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Cosmological variation of the fine structure constant from an ultralight scalar field:
The effects of mass
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Cosmological variation of the fine structure constantiue to the evolution of a spatially homogeneous
ultralight scalar field tn~Hg) during the matter and dominated eras is analyzed. Agreemenfef/ « with
the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single param-
eter, the coupling of the scalar field to matter. Asymptotical(y) in this model goes to a constant value
~ ay in the early radiation and the late dominated eras. The coupling of the scalar fieldrtonrelativistig
matter drivesa slightly away froma in the epochs when the density of matter is important. Simultaneous
agreement with the more restrictive bounds on the varidthaw «| from the Oklo natural fission reactor and
from meteorite samples can be achieved if the mass of the scalar field is on the order of Bi3~OBere
HA=Q}\’2HO. Depending on the scalar field maasmay be slightly smaller or larger thaw, at the times of
big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar
system meteorites, and the Oklo reactor. The effects on the evolutierdag to nonzero mass for the scalar
field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection
of (ala)o.
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. INTRODUCTION model presented here, the energy denpify- V() of the
scalar field is always very small compared with the critical
Recent observations by Weld al. [1,2] of absorption energy density in the radiation, matter, and(dominatedl
lines in quasar spectra provide evidence for a variation of theras, so that the standard Friedmann-Robertson-Walker evo-

fine structure constant lution of the universe is not affected by displacementsgbof
from ¢.
Aa_aM)—ao_ -5 Agreement ofA a/ a with the quasar data can be obtained
= =(—0.57:0.10 X 10 (1) S . ;
a g by adjusting a single parameter, the coupling of the scalar

field to (nonrelativisti¢ matter. Asymptoticallya in this

averaged over the redshift range €2<3.7 (*a was model goes to a constant valde= aq in the early radiation
smaller in the past), whereay is the present-day value of and the lateA eras, insuring agreement with bounds from
the fine structure constant. This type of variationaofas  cosmic microwave backgroundMB) temperature fluctua-
well as variation of other dimensionless coupling constantsiions (A a/«|<0.05 atz=1090) and big-bang nucleosyn-
is predicted by theories which unify gravity and the standardhesis(BBN) (|Aa/a|<0.02 atz~10°-10") (see Ref[3]
model forces. For example, string and supergravity theoriefor a comprehensive review
predict the existence of massless or ultralight scalar fields simultaneous agreement with the more restrictive bounds
(dilaton or moduli fields which through their dynamical on the total changdAa/a|<10~7 from z~0.14 to the
evolution can cause temporal variation of coupling constantspresent from the Oklo natural fission reactor 1.8 Gyr ago
This investigation will consider cosmological variation of [4 5] (by analyzing isotopic ratios of Smand |Aa/a]|
the fine structure constant due to the evolution of a spatialli-3x 107 from z~0.44 to the present from samples

homogeneous ultralight scalar fielth{-Ho, whereHq isthe  of meteorites formed in the early solar system 4.6 Gyr ago
present value of the Hubble parametéuring the matter and [6] (by analyzing the ratio of'®’Re to 80s) can be

A dominated eras. We will assume a flat Friedmannachieved if the mass of the scalar field is on the order of

Robertson-Walker universe, Witheo=pmo+ pro+ PA=PmO  0.5-0.60YH,.

jj—e[; As itt;?c?’am;g ?rsﬁ fSelrSs;T]Zrl?ptris,ezfoéa;ii, Ogn?;cgggal The laboratory bounds on the present variatjaa|,

the present energy densities(imonrelativistig matter, radia- <3.7X10 _14/_yr [7] and (?/0‘)0: (0.4 16)><_ 10" *¥yr

tion, and the cosmological constant respectively. Ratios o8] are satisfied for the entire range of scalar -f|eld masses 0

present energy densities to the present critical density arem=12 Q}?H, considered here. The variatior/a), pre-

denoted by Q.=pmo/pco. Qr=prolpco, and Q,  dicted in the model may be detectable if the sensitivity of the

=pr!peo- laboratory experiments can be increased by an order of mag-
The scalar fieldp may provide the cosmological constant hitude.

energy density at the minimum of its potentiy|¢). In the . THE MODEL

The scalar field model is based on a generalization of
*Email address: gardner@math.asu.edu Bekenstein's moddl9] for variable«, but with an ultralight
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scalar field mass. The scalar field obeys the evolution equayhere = BL(@M*). In Bekenstein's theornyr= —2.

tion The experimental constraints from the validation of the

. . Pm weak equivalence principle on the couplingsnd {g may

$+3HP=— dé Y (2)  be evaded by assuming thatcouples predominantly to dark

* matter[14,17. (For a different view, see the extended dis-
in the standard Friedmann-Robertson-Walker cosmologyeussion of varyinge and the equivalence principle tests in
HereH is the Hubble parametet,, is the coupling of¢ to ~ Ref.[15])
matter,| | <1, pm is the density of matteM, <Mp is the Given a complete particle theor§ will be specified and
mass scale associated with the scalar field, andréuiced it will be possible to calculate the couplingof ¢ to matter.
Planck massMp=2.4x10'"® GeV. General considerations However, the sign and magnitude p¥ary depending on the
show that the coupling o to radiation(including relativis- ~ way in which Bekenstein's theory is generaliZei®}—and
tic matte) should vanish—since couples to the trace of the can depend on the unknown properties of dark matter—so
energy-momentum tensor for matter and radiation—and thdtere{ will simply be determined to fit the quasar data.
{m is very nearly constant during the matter ahceras. One way in which an ultralight scalar field mass might
In generalizationg10—12 of Bekenstein's model, varia- arise is that near de Sitter space extrema in four-dimensional
tion of a derives from the coupling o to the electromag- €xtended gauged supergravity theoiieith noncompact in-
netic field tensorF ,,, through a term in the action of the ternal spaces there exist scalar fields with quantized mass
form squared 16—21]
1
S,:=f d4x\/—_g( — 7 Br(AIMOF, F*” 3) m?=nH3, Hi=3’;/?2 =Q,\H3 9)
P

whereBg is a function(introduced by Damour and Polyakov
[13]) that would be specified by the string or supergravity

theory and constitutes the effective vacuum dielectric PerMittertain cases, these theories are directly related to M/string

tivity. In Bekenstein's model,Br can be written asBr  heory An additional advantage of these theories is that the
=exp{—2(¢— ¢)/M, }. Changes inp induce changes i, classical valuesm?’=nH3 and p, are protected against
o« quantum corrections(Cosmological consequences of such

e (4)  ultralight scalars in terms of the cosmological constant and
Be[#(D/M, ] the fate of the universe are discussed in REf8,22,23.)

Note that the relationm®=nH3 was derived for super-
gravity with scalar fields; in the presence of other matter
fields, the relation may be modified.

where—6=<n=<12 is an integer an#ll , is the asymptotic de
Sitter space value dfl with cosmological constani, . In

a(t)=

with Be(¢/M, ) =1.
Our attention will be restricted to small departuresdof

fron_1 ¢> which will occur in the radiation, matter, ant eras. We will take n>0, corresponding to a de Sitter space
Defining minimum, and will contrast the evolution af with n>0
¢_g with the maisless case=0. Forn>0, ¢—0 and conse-
=M. (5 quentlya—a ast—oo. It is always possible to satisfy the

quasar constraints aha/ « for integer 0=n<12, except for

the equation for the evolution of the scalar field becomes n=1. However, the limits on variation af from the analy-
ses of Oklo and meteorite data are not simultaneously satis-

. : _ Pm fied in this model unlesa=0.24-0.34 (n~0.5-0.6H ).
+3He+mlp=—{n—> N : >
¢ ¢ ¢ gmMi A supergravity inspired potentigl0,21 for the scalar
field is
-0y V2(4-9)
> _
Mp V(¢)=pAcosf( M—) =pacosiie)  (10)
_ Pmo [ o 6
T *wm2la ®  with M, =Mp/2. This potential produces the present-day
F cosmological constant, when ¢~ ¢ and an ultralight sca-
to first order ing, wherem?=V"(¢), {=M2,,/M2, 7|  lar field mass
<1, ais the scale factor, and, is its present value. For _ 2
small ¢, Eq. (4) becomes m(p=¢)= M_ZAZGH%_ (11)
a(t)~a(l- (o) ) F

The potential(10) provides a specific realization of the ge-
neric cas€9), with V(¢)=p, . Even in this cas®/(¢) may
A_a~§ (00— o) ) have a more complicated form in general and only approach
a Fl$o™ @ pacoshg) asymptotically, for example, after a symmetry

and

043513-2



COSMOLOGICAL VARIATION OF THE FINE . .. PHYSICAL REVIEW D 68, 043513 (2003

breaking phase transitiofFor an analysis of varying in 0
models with a “quintessence” potentidl(¢), see Refs.
[24,25] -0.02

A major difference between the present model and that of
Refs.[9-17] is that here the scalar field is assumed to be -0.04
near the minimum of its potential, and thugt)— « for t d
>H, ! The initial conditions advocated below also differ ~0.06
from those of Refd.9—12] and insure that always remains
close toa.

While a mass term is allowed in the generalized model of 4
Olive and Pospeloy12], it is neglected for the explicit so-
lution given there in Eq(3.4). In a later section, the authors .
consider a mass term in the context of the Damour-Polyakov
model[13] for varying constants, wherg,=0= ¢ . In this FIG. 1. A=Aala vs zfor n=6 and{g=—2 with various ini-
model, tial conditionsg;=—0.01, —0.05, and—0.1, from top to bottom.

A 1 —
—a~§§F(<pS— ©?) (120  phase transitions, becomes shallow wWith(¢)~H,. For

“ example, in the primordial inflationary stagé’j(g) may be
on the order oH?, whereH,>H, is the Hubble parameter
during primordial inflation. While the scale factarinflates

-0.08

whereég= ’F’(EIM*), and the scalar field mass is given by

3

, P Q. (a3 by 60 or more e-foldingsg will in this scenario rapidly
m M2 aat Q_Agm a 13 approach¢. We therefore takeo=0= ¢ in the early radia-
* tion era.
The authors find that the variation afcan be madenargin- ~ Equation(6) may be put into dimensionless form by set-
ally consistent with the quasar and Oklo data if theterm  ting 7=H;t=Q"Hot,
in m? is positive and dominant over thg, term. H Q 3
. . - . m| @0
By contrast, the detailed effects on the evolutioreadue ¢+ 3H—<p+ ne=— 3§Q— a (14
to nonzero mass for the scalar field wigh#0 and{,#0 A A
will be emphasized below. where henceforth a dot over denotes differentiation with
respect tor.
lll. EVOLUTION OF THE SCALAR FIELD The Hubble parameter is related to the scale factor and the

. N . . energy densities in matter, radiation, and the cosmological
To determine the initial conditions for the evolution of the constant through the Friedmann equation

scalar field, we will match approximate solutions to the evo-

lution equation(6) from the radiation era and the matter era H?2 2 0, 5 0, (a,
at the timet,,_, (z=3200) of matter-radiation equality. Note — 0. + Q—<§
that in the early radiation era, the right-hand side of the evo- HX A A

lution equation(6) _go_es to zero, smcem=0 for radla_tlon. which can be used to solve farandH in the matterA, early
In the early radiation erap may be displaced fromb and  5tter. and radiation eras.
“frozen” due to the large frictional term B ¢ in the evolu- In the matterA era, the scale factor and Hubble parameter
tion equation. However, for nonzera~H,, the magnitude have the explicit forms
of the initial value| ;| in the early radiation era must still be

4
+1 (15

1 da
adr

=l
a

<1 to satisfy the BBN, CMB, and quasar bounds on the EZL: % llasmrgIS(%T) (16)
variation ofa. To see this, note that fan~H,, ¢ is frozen a 1+z \Qy 2

neare; until H becomes of ordeil, and then decays with a 3

characteristic time scale on the order Idgl. Thus the H=HAcotI-<§r (17

change in¢ from the early radiation era to the present and
the concomitant chang&a/a are on the order ob; (see : :
Fig. 1). To satisfy the quasar bounds Amv/ @ would require and the evolution equation becomes
fine tuning of initial conditions ¢;~—1075). . 3. -3/

For m=0, the initial condition fore is irrelevant in the ¢t3 CO“‘(ET) ¢Hne=—"77. (18)
linearized theory(6) since A« only depends on changes in sink?(—r)
¢; the value ofp; becomes important only if the scalar po- 2
tential cannot be neglected.

It is plausible though thap=0 in the early radiation era,

sinceV(¢) may have a deep minimum %during inflation a

in the very early universe, which later, after one or more ag

In the early matter era, the scale factor
Q )1/3 37.) 2/3
m
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FIG. 3. Aa/a vs zfor n=6.
FIG. 2. Scalar fieldp andA a/a vst/ty for n=6. e

/
and the Hubble parametéi/H,~2/(37). The mass term _ % s (26)
ne in Eq. (14) can be neglected in the early mati@nd r 2 Srlﬁr'
radiation eras. The evolution equation for the scalar field in
the early matter era becomes Now matche, = ¢, and ¢, = ¢, at 7,_, to determine the
2 4z constants in the solutio(21),
(P+ ;(PZ — ; (20) _ g n T Tm—r Z (27)
e\ N, 47 8
which has the solution
. 4711 1y
4 c —_ 2| Z_
(pm=——g(|n +—1+C2 (21 #m 3 ( T 472 ) (28)
3 Tmer T

To simulate the evolution of the scalar field in the matter-
A era, we use Eq(18) with initial conditions provided by
Egs.(27) and(28) evaluated atrp,,_, .

where 7,,_,=Ht,,_, andc; andc, are constants of inte-
gration.
In the radiation era, the scale factor

1/4
EN 4_Qf 1/2 _ . ™m-r IV. COMPARISON WITH QUASAR, METEORITE, AND
~ s'e, s=r7 (22
a | Qy 4 OKLO DATA
and the Hubble parametéd/H ,~1/(2s). The time shift In numerical values for expressions, we tdlg=0.27,

Tm—i/4 is determined by matching the Hubble parameters2,=0.73, andHo=71 (km/sec)/Mparsee1.5x 10—_33 ev,
from the radiation and early matter erasmgf . [The for- ~ from Table 10 of the first-year WMAP observatiof&6].
mal mathematical singularity aa—0 now occurs att ~ With these parameters, the age of the universetgis

=t,,_,/4 due to the choice of the zero of time in E46).] =13.7 Gyr and the absorption cloudszt 0.2-3.7 date to
The evolution equation for the scalar field becomes 2.4-11.9 Gyr ago.
Figures 2—13 present simulations of the evolution of the
- 3. —3 23 scalar field and\ e/« for n=6, 12, 2, 1, 0, and 0.3.
T 2s? 431m/§r53/2' In the figures forA «(z)/ «, the dark (I error bounds for
1=<z=<2.5) and light(a rough guide to the error bars for
The solution in the radiation era is
34‘ 51/2 C3 2%x10°°
(,Dr=—7 S:I'T+ST/2+C4 (24) A
m—r 0 ©
wherec; andc, are constants of integration.
The initial conditions for the scalar field in the early ra- 2 10-5
diation era arep,(7;)=0=¢,(7;), where the initial timer;
satisfiess;<s,,_, . These initial conditions fix the constants
in the solution(24), yielding ~4x10°°
3¢ ( st2 s, 252 - )
=5\ T T Y, =Rmdl )
2 \gl2 " gl2 g2 g2 0 5 1to 15 20
Next take the limits;/s,,_,—0 to obtain FIG. 4. Scalar fieldp andAa/a vst/ty for n=12.
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A (/—*f P
0.00004 0.00002
A
0.00002 0 ("77
0 ® -0.00002
-0.00004
-0.00002
-0.00006
0 5 10 15 20 0 5 10 15 20
t t

FIG. 6. Scalar fieldp andAa/a vst/ty for n=2.

FIG. 10. Scalar fieldp andA a/a vst/ty for n=0.
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4 <4 _6x10°®
-6x10°®
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FIG. 7. Aa/a vs zfor n=2. FIG. 11. Aa/a vs z for n=0.
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0.0001 0
0.00005 -0.00002
g ® -0.00004 A
-0.00006
-0.00005
-0.00008
-0.0001 -0.0001
0 5 10 15 20 0 5 10 15 20

FIG. 8. Scalar fieldp andAa/a vst/ty for n=1.
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-8x10°° < 0 ;
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FIG. 13.Aala vszfor n=0.3. FIG. 14. Aa/a vs n satisfying the Oklo and meteorite bounds.
0.6<z=3) boxes indicate the quasar bounds from the bot- | this model, forn>1 (n=1), a was actually larger in
tom panel of Fig. 2 of Ref 2], while the short vertical lines {he past at some point before the period of #ve0.2—3.7
atz=0.14 andz=0.44/2 indicate the Oklo and approximate (;=0.2—1.9) absorption clouds, and will be larger again in
meteorite bounds respectively. While the Oklo event isihe fyture. Fom=0, « was smaller in the past, but will be
sharply located in time, the ratio df'Re to *®'Os observed \ery slightly larger in the future. And fon=0.3, a was
today in meteorites involves the total changedirsince the  gmgjler in the past until just aftep,,, was slightly larger
time of formation of the meteorites, which is calculated byfom that point up td,, and then again will be smaller in the

averaginga — ay, future Aa/a——10"%).
Values of /, BBN, CMB, meteorite, and OklQ\ a/ «,
A_a 1 [(a(s) ds—1 (29) and (d/a)o for various scalar field masses are presented in
Tto—t) ap 0 T Table |
@ meteor 0 t 0 '

The BBN, CMB, and quasar bounds @w/a and the

The scalar fielde solving the initial value problem de- laboratory bound orje/al, are satisfied for integer 9n
fined in Eqs.(18), (27), and (28) will be proportional to¢, <12, except that tha_=1 case cannot pe made to sapsfy the
and thusA a/a will be proportional tofZr. For simplicity =~ guasar _bounds in this model. The variatidne/ «| satisfies
we will set{r=—2, but a general value faf can be rein- N addition the Oklo bound for 0.26n=<0.34 and the mete-
serted. For &n<12 exceptn=1, { is fixed by setting Orite bound for 0.24n<0.43(see Fig. 14 There is a small
Aala=—057x10"° at z=1.75. Forn=1, better results range of scalar field masses for whitha/a|oy,<10"°
were obtained by setting a/a=—0.57x10"° atz=1 (see (ahd can be made to go to zero by extreme fine tunifRgr
Fig. 9. The massless case shown in Fig. 10 agrees with EGhis range of, (Aa/a)meteor= —1X 10", _

(3.4) of Ref.[12] with {,=0. Forn=0.3, Figs. 13 and 14 Dependmg_on the scalar field mass, the predlcyed BBN,
show that the quasar, meteorite, and Oklo bounds can HeMB, meteorite, and Oklo values o may be slightly
satisfied simultaneously. smaller or larger thaw. Note that the sign of for n=0 is

The number of visible oscillations in the scalar fig)d ~OPPOsite to the sign fon=1. An order of magnitude im-
(and thus also iM a/e) corresponds to how massive the Provement in the experimental technique could lead to a de-
scalar field is, with at one extreme no oscillations for thetection of (a/ ).
massless cadéig. 10, and at the other extreme two visible  For the massless case, the variationadincan be made
oscillations for then=12 casegFig. 4). marginally consistent with the quasar, meteorite, and Oklo

TABLE I. Values of{, BBN, CMB, meteorite, and Okla o/ «, and (bz/a)o in yr~ ! vs scalar field mass

squaredh.
n 4 (Aala)gen (Aala)cmp  (Aal/@)meteor (Al a@)okio (al @)
0 —-2.0x10°% —-6.7x10> -53x10° -6.8x107 —4.8x107’ 2.4x10°16
0.3 —-3.0x10°% -96x10% -7.6x10° —-14x107 —-3.2x10° -6.8<10°Y
031 -3.0x10% -98x10°° -7.7x10° -1.1x107 2.0x10°% —-8.3x10°Y
1 6.1x<10°® 1.8x10°4 1.4x10°% —-3.7x10% —-3.2x10°°® 2.0x10° 1
2 1.9x10°° 5.0<10°° 3.8x10°° —2.7x10°% —2.2x10°° 1.3x10°15
3 1.0x10°°8 2.4x10°° 1.7x107% —22x10°® —1.8x107°° 1.1x10°15
4 7.0x1077 1.5x10°° 1.0x10°° —2.0x10% —1.6x10°° 9.3x10°16
6 4.6x10°7 7.6x10°6 44x10°% -1.8x10% —1.4x10°° 8.0x 10716
12 2.6x10°7 15x10°6 —-28x107 —-1.4x10°% —1.1x10°° 5.7x10°16
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0 differs from a but still approximately equals 1/137 fdi
>0, while if 3, =0 [andV(¢)=0], Aa~ {{eIn(7 1), as in
~2x107° Ref. [11]. Thus the variatiofAa/«| of the fine structure

constant becomes of order 1 only if both —0 andm

- ~4x10°° =0, and only fort>t,.
. The simulations above indicate that it is possible to ex-
-6x10° tract properties of the scalar field from quasar absorption line

spectra, including the coupling @ to matter and its mass.
The variation ofa has different behaviors in the redshift
range G=z=<5 depending on the mass of the scalar field.
1 2 3 4 5 Thus additional quasar absorption line data, and better Oklo
z and meteorite bounds, will help elucidate the properties of
FIG. 15. Aa/a vs z for n=0 by settingAa/a=—0.18x10°°  the scalar field. The case=H  is ruled out in this model. A

-8x10°°

atz=3. laboratory detection ofé(/a)o may be possible in the near
future.
bounds by settingh &/ = —0.18< 10" ° at z=3 (Fig. 15. To satisfy the quasar, meteorite, and Oklo bounds on

The behavior ofa(z) can pin down the values faf and  Aa/a, the mass of the scalar field has to be on the order of
m. Conversely, even knowing only the signobr Aa/« can  0.5-0.6H, . It is difficult to satisfy both the Oklo/meteorite
rule out certain values of the scalar field mass. For exampleand quasar bounds in theories where the variation affe-
if (Aal/a)ggn=>0 or (<0, thenn=1. rives from the evolution of a scalar field; the scalar field in
the model studied here must be near an extremumtpgar
andt,.

The key insight of this model, as well as other models of
Asymptotically «a(t) in this model goes to a constant variablea, is that variation ofx provides a window into the
value a~ a, in the early radiation and the late dominated ~Parameters of the underlying theory that unifies gravity and

eras. The coupling of the scalar field(twnrelativistio mat- ~ the standard model of particle physics.

ter drivesa slightly away froma in the epochs when the
density of matter is important.

Even for(0,=0, a— a ast—x as long asn#0. In the | would like to thank Thibault Damour for valuable com-
massless case, &s-©, a goes to a constant value which ments.

V. CONCLUSION
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