢; as well as the bulk cosmological con-
static or néarly static at least from the ime of primordial o, Ap become negative. As a consequence, the

nucleosynthesigotherwise the fundamental physical con- . : . .
homogeneous and isotropic external space is asymptotically

stants would vary, see, e.§12,13)). This means that at the ) . :
present evolutionary stage of the Universe the compactifica’e‘ds“_' Because the _con5|dered nonlmea_r model is a pure geo-
I@etrlcal one(only with a bare cosmological constaff, as

tion scale of the internal space should either be stabilized an X ) , .
trapped at the minimum of some effective potential, or it2" exotic matter source includetthe equivalent linear model

should be slowly varyingsimilar to the slowly varying cos- contains only a minim.a'IIy coupled scalar field as bulk matter.
mological constant in the quintessence scendtid]). In  The null energy conditiofiNEC) T,,N*N"=0 for this field
both cases, small fluctuations over stabilized or slowly varyYeadsT ,N*N=(N23,¢)?=0 (with N a future directed null
ing compactification scalegconformal scales/geometrical vectop and is satisfied only marginally when the internal
moduli) are possible. spaces are completely stabilized and the scalar field is frozen
Stabilization of extra dimensior(snoduli stabilizationin ~ out. Moreover, the weak energy conditiotWEC)
models with large extra dimensio&DD-type model$ has ToWAWP=0 (with W a future directed timelike vectpis
been considered in a number of papésse, e.g., Refs. violated in this case because the energy dengityf the
[5,15—21).2 In the corresponding approaches, a product to-scalar field is negative definite<0. As a result, the afore-
pology of the (4+ D’)-dimensional bulk spacetime was con- mentioned parametelshe internal space scalar curvatures,
structed from Einstein spaces with scélearp factors de- Ap andA.¢;) are negative in the case of stabilized internal
pending only on the coordinates of the external four-spaceqsee alsd17,20,24).
dimensional component. As a consequence, the conformal However, a negative cosmological constant leads to a de-
excitations had the form of massive scalar fields living in theceleration of the Universe instead of to an accelerated expan-
external spacetime. Within the framework of multidimen-sion, as recent observational data indicate. According to
sional cosmological model@CM), such excitations were these data our Universe is dominated by a dark energy com-
investigated if22—24 where they were called gravitational ponent with negative pressure. For example, from observa-
excitons. Later, since the ADD compactification approacHhions of the clusters of galaxies it follows that the energy
these geometrical moduli excitations are known as radiondensity of the matter components which can clump in vari-
[5,16]. ous structures is significantly undercritical. But, the position
Most of the aforementioned papers are devoted to the sta&f the first acoustic peak in the angular power spectrum of
bilization of large extra dimension in theories with a linearthe cosmic microwave backgroutt@MB) radiation implies
multidimensional gravitational action. String theory suggestshat the Universe is, on large scales, nearly flat. In other
that the usual linear Einstein-Hilbert action should be ex-words, the energy density in the Universe is very close to the
critical value. Thus, there must exist a homogeneously dis-
tributed exotic(dark energy componern®9]. This observa-
IThe M theory inspired RS scenaripg 11] use a nonfactorizable tion is in agreement with the conclusion following from the
geometry withD’'=1. Here, the four-dimensional spacetime is Hubble diagram of type la supernové®N-la) at high red-
warped with a factof) which depends on the extra dimension and Shifts, which also indicate that our Universe currently under-
Eq. (1) is modified asM p;(4~ 0 Mgy, In our paper we concen- 90€S an accelerated expansion. Under the assumption of flat-
trate on the factorizable geometry of ADD-type models. ness, using the data of the CMB anisotropy measurements,
2n most of these papers, moduli stabilization was consideredligh redshift SN-la observations, and from local cluster
without regard to the energy-momentum localized on the brane sg@bundances, the authors of RES0] found a constraint on
that the dynamics of the multidimensional universe was mainly dethe equation of state parametegp=P/p<—0.85 at 68%
fined by the energy-momentum of the bulk matter. A brane matteconfidence level. They concluded that this result is in perfect
contribution was taken into account, e.g.[®1]. agreement with theg= —1 cosmological constant case and
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gives no support to a quintessential field scenario with Il. GENERAL SETUP
>—1. Results obtained if31] also favorwg~—1 at the
present epoch.
In Ref. [25] we already indicated that the effective cos-
mological constant can be shifted from negative values to
positive ones by including into the nonlinear model matter S= LJ' dDX\/Ef(E)
fields which satisfy the NEC. In the present paper, we dem- 2K2D M
onstrate this effect explicitly by endowing the extra dimen- .
sions with real-valued solitonic form field82]. Such fields 1 4P \/:2 1 e
naturally arise as Ramond-RamofRIR) form fields in type B EJM X |g|i:1 a(F )%
Il string theory and M theory. Within a generalized Freund-
Rubin setting[33] their influence on the evolutionary dy- — . . . ,
namics of the Universe has been considered, e.g., in Refé/nere f(R) IS an arbitrary smooth function with mass di-
[34—37 and due to its simplicity we adopt this ansatz hereMensionO(m?) (m has the unit of magsf the scalar cur-
for the stability analysis of our nonlinear model. From Egs.vatureR=R[g] constructed from th®-dimensional metric
(9), (10) below, it can be easily seen that the real-valuedg,,(a,b=1, ... D)
form fields satisfy the NEC as well as the WEC. However,
the strong energy conditio(SEQ is violated in our model
by the cosmological constahfThe presence of two types of
fields in our equivalent linear model—the minimally coupled
scalar field(which satisfies the NEC only marginally and denotes theD-dimensional gravitational constarsubse-
which can violate the WECand the form field¢which sat-  quently, we assume tha¥, 4,py~Mgy). In action (3),
isfy both of these conditions-leads to a rich and interesting F"= Fﬂ]?ni ...q1=1,...0n is an antisymmetric tensor
picture of stable configurations with various sign combina-field of rankd; (a d;-form-field strength with indices from
tions for the allowed cosmological constants as well as foan  index set siy={m; :maxMm)—min(m)=d}, where
the constant curvatures of the internal space. Beside stabiliy, n,, ... g e sy - For simplicity, we suppose that the in-
regions with negative four-dimensional effective cosmologi-dex setssy ,S(jy Of tensorsF(), F() with i#] contain no
cal constantA.¢y<0 the parameter space contains also recommon elements as well as no indices corresponding to the
gions with A¢¢>0 which can ensure an accelerated expancoordinates of thd ,-dimensional external spacetintesu-
sion of the Universe. ally Do=4). Additionally, we assume that for the sum of the
As mentioned at the very beginning of the Introduction, ;3nks holds=!"_,d;=D—Dg:=D’. Obviously, this model
there still remains the problem of the incredible smaliness otan pe generalized to tensor configuratiifd, FU with
the cosmological constari89,40. Moreover, it is com- jntersecting(overlapping index sets. In this case explicit
pletely unclear why its energy density is comparable with theje|d configuration can be obtained, e.g., when the indices
energy density of matter just at the present tiftie cosmic  satisfy special overlapping rul¢86]. Such a generalization
coincidence problem Modern reviews on the cosmological s peyond the scope of the present paper. Furthermore, we
constant problem can be found, for example[28,41,43.  assyme in our subsequent considerations that the index sets
In our paper, we show that for stabilized internal spaces &, n. ... g#0 do not contain the coordinates of the ex-
small positive cosmological constant of the exter@n)  igrnal spacetimé/, and, hence, the field strengthé) can

space can arise from ADD- and KK-type multidimensione}l be associated with a magnefgolitonic) p-brane system lo-
models. We demonstrate that the smallness of the effectiVeaieq in the extra dimensions as discussed e.g., in Refs.

cosmological constant can follow from a natural paramete[32,35,36_
choice of the considered nonlinear ansatz. Unfortunately, the e equation of motion for the gravitational sector of Eq.
extremely small value of the observed cosmological constar(t3) reads
requires a very strong fine tuning of the parameters.

The paper is structured as follows. The general setup of 1
our model is given in Sec. IIl. There we make the geometry of f'Rab— = fGan— VaVof '+ Japdf = k3Tan F.9], (5
the spacetime manifold explicit—endowing the internal 2
space with the structure of a warped productnofactor o o o
spaces(due to spontaneous compactificafioRurthermore, where a,b=1,... D, f'=df/dR, R,,=R.,[g], and R
we specify the generalized Freund-Rubin ansatz for the form. R[a]- @ and O denote the covariant derivative and the
fields. In Sec. lll, we present a detailed analysis of the sta—La lacian with respect to the metric
bilization problem for a model with one internal space. The P P Ban
main results are summarized and discussed in the concluding

Sec. V. _ . 1 —
O=0g1=gV,%p= ——au(\[a] g®0p).  (6)

Vgl
SFor a critical discussion of the different ECs, we refer the reader
to [38]. Equation(5) can be rewritten in the form

We consider & = (4+ D')-dimensional nonlinear gravi-
tational theory with action

()

K§,=87T/Mi§4D+D,) (4)
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— 1— — —
f'Gapt Egab(Rf’— f)—=VaVof' +g.,0F'

= k3Tl F 0], (7)

whereG,,=R,,— 2Rgap, and its trace
—f! D D, 2 T
(D-1D)Tf = >~ 'Rk T[F,g] ®)

can be considered as a connection betwBeand f. The

energy momentum tensOEMT) Tab[F,E] is defined in the
standard way as

(J—E —<F<'>>)
1 i :Ld|
ab[F g]_\/ﬂ

g

=2 Tl FO.gl, ©)

i=1

5g3°

where

1 _
Tab[F(l)yg]:d_(__gabF(') .ti(')mini"'Qi

+diFQ%i...tiS)”"'”i)- (10
For the trace of this tensor we obtain
n
T[F.g]=2>, T[FY g] (1D)
i=1
with
.— 2di—-D . )
TFY.g)= 2(Idi!) Fg‘?”i"'QiF(l)minimqi' 12

The field strength& () satisfy the equations of motion

RO mn---a; —o@iN—me“w %) =0,
\/@ G
i=1,--,n (13
and the Bianchi identities
F =0, i=1,...n (14)

Following Refs.[26—-28, we perform a conformal transfor-

mation

9ab=2%Gap (15

with
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Q:[f/(ﬁ)]ll(D—Z) (16)

and reduce the nonlinear gravitational theory to a linear one
with an additional scalar field. This transformation is well
defined forf’(R)>0 (concerning the cas&' <0, see foot-
note §. The equivalence of the theories can be easily proven
with the help of the auxiliary formulas

O0=0"2[0+(D-2)g*"Q 10 L],

0=020-(D-2)g*"Q 0 43, ], (17)
Rab=Raot =5 (1) 72Vl Wl = (1) 051"
1 — _
— p—z%s(f) MO, (18)
and
R=(f")2 D) R+ %(f’)—zg_“aaf'abf'
—2—(f y~iof ) (19
Defining the scalagy by the relation
fr= :—%::eA‘f’>0, A= \/2 (20)

and making use of Eq$17)—(19), Egs.(7) and (8) can be
rewritten as
Gap= K5 Tap[F. 4,91+ Tap[ #.,9] (21)

and

1 -D
|:| =
¢ J(D—l)(D—@eXp(J(D—l)(D—2>¢)

D 'R ; 2
X Ef fR)+ (D—l)(D—Z)KDT[F’¢’g]'
(22)
The EMTs read
1 1
Tapl#,9]1= ¢ abp— zgabgmnd’,md’,n_zgab
p( _ ¢)(ﬁf' f)
exp ——— —1),
(D-1)(D-2)
(23
. 2d,—D ‘
Tab[F-¢-9]:§1 eX[{m(ﬁ)Tab[F(')lg]l
(24)
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and

TOF )= eXp(Zd‘—_Dfﬁ TIFO,g]

1 1 I:l (D_l)(D_z) 1 1
(25
whereT,[F",g], T[F®,g] are given by replacing—g in
Egs. (10), (12). The indices of the field strengtts) are

now raised and lowered with the metgc
The equations of motiofiL3) for F) transform to

_[\/_e F(Z(j—_D(ﬁ)F(i)mi”i"'Qi =0
Vgl J(D-1)(D-2) o
i=1,...n, (26)

whereas the Bianchi identiti€44) do not change.
It can be easily checked that Eq21), (22), and(26) are
the equations of motion for the action

S= o dDX\/_|R[g] 9% acb p—2U() — k5

Kb
n 1 Zd,—D i S
!

(27)
where
1 — JR—
U(@)=se PAR(G)—TR(4)], (28
g D
J(D-1)(D-2)

and Eq.(20) is used to expresR as a function of¢: R

=R(¢). The scalar fieldp is the result and the carrier of the

curvature nonlinearity of the original thedry3). Corre-

PHYSICAL REVIEW D 68, 044010(2003

this situation should hold when the internal space undergoes
a (freezing stabilizatior]. From Eq.(20) we see that in this
limit the nonlinearity in Eq.(3) d|sappearsf(R) ci(R
—R0)+f(R0) ciR+c,, where cq:=f’ (RO) exp@dy),
RO—R(gbO) and—c,/(2c,) plays the role of a cosmologi-
cal constant. In the case of homogeneous and isotropic
spacetime manifolds, linear purely geometrical theories with
a constantA term necessarily imply afA)dS geometry so
that the manifolds are Einstein spaces. In our model, the
additional form fields destroy this asymptotical behavior. In-
stead, we obtain from Eq$8) and (7)

— D c, 1 2
- — K
D_2 Cl Cl D_2 D
n
2d.—D )
X >, ————(F)2 (29

and

— 10212
D2c1c1D2

2 dl)(F ):|gab
1 2” 2d,

(l)
Yo 02, an (Fen

QLR
LG FO (30

where the form field product
(FO)g=F (), o FOmMi-a (31)

is defined with respect to the metr@z For a form field,
which asymptotically tends to a constant, the scalar curvature
and the Ricci tensor also approach constant values. But

spondingly, Eq.(22) has a twofold interpretation. It is the whereasR andR are asymptotically connected by the rela-
equation of motion for the fielgh and at the same time it can tion [see Eqgs(19), (21), and(29)]
be considered as a constraint equation following from the

reduction of the nonlinear theoi(®) to the linear ong27).
Furthermore, we note that in the linear the¢2y) the form

fields are nonminimally coupled with the nonlinearity field

¢. [A minimal coupling occurs only for a model with

=1, d;=D,, where according to Eq12) the trace of the

the Ricci tensorR,, will not be proportional to the metric

Oap @nd, hence, the space will not be Einsteinian. This is in

form field EMT vanisheg.A comparison of the action func- obvious contrast to a nonlinear model of purely geometrical

tional with Eq. (24) shows that the last term in Eq27)

type [25] where the stabilization will result in an asymptoti-

coincides with the expression for the energy densitycal (A)dS; spacetime.

—TE[F.¢.g] of the solitonic form field(due to F()
=0 by the definition ofF ().

In the rest of the paper we consider for simplicity a toy
modef with a quadratic curvature term,

Let us consider what happens if, in some way, the scalar

field ¢ tends asymptotically to a constart:i— ¢ [precisely

“Thus, for brevity, we shall refer to the field as a nonlinearity

scalar field.

f(R)=R+aR%—2Ap, (33

SFor considerations on higher-order corrections to the gravity sec-
tor of M string theory, we refer the reader [28,43.

044010-5



GUNTHER, MONIZ, AND ZHUK PHYSICAL REVIEW D 68, 044010(2003

where the parameterr has dimensionO(m~2). For this wherek=0,+1. The effective radir; are defined from the
model we obtain volumeg

_ _ _ 1 - diy SO~ pdi =
f'(R)=1+2aR=e"oR=—(e"-1) (39 Ve fMid WPt A=t 39

Wherevdi have dimension®©(m~%). For technical details

of the dimensional reduction with subsequent conformal
transformation from the intermediate Brans-Dicke frame to
the Einstein frame of the external spacetiMg, as well as

for notations we refer to Sec. Il of our previous pap25].
According to the corresponding approach the warped product

The conditiofi />0 implies 1+ 2aR>0. In the limit of Einstein spaces leads to a scalar curvaRrevhich de-
—0, the nonlinearity is switched off and the linear theory isPeNds only on the coordinaseof the Do-dimensional exter-
recovered. Correspondingly, it holds—1 with the impli- ~ nal spacetimeM: R[g]=R(x). This implies that the non-

cationc,=1, ¢— 0 so that alsdiR— R [in accordance with In€arity field ¢ is also a function only ok: = ¢(x).

; ; In the rest of the present section we restrict our attention
Eq. (32 du 0)—Ap. Th d f i :
a (k )] aln (.d)_.) ()j_; Dd b ehcorreszgh E? riglorio to the form-field components which were not part of the
v<vela nonlinearity is defined by the conditierR=e""— purely geometrical model of Ref25]. We choose them in

- . the generalized Freund-Rubin ansatz as
Furthermore, we assume that the multidimensional space-

time manifold undergoes a spontaneous compactification Fg‘i)“i-“qi: V2\[g®]. |8mini'--qif(i)(x)’ (39

and

1 1
U(¢)=§e’3¢ E(eA¢—1)2+2AD . (35)

M—=M=MoXM{X--- XM, (36) F(i)mini"'Qi:(\/5/‘/|g(|)|)8mini'"qif(i)(x)_

in accordance with the block-orthogonal structure of the field 0" the Levi-Civita symbole,...q we use conventions
strengthF, and that the form field& (", each nested in its where for Riemann spaces hol,, ... =¢™" "% and
own d;-dimensional factor spack!;, respect a generalized Emn, ,,qismi”i'“qizdi I. It can be easily seen that the ansatz

Freund-Rubin ansa{B3] (see alsq34—37). This allows us (39) satisfies Eq(26) (becauseb andf depend only omx and

to perform a dimensional reduction of our model along thethe M7 factors cancel The Bianchi identitie14) reduce
lines of Refs[22-25,45,46 The factor spaceb!; are then o th|eyeq|uations ¢ €9

Einstein spaces with metrig{)=e2#'®9 ¥ which depend
only through the warp factora;(x):=e2? ® on the coordi- ﬁ[aidi(x)f(')(x)]

natesx of the external spacetind,. For the corresponding X (40)
scalar curvatures holds
_ _ with solutions
RIyV]=Ndi=R~kr 2, (37)
. fi
fO(x)=— (41)
a'

6Obviously, the conformal transformatidqa5),(16) becomes sin-
gular whenf’(R) vanishes. The transformation itself can be ex-
tended from the’'>0 branch to theé’ <0 branch with the help of "The volumes are well defined for positive curvature spates (

an ansat{27] Q=|f’(R)|"®~? and a corresponding redefinition — 1) For compact negative and zero curvature spades (

of the nonlinearity fields: e?=|[f'|. As a result, one obtains an _1 () .., compact hyperbolic spad€HSs M, =H%/T'; and tori
action functional_ for theff<0 bra_nch Which_ diffgrs from act?on T;=R%T;, we interpret them as scaled volumes of the corre-
(27) for f'>0 in |t.s total sign apd in the relgtlve signs of the.smgle sponding fundamental domain€'elementary cells) Vd_~ridi
t‘?rms as We'.l asmn th_e potentil( ). Mos_t important, for a _flxed_ XVep(i) (see, e.g.[47] and references therdinHere H%, Rldi are

sign of the Elnsteln-Hllpert term the klnetlc_ term of the nonllne_a_rlty hyperbolic and flat universal covering spaces, &hd I'; are ap-

field ha§ the_correct sian. whereas_ the kinetic terms of add_'t'onaf)ropriate discrete groups of isometries. Furthermore, we assume for
matter fields(in our case the form fieldshave the wrong relative . N .

sign. This leads to a set of equations of motions which differ fromthe scale factors of the metrigs~r;y W'th.y sc_aled n such a
Eqs.(21),(22). For details we refer t§27]. Unfortunately, the sign V& thatVep()~O(1). Thus, the VOlum.e/C}i is mainly defmgd by
switch occurs for all additional matter fields simultaneously and itis'i - N all three casesk(==1,0), the limitrj— results in an
not controllable for some selected fields separately. Otherwise, fTective decompactification of the internal space wif}—. In
could have provided a natural mechanism for the generation of accordance with E¢37), this means that the positive and negative
phantom energy component with equation of state parameger constant curvature spaces flatteRg —0. Clearly, for compact
<—1 (and a corresponding super-acceleration of the observablRicci-flat spaces holdR; =0 by definition and without relation to
Universeg in the sense of44]. the compactification scale of the torus.
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andf;=const. We choose the warp fact@sdimensionless di(D-2)

so that the constant§? have dimensionO(m**P") and ¢="N"p,—2 (47)
k2 f2~0(m?). With Eq. (41) the energy density of the soli-

tonic form field, and correspondingly the last term in actionand

(27), reads 5
2D 48)
. 1201 2d;—D TV, (
TTHRA013 2 51 o) ¢ 1
' ( A ) denotes theD,— dimensional (four-dimensional gravita-
XEQ, L FOmne tional constant. If we take the electroweak scile,, and
R the Planck scale Mpy, as fundamental ones for
n 2d.—D fi2 D-dimensional[see Eg.(4)] and four-dimensional space-
= exp ——0¢ 24, times (k5=8m/M%y,), respectively, then we reproduce
=1 W(D-1)(D-2) /a3 Egs. (1) and (2) with D' =d,. A stable compactification of
=p(B, ), (42) the internal spacl; is ensured when its scale facteris
frozen at one of the minima of the effective potential,
where for real form field§?=0. Again we see that for mod- d
els with n=1 and_dlzDo th_is energy density decouples Ueff(%d)):eﬂ{zgﬂ /_—1_)
from the nonlinearity scalar fielg: p(B8*,)— p(BL). (D=2)(Do—2)

In the case of a freezing stabilization of the internal
spaces with3'=0, we obtain the nonzero components of the X
asymptotic Ricci tensof30) as

TR e N g p-2)

Ryuv— 9,0, (43 +U(B)+ k(9 0) |- (49)
_ 2 N . . .
R, o+ _K%fizﬂgdl) . (44  The value of the effective potential at the minimum plays the
o c o role of the effectiveDy-dimensional cosmological constant:

Uetilmin=Acts. The potentiall(¢) of the nonlinearity sca-
where lar field is given by Eq(35) and the energy densit2) of
the solitonic form field reads

1 ¢, 1 2 ! 2
Fim—m —— —— — 2> (d. - 1)f202% (45
D-2c¢, ¢, D—-20°0& ") i*%o 2d,—-D

o = K%p<¢,¢>=xéf§exp(—¢)

V(D—1)(D—-2
and Qo= (e”?0)P~2) Thus, the asymptotic multidimen- ( ) )

sional spacetime is built up from Einstein-space blocks, but [di(Dy—2)
is itself a non-Einsteinian space due to the additional term in Xexp{ 2¢ W) : (50)
Eq. (44).

For brevity of notation, we introduce

lIl. STABILIZATION OF THE INTERNAL SPACE

[ Do—2 / d,
i i i ' a=2\/7—=—%, b=2\/——Fr,
Without loss of generalit§,we consider in the present d,(D-2) (D-2)(Dy—2)

section a model with only ong; -dimensional internal space.
After dimensional reduction and subsequent conformal trans- 2d-—D
formation to the Einstein fram@long the lines of Ref.25]), — 1 hiz KzD fi (51)

C: )
the action functiona(27) reads V(D—-1)(D-2)

1 _ _ _ so that the effective potential reads
S=o2 dPoxVIgHRIg V] -9 d,00,¢

KO MO

. (52

1
-5 R;e%¢+ U(¢)+het?edde

Uepr=e
—99%9,¢3,¢—2Uer( ¢, )}, (46)
From Eq.(51) we see that a real-valued form fiefiglimplies
a non-negativeh= k3f2=0. For the rest of the paper, we
continue to work with dimensionless scalar fieldss in-

stead of passing to canonical onémodulo 87): ¢

where

8The difference between a general model witk-1 internal - - )
spaces and the particular one with=1 consists in an additional = ¢Mpj4), ¢=dMpjay, andUes=Mp4yUerr. The res-
diagonalization of the geometrical moduli excitations. toration of the correct dimensionality is obvious.
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In order to ensure a stabilization and asymptotical freez- 1 i DV(D 2
ing of the internal spac#,, the effective potential should Uettlextr=— Rt Uo(X)+hXZ=DV(0=2) (62
have a minimum with respect to the scalar field

_ a+b
PeUerlex=0, 53 G Uerlex=— 5 Ri+bUg(X)+(dsa+b)
so that for a minimum position at,=0 (which corresponds - B

to a compactification scal@*=0 at the present timeit X hxZa=PVP=2)=q, (63

should hold

b dyUetile tr:_l X~ P/O-2)[(2A-B)X?—2(A—B)X
X
R, =bU(¢)+ (ad;+b)he?. (54) ¢ 8a

—(q+1)B]+hcX(h~DY(B-2—0 (64

2

This formula shows that the potentidl.¢{(¢,¢) must also

have a minimum with respect i, because without stabili- a?2— b2
zation of ¢ the right hand side remains a dynamical function 92,Uefiextr= — — R~ b*Uo(X)+[(d;a)?—b?]
whereas the left hand side is a constant. This second extre-
mum condition x hXx(2d1=D)/(D-2) (65)
d4U =0 (55 _ _

et TVt ext=cdyan X~ 0V(O-2), (66)

yields
1
[9,U+hce?]|ox,=0. (56) af,,¢Uefflextr=QX‘D“D—Z)[(zA— B)2X2—2(A—B)2X

Additionally, the eigenvalues of the mass matrix of the +(g+1)B2]+ c2h x(2d1-D)/(D-2) (67)
coupled (, ¢)-field system, i.e., the Hessian of the effective
potential at the minimum position, [The constants, B are defined in Eq20) and(28), respec-

tively.] We see that, for fixed dimensioiy, andd, the two
(57) equations(63),(64) describe a three-dimensional algebraic
variety VC M in the five-dimensional parametémodul))
spac@ M=R3XR2 5 (a,Ap,Ry,h,X). On the variety, in-
should be positive definite, equalities(59) of the Sylvester criterion define then the pa-
rameter regionY C V of stable compactifications. A natural
1 strategy for extracting detailed information about the loca-
> [Tr(I)£NTr(J) —4detd)]>0. (58)  tion of this stability region would consist in solving E@4)
for X with subsequent back-substitution of the found roots
According to the Sylvester criterion, this is equivalent to theinto the inequalitieg59) and Eq.(63). In the following con-
conditions sideration we restrict our attention to the three simplest non-
trivial cases which are easy to handle analytically.

2 2

dgpUett 5¢¢Ueff)

= 2 2
JpeUetf VST

extr

2 _
my =

J11>0, J,»>0, detJ)>0. (59
From Eq. (57 we see that in the special case of A. Zero effective cosmological constantA .=0
92 Ueiilexyr=0 the Hessian is diagonal and the excitation By definition, we havel = Uefilextr SO that in the par-
in this case with the masses squared of the scale factor exci- 1

tations(gravitational exciton§22]) mf=m? and the excita- Uetilex= — =Ry + Ug(X) + hX(2d1-D)(P-2) = g

tions of the nonlinearity fieldns=m3 . 2

Let us now analyze the stability conditiof&4), (56), and

(59) explicitly. For this purpose we introduce the auxiliary

(68)

Combining this constraint with Eq63), we obtain the rela-

notations )
tion
¢0:=¢|extrv X’=eA¢O>01 g:=8aAp (60)
2d
— 2d;-D)/(D-2) _ 1
and rewrite the potential), U.¢;, and the derivatives of Ry =2d;h X 2VE2)= dl_on(X) (€9
U.¢s at a possible minimum positionpg=0,¢¢) as
1 9 PP ;
= —_— x~DID-2)rx—1)2+ 1 The compactification scalenodulug r, of the internal spaci ,
Uo=Ulext a [( )" +al (61) entersYC M via curvature scalaR; [see Eq(37)].
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which can be used to eliminate thex(2d1-P)(0=2) tarm

PHYSICAL REVIEW D 68, 044010(2003

Summarizing the obtained restrictions, we can describe

from Eqg. (64). As a result, we arrive at a simple quadratic the part® of the parameter spac#1 where the stability

equation inX with physically sensible solutions,

—1+ 1+ (d;—2)d(1+0q)
d;—2 '
dl:2'

d1>2,

eA¢OE X:
1+q,
(70

With the help of Egs.(69), (70) and repeated use of a
substitution-elimination technique, the potentiy} and the
second derivative5)—(67) of the effective potential can be
rewritten in the simpler form

d;— 2i
— 1 Ty-2(-2)x_
Uo(X) 4ad1x (X—=1) (71
and
I1= 5 Uerilexr=2a2d1Uo(X), (72)
J22552¢¢Ueff|extr
BZ
=—— X" YO 2[EX+4(Dy—1)], 73
Y [ (Do—1)] (73
Ji=0° U :Cd_lau X 74
12_(?(;)({) eff|extr dl—l O( )a ( )

whereE=(D —4)?+4(d,—2)>0 for d;=2. For the deter-
minant of the Hessiafb7) we get

foy 31— Do—2
)= d,-1) b-1

XUg(X)X~2C=2)[(d;—2)X+1]. (75
With Egs.(69)—(75) at hand, we are well prepared to explic-
itly describe the location of the stability regiovi in the
parameter spac#1. Let us start with relatio69). From the
non-negativity condition$i=0 ande*?o=X=0 we imme-
diately conclude that for stable spackk, it should hold
R;=0 andUy(X)=0. Furthermore, we see from the latter
condition and the Sylvester criteriah,>0, detd)>0 [ap-
plied to Eqs(73) and(75)] that for internal spaces of dimen-
siond; =2 the parameter is restricted to positive valu&s
a>0 (the limiting casex— 0 we discuss below Finally, we
note that Eq(71) together withUy(X)=0 anda>0 implies
X=1 and, hence, we find the following fat;>2 andd;
=2 from the rootg70): g=8aAp=0 and alsoAp=0.

%0bviously, a negativer would yield a maximum of the effective
potentialU¢; instead of a minimum and our model would become

unstable with respect to the conformal excitations of the internal

space. The condition>0 is also required in othéR?> models[48]
to ensure tachyon-free configurations.

regionY of the varietyV is located:

YCVNOCO=(a=0Ap=0R;=0h=0,X=1)C M.
(76)

It remains to clarify what happens in the various limiting
cases when the parameters reach the boundglgry

(L.1.1) g— +0. According to Eq(70), this limit implies
X—1, ¢o—0. Because ofj=8aA, we have to distin-
guish the two casee—0 and Ap—0. In these limits we
obtainUy(X)—Ap andUy(X)—0, respectively.

(L.1.2) a—+0, Ap#0. The casea—0 describes the
transition to a linear model. Here we haud ¢)—Ap, R
—[2d;/(d;—1)]Ap, andAp—(d;—1)h. In this limit, the
mass of theg-field excitations tends to infinityns—m?
—J,,—00 and the field itself becomes frozen at the position
$o—0. The stabilization of the internal space occurs for
Ri.h, Ap>0 with the gravexciton masses;—m:;—J;;
=4[(Dy—2)/(D—-2)]Ap. This is in accordance with the
results of Ref[22], where a linear model with monopole
terms was considered.

(L.1.3) Ap—0, a#0. Due to Eq.(70) and (L.1.1) this
limit implies X—1, ¢y—0, andUy(X)—0 so that accord-
ing to Eq.(74) the excitation massas;, m, decouple {1,
—0) and the gravexciton mass vanisheg—m:;—0.
Hence, the limitAp—0 is connected with a destabilization
of the internal spac&1,. The mass of the nonlinearity field
excitationsm,, remains finitem5—mj~1/a for a>0.

(L.1.4) h—+0, a#0. From Eqs(69—(71) we see that
this limit of a vanishing form field is connected witR,,
Uo(X), Ap— +0. Thus the excitations of the nonlinearity
field ¢ decouple from gravexcitonsJ{,—0). Simulta-
neously, because dR;— +0=r;—», the internal space
M undergoes a decompactification and dudJtg{X)—0
the effective potential .¢; becomes flat in the direction
(J11—0=m,—0). This means that the internal space desta-
bilizes, whereadJ ¢ remains well behaved with respect to
¢. These results completely confirm the conclusions of pa-
per [25] for a nonlinear gravitational model without form
fields where a stabilization is only possible fag+<0.

Finally, we note that for a model withl,=D, (and,
hence, a vanishing trace of the form field EMfRie excita-
tions of nonlinearity fieldp decouple from the gravexcitons:
J1,=0 because ot=0 in Egs.(51), (74).

B. Traceless EMT of the form field: d;=Dg

The easy handling of nonlinear models with a traceless
form-field EMT as well as of models with a two-dimensional
internal spacé/, is connected with the structure of H§4).

For X>0, a#0 we obtain from Eqs(51),(64) and the defi-
nitions of A andB

1
8—a[(D—4)X2+4X—(q+1)D]

+(2d;—D)hXx?4/(P-2)=q, (77)
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This algebraic equation reduces to a simple quadratic equa- (L.2.2) a— +0, Ap#0. For this transition to the linear
tion in X either when the last term vanishes due th 2D model with freezing of the nonlinearity field a,—0 and
=d;—Dy=0 (the case of a traceless form field EM®r diverging excitation massmf/,—wo, the stability sector
when its degreé(d,):=2d,/(D—2) equals 0,1, or 2. For @CM can be read off from EQq(85) via substitution
Dy=4, we havel(d;=0)=0, I(d;=2)=1, andl(d;—x) Uog(X)—Ap.

—2 so that only the model with =4, d,=2 is of physical (L.2.3) Ap—0, a#0. The limit is connected withy
interest. It will be the subject of Sec. Ill C. —0, X—1, ¢o—0, Ug(X)—0 and we have to distinguish
Ford,;=Dy=4, we find a physically sensible solution of two special cases. For a nonvanishing form field stremgth
Eq. (77), #+0 according to Eqs(82),(83) inequalitiesl;;,J,,>0 hold
so that both excitation masses remain finite. For vanishing
X:E(m_ 1), (7  field strengthh—+0 we obtainR,—0, J;,—0, mif mf_p
2 —0 and the internal spadd,; undergoes a destabilization/

) ) ) decompactification withi;—oo.
We use this solution as well as the extremum condit@®)

to rewrite Eqs(61)—(63) and (65)—(67) in the simpler form C. Two-dimensional internal spacesdl; =2
3 _in According to Egs.(64),(77), the extremum condition
UO(X):@X (X-1), (79 dgUetflextr=0 for models with two-dimensional internal

spaceM 4, andDy=4 can be reduced to a quadratic equation

1 and, hence, allows for an easy analytical handling of the

Aeff(X)=§Uo(X)—h, (80) models. Introducing the notation

z:=4ah, (87
, (8)  Eq.(77) reads

1
R1=4[§U0(X)+h

2 X?—2(z—1)X—3(q+1)=0 (89)
Jp=2.U ==[9h—Uy(X)], 82 .
11 oY) efflextr 3[ 0( )] ( ) and has solutions
1 X1,=z—1%\(z—1)?+3(q+1). (89
o= FUerlen= 752X YH2X+1),  (83) -
Furthermore, Eq(77) can be used to simplify the elements
3= Ut o= 0 84) of the Hessianl. SettingD,=4 andd,=2 everywhere in
127 Ypp - efflextr™ - Egs. (51),(65—(67) and eliminatingg with the help of Eq.

11
Obviously, there is no mixing of the excitations of the non- (88), we obtairt

linearity field ¢ with gravexcitons {,,=0) in this case: 1

mi:\]ll, m(zb:\lzz. Further, we read Oﬁ fromJ22>O, X JllEﬁi¢Ueff|extr=aX_l/2(5Z+ 1_X), (90)
=0 that stable internal spaces are again only possible for

a>0 and from Eq(78) and X=0 thatq is restricted to the

. o . - 1
half-line g=—1. Additional information can be extracted by Joo= 5'(2/)¢Ueff|extrzﬁxil/2(x—2+1), (91)
combining the conditionJ;;>0 with relations (80),(81), @
which gives
1
=32 - _ —-1/2
16h>R;>16Uo(X)/9>8A of¢. (85) J1= 9gyUetilextr= 5 @ax Z, (92

For the realistic case of a positive effective cosmologicalas well as
constant we find according to Eq80), (85) the conditions

Aeff>0: h>Rl/16>U0(X)/9>h/3>O, (86) de(J):_ 5 (X2—62X+822—4Z— 1) (93)
60a°X
and, hence, from Eq$78),(79) also the implicationJy(X)
>0= X>1=q>0. We therefore conclude that such con- It is now easy to describe the pat of the parameter space
figurations are only possible for internal spaces with positiveM where the stability regio®Y CV is located. We start by
scalar curvaturdr;>0 and positive bulk cosmological con- substituting the solution&39) into J,,. Taking into account
stantAp>0. that X=0, we get from the conditiod,,>0 for X, X,

Let us briefly comment on some limiting cases.

(L.2.1) h— +0. In this case we recover the result[@b]
that stable configurations are only possible Ry, Ay, Acts The curvature term id;; of Eq. (65) cancels because af=b
<0 [see the inequality chaif85)]. =1 for Dy=4, d,=2.
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+(z—1)?>+3(q+1)/a>0. (94)

Thus, the rootsX; and X, correspond toe>0 and a<0,

respectively. Because af=4«h, h=0 this leads to negative
values forX, so that this root is unphysical and stable con-

figurations are restricted t8§=X;(z,q) anda>0. The lim-

iting casea— +0 will be considered separately below.
Furthermore, we see from the structure of E§8)—(993)

that the Sylvester criterion selects a regiog, x, from the

(z,X) plane which can be interpreted as the projection of theg

stability regionY on this plane. Explicitly we have

J;1>0= X<5z+1, (95

\]22>0:>X>Z_1, (96)
X<3z+\Z?+4z+1,

det{J)>0= (97

X>3z—\Z°+4z+1,

where the inequalitie§d7) are easily derived from Ed93)
by calculating the critical valuesX.(z) for which
detJ[z,X,(2)])=0. The intersectior® , x, of the sectors
defined by the condition§95)—(97) and X>0, z=0 is
shown in Fig. 1.

In order to obtain information about the values of

PHYSICAL REVIEW D 68, 044010(2003

4

X(z,0err=0)

" z=4ah

FIG. 1. Projection®, x, of the stability regionY CVC M on
the (z,X) plane(shaded areasThe two linesA ;=0 andR;=0
[given in Egs. (104)] separate the stable regions wifhX
>X(z,Ae1i=0): (Aei>0, Ri>0)], [X(Z,Aet=0)>X>X(z,R;

=8aAp (and Ap) which allow for a stable internal space —q): (Aets<0, R;>0)] and [X<X(z,R;=0): (Ae;<0, R,

M, it proves convenient to map the regiéh, x, via the
quadratic equatior(88) or its solution X;(z,q) from the
(z,X) plane on an equivalent regio® , of the (z,q)

<0)].

plane. For this purpose it is sufficient to transform the in-q.(z) =z(5z+6) on the ¢,q) plane[The same curve can be

equalities(95—(97) and X=0, z=0 for X and z into an

obtained by substitution of;(z) into the quadratic equation

equivalent inequality set fay andz. Let us demonstrate the (88).] With the help of two test pointsP,;=[z;,q;

mapping, e.g., for inequality95). SubstitutingX=X;(z,q)

>0:(z1)], P»=[2,,0,<0.(z,)] above and below the criti-

=z—1+/(z—1)*+3(g+1) into the equation for the criti- cal curveq.(z), e.g.,P;=(1,26),P,=(2,0), it is then easily

cal line X=X.(z)=5z+ 1 and solving forg, we obtain as an

image of this lineX.(z) a corresponding critical curve

J11>0=9<z(5z+6),

1
J)p>0=0q>—-1- §(Z—1)2,

seen thaX;(z,q)<5z+1 maps intaq<z(5z+6). Applying
the same technique to Eq®6),(97) we obtain

(98)

(99

q<—1+[4Z°+10z+1+2(2z+1)\z°+4z+1]/3,

de(J)>0=

Additionally we find fromX=0

1
q=-1- §(z—1)2 for z=1,

for O=z<1. (101

q>—1+[42°+10z+1—2(2z+ 1) z°+ 4z+1]/3.

(100

The resulting intersection regidd, ) of Egs.(98)—(101) is
depicted in Fig. 2.

Let us now turn to the scalar curvaturg and the four-
dimensional effective cosmological constantA ¢
=Ugtilextr- The structure of Eqs(61),(62), and (63) sug-
gests to consideR; and Aq¢ as functions of £,X,q,a).
Eliminatingq from Eqgs.(62), (63) [with the help of(88)], we
obtain
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4 Agt=0 for R>0,

Aess<0 for sgiR;)==1,0. (107

It contains no stable configurations with an accelerated ex-
pansion of the UniverseAg:>0) for internal spaces of
negative or vanishing scalar curvatuRe.

Finally, we comment on some limiting cases.

(L.3.1) h—+0, g#0. According to Figs. 1 and 2 this
limit corresponds to a vanishing form field— +0, and a
stabilization is possible in the case Bf<0. Furthermore,
for z—0 we can approximateX=X;(z,q)~(v—1)(1
+2z/v) with v:=y4+3g>1 and the masses of the normal
excitation modes of the couple@ ¢ ¢) field system follow
from Eqgs.(58),(90)—(92) as

A(Z,Nere=0)

6«

1 9
m§=—(v—1)_1/2[2—v+ 52+ 0(z?)

1
6.2 0.4 0.6 0.8 1 2__ —1/2
ms=—((wv—1
z=4¢ch 2 10a(v )

2+v 5
VT, z+0(z%)|.
- . . (108
FIG. 2. Projection®, q, of the stability regionY CVC M on
the (z,q) plane(shaded areasThe two linesA¢;=0 andR;=0 In the special case=0 we completely reproduce our earlier
[given in Egs. (105] separate the stable regions wify results [25] on nonlinear stabilized models without form
>0(2,Aer1=0): (Aer>0, Ri>0)], [A(ZAer=0)>q>0q(zR;  fields (d;=2): mi=mi=—Uy(X), mj=mi=X YAX
=0): (Aerr<<0, R;>0)] and [q<q(z,R;=0): (Ae#<0, Ry +1)/(10a).
<0)]. (L.3.2) a— +0; Ap,h#0. For this transition to a linear
model we have as ifL.1.1) U(X)— Ap as well as a freezing

1 of the nonlinearity field athp— 0, X— 1. Using the approxi-
12 _ 0 )
Rl_GaX (X+4z-1), (102 mation
L X=X1(2,0)
T U2 oy
Aer=1p, X T (X=2z71). (103 — 142+ (3q—22)/4— (30— 22)2/64+ 2214+ O(a®)
The graphics of the functions (109
we obtain the excitation masses as
Ri(z,X)=0= X|(r,=0)=1-4z, 1
) , @ —2h
my—mi=——/r—+0(a)—x,
Aeff(z!x):0:>X|(Aeff:0):1+22 5
(104 m;—m5=3h—Ap+0(a)>0 (110

are included in Fig. 1. For completeness, we map them alsQ hat the f ina is clearl f he di .
on the ,q) plane. Following the same scheme as above we? that the lreezing 1s clearly seen from t € diverging mass
' ’ * 7 of the nonlinearity field. Additionally, we find from Egs.

obtain (102),(103

Ri(z,0)=0= Q|<R1=0): 2z(4z—-3), 0=z<1/4 a
R;=Ap+3h-— 5[27(h+AD)2—8h2]+O(a2) (112

Aeti=0= 0l -0)=22 (109
_Ap—h 3 2 2 2
and the correspondences eff— T+ Z“[(h+AD) —4Ap]+0(ef), (112
R;>0 for X>1-4z, q>2z(4z-3), which in the special case of a vanishing effective cosmologi-
cal constant\ .¢=0 reproduces the results of Rg22] for a
Aegti>0 for X>1+2z, qg>2z (106)  linear model with a Freund-Rubin form fieldh=Ap
=Ry/4, m;=2h.

From Fig. 1 and Fig. 2 we see that the nonlinear model with (L.3.3) Ap—0; a,h#0. In this case we havg—0. A
two-dimensional internal spadel; allows for stable con- substitution of the approximatioX=X;(z,q)=z—1+[(z
figurations only in the cases —1)?+3]Y2+3[(z—1)?+ 3] Y4/2— 0(g?) into the Hes-
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sian shows that there is no special behavior of the excitatiowith nonlinearity scalar field and additional minimally
masses connected with this limit. coupled scalar fields which describe conformal excitations of
(L.3.4) Ap,h—0, @#0. From Eq.(90) it follows in this  the scale factors of the internal space.
limit J,,—0, so that beside a decoupling of the excitations A detailed stability analysis was carried out for the three
the gravexciton mass vanisheg—m:,—0 and the internal ~simplest configurations of a model with one internal factor
spaceM; destabilizes. This is in full agreement wif25]  spaceM; and a quadratic curvature termh(R)=R+ aR?
where a stabilization fon=0 requiresAp<0. —2Ap, whereAp plays the role of a@-dimensional bare
(L.3.5 R;—0. In the limitR;—0 one observes a regular (pulk) cosmological constant. These three configurations are
behavior similar to(L.3.3). For parameter points near the characterized respectively by1) a vanishing four-
line Xo(2) :=X(r,=0)(2)=1—4z, 0<z<1/4 we find from  gimensional effective cosmological constaft;, (2) a
Eq. (102 X=Xq(2) + 6aR;X3*+ O(a?R?) so that the Hes- traceless form-field EMT, of3) a (d;=2)-dimensional in-
sian yields excitation masses of the formiz(RﬁO) ternal factor spac®1,. For all three configurations, a stabi-
= miz(Rlzo,z) + oy 2)aR;+ O(azRf) with some regular lization of the internal space is only possible in the case of a
coefficientso; A(z) and non-negative nonlinearity paramete® 0 and a bulk cosmo-
logical constantA restricted by the conditioqg=8aA >
—1. The transition Ap—0h—0) is connected with a de-
compactification R;—0,r;—0o0) of the internal spacé;.
At the same time, it leads to a flattening of the effective
potential in the direction of the scale factor excitations and,
hence, to a destabilization &, (for a similar limiting be-
havior, see also Ref25)).

1
m? (R;=0,2)= mx(;”z[g— 5X,

FV4(3—-5Xp)2+5(Xo—1)%]. (113

The massessniz(Rl:O,z) have finite values except at the
h;nét;rglpgp tzoﬁ)é)z),_)v%/ﬁgrz %oiﬁro(rﬁ%:e oofc)thzn,gaég(eo; gi.  From the three configurations, the model with the two-
verge. We see that, with the exception of the limiting piint dimensional mterna! space sh_ows the richest features. It al-
Xo(a#0)—1, there occurs no destabilization of the internal!0WS for stable configurations in the case'setr=0,R;>0)
spaceM, for vanishing scalar curvatureR,. Due to the @nd (Aer<<0, any sign oR,) as well as for Ricci-flat inter-
smooth behavior of the excitation masses under the transitiof@l spacesR; =0). Interestingly, the various stable configu-
R;—0 we can identify this limit with a stable decompactifi- rations belong to a connected region in the parameter space
cationr;—o of an internal spacé!; with fixed topology. M and one can smoothly pass from one type of configura-
Clearly, in our local approach a stable decompactified spackon to another one, including a transition to stable Ricci-flat
with r;—o is indistinguishable from a stabilized internal internal spaces which can be described as “stable decompac-

space which is Ricci-flat from the very beginning. tifications:” R;—0, r;—. As pointed out in the Introduc-
tion, such a rich picture became possible due to the presence
V. CONCLUSIONS AND DISCUSSION of the real-valued form fields which satisfy the NEC and the

WEC and which compete with the nonlinearity scalar field.

In the present paper we investigated multidimensionalrpe |atter satisfies the NEC only marginally and can violate
gravitational models with a non-Einsteinian form of the ac-ihe WEC.

tion. In partiCI_JIar, we assumed that the action ig an arbitrary Interestingly, for €,=2)-dimensional internal spaces
smooth.functl_on of the SC?'af curvatuery. Add|_t|onally, . there exist parameter configurations withAp,h,R;>0
the D—d|men5|onal spacetime was endowed with SOI'ton.'Cthat can provide positive values of the effective four-
form fields of generalized block-orthogonal Freund-Rubin . . :

type. This bulk matter ansatz leads to a naturally factorizec‘i'menSIonaI cosmological constant>0 [see, €.g., Eqs.

geometry and a spontaneous compactification can be asso ?‘-06)’(107)]' _Thu;, an accelerateq expansion of the Universe
ated with it. For the considered models, we concentrated ofc€™S possible in accordance with observan_onal data. Let us
the stabilization problem for the extra dimensions. As a tech@Ssume that the values of the bulk cosmological constgnt
nique we used a reduction of the nonlinear gravitationafnd the form field strength are set at some characteristic
model to a linear one with an additional self-interacting sca-scale Ap~h~M?2. Then we find for the parameterg

lar field (nonlinearity scalar field The factorized geometry ~gaM2, z~4aM?, and, henceg~2z. The latter corre-

as well as the generalized Freund-Rubin ansatz for the sol;s—ponds tOK~1+ 22~ 1+ 8aM? [see Eq(89)] and compari-

tonic form field allowed for a dimensional reduction of the son with (105 shows that such configurations should yield
considered models and a transition to the Einstein frame. AS 9 y

a result, we obtained an effective four-dimensional modef" almpst vanishing effective cosmologlf:al constans
~0. With the help of Eq(102 we can estimate the scalar

curvatureR; of the internal space as

2according to Eq. (113, the limit Xo(a#0)—1 gives m?
—m2—0, m;—m;—1/(5a). On the other handXo(a#0)—1

impliesz=4ah—0 and according to Eq89) alsoAp—0. Thus, zZ o 1 z 4M? (114
the results ofL.3.1) and(L.3.4) can be used to reproduce the same Ri~—X -~ ~ — - 11
behavior of the excitation masses via E408). @ Y V1+2z +/1+8aM?
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On the other hand, its value is connected with the fundamernthe value ofe can be estimated as follows. With the help of
tal scalesM 4+4,), Mpi4) by the relations(1), (2), and  relations(111) and(117), we find

37):
( 7) 107123Ap|(4)~Aeff~ EAD(]._GCYAD)/Z, (119)

M, (a+d,) 4ldy

_ 1 N

Ri~r°~———| Miuiq,- (115 Ap~M?~R;
Mpj(4) 1

) ) ) ) and, hence,
As mentioned in the discussion after Eg5), the value ofX

can be used as a measure of the nonlinearity of the original M (g, 4ldy +2
model: eR=e*%0—1=X—1. We see that weakly nonlinear 10 1%~ G(M—) (120
configurations correspond ¥~1, whereasX>1 leads to a PI)
strongly nonlinear regime. With the help of Eq414) and  gq that
(115 we express this dimensionless nonlinearity parameéter
in terms of the different scales contained in our model: e~10 %5 (121
_ 4 Mpiay |80 for d;=2, M, (4+4,)~30 TeV. According to Eq(119), this
X~1+8aM"~16 My (a+dy M*(4+d1)) ' value of € is not sensitive to changes of the nonlinearity

(116 parameterwx in a weakly nonlinear curvature regime. Thus,
we arrive at the conclusion that the ADD scenario in its
L= . simplest extended version can provide a simultaneous stabi-
From Eq.(116) we see that settinyl ~M, (4.q,) We obtain ;7 vi00 of the extra dimensions together with an adjustment
X>1 for ADD-type TeV-scale models whereas~1 can  of the effective cosmological constant to its observed value
only be achieved for standard KK models wittpi4)  only in the case of a strong fine tuning. Although the solito-
~My (4+4,) - Stably compactified internal spaces in ADD- njc form fields of our model are located in the compactified
type models can be obtained within a weakly nonlinear reextra dimensions, the tuning of their effective energy density
gime X~1 if the bulk cosmological constanty and the h to the bulk cosmological constaity, h=(1+¢€)Ap, is
form field strengthh are related with the fundamental scalesof a similar type as the four-form-tuning discussed in Wein-
as berg’s no-go theorerf¥0] for a resolution of the cosmologi-
cal constant probleniICCBP. A shifting of the CCP to a pa-
Ap~h~ M2 rameter fine tuning is a rather general feature of models with
’ compactified additional dimensions and form fieléisn a
slightly reshaped form it also appears in the recently pro-
posed brane-world model with two-dimensional “football”-
shaped large extra dimensioiigl] (see alsd52]) where the
adjustment of the on-brane cosmological constant is shifted
1 _ « ihae a1 L0 an adjustment of the parameters of the off-brane “foot-
For _I\ﬂ*(“fﬁ) ! 39 T.ev anq di=2 this |mpllgs M ball.” A possible resolution of the CCP for similar higher-
~107°-10" " eV. It is interesting to note tha_t this Mass yiengional models with form fields following from an
scale is of tr_\e same order2 as the Iow_est poss!b!e supersyrp/[_theory setup was presented in REB3]. Proposals for a
metry breaking scalen~MsysyMpy() in the minimal su- o501tion of the CCP within other scenarios comprise vari-
persymmetric extension of the standard madéssSM) [49] s anthropic approach@s0,54,, shifting of the CCP to a
with Msysy~1 TeV. singularity problem[55], possible graviton compositeness
Above, we demonstrated that the assumptigi~h can  [56] a holographic approadis7] as well as nonlocal modi-
resultin a small effective cosmological constank;. Letus fications of gravity[58]. However, there is still no satisfac-
now estimate the relation between.i; and Ap,h in more o1y and comprehensive solution of the CCP. The problem
detail and compare it with the observable vafuef Aesi  will probably continue to challenge the scientific community

— 123 H i~ 7 7 H . . . . . .
~10""*Apy(4). For simplicity, we will restrict our consid-  yntj| a final understanding of quantum gravity is achieved.
eration to a weak nonlinearity regime witk~1, a=0,

where the approximationgl1l) and (112 of (L.3.2) are
valid. From Eq.(112), we see that to ensure a sufficiently
small A¢¢s the bulk cosmological constarty and the field U.G. and A.Z. thank H. Nicolai and the Albert Einstein
strengthh of the solitonic form field should be connected by Institute, as well as the Department of Physics of the Uni-
versity of Beira Interior for their kind hospitality during the

— 1

My (4+dy) 2y
M~5 M (a+d)) -

VI (117
Mbp)4)
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