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Level set method for the evolution of defect and brane networks
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A theory for studying the dynamic scaling properties of branes and relativistic topological defect networks
is presented. The theory, based on a relativistic version of the level set method, well known in other contexts,
possesses self-similar “scaling” solutions, for which one can calculate many quantities of interest. Here, the
length and area densities of cosmic strings and domain walls are calculated in Minkowski space, and radiation,
matter, and curvature-dominated Friedmann-Robertson-Walker cosmologies with two and three space dimen-
sions. The scaling exponents agree with the naive ones based on dimensional analysis, except for cosmic
strings in three-dimensional Minkowski space, which are predicted to have a logarithmic correction to the
naive scaling form. The scalingmplitudesof the length and area densities are a factor of approximately 2
lower than the results from numerical simulations of classical field theories. An expression for the length
density of strings in the condensed matter literature is corrected.
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[. INTRODUCTION formed, self-similar or scaling behavior emerges at large
times, in which a characteristic length scale of the field con-
The solutions to some of the most interesting problems ifiguration, &, increases with time as a power law:
physics depend on a better understanding of the dynamics of
fields far from thermal equilibrium, particularly in particle &(t)oet”
cosmology, where we seek mechanisms for generating
baryon asymmetry1], density fluctuation§2], and perhaps Dynamic scaling can be seen in the order parameter of many
primordial magnetic fieldg3]. Significant advances have condensed matter systems undergoing rapid quenches, and
been made recently in studying nonequilibrium dynamics othere are now quite sophisticated techniques for calculating
phase transitions, both theoreticallsee, e.g.[4] for a re-  correlation functions of the order paramef@]. They fall
view) and numerically, where we can now perform real-timeinto two classes. First, there are those based on a Mrge-
simulations of a quench with leading thermal corrections in-expansion, wherél is the number of components of the or-
cluded[5,6]. One aspect is still not yet well understood: the der parameter, which are applicable to Ginzburg-Landau
approach to equilibrium after phase transitions of field theotheories. The second is applicable to systems with extended
ries with topological defects. topological defects, in which the order parametenbeys an
At the same time, the past few years have seen an explequation ¢ SF[ ¢]/ 8¢, whereF is the Ginzburg-Landau
sion in theories involving various kinds of extended objectsfree energy. Allen and CaH®] proposed that the velocity of
or branes, both solitonisuch as topological defects in field defects marking a phase boundary was proportional their lo-
theory and fundamental. Most of the interest has been ircal mean curvature. This proposal, now termed motion by
special configurations of branes of various dimensions, anthean curvature, was later rigorously projéd].
the spectrum of states in those backgrounds. However, an Relativistic scalar field theories with spontaneously bro-
interesting new scenario has emerged in which the Universken global symmetrieéGoldstone modejsalso exhibit dy-
began with the branes in thermal equilibrium, the brane gasamic scaling. Significant progress has been made on the
universe[7]. theory ofO(N) scalar field theories at largé, both classical
Both branes and topological defects in relativistic field[11-13 and quantuni14] (at largeN the leading order in the
theories obey the same equation of mot{ahleast for con- quantum theory is the same as the classical thediyese
figurations with curvature small compared to the inverseworks have established a theoretical basis for the scaling
width or fundamental scaleand so it clear that both may be observed in numerical simulatioffi$5—-17. The theory has
discussed at the same time. Hence the theory presented difso been used to calculate microwave background and den-
this paper can be applied to both brane gases and networks sity fluctuations. To date, however, analytic approaches to
topological defects. The general technique is independent ahe dynamics of topological defects are few.
the space-time dimension and the codimension of the brane, There are several numerical simulations which broadly
but quantitative predictions must be taken case by case. Thsupport the dynamic scaling hypothesis for topological de-
cases worked out in detail here concern defects of codimerfects, including domain wallgl8—20, gauge stringg21,22,
sion 1 and 2 in Friedmann-Robertson-WalkERW) space- and global string$23,24). All the simulations are consistent
times of dimensiord=3 and 4. with the linear scaling law over the range of the simulations,
It is believed that when extended topological defects aralthough Press, Ryden, and Spergel suggested that the results
for domain walls would be better fitted k§~t/ In (t); how-
ever, more recent simulations with a larger dynamic range
*Electronic address: m.b.hindmarsh@sussex.ac.uk [25] are not consistent with the logarithm.
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There are also string simulations based on direct integrd-39], which describes the motion of defects obeying the
tion of the equations of motion of one-dimensional objectsAllen-Cahn equation. The relativistic generalization of the
obeying the Nambu-Goto equations, which may be derivedllen-Cahn equation is the Nambu-Goto equation, in which,
as the first approximation in an expansion in powers of stringoosely speaking, thaccelerationof the defect is propor-
worldsheet curvaturf26—-28. They do not include any way tional to its local curvature, with proportionality constart
for energy to be lost from the network, but if one considersyherec is the speed of light. More precisely, the Nambu-
“infinite” strings only (strings longer than the causal horizon Goto equation is equivalent to the requirement that the world
sizg), an approximately linear scaling law is fouf@9—-31.  yojume of thep-brane embedded in tledimensional space-
However, the simulations are plagued by kinkiness persistingme has zero extrinsic curvature. How closely defects de-
at the resolution of the simulation, associated with the protjved from a field theory obey this equation is a matter for
duction of small loops of string, which does not appear togebate[26-28,40. The theoretical approach develops sys-
scale. It has been suggested that this is because the natuighatic expansions of the geometrical equations obeyed by
length scale for loop production is in fact the string width, the defect world volumes in powers of the width divided by
where loops would become indistinguishable from largethe |ocal curvature, which reduce to the Nambu-Goto equa-
amplitude oscillations in the fiel@32]. Indeed, numerical tion in the limit of small curvature. The approach of Afodz
simulations of the field$21,22 appear to support this hy- [28] makes it particularly clear that the Nambu-Goto equa-
pothesis, although the latter authors suggest that the “proton s really a consistency condition for a smooth defectlike
toloops” in their simulation are in fact a transient effect.  go|ution to exist.

A program to understand analytically the results of the |t is therefore plausible that we can forget about the de-
Nambu-Goto simulations has developed over the yeargijis of the field theory and concentrate instead on the prop-
[29,33-33. In its simplest form, the model parametrizes theerties of extremalzero extrinsic curvatujesurfaces embed-
string with one length scalg, which is defined from the ded in higher dimensions. If one finds such surfaces, then
invariant length density of infinite string.. through £..  provided their curvature is small enough one can be confi-
=1/£%. This length density can change in two ways: throughdent that there is a solution of the field equations represent-
stretching as the strings participate in the Hubble expansionng a smooth defect centered on that surface. A formalism for
and through loop production. Loop production is param-studying extremal, and more general, surfaces has been de-
etrized by the so-called chopping efficientythe fraction of  yeloped over the years by Carfdrl], which makes clear the
string lost to the network in the time scafe The Hubble  geometrical nature of the Nambu-Goto equations through
stretching depends on the mean-square string velacity close attention to the tensorial properties.

The phenomenological equation is then The present approach introduces scalar fieftisvith the
) intention that the loci of constani® should be extremal
E=H(1+v?é+cl2. (1) surfaces: these are the level sets of the title. The fields can

also be interpreted as coordinates normal to the brane sur-
Further work[34] introduced two other length scales to de- face: in this sense the approach can be thought of as orthogo-
scribe the correlation length and the interkink distance. Howng| to Carter's. We derive the equations that tife must
ever, there are many unknown parameters in the modekatisfy, which are nonlinear, and so therefore do not seem to
which greatly restricts its predictive power, despite attemptsepresent an improvement on the original field theory or the
to measure therfB2]. A different approach was adopted by Nambu-Goto equations. However, one can derive equations
Martins and Shellardi35] who promoted the rms string ve- for surfaces which aren averageextremal, when we aver-
locity v to a time-dependent parameter to model the reduceglge the fields with a Gaussian probability distribution. With
rate of loop production of slower strings. The velocity- this Gaussian ansatz, one can also calculate analytically im-
dependent one-scale model equations (@eglecting fric-  portant quantities, such as the brane or defect density.
tional terms The results for P—1)-branes(domain wall$ are ex-
i _ . tremely encouraging when compared to the numerical simu-
E=H(1+v?)é+cv/2, v=—2Hv+k(1-v?)¢ % (20 lations[18,42,43. The theory predicts a scaling law for the
area density in three dimensions, but not only does it predict
wherec andk are, in the simplest version, constants. It is thisthe scaling exponent, it also predicts the scatingplitudeto
velocity-dependent one-scale model which the authors ofvithin a factor of about 2, which is not bad given the ap-
[22] use to make their claim that the production of loops onproximations made. The prediction foD( 2)-branes in
the scale of the string width seen in field theory simulationghree dimensiongstrings is also challenging: the theory
is a transient. gives a logarithmic scaling violation in Minkowski space,
In this paper a potentially far more powerful analytic with the length density doending on conformal timgeas
technique for describing the motion of strings is developedlog(z)/77. Looking for such scaling violations will be a good
The technique was outlined [86,37] and applied to relativ- way to test the theory, although it is computationally very
istic domain walls in two and three space dimensions. It ischallenging.
here further extended into a partial treatmenpdiranes in The theory also describes the behavior of defects formed
D space dimensions, and fully applied to relativistic stringsfrom initial conditions with a slight bias in the expectation
in three space dimensions. It is based on theheory of value of the field favoring one vacuum over anothé2—
Ohta, Jasnow, and Kawasdk)JK) [38], and its descendents 44]. It is found that the defects disappear exponentially fast
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at a critical conformal timey., which scales with the initial then the solutions are
bias U as 7.~U?P. Indeed, part of the motivation for this

work was to account for this kind of behavior observed in d(x)=v tanh[M(xP—XP)], (10)
simulations by Coulson, Lalak, and Ovi42] and Larsson,
Sarkar, and Whit¢43]. whereM = \\v. Thus the width of the defect is controlled

Finally, in making comparisons with similar results in the by the parameteM ~*. The defect can be thought of as cen-
condensed matter literature, an expression for the length detered atX®, where the field vanishes, with a width parameter
sity of strings in three space dimensions in the condensei ~1.
matter is correcte@see Sec. V D

In this paper we shall work a conformally flat B. Strings
d-dimensional Friedmann-Robertson-Walker space-time with . . - . .
coordinates®. x %P such thad=D + 1. The metric is The simplest theory to exhibit stringlike solutions is the
given by ey ' Abelian-Higgs model, which has action
9u,=2a%(m)diag — 1,5;)), ©) sz—f d%—g[§ F,,F*"+D,¢* D"+ V()]
where » is conformal time, giving an affine connection (11
FZV:(5253+ 5‘552_9W9p0)(5/a)- (4)  Where¢ is a complex scalar field with covariant derivative

D,¢=d,0—ieA, . The pqtential\_/ is taken. tp respect a
U(1) symmetry ¢p—€'*¢, with a circle of minima at ¢|
=v. If we impose the boundary conditions in the
In this section, we shall first study model field equations{x°*, x°} plane
for topological defects of codimensioN=1 and N=2, »
which correspond to walls and strings, respectively,Din P(r—=)=ve’, (12)
=3. We shall see that we can find approximate solutions to 9, D—1r2 Dy2 . DruD-1
the field equations near surfaces of codimendibmwhich ~ Where r“=(x""")"+(x")* and taW=x"/x""%, then by
have zero extrinsic curvature, and whose other curvature rg0ntinuity ¢ must vanish somewnhere in the plane. If we
dii are large compared with the width of the defect. ThesdUrthermore assume translational invariance in the other
results are well known and have been shown in various ways 2 directions in space-time, we find a two-parameter family
in [26—29, but the approach here is slightly different and of static string solutions, labeled by the coordinates of the

- D—1 yD : _
worth exhibiting in some detail for the later sections of thecenter of the string{X=~=,X"}. In the radial gaugé\, =0
these solutions take the form

Il. FIELD EQUATIONS

paper.
) — . — 1. —
A. Domain walls d(x)=f(p)e'?, Ai=geialmp),  A,=0, (13
Let us first consider a theory with a single scalar figld P
with action where  pi=(x=X)°7, p,=(x=X)P, p?=(p1)?+(p2)?
tanp=p,/p;, and ¢' is the unit azimuthal vector in the
S= —f d%\—g[3d,¢9*d+V(P)], (5)  {xP~1,xP} plane. These solutions cannot generally be found
analytically, even when the potential has the renormalizable
from which we derive the field equation and gauge invariant form
V(¢)=3\(|p]*—v?2)%. (14
1 av
——=0,(J=gg""3,) b+ 55 =0. (6) | | -
vV—4g ¢ However, they are easily found numerically, and exhibit

similar properties to the domain wall in that away from the
We shall suppose that the potentidlhas the symmetryb  center of the defect the fields approach their vacuum values
—— ¢, and moreover that its minima are @t=*v, with  exponentially, at rates controlled by the masses of the fields

V(*+v)=0. If we impose the boundary conditions. ms=Av andm,=ev. Defining a dimensionless coordinate
— — 2_ 2
B(XP——2)= v, S(XP—+o)=+0, 7) z=m,p, andB=(mg/m,)“=N/e*, one had45]
—-1/2

and make the ansatz f~1-fiz"exp(~VB2),

d,p(x)=0 (u=0,...D-1), (8) a~1-a,z"%exp(-2). (15)
then the theory has a one-parameter family of domain-walln the case >4, the asymptotic form off is 1
solutions, with¢p=0 atxP=XP. If the potential is quartic, —z lexp(22).

Again, the string can be thought of as centered at
V(d)= 3 N(¢p>—v?)?, (9)  {XP~1 xP1, with thicknessm,, although for light scalars
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(B<1) there is a thicker scalar core where the scalar field
asymptotes to its vacuum value.

u(x) <0

C. Solutions in curvilinear coordinates

These are, however, rather special solutions with a high

degree of symmetry. Let us instead look f@r necessary u(x) >0

approximate solutions, corresponding to defects centered on

a more general surfacé”(o“), with «=0,... p=D—N.

We choose a new set of coordinatgs={o“,u”}, whereA

=1,... N, with the intention that the equations of the sur-

faces can be written

uA(x)=0. (16) FIG. 1. The coordinate§“={c* u"}, wherea=0, .. ., p and

A=1,... N, which are chosen so thaf'=0 will be the extremal

We write the metric in these new coordinates surface on which the topological defect sits. lllustrated is a 1-brane
in 2+1 space-time dimensions, located@t( o) = x*(o,0).

ﬁaXé’ﬁX (?aX'[?BX 'yaﬁ NBa
Cuv= X DX ,QAX.,gBX) :(NAB GAB>, 17 We have two projectors associated with the constént

surfaces, one which projects onto the surface and the other
where the dot indicates a contraction with respect to thevhich projects onto the subspace spanned by the vectors
original metricg,,. We may choose the coordinatés so &#UA,
that, at least an”=0, theu” and o are locally orthogonal,
or Pl=7P3,X dgX,, Pl ,=hpgd*uPa,uB, (23

Naglua—o=0. (18 with Pf,+P#, = 8.
Let us study the field equation for the theory of an

In fact, with walls and strings ilb = 3, these are only three N-component scalar field in these new coordinates:

or four conditions on the metric, respectively, so we know
we can make a coordinate transformation so that this is true

everywhere, and not just at'=0. _ L&a( — Gy,
Note that the upper leftg+1)X(p+1) block of G, V—G
denotedy,; in Eq.(17), is the embedding metric on surfaces g
of constantu®, which they acquire by virtue of being sur- Y — e e AV
faces embedded in a space-time with megjg . B /_GaA( Ch™0p) G5 (24
We can also write the inverse metric
95 0B 9o JuP whered,=ds— N4, (where we use notation mirroring that
GHY= (19 of Moss and Shiik{46]). At the surfaceu®=0 it is possible

A 9P A guB )/’ . . .
Ju™-do”  ou”-du to make a coordinate transformation among tifecoordi-

nates so that they are orthonormal, thath&= 548,
This choice of coordinates is different from the one used

hAB=gu”. guB, (200  in other works on solving defect equations of motion in cur-

vilinear coordinate§26—2§, where coordinategs?,p”} are
and use the convention that the indieesg, etc., are raised constructed away from the surface by setting
and lowered withy,,z and y*# (defined as the matrix in-
verse, and that the indicea, B, etc., are raised and lowered XM (a9, p™) = XP(0%) + pPnk(a®), (25)
with h”B and its matrix inversé,g. Hence

We define

where Nk =dax*|,a—o and ny-ng=3Sag. The coordinates

G :( Yap Ngaq ) coincide only wherN,;=0. Carter{41] also uses orthonor-
wy Nag hag+ NABNg ’ mal vectors in the surface, and is careful to express quantities
as space-time tensofsee Fig. 1L Table | contains a sum-

yeP+ N,‘;NAﬁ — NB« mary which compares his notation and conventions with this
GHY= Y HAB ) (21)  work.
In contrast to previous work, here it is more convenient to
One can show that use the unnormalizedﬂuA as basis vectors, as we are inter-
ested in the surfaces generated by Gaussian random fields
detGH"=dety*® deth”B, (22)  u*, with unconstrained derivatives af=0.
We now try to find approximate solutions to E@4). A
and hence thaG=y/h, where G=detG,,, y=dety,gz, promising avenue is to look for solutions which are indepen-
andh=deth”®, dent of o, in which case Eq(24) becomes
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TABLE I. Comparison of notation and conventions with that of Caftey.

This work Name Carter Relationship
P, First fundamental tensor 7", Pf,= 7",

Pt Orthogonal projector 1#, Pt =1#,

o X* Tangent vector e ta*tg, = Mag»
(a=0,...p) (A=0,...p) XX = YapT Nap
a,ut Normal vector Nyt ANy = Oy
(A=1,...N) (X=1,...N) 9,uhg*uB=hABx 5"B
Kﬁv Second fundamental tensor K" K/‘)V: wa’apu’*

dv namic scaling hypothesis holds thét~ ¢, where¢ is the
O +KAIgD— T =0, (26)  average curvature radius of the defect network.

There are in fact special cases for whikh=0 every-
A o where, and exact curved defect solutions exist. These repre-
whereK” is the extrinsic curvature of the constarft hyper- sent traveling waves on walls and strifgd], although they

1
hasl —=h"Ba
\/_ A(\/ﬁ B

surfaces, given by do not obey a superposition principle because of the nonlin-
1 earities in the field theory.
A__ T LAB — This brings us close to the controversial subject of radia-
K= \/__yh 7 ‘/_7)' @7 tion from defect networks. We postpone this discussion until
Sec. VI.
The ansatzb = ®(u”) can only be self-consistent if bot*
andh”B are independent af“. This is still a difficult equa- IIl. EXTREMAL SURFACES

tion to solve, so the next step is to look near surfaces where . ] ) ] ]
the extrinsic curvature vanishes. Transforming to the ortho- e saw in the |ait section that if we could find a suitable
normal coordinate€25) near those surfaces, we have thesurface of constani™ (which without loss of generality we

approximate equations can choose to ba”=0) satisfyingk”=0, an approximate
solution of the field equations could be found. We shall now
g 0 dv derive the equations that® must satisfy in order that
d+ —=0. (28)  uA(X)=0 be an extremal surface.

T A A X o )
dp” dp de Differentiating once with respect to the world-volume co-

) A ordinateso®, we find
By “near” we mean the region wherfK”g,®|<|dad ®|.
Equation(28) is solved byd (p?), the original defect profile. aﬁxu,guuA(x) =0. (32)
Hence we are guaranteed approximate solutions to the field
equations near smootr*=0 (extremal surfaces. The argu- (This equation is of course true independent of the choice of
ment in this section can be straightforwardly extended tqhe coordinatesé.) Using the embedding metric we
gauge fields and so the task of solving the field equations hasan covariantly differentiate (31) by acting with
been repla(_:eq by the taskAof _finding gxtremal §urfaces. (— )~ Y29, (— y)2y*E, wherey= dety,g, to obtain

The extrinsic curvatur&” will generically vanish only at
u?=0, and be_nonzero elsewhere in space-time, and so the (p+l)|:lxli0’)’uuA+ 7aﬁ0aX”&BXV0M§VUA:O. (32
static solutiongb will not be exact. However, we should be
able to find approximate solutionB=® + ¢, with the per- The operator

turbatione being sourced by the departuresdf from zero,
PO = (=) 29 ,(— y)V2y*Pa, (33

<P(§)=J’ d*8' V= GAR(£,EKAENAD(U'), (29 s the covariant d’Alembertian in the surfac®=0.
The equations of motion are obtained by extremizing the
whereAg(&,£') is the retarded Green’s function for the sca- invariant area of the surfadés,45,

lar field fluctuation operator, given by
— A X]=| dPTloy—y(X 34
[~ OO+ V' ($)IAr(EE)=0%E— ), (30 0= [ @230 39

with AR(&,&")=0 for £2<¢’°. If the extrinsic curvature de- Wwith respect to the enbedding coordina¥eéq o). The result
creases with time, the source for the perturbatiordies is
away, and we should not have to worry that our initial as-

sumption thaf¢|<|®| is rendered invalid. In fact, the dy- PEOOXH+TY y*P9,X"95XP=0, (35
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wherel', is the affine connection derived from the metric algorithmically difficult, as one must devise an efficient
O - scheme for searching for self-intersectiof20—-31. The
The reader will notice the appearance of the tangentiagquations of motion for the underlying field theory are also
projector P(*” in Egs. (32) and (35), which we replace by nonlinear, and in the gauge of the Abelian-Higgs maded
g“’— P’ Combining Egs.(35 and (32) to eliminate the Other gauge theorigshey have a gauge covariance, which
d’Alembertian we find precludes the naive application of techniques such as Mrge
Numerical simulations of field theories are relatively
[g“”—hABaf’“uAa”uB](&MayuC—Fﬁvapuc)=0. (36)  straightforward, but require significant memory to allow the
scale of the network to grow much larger than the width of
This is the fundamental equation of motion for the fieldsthe defect.
u”(x), which strictly only applies ati*=0. Instead of trying to find families of surfaces whose cur-
The equations also follow from a variational procedure.vature is exactly zero, we shall find surfaces who curvature is
Using the fact thatG= y/h, and thatG=g, one can show zeroon averageThe average will be taken with respect to a
that the invariant area of p-brane can be reexpressed in Gaussian probability distribution far®. We assume that the

terms of theu” as distribution function remains Gaussian throughout the evolu-
tion, which is similar to the approximation underlying the
AT — 4, [ TN largeN approximation in scalar field theory. Indeed, we
A U] jd xV=gyha'(u). (37) should expect there to be a similar lafyelimit in this
o . : theory.
Varying with respect ta”* and dividing by — y gives us
\/ﬁ SA,, ) A. Gaussian averaging
\/—_g 5uA(x): - 5N(U)hmvu(h Y2 ppd*u®) =0. Our starting point is an ensemble of coordinate functions

(39) uA(x) with an assumed Gaussian distribution. Thus the av-
erage value of all observables of intereQi(u”*,d,u?),
This can be shown to be equivalent to which we take to be functions of* and its derivative?MuA,
are evaluated with the probability distribution

SN(U)PIY,a,ur=0, (39) .
A1 — _ dy, qdy/ 1 A -1 B
and hence E¢36) atu*=0. In orthonormal coordinates, for ~ dPLU"1=Du exp( zf dxdyu(x)Cag(x,y)u (y)),
which h"B= 6,5, Eq.(38) becomes (42)
N Ap— oN A_
S (W)V,n=67(u)K"=0, (400 \whereC”B(x,y) is the two-point correlation function.

A . . . We are often interested in densities, which means that the
where K™ is the extrinsic curvature. Thus we can identify
A _po A i observabld) is evaluated at a particular poixt This means
Kiu=Pl,V,d,U" as the extrinsic curvature tensor, of we can simplify the evaluationpof the avzrages from a func-
equivalently the second fundamental tengsme Table | and . . )
[41]) tional integral to an ordinary one, as we now demonstrate.

The restriction that the equations apply only Et=0 First, let us take the Fourier transform of the observable,

complicates the finding of solutions, and we assume that we

can extend the equatiak”=0 to all u”. It is not obvious A A dMl dVk

that nontrivial solutions exist to the extended equations, be- QUA(x),d,u (X)):j (2mN (ZW)NdQ(l k)
cause such a solution would be a foliation of space-time in

which all leaves have zero extrinsic curvature. As mentioned x gl a(0) +ikRa,uA(). (42)

above, some nontrivial solutions are kno{#Y] but there is
no general proof for the Allen-Cahn equatid©]. However,

. . We now introduce current densiti and K&(x), ac-
we could equally well look for solutions t§*=f(u”), with Wi vee cu lids,(x) )

f(u) any function which vanishes at=0, so there should cording to

be a certain amount of freedom. Furthermore, we will be ~ u u ~

looking only for perturbative solutions to the extended equa- La()=1a8%x=%), KE(X)=ki&'(x—x), (43
tions.

so that the expectation value 6f(x) is given by
IV. AVERAGE EXTREMAL SURFACES
dNI dNdk
(2mN (2m)N

The equations of motioit36) are not easy to solve, as (Q(ur9 uA)>=J
they are nonlinear. However, they have distinct advantages ’

over the alternatives. The equations of motion for the coor-
dinates of theu®=0 surfaceq35) are nonlocal: defects ge-
nerically self-intersect. This nonlocality generally defeats
analytic approaches, and also makes numerical simulatiorRerforming the integral of the random field, we find

fdp[ua]ﬁu,k)

X @i N AXLAC) — - KA(OTUAR). (44)
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(Q( u? d,u Q(|,k)efllzfxf)/(LA*f"KA)CAB(LB*f"KB)_ (45)

(2mN (2w )Nd
Substituting the form of the functiorls, andK4 from Eq. (43), we find
dMldNdk

(2mN (2 )NdQ (112 AC ()1 g+ 1413, CAB(m)]I K — (V2)KR14,,,CA(m)] kg (46)
™ T

(Q(uA,aMuA)>=J

where Hence the average of the observable can be found with an

ordinary integral, as claimed.
C ()= lim C*8(x,y),

=y B. The covariance matrix C
P In our case the covariance matrixis restricted by the
9,C"®(n)=1lim—C"B(x,y), assumed FRW form of the background. It will be homoge-
x—y X neous and isotropic, but not time-independent. We will also
assume ai®(N) symmetry between thi coordinate func-
g tions u”(x). Hence, the basic two-point correlation function
d,0,C*%(n)=lim — —CAB(X ), (47)  at zero separation may be written
x—y OXH gy*

. CA8( ) =(UAX)UB(x)) = 5*BC( 7). (53
and »=x°. We note that we expect correlation functions to
be spatially homogeneous but to depend on conformal tim&ve shall also defme a functiav ,, from the two-point cor-
nontrivially, reflecting the symmetries of the backgroundrelator ofd, u?
space-time, hence the explicit conformal time dependence of
trlloe two-point correlators I[c)evaluated at the sameptwo points. auavCAB =(2,u"()3,uP(x)) = "M (7). (54)
At this point we recall that the Fourier transform of the ob-

. Th m ial isotr f the distribution function dic-
servableQ may be written e assumed spatial isotropy of the distribution function dic

tates the form oM ,,,

s _ N, 4Nd A A\ ol suP— ikl T(7n) 0
00,k fd udVer (A, 7A)e Tt AT (4g) MW:( | 55
0 5mns(77)
We can economize slightly on the length of expressions b

introducing some new notation. DefiningN(d+1)-
dimensional objectg andf by

Xvith this definition it is not hard to show tha(zn)=
—C"(7), whereC"(n)=lim,_ (8% dr?)C(,r).

Two-point correlators with odd numbers of derivatives
- w A A also occur, as the ensemble is not time-translation-invariant.
J={la Kk f={u } (49) The correlator with one derivative is

with a scalar productj(f)=1,u”+ kﬁrrﬁ, we can write 1 .
3,C%(m)=(9,ur()uB(x)) = 5 8*®5,C(n), (56)

N(d+1)j
_ Nd+1ygr_— 1 1 a(112)(G,C) —i(j,f")
Q) fd f (27)N<d+1>9(f )e ' and with three,
(50) A B AB
(9,U°(X) 3,9 ,U% (X)) = ¥ pup( 1) 8°F. (57)
whereC is the covariance matrix ) )
Again, symmetry restricts the form of,,,:
C*®n)  4,C"%9)
= : 1 3T(n),
(&VcAB( 77) a,u,avCAB( 7]) (5 ) ’)’000( 7]) 2 ( )
__1lc
Finally, we may perform the integrations over the Fourier Yomn( 7)== 23(7) Smn,
transform variable$ to obtain L
Ymon(7) =3 S(7) Smn- (59

Q(f))=[(2m) "NV detc] 1>
( ) It is interesting to note thatywpzé(M +M

mv,p mp,v
N(d+1)g7r £/ am L1207 C7 1) My, -
X f d FQ(the - 52 Thus the covariance matrix can be written

043510-7



MARK HINDMARSH

C=5®e| iC T 0
0

(59

PHYSICAL REVIEW D 68, 043510 (2003
(dethd,u®)=(deth)a,u®

+2( d
NiM,,

(deh)|M,,d,uc.  (66)

Its inverse is easily found, and defining the determinant ofrhe expectation value of the determinants in E$) and

the upper X 2 block A=(TC—-1C?), we can write

(60)

(66) can be expressed in terms of the two-point correlator
M, [defined in Eq.(54)],

<deth>:N!HiN:lM,uivigpiai 5511-<~#N5V1'..VN, (67)

CpN Oq Oy

Whereﬁgll_'_'_';‘NN is the identity tensor in the space of raNk

The determinant factor in the probability distribution is also@ntisymmetric tensors, defined in Appendix A. The right-

straightforward,

[detC]M2=[SPA] N2

Often, we will want to find expectation values which are
independent ofi,u”, mainly because the integrals are easier
to evaluate. By integrating ovefé one can easily show that

(Q(uA,&iuA)>=[(27T)dSDC]‘N’2f dNud"P 7 Q (uh, 7

« @~ (1A spguBIC— (12)m] opp8 ) 7} 1S (62)

It is very convenient to rescale the integration variables in

the probability distributionu”— u”\/C and 7*— 7\, in
which case

1
<Q(uA,&iuA)>=(2W—)dN,2f dNud“PrQ(ur\C,7S)
x @~ (1A spguB— (12)7 0pg 0l 7]

(63

C. Averaging the null extrinsic curvature condition

The averaging procedure is greatly aided by rewriting the

equations of motior{36) in the following form:

d
Yy

1

\/__g

V—gdeth

(9,0,u°=T" 3,u%)=0. (64)

(61)

hand side of Eq(67) resembles a determinant, and we intro-
duce the notatiometM to refer to it. We can also define a
kind of cofactor forM ,,, :

M= g7 a2 e e
XM, -M, . | detM. (69)

Putting the pieces together we find that the linearized equa-
tions for surfaces which are on average extremal are

Aat C 2_K’)7 C
detM| d,d,u +NM Yieurd-U

( gl“’_ gMPgV‘T_O’)
agr?

2
—F;V(aTuCJrNM"“MM&KuC) =0. (69)

With the assumed symmetries for the correlation functions,
these equations have the form

. (7).
uC+ ﬂu

C—v2v2uC=0, (70

where () and v depend onT, S, and the background
cosmology parametrized by, and must be taken on a case-
by-case basis for eadk.

The procedure now is to linearize the equations of motion by
taking the Gaussian average, and then to find a self-

consistent solution for the fields®(x, 7). We will require
the following identities, which are proved in Appendix B:

(dethd,d,u®)=(deth)d,d,u®

d

2
— - C
+ Nyw( &Mpa<deth>>(9uu . (69

D. Linearized equations for walls and strings

In our three-dimensional universe, the cases of most in-
terest areN=1 (domain wall$ and N=2 (gauge strings
N=3 corresponds to gauge monopoles, which do not scale
[48,49. For N=1,(deth)=M ,,g*”, while for N
=2, (deth)=3[(M ,,g*")*~M ,,M*"]. We then find, for
FRW backgroundgsee Appendixes D1 and E1
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—29(S/S)+a(n)[D-3(T/9] (N=1)
u(n)= : (71)
—[2(D-1D)]5(S/S)+a(n)[(D-1)—4(T/S)] (N=2),
|
wherea(7) = pala, and the defects in a phase transition. There the power spectrum
of the scalar field from which the defects are made hgs a
) [D-1—(T/9]/D (N=1) =0 power spectrum at long wavelengths, and so we should
v (72)  take the fieldsu” to have a similar power spectrum if we
[D—2-2(T/S)J/ID (N=2). P P

want to reproduce the statistics of the defects from the sta-
In scaling solutions, we expe8tandT to have power-law tistics of the zeros ofi”.
behavior, and so as long as we are not near a transition in the Using standard integrals of Bessel functions, and defining
equation of state of the Univergsuch as that between the the parametep=2v—D—1=u—D—-2, we find(see Ap-
radiation- and matter-dominated erag andv? are con- pendix G

stant. Thus, imposing the boundary condition thi&t be (D+2)(D—1)

regular asp—0, Eq.(70) has the simple solution — 7 7 (N=1)
T 2(D+2+ ) .
(1—/.L)/2+VJ (kv 77) §: B
c :Ac(i) ko) 73 (D+2)(D-2)
M =Ad (ko )" 3 3D0+2)+28 N2

where AE—>2VF(V+ 1)uf(7;i) as k—0, and (1-u)%4  providedB>0, which ensures that the integrals ®and T
=12, The form of the initial power spectrum is taken to be aare defined. Given the expressions TS, is easy to show

power law, with indexg, and an upper cutoff ak|=A. that
We may now evaluatd&/S andv?, and self-consistently _
solve for the undetermined parameterlt turns out that one (D-1)(D+2+2p) (N=1)
must takev= — (1— w)/2 if all the integrals are required not - 2D(D+2+p) 79
to diverge asA —o. This also gives regular solutions gs v (D—2)(D+2+2B)
—0, because as it turns out,>1. With this choice,C D[3(D+2)+ 28] (N=2).

scales as; (P9 SandTaszn (PTa+2),
In the following, we will take the power spectrum to be To find 8, we must solve the equations derived from Eq.
white noise,q=0, as is consistent with a causal origin for (71):

a[D—3(T/S)]+(D+2) (N=1)
B=\a[D-2-3(T/S)]+(D+2)(3—-D)/(D—1) (N=2), (76)

which are quickly seen to be quadratic. One can obtain re- TABLE II. Values for parameters, v, and T/S of the self-
sults in simple closed form in Minkowski space£0) and  consistent solution to the linearized equations of moti for the
curvature-dominated universea ) which are displayed u_f'keldsk”_A for N(I: 10)(domda|n wall3. '(;‘ the sP;"::"gv\faseS c|>f
. . i Inkowksi space &=0), and curvature-dominate cosmolo-
in Table II: For other backgrounds the so.lutlons may pe vynt gies (@=o), exact values can be found for

ten down in closed form, but are not particularly illuminating

as they are fairly lengthy expressions. N a B (TIS) 02
Instead, numerical values @ T/S, andv? for particular
cases of interest are given: radiation-dominatee-(L) and 1 0 D+2) b-1 3b-1
matter-dominated =2) two and three-dimensional uni- 4 4 4
verses(Tables Il and V). (D+2)(D—3) D 2D-3
Note that for strings N=2) in three dimensions in T S— 3 3D
Minkowski space &=0), for which u=D+2, =0, (D+2)(3-D) (D-2)(D—1) (D—2)(D+5)
which does not satisfy the requiremegt-0 for the integrals 2 0 D1 D13 D(D+3)
defining S(») andT(#) to be convergent. One finds that a D_2 D_2

logarithmic  scaling violation appears, andS,T « 0 3

. . 3D
«log(A7)n ©*2*9_ We also have a solution witg=0, and
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TABLE llI. Values for parameters3, v?, andT/S of the self-  give surprisingly good agreement given the uncontrolled na-
consistent solution to the linearized equations of motid) for the ture of the approximations made.
N fields u” for N=1 (domain wall$ in D=2,3. Values listed are
for Minkowksi space ¢=0), radiation-dominated«= 1), matter-
dominated @¢=2), and curvature-dominated FRW cosmologies
(a=00). The proper area densityt of a p-dimensional defect ilD
space dimensions is

A. Proper area density

D=3 D=2
S U R L L AB(x)= f P o’ =y 5 x=X(o D =g.  (77)
0 5 1/2 1/2 4 1/4 3/8
1 6.72 0.43 0.52 5.36 0.21 0.39 Making the coordinate transformation from* to ¢&*
2 8.83 0.36 0.55 6.90 0.18 041 ={o*u”} near the world volume of the defect, we have
o0 0 1 1/3 -1 2/3 1/6

AB(@ZJ dP e = yoP Y o— o) NN -G.
therefore logarithmically divergens and T, for walls in (78

three-dimensional curvature-dominated universes. ) .
Recalling the results of Sec. Il C, we can perform the inte-

gration overo’ to obtain
V. AREA DENSITIES FOR WALLS AND STRINGS

p_ gN/ A AB|1/2
Armed with the mean-field solution fan’(x), we can Ap=&"(u")[deth™| ™ (79

now calcu!ate anything that can be gxpr_essed in terms Qfhere the reader is reminded that
local functions of the field and its derivatives, provided of
course that we are able to perform the Gaussian integrals
involved. Here we derive formulas for the area densities of
defects, where by “area” we mean the world volume of the Thus the problem of calculating the proper area density is
(p+1)-dimensional hypersurfaag*=0, which has dimen- reduced to finding the Gaussian average4§fin Eq. (79).
sions of (lengthyN. We must be careful to distinguish be- The conversion factor from comoving to physical area is
tween various kinds of area: there is invariant or proper aregiven as
which is a coordinate-independent quantity, and there is also

the projectecp-dimensional area. The latter quantity is what

one would obtain by simply measuring thedimensional )

area of the defects at a particular time. This quantity is theVith N=D—p.
most convenient to calculate for comparison with numerical

simulations, which is a good thing as the proper area density

is far harder to calculate. One must also bear in mind that Eagjer to measure and to calculate is the projected area
area densitiesare coordinate-dependent quantities: in thegensity, which is defined as

cosmological setting we will need to convert between co-
moving area density and physical area density by multiply-
inngy the appropriate power of the scale facipmhich is

a

h*8=g,u”9,uPg"”. (80)

AB,phys: a NApD ' (81)

B. Projected area density

A3= [ o (oo X(o DNGs, (82

Here we give figures for the projected area densities ofvhere gp;; is the spatial part of the metric. The induced
walls and strings iD=3. They can be compared with re- D-dimensional metric on thp-dimensional surface®=0 is
sults from numerical simulations of the field theories and

Ypab= daX'dpX dpjj , (83
TABLE IV. Values for parameter@, v?, and T/S of the self- )
consistent solution to the linearized equations of motid) for the ~ Wherea,b=1, ... p. As for the proper area density, one can
N fields u® for N=2 in D=3 (string9. Values listed are for Show that
Minkowksi space &=0), radiation-dominated =1), matter- N,A AB|1/2
dominated @¢=2), and curvature-dominated FRW cosmologies AB:5 (u )|dethD M2, (84)
=0o0),.
(=) where
D=3 -
N (T/S) »2 8 h*8=g,u”9;uPgy . (85)
0 1/3 1/9 0 Note thatgi[j) is defined as the matrix inverse gf;; , and is
1 0.22 0.14 3.65 not the spatial part a§*”. The conversion between physical
2 0.20 0.20 4.75 and comoving area is again
0 1/3 1/9 0

AB pry=a VAR . (86)
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C. Average projected area density: Walls 1S 1
. . (Al) _ - = d2uAd3¢52(uA)¢e— V2 uBs,g e~ ¢

We can now use the averaging formu8) to find the ¥ 2mcC 4mp
mean value of the operatdy, which when we specialize to (97)

domain walls N=1) gives ) _ _ _
A simple calculation now shows that the comoving projected

. 1 \/§f 5 | length density for strings iD=3 is
Ap )= — | dud”#é(u)|m;
< D > (27T)d/2 C ( i ) S
% o~ (U202~ (U2)m; 8 ;. 87) (Aar=1c 8
The integrals are easily performed to give Note that this disagrees with the formula derived by Toyoki
and Hondd50], but agrees with Scherrer and VilenKisd].
S I'[(D+1)/2] Toyoki and Honda write the 3D string length density as
(Ao )= 7C T(Df2) (88)
(Df2) Al=5(ub) 8(u?)|Vul x Vu?|
a well-known result originally derived by Ohta, Jasnow, and = 5(ul) 8(u?)|Vu?||Vu?|cosb,,, (99)

Kawasaki[38]. This is thecomovingprojected area density:
to obtain the physical projected area density, one multipliesyhere 6,, is the angle between the vectdvai* and Vu?.

by a™*. They then averagé,, over a uniform distribution, separately
from u' andu?, which is incorrect.
D. Average projected area density: Strings
For strings N=2), the average we need to calculate is E. Projected area density: HigherN
Scherrer and Vilenkif51] used an elegant argument to
(AD_1)= d2ud0  8%(uP)|hAB| V2 derive their value for the projected area densities of walls,
D (2m)9 C strings, and monopoles D= 3, which can be generalized to
a s L . any N and D. They noted that a string was located at the
X @~ (V2" oppu” ~ (12)mi6! Sppm) (89)  intersection of two surfaces'=0 andu?=0, and therefore
_ o the length density string could be found by computing the
where the rescaled quantib/*® is given by length per unit area of the lines of=0 in the surfaceu®
=0, and then multiplying by the area per unit volume of the
AB_ _A_B
h™®= iy 90 surfaceu=0. That is,
Now, At=AJA3, (100
AB_1 ABLCD . . . .
deth™ =3 eacesph™h ", O which clearly has the correct dimensions. One can easily

check that this gives the correct reS|AN§=(S/7TC). It is

=lepnceppm mCalaP (92 ; ; - :
2EACEBD M A immediately obvious how to generalize the formula to &ny
which suggests that we construct the following ant|symmetandN
ric matrix: D-1
p_— n
=t rPens, (©3) A= 11 Ans. (1o%
such that Thus
deth”®=3f;f; . (94) Ar S \NM2 T[(D+1)/2] 102
D™l #C) T[(D-N+1)/2]’ (102

Thus in order to calculate the average area, we need the
probability distribution forf;; . At this point we specialize to
D=3, as the calculations are considerably simplified by in-
troducing the vector

whereN=D —p.

F. Quantitative results

=1z iy (95) It is shown in Appendix G that
whereupon S 1D+2+8B+1
deth”B=| ¢ by 12 (96) 7" 4v B

The probability distribution forg=|¢,¢y|*? is derived in  In the special cases &f=1,2, one can substitute for from
Appendix F, and turns out to be remarkably simple, giving Eq. (75) to obtain
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TABLE V. Comparison between theoretical and numerical simulation values of the domain-wall defect
scaling density in Minkowski space, FRW radiation, and FRW matter-dominated universe3, 1,2, re-
spectively in two and three dimensions. The numerical values are taken [f2&in

, 2 [s E
D=3 Aj=—\/& D=2 A}=31/¢

a Theory Simulation Theory Simulation
0 1.9137*i 0.88(0.14) 77*;23823 1.11¢fi 0.77(0.23) n*:zzgzz
1 2.02p” 0.93(0.13) 099 1.187~ 0.93(0.17) 5~ 1000
2 2.16p7 1 0.96(0.12) 100001 1.24971 1.15(0.23) 7~ 0-99(0:01)
1 D(D+2+B)(1+B) To convert between com%ing and physical areas, one
s - 2D-1)3 (N=1) uses the formulaAg, {t)=a “A(7), and the fact that
gy 104 aA(mMn=(1ta)t.
C | D[3(D+2)+2B](1+B) The scaling amplitudes differ from those obtained in nu-
2D-2)8 (N=2). merical simulations of¢* theory[25] and of the Abelian-

Higgs model[21,22, by a factor of about 2. However, it
) ) . .should be noted that there are large errors on the central
It was shown in Sec. V E that the projected area density igaye. The authors of Reff21,22 did not look for logarith-
proportional to §/C)"?, and therefore classical scaling be- ;¢ scaling violations in the area density for strings in
havior for all defects is predicted, unlegs=0. By classical  \jinkowski space, choosing instead to fit to a simple power

scaling, we mean that the area density goes in proportion t Finding such a violation is numerically very demanding,
conformal time as naive dimensional analysis would predictyg 4 large dynamic range is required.

a p-dimensional area density D dimensions should be pro-
portional to »~ N, as indeed it is in this theory. Whe@
=0, as is the case forX—2)-branes inD=3 (string9 in

G. Biased initial conditions

ive scaling appear. (uA(x;))=U"A. In numerical experiments simulating biased

We are also able to compute the scalmgplitudes the @nitial conditions f_or string$52] it is found that_ as the bias is
coefficients of the relations between the area density and tHgcreased the string passes through a transition from a phase
appropriate power of time. These can then be compared withith a finite fraction of percolating “infinite” string and with
numerical simulations. The scaling projected comoving are& Power-law size distribution of loops, to one without infinite
densities for walls and strings in the radiation and matter era8tring, and with an exponential size distribution for the loops.
are displayed in Tables V and VI. Note that in Table VI, the In humerical simulations of domain wall42,43, it is found
results for strings in matter and radiation-dominated unithat even for very small initial biases, for which the walls
verses have been taken frg@2], who giveproperarea den- percolate, the system still evolves away from the per_colatlng
sities. These have been converted to projected area densitigi@t® and eventually the large walls break up and disappear.
by dividing by ((1—v2) Y3, wherev is the average speed Similar behavior is well known in the study of quenches of
of the string. While not strictly the correct procedure, it givescondensed matter systems with a nonconserved order param-

a good enough answer given the uncertainty. eter[38,53-53. o _ o _
The theoretical description of this behavior is fairly

TABLE VI. Comparison between theoretical and numerical straightforward. Introducing a bias into the initial conditions
simulation values of the string scaling density in Minkowski space,for walls alters the Gaussian average of Sec. V C to
FRW radiation, and FRW matter-dominated universes-0,1,2,

respectively in three dimensions. The numerical values are taken (A1>= 1 \/§ dudD7r5(u)|7r-|
from [21] and[22], with the latter converted from proper to pro- D (217)“’2 C !

jected area densities. The numerical fits in Minkowski space did not

look for a logarithmic scaling violation. xXe~ 1/2(“‘U/"€)2‘(1/2)”i5””1, (105
S and hence
D=3 A§=ﬂ—c
@ Theory Simulation (ALy= iwe—umUZ/C_ (106)
D 7C T(D/2)

0 3.67 %log(nA) (11x1)y 2

1 6.8y 2 (18+6)7 2 It is clear that this form is common to all defects in all

2 71972 (14+4)p 2 dimensions: if(AL), is the unbiased average area density,

then the result of including a bias is
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<Aé>=<A]b>oe_(1/2)U2/C, (107 Iarg_er_ thané ™, maybe due to l_<inks,.or there are nonlinear
radiative processes, perhaps involving the breather modes

with an obvious generalization thi>1. If the system is [56l.
close to being self-similar at some initial timg when the
magnitude of the bias i&) and the fluctuation around that Vil. SUMMARY AND CONCLUSIONS

valueC(7), then one can predict that the area density goes To summarize, this paper describes a new analytic tech-
as nigue for describing the dynamics of a random network of
_ branes or topological defects, applicable to the brane gas
A~y N2exp(—cU?P), (108 universe or a cosmological phase transition. It is a relativistic
version of a well-known approach in condensed matter phys-
ics, due to Ohta, Jasnow, and Kawasgd&], which uses a
mean-field approach to find approximate solutions to the
Allen-Cahn equation for the motion of a surface representing
ne=ni[U2/2C(5,)]~P. (109 @ phase boundary. In the relativistic version, the surfaces are
branes or defects obeying the Nambu-Goto equatian,
The simulations by Larsson and White are consistent witlthey have zero extrinsic curvatyréut the condensed matter
Egs. (106) and (109 in D=2, but do not have sufficiently analogues can be obtained as a certain lisge Appendixes
good statistics irD =23 [43]. Coulsonet al.[42] did not at- D1 and E }, which acts as a check. In rederiving these

wherec is a constant. One can also show that the tipet
which the defect density falls to a fractien ! of its scaling
value is

tempt a fit of the form(106) to their simulations. condensed matter results, an expression for the length den-
sity of strings due to Toyoki and Hond&0] has been cor-
VI. SCALING AND ENERGY LOSS rected(see Sec. VD

. _ _ . _ In most cases the prediction is that tfgeneralizefiarea

There is an apparent inconsistency in our conclusions fogiensity of ap-dimensional defect iD dimensions should

topological defect networks. We started by establishing thagcale with conformal time ag~(°~P), with a scaling ampli-
one could find approximate solutions to the field equationsude of O(1). This appears to agree quantitatively with nu-

by finding extremal surfaces in space-time, and then conmerical simulations of domain wall§25,43. In certain
structing static solutions in coordinates which moved Wlthcasesy such as strings =3, there is a prediction of a

the surface. We then showed that one could construct randofggarithmic violation of the naive scaling law. There are fur-

surfaces in FRW space-times which are on average extremaher predictions for defects with biased initial conditions, for

whose average area density obeyed a classical scaling laftings in 3D, and for D—1)- and O —2)-branes which
with conformal time 5. The assumption is that there are would be interesting to test.

defectlike solutions which are somehow close to static solu- From the point of view of the brane gas universe, it would

tions centered on these random surfaces. be interesting to look at 1-, 2-, and 5-branes in higher dimen-
There is a problem with this picture: the defect area densjons. One of the most interesting features of the brane gas
sity decreases with time and therefore the energy in the forngcenario is that it offers and explanation of why the Universe
of defects also decreases. This energy must go somewhelgss three large dimensions: strings do not generically interact
and an obvious channel is into propagating modes of th@iith each other in more than three dimensions, and so wind-
fields, or radiation. However, it is difficult to reconcile the |ng modes can never decay_ It is on|y a three-dimensional
idea that the network energy is lost into radiation with thesubspace, where the winding modes can interact with each
perturbative approach to finding curved defect solutionspther and annihilate, which can expand and become large. It
which assumes that the deviation from the comoving statigollows from this idea that strings cannot scale in more than
solution decreases with the curvature of the defect. three space dimensions, as there is no opportunity for the
Indeed, there is good numerical evidence that the pertuinitial winding modes to break up into closed loops in the
bative approach works in certain ca$2&,40. The configu-  conventional picture of energy loss by a string network. It is
rations where it has been tested are colliding traveling wavesherefore important to see whether the theoretical techniques

either sinusoidal22] or more complex40]. When traveling  presented in this paper predict scaling for strings in higher
waves are correctly prepared to the recipe laid down by Vagimensions.

chaspat{47], the collision does produce perturbations in the
form of radiation, which is, however, exponentially sup- ACKNOWLEDGMENTS
pressed with decreasing curvature.

It should be noted, however, that pure traveling waves ar? .
obtained from very special initial conditions. A random de-10F collaboration on the work of Sec. V D, and to Ed Cope-
fect network is not prepared so carefully and it appears that f2nd @nd 1an Moss for useful discussions. | am also pleased
does radiate by an as yet poorly understood mechanisi? acknowledge support from the CERN Theory Division,
[21,22. The radiation shows no sign of being exponentiaIIyWhere some of this work was done.
suppressed with increasing curvature. What is clear is that
one or more of the assumptions implicit in the perturbative
approach to finding curved defect solutions must be violated. Define a projector onto the rank antisymmetric tensors
Two possibilities are that the extrinsic curvature is much(which is also an identity operator for those tengors

| am extremely grateful to Alan Bray, for inspiration and
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1
b =i (8 ... 8 +signed perms onv).

K1 BN
(A1)
This projector has the properties
5V1"'VN — 1 €
pymy NE(d—N)T R ENENGL g
X VLT VNMNEL B (AZ)
V1 VN oP1PN_— §P1°° PN (A3)
iR VLN /Ll"'/’“N’
wn d!
17 MN_—
5:“1"':“N NI(d—N)!'" (Ad)
Define the matrixh”®=4,u”,u®g#”. Then
deth= i Bivi.. L gENNG uPig. uBL. ..
N! 9 9 M1 Y1 N
XUuMNG, UPNes €s. b, (A5)
Define the antisymmetric ranK tensor
- A A
Py uy=0u Ut 0, UNEA A (AB)
Then we may write
1
= — LERRRRAN|
deth Ni Fo o F . (A7)
Note that
d 9 ,uttg uB1
deth= ”—(aqu. JuB2. .. guAN. guBN
agrv (N—1)!

X €p ... AEB,--By)

=0,u*9,uP1-hy g deth. (A8)

APPENDIX B: AVERAGING THE EXTREMAL SURFACE
EQUATION

In a general space-time, the equation fdb-@imensional
surface with zero extrinsic curvature is

(g#"—hpga*u”au®)(d,d,u°~T7 ,0,u%)=0, (B1)

where

1 1
hAB:(hAB)_lZ m m((?UAZ' &UBZ' . '(9UAN'(9UBN

X €p ... A€B,.. By

The surfaces of constant® satisfying this equation have
K€=0. Note that the following is the projector onto the

tangent space of the surface of constant

PHYSICAL REVIEW D 68, 043510 (2003

P{'=g""—hagd*u"a"u®. (B2)
Thus, if we writev©=gu® as the coordinate vectors normal
to the surfaces of constanf, we can express the equation
as
P("V,v5=0. (B3)
Recalling the identity(A8) we see that the following
equation holds:

s
99

nv

)[deth(aﬂayuc— r7,3,u%)]=0. (B4

Hence, in order to obtain the equations for surfaces whose
averageextrinsic curvature is zero, we need to average the
quantities dehd,d,u® and detd,u°.

1. The Gaussian averagédeth 19uz9,,uc)
Exploiting its antisymmetry, we may rewrite the tensor

FMl_._MN as

=NI§"L N 1. N
Fuy uy N.5M1__.MN(9,,lu d, U (B5)

Hence the determinant becomes
deth=N!§"1"""N ghylg, ut...g#nuNg, uN. (B6)
Myt N 1 N

We introducem’) = d,u”,u” (with no implied summatiop
which is an unnormalized projector orthogonal to the sur-
faces of constari®. Then

=NI §¥1 N1 vt o
deth=N! ¢ My M-

(B7)

Hence
(dethd,,d,u®)=(deth)d,d,uc+ NI #1 #nv1 N

1 C N
X<ml‘1:‘"2. .. m/LCVCI .. ml‘N"N>

c
X{My 00U ),

with no implied summation on the indéX and the wide hat
symbol is used to denote a term removed from the product
inside the angle brackets. We now use the relations
(3,uh9,uB)y=M ,, "8, (B8)
(9,urd,0,u%y=1y,,,5"5, (B9)

c Cy— c c
(M, 3,0 7)= Yy @ U+ Yy 40, U

S
(B10)
from which we can immediately derive
<deth>:N!5:“1"':“NV1"'VN|\/|M1V1- ’ .M/’«NVN (Bll)

and
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1 < N
NI S#1 ANV VN<mp'lV1. .. m#CVC. . .ml‘NVN)
c c
XM 0 T UT)
J (deth) d,uc (B12)
=— eth)y,,,d,U".
N oM, PRV

2. The Gaussian averagédethd u®)

It follows from the previous section that

(dethg,uC)=(deth)a,uC+2N1 §#1  nve -7y

M M, 9, uC.

KNPNTT HCTT Ve

(B13)

XM M

mivy weve'

3. More definitions
We define a kind of determinandet through the relation

detM = NI 541 ANV1 PNM ‘M, v, = (deth).

vy
(B14)
We can therefore define a cofactor fir,, , which we de-
note M#”, through
MAV=NI gz vz M, oM, (et
(B15)

Thus we may write

— 2
(dethd,d,u®)=detM ( 9ud M+ TMPTy, 05U
(B16)

and

_ 2
(dethd,d,u®)=detM ( 9,9,u°+ M7 M maguc) .
(B17)

APPENDIX C: THE MEAN-FIELD ZERO CURVATURE
EQUATION

Putting the results of Appendix B together, we find that
the Gaussian averaged equations for zero extrinsic curvature

PHSICAL REVIEW D 68, 043510 (2003

To= 2| g#r— 2 | GotMM ™ y, i 0C C3
BTN\ 9 Tag,,) Ve A e
LA e
Te={ 9% 5, |detMI, AU, (9
3%
2 v Jd \e= —, A C
To=N19"" 3 o detMM*M oI, ,0,u™.  (CH)

Before reducing this equation further in cases of defihite
we will need the following explicit expressions for the cor-
relation functionsM ,, andy,,, , consistent with the spatial
O(D) symmetry:

T O )
M, = , C6
Bl 0 Sémn (C6)
y000=%T,
Yomn™ — %Sémni
Ymon= Ymno = %-Sé\mn- (C7)
Note that
‘)//va:%(M/Lv,p—"_M/Lp,V_MVp”u,)' (CS)

We also need the Christoffel symbol for a flat FRW back-
ground, which has metricgw=a2(1;) Nuv, Where gz,
=diag(—1,1,1,1) is the Minkowski metric. It is

a
=5 (8,00F 8,8, = 1,,7"°). (CY)

APPENDIX D: ZERO CURVATURE FOR N=1

The simplest case is with one coordinate figJdvhich is
appropriate for domain walls in three dimensions. Here we
have

detM=g""M,,=M, (D1)
detMM = g, (D2)
detMM“*M .= M*_. (D3)

surfaces is The required derivatives with respect to the metric are
also easily found:
nv 9 |4 C 2_KT C
g —3 ) detM| d,d,u +NM Yieurd-U o
g detM =M#?, (D4)
2 v
—F;V(&Tchr M ""Mmo’?kuc) =0. (Cy
detM M < = gHrg™, (D5)
For future convenience we will break this equation down uv
into four terms: Using the explicit form oM ,,, [Eq. (C6)] we can also write
J down
T =( my )%tMa a,uc, (C2)
AT19T5 v a M=a ?(-T+DS). (D6)
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Term T, . Using Egs.(D1) and(D4) we find

Ta=(g*"M—M#*)3,4,u. (D7)

Using Eqgs.(C6) and(D6), this simplifies to
Tac—a-psi—|2=2- Ly D8
A=—a u D DS ul. (D8)

Term Tz . Using Eqgs.(D2) and(D4), we have that

Te=2(g""g"" — g*“9"™) Y undrU- (D9)
Using Eq.(C7) one can quickly show that
Tg=2a"“DSu. (D10)

Term T.. Using Egs.(D1), (D4), and(C9), one finds
Tc=(g""M—M*")I}, 5,u
=[M(1-D)g*~-2M*+Mg™]g,u
=a ‘DY D-2—(T/S)]u. (D11)
Term Ty . Using Eqgs.(D3) and (D5), we find that

To=2(g""g" = g"“g" )M oI}, 9;u
a
=2[(2-D)g"g“"~g"*g’"~g™g*IM Kx(g) d;u

=2[(1—D)M°T—g°TM](g> d,u. (D12

Substituting the known forms d¥1°” andM, we arrive at
Tp=2a " *DY1-(T/S)]u. (D13

The equation for u

We can now construct the Gaussian averaged or “mean-
field” equations of motion satisfied by the coordinate func-

tion u, which is applicable to domain walls whé&n=3. The

equations are made from the four terms we calculated in th
previous sectionT ,+ Tg—Tc— Tp=0. Putting them all to-

gether, and dividing by the facter “DS, we find

e+ %'uc— v2V2uC=0, (D14)

with
u=[D—3(T/S)](77§ -2 772) (D15)
v2=[(D—-1)—(T/S)]/D. (D16)

We can recover the well-known Allen-Cahn equation for the
overdamped motion of domain walls by identifying the

damping constanf =a/a, and neglectingl/S, 7SS, and
the second-order time derivative of

PHYSICAL REVIEW D 68, 043510 (2003

D 2
0?2 V-eu. (D17)

APPENDIX E: ZERO CURVATURE FOR N=2

When N=2, the expressions for the various quantities
involving M in the equations of motion are still straightfor-
ward to evaluate:

detM = (g“11gre2—gharegha )M, M, .,
=(M2=M#"M ,,), (E)
detM Mm — (gm\gﬂzuz_ gKVZQ,LLz)\) M iy
=g")‘M—M")‘, (E2)

detMM“*M,, = (g"'g#2"2—g""2g*2" )M ,,,,, M

Moo VKT
=M*M—-M**M,.. (E3)

We also need to differentiate two of these expressions
with respect to the metrig,,, :

detM =2(M#"M — MM}, (E4)
nv
EM M N = (g,quV)\M +gK)\MMV
nv
_g/.LKM v)\_gv)\M,uK)' (E5)

Introducing a further piece of notation, thadl-M
=M#,M",, we can show that

M-M=a"%T2+DS?), (E6)

detM=M2-M-M
=a *DS[(D—-1)—2T/9)], (E7)

évl,uvM _ MM)\M)\V: —a_682
DT/S 0
X
0 [(D=1)—(T/9)]émn

(E8)
0" Yur=32 25U T+DS). (E9)

Term T,. Using Eq.(E4), we find

Ta=(M2=M-M)#*u®—2(M#**"M —~M**M,")d,,d,u°.
(E10

Hence, using Eq4E7) and (ES),

Tp,=a °D(D-1)%?

. D-2
e[ 252-
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Term Tg. Using Eqs(E2) and(E9), we find first that
g*'detMM*y, ,,d,uC=—1a ®DS(T+DS)uC.
(E12
Using Eqgs.(E5 and(E9), we find

_ 1 - .-
detMM “"yKMVaAuCZEa’GDS[(D —2)S-TJuC.
(E13

y2%

Putting the two expressions together, we find

TB=—aGD(D—1)SZ(§) uC. (E19)

Term To. From Egs.(E1) and (E4), we can immediately

write down

Tc=[g""(M2=M-M)—2M*"M +2M*#*M "] 9, uC.
(E19

Using Eq.(C9), we find
Tc=a ?[(1-D)(M*~M-M)+4MO(MP~M)
al.
+2(M2—M~M)](5)uc. (E16)
With Egs.(E1) and(E8), we arrive at

Te= —aGD(D—1)82[(D—3)—2(T/S)](Z) uC.

(E17
Term Ty . For this last term, we begin with
N —(1-D 3 O (E18
g“T,,=( N z/9
Hence from Eq(E3) we see that
g** detMM*™M o, duc
—2( ~00 0 0 a . C
=a 2(g®°M-M)M3(1-D) ML
al.
=a‘6D(D—1)ST(5)u°. (E19

The second term in expressid@5) is more complicated.
From Egs.(E5) and(C9), we have

0
g“rg"" ——detMM*“"M , I},
agr?

— (g,quV’TM + gKTM nv_ g/.LKM vT_ gV’T‘M MK)M K)\F/).\w'
(E20

After some algebra, we find

PHSICAL REVIEW D 68, 043510 (2003

detMM*"M , "% =[g%(M2—M-M)—2M®*M

v

a
+2MT)\M°"](5)

a
=a‘6D(D—1)8255(5) . (E2)1)

Subtracting Eq(E21) multiplied by d,u® from Eq.(E19), we
arrive at

Tp= —aGD(D—l)SZ[l—(T/S)](g) uc.  (E22

1. The equation foru®(N=2)

We can now construct the Gaussian averaged or “mean
field” equations of motion satisfied by the coordinate func-
tions u® in the caseN=2, appropriate for strings in three
spatial dimensions. The equations are made from the four
terms we calculated in the previous sectidiy+Tg— Tc
—Tp=0. Putting them all together, and dividing by the
common factoa ®D(D—1)S?, we find

et %UC—02V2UC=O, (E23

with
M=[D—2—3(T/S)](ng)—(ﬂ§ . (E24
v?=[(D-2)—2(T/S)]/D. (E25

We can recover the results of Toyoki and Honda for the
motion of overdamped strings iD= 3 by setting their dif-
fusion constani"=a/a, and neglectingl/S and S/S. In
this case, we get

. r
uczgvzuc, (E26)

which is identical to their equatio(8.10.

APPENDIX F: PROBABILITY DISTRIBUTION FOR  Fj;
The definition of the antisymmetric tensby; is

Fij:aiUA&jUBGAB. (Fl)
The probability distribution forF;; is therefore constructed
from the Gaussian probability distribution @fu®. Fij is
antisymmetric, so we need only consider half of the nonzero
elements, e.g., by imposirig<j. Moreover, it is convenient
to scale out the variance afu”, defining variablesr’* and
fi; as follows:

auh= \/éWiA ,

ij (F2)

where
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(3,uA(x)9,uB(x)) = S(t) 5 5*°. (F3
Hence, the probability distribution fdr; is
d°x A (1/2)17.’*17.’*
P(flj)|I<J H A (27 )D/2 o
X‘S(f JGAB |I<J (F4)
Using the Fourier representation of tlhgunction,
dPk dP 72
P(fij)|i<j=fmf 1;[ (2m)PP
Xe—(lIZ)w | +|Z|<ka(f”—77I | GAB)’ (FS)

whereP=D(D — 1)/2 is the dimension ok;; .
We now do theqr integrations in turn, starting with the
highestA. First, note that

[ D_A
(2m)P A (2m)P2

P(fij)|i<j:f

Xe—(l/z)w wf ikl 7t JZ

(F6)
where there is now no restriction on the sum owmgrin the
second exponential. Second, define the variaptekl 7t
Then we have to evaluate the integral

I (kij)= fH (ZD):/ze W2y af —iqha? (F7)
Doing thevri2 integral first, this is
I(ku>=f(jD—;T:,2e“l’2>’* i, (F8)
=det M, (F9)
where
Mi; = 8ij + KixKix - (F10

At this point we specialize to 3D, where we can write

PHYSICAL REVIEW D 68, 043510 (2003

The eigenvalues of this matrix aretip? (twice) and 1, so

det " M=(1+p?) L. (F13
Thus the probability distribution of;; is
d® .
P(fij)|i<j:j P —e'2i<ifjkfijpk_ (F14)
(2m)° 14 p?

In 3D we can replacd; by ¢,=3;-;€'*f;;, and the inte-
gral may be easily evaluated to give

1
P(¢)=7—€ %,

ind (F19

where ¢?= ¢y Py .

APPENDIX G: INTEGRAL FORMULAS AND
CORRELATION FUNCTIONS

In this appendix, we perform the integrations necessary to
evaluate the function€, S, and T, defined in Sec. IV B,
which we repeat here for convenience,

=(uhO)uB(x)),

M (1) =(d,u"(x) 9, uB (X)),

SBC(7)

with
y _(T(n) 0 )
1o S(m))

We shall also evaluaté for the mixed correlato¢d ,u uB>
We recall from Eq.(73) that the linearized solutlon fou”
with the correct boundary conditions is

(G1)

cl L
k77i

: (G2

(1—w)i2+v
Ui J,(kv7n)
ug( )= )

(kvn)”

with v==*(1—w)/2. If we demand regularity and conver-
gent integrals ag— 0, we must take the negative sign here,
as it will turn out thatu>1.

In order to calculate the two-point functions it is useful to
define the following integral:

klj €ijk Pk - (F11) o
|(p,0’,T)Ef dzz 3, (2)J(2), (G3)
Hence 0
M= 8;(1+p?) —pip;. (F12  which has the valugs7]
|
()T o+rt—p+1
| 1 (P ——— o
(po.7)= o [pmotret) [protrrl) fpro—rt1)’ G4
2 2 2

043510-18



LEVEL SET METHOD FOR THE EVOLUTION OF . .. PHSICAL REVIEW D 68, 043510 (2003

provided Re¢+7+1)>Re(p)>0. The first inequality The correlation functiorm is obtained from

comes from the condition that the integral be definedz as

—0, and the second from requiring that it convergezas AB dPk ‘A B

—o. There is a simple pole gt=0. We can see that this g T:f 5 S(ui(muZ(m)). (G1D

comes from thez” 2 behavior of the Bessel functions as (2)

—0, and corresponds to a logarithmically divergent integral. i en the identity[57]
Defining the Fourier transform of the correlatGrin the

usual way through d[J,(z J z
-~ y( ) _ V+l( ), (G12)
dPk dz\ 2z z’
C(??)=J—DCK(77), (GH
(2m) one can show that
we see from the solutions far® that
o vt e 1v+1). (G13
2 R R T

C(y)= f dz2~1-270%(2)P(K), (GO)

(vn)P (2m)P : -
Note that the ratio&/C and T/S depend on the initial con-
wherez=kv 5, andQp=27P?/T'(D/2) is the volume ele- ditions only though the powey, which appears i,
ment of a O —1)-sphere. We assume a power-law form for
the power spectrum oAf, S 1 [(B,v,v)

c D(vnp)2 1 (2+B,v,v)’ (G149

q

O'i(27T)D o WA ©7)

k
T QAPT(D+q) \A

PAK) 0

T 2|(ﬁ,v+l,v+l)

——Dp2— 7
. ) . S [(B,v,v)

where A is a high wave-number cutoff, satisfyinv »>1

for all 5 of interest, andr; is the variance. Hence, defining A jittle more algebra shows that

pB=2v—D—-1—q,

(G195

S 1D+2+ +1
v o 6:_—’8 A1 (Gl

_ 2 2 ’
C(77) (Avy])D+q F(D+q)|(2+ﬁ,v,y) (G8) n 4U B
Let us now calculaté from T ., b+2
) s PV bi2725 (G17
d°k
— 2
DS( ”)_f (277)Dk Culn). (G9 Note that the ratidc5/C appears to have a simple pole @&t
=0 [58]: however, when the cutoff is in place this is re-
One can straightforwardly show that placed by a logarithm, with
ps—— L % (gw). 610 > Liogrun) (G189
= V). —~—lo .
(Avm)P*a (vp? T'(D+0) Py S
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