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Well-posed initial-boundary evolution in general relativity
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Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einstein’s
equations in harmonic coordinates to show that it is well posed for homogeneous boundary data and for
boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code,
which satisfies convergence tests in the nonlinear regime and is stable in the weak field regime. A linearized
version has been stably matched to a characteristic code to compute the gravitational wave form radiated to
infinity.
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The wave form emitted in the inspiral and merger of amented in current codes designed to tackle the BBH prob-
relativistic binary is theoretical input crucial to the success oflem. Although it is not apparent how to apply the details of
the fledgling gravitational wave observatories. A computathe Friedrich-Nagy work to other formalisms, the general
tional approach is necessary to treat the highly nonlinear reprinciples can be carried over provided Einstein’s equations
gime of a black hole or neutron star collision. Developingare formulated in the symmetric hyperbolic form
this computational ability has been the objective of the bi-
nary black holdBBH) Grand Challenggl] and other world 2 A%(u)d u=S(u) (1)
wide efforts. The Grand Challenge based a Cauchy evolution @
code on the Arnowitt-Deser-MisnéADM ) [2] formulation with coordinatesx®= (t,x (1 . -

. . : . o X,Y,2)=(t,x') and evolution vari
of Einstein’s equations. Exponentially growing instabilities ablesu=(u Uy), WhereA® areNx N symmetric ma-
encountered with that code have been traced to imprOpEfFices andA%’is. .p.o'si?iv'e definite y
boundary condition§3]. (Even in the absence of boundaries, The simplest symmetric hy}:;erbolic version of Einstein's
an ADM system linearized off a Minkowski metric has a equations employs harmonic coordinates satisfyidg
power law instability{4]; this triggers an exponential insta- _ \/—_ngazaﬁ( J=9g*¥)=0, in which the well-
bility when the background Minkowski metric is treated in <o dness of the initial value problem was first established
non-Cartesian, e.g. spherical, coordingtedther groups [15 16, Well-posedness expresses the existence of a unique
have encountered difficulties in treating boundaf@® Ref.  sojytion with continuous dependence on the data. In the non-
[5] for a recent discussiorand the working practice is 10 |inear case, existence is only guaranteed for a short time,
forestall problems by placing the outer boundary far from theefiecting the possibility of singularity formation. Here we
region of physical interestsee e.g. Refl6]) or compactify  show how this approacti) can be applied to the IBVP prob-
the spacetimesee e.g. Refl.7]). , o lem in harmonic coordinategii) can be implemented as a

This deficiency extends beyond numerical relativity to aropystly stable, convergent 3-dimensional nonlinear Cauchy
lack of analytic understanding o_f _the |n|t|al—b0undar_y valuegyolution code andiii) can be accurately matched, in the
problem (IBVP) for general relativity. The local version of |inearized approximation, to an exterior characteristic evolu-
the IBVP is schematically represented in Fig. 1. Givenion code to provide the proper physical boundary condition
Cauchy data on a spacelike hypersurfa&eand boundary  for computing the wave form radiated to infinity by an iso-

data on a timelike hypersurfad, the problem is to deter- |ated source. Referen¢@7] discusses the suitability of har-
mine a solution in an appropriate domain of dependence.

Although there is considerable mathematical understanding t
of the gravitational initial value problenffor reviews see
Ref.[8]), until recently the IBVP has received little attention
(see e.g. Refd.9,10)). Indeed, only relatively recently has
the method of maximally dissipative boundary conditions
[11,12 been extended to the nonlinear IBVP with boundaries

containing characteristid4.3,14 such as occurs in symmet- D, |B
ric hyperbolic formulations of general relativity. Friedrich

and Nagy[10] have applied these methods to give the first D,
demonstration of a well-posed IBVP for Einstein’s equations.

The Friedrich-Nagy work is of seminal importance for intro- S

ducing the maximally dissipative technique into general rela-

tivity. Their formulation, which uses an orthonormal tetrad, FIG. 1. Schematic representation of the domain of dependence
the connection and the curvature tensor as evolution varip; of the initial value problem and the domain of dependence
ables, is quite different from the metric formulations imple- D,UD, of the IBVP.
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monic coordinates for numerical work and for simulating the Whereas the well-posedness of the IBVP for the reduced
approach to a curvature singularity. system can be accomplished by a variety of boundary con-

We base the evolution on the metric density"®  ditions, it can only be established for the full system in a
= \/__ggaﬁ’, with g=det(y“ﬁ)=det(gaﬁ). As in Eq.(B.87) limited sense. The Bianchi identities and reduced equations
of Fock [18], we split the Einstein tensor intg*#=£%#  imply V,(B**—3g*"B)=0, which has the explicit form
+19*$B—B*#, where B**=—(—g) Y2V(*HA vanishes

whenH*=0, where y*d,0,H*+C#9,H"+ D H"=0, (4)
oB 1 o I whereC2* andD¢ depend algebraically onandH“. Thus
& T2g7 Iy +S (2 He obeys a symmetric hyperbolic equation of fott). Har-

monic Cauchy data satisfying the Hamiltonian and momen-
and whereS*? contains no second derivatives of the metric.tum constraints antH“=0 also satisfyd;H*=0 on S by
When the harmonic conditiond*=0 are satisfied, the re- virtue of the reduced equations, so that uniqueness guaran-
duced Einstein equatior§*?=0 have principal part which teesH“=0 in the domain of dependen@® (see Fig. 1 and
is governed by the wave operatgf’d ,d,. In terms of the hence the well-posedness of the Cauchy problem for the full
evolution variablesu=(y“ﬁ,Taﬁ,X“éty“ﬁ,zaﬁ), where  system. To extend well-posedness to the homogeneous IBVP,

TP =g,y*B, xP=g y*B yaﬁzayyaﬁ and 2= g,y i.e. to include regiorD,, we impose boundary conditions for
we put these wave equations in symmetric hyperbolic fornthe reduced system that imply the homogeneous boundary
(1) by a standard constructidi9]. conditionsH?*=0 andd,H?=0 for the harmonic constraints.

We adapt the harmonic coordinates to the boundary s€ombined with the gauge conditio’®=0, the condition
that the evolution region lies iz<0, with the boundary HZ:=d,v*"+ 3,¥*?=0 requires the Neumann boundary con-
fixed atz=0 in the numerical grid. We writx®=(x3,z)  dition Z*=0. We also impose the homogeneous Neumann
=(t,x,y,2) to denote coordinates adapted to the boundarypoundary conditions22*=0 so thatd,H?:=d,Z2"+ 92932
so thatx*=(x?,z)=(t,x') depending whether the Latin in- =0 requiress>y??=0 at the boundary. Remarkably, subject
dex is near the beginning or end of the alphabet. We furtheto the above conditions, the reduced equafiéh=0 implies
adapt the coordinates so that®z=0 (and hence7*¥ 2y22=0 at the boundary! Underlying this result is tH&f¥

=0). For any timelikeB, these harmonigaugeconditions =0 at the boundary due to the local reflection symmetry
can be satisfied and they are assumed throughout the followinplied by the above conditions. This establishes the maxi-
ing discussion. mally dissipative boundary condition$?= 9,H2=0 for the

We base the well-posedness of the homogeneous IBVP ofbnstraint propagation equatiofd) which ensure that the
Theorems 2.1 and 2.2 of Secdlii4], which require thati  fyll Einstein system is satisfied.
satisfy a boundary condition of the forMu=0, whereM is In practice, homogeneous boundary conditions do not cor-
a matrix independent af and of maximal rank such that the respond to a given physical problem, e.g. homogeneous Neu-
normal flux 7*=(u,A”u) associated with an energy norm be mann data at the end of a string lead to a free end point,
non-negative. Secchi's theorems include the present casghereas the end point might be undergoing a forced oscilla-
where the boundary is “characteristic with constant rank,”tion requiring inhomogeneous data. This flexibility is sup-
i.e. A* has a fixed number of O eigenvalues. The above gaugglied within the maximally dissipative formalism by the abil-
conditions considerably simplify this maximally dissipative ity to extend the homogeneous boundary condifidn=0
condition for the reduced systefif#=0. The boundary ma- to the inhomogeneous fori (x*) (u—q(x®))=0 [10]. This
trix takes the formA?=y*“C, whereC is a constant matrix, preserves the well-posedness of the IBVP for the reduced

and the flux inequality reduces to system with inhomogeneous Neumann d&&=q?* and
Z3b=q23®, For the full system, the gauge conditigd®=0
Fi=-3 TeBzeb=( 3) and the boundary constraiti’=0 forces g**=0. Next,

aB d,H#=0 implies

Here 77 is identical to the standard energy flux for the sum D,(Z23%\—-g*4g)=0, (5)

of 10 independent scalar fields. This requirement can be sat-

isfied in many ways, e.g. by combinations of the homogewhere D, is the connection intrinsic to the boundary. The
neous Dirichlet boundary conditiony*#=7*#=0, the ho-  appearance of the metric aridi, in Eq. (5) introducesu
mogeneous Neumann conditiofyy*?=2*#=0 and the dependence in the boundary data so that Secchi's theorems
homogeneous Sommerfeld conditiond, € d,) y**=7**  do not apply. However, the theory does apply to boundary
+Z*F=0 on the various field components. All these bound-data g2 linearized off a nonlinear solution with homoge-
ary conditions have the required folvhu=0. The maximal- neous data, either exact or generated numerically. Then Eq.
ity of the rank ofM ensures that boundary conditions only be (5) has the form

applied to variables propagating along characteristics enter-

ing the evolution region from the exterif20]. For instance, 3,602+ FR(x%) 59P°=0, (6)
assignment of a boundary condition to the variafie?

—Z%B which propagates from the interior toward the where Fﬁc(xd) is explicitly known via the metric and con-
boundary, would violate Eq3). nection of the homogeneous solution. The principal part of
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Eq. (6) is identical to the analogous equation in the linearized
version of the harmonic IBVP treated in R¢21]. In terms

of the coordinates®= (t,x*)=(t,x,y) on the boundary, a
simple transformation of variablésee Ref[21]) recasts Eq.
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(6) as a symmetric hyperbolic system of equations for
=30,s00"% and y*=5q'*. (Here 8,5 is the Kronecker
delta) This system uniquely determingsandy” in terms of
their initial values and the 3 pieces of free boundary data
yAB= 508+ 6"B(8q" — 6.p8q°P). (This is in accord with
Ref.[10], although there is no direct correspondence with the
three free pieces of boundary data in Réf0].) Since only
coordinate conditions have been imposed here, the only re-
striction on physical generality is the linearity of the bound-
ary data.

The IBVP also requires consistency between the Cauchy
data and boundary data &U BB, which determines the de-
gree of differentiability of the solutiohl4]. As in the string
example, consistent homogeneous Neumann boundary data o
and Cauchy data imply a virtual reflection symmetry across 10”
the boundary, which is broken in the inhomogeneous case.

Although the IBVP is well-posed for the reduced system and g1 2. TheL.. norm of the finite-difference errop?= 22,
for the constrained system with boundary data linearized ,2z  yescaled by a factor of A, for a gauge wave. The upper
about the homogeneous case, no available theorems guarafo (mostly overlapping curves demonstrate convergence to the
tee well-posedness for the constrained inhomogeneous casgalytic solution for a wave with amplituda=10"1 with grid

In this respect, the analytic underpinnings are not as generaizes 88 and 126. We also plot|H|,, the L, norm of

as the Friedrich-Nagy formulation. Numerical simulations /[(H)2+ ;H'H’, to demonstrate that convergence of the harmonic
are necessary to shed further light on this question. The kegonstraints is enforced by the boundary conditions. The lower curve
feature of our formulation is that a solution exists, as pro- represents evolution of the same gauge wave Wit 0~ for 300
vided by a convergent numerical simulation, then it neceserossing times with grid size 80

sarily satisfies the constraintsince the constraint propaga-

tion equation(4) is then satisfied with maximally dissipative,

homogeneous boundary data. In the strong field convergendge nonlinear theory that avoids Neumann boundary condi-
tests described below, exact solutions provide the Cauchijons and the associated numerical complications which we
and boundary data. describe below.

In constructing a code to demonstrate these results, we We tested robust stabilitj22] of the nonlinear code by
take considerable liberty with the symmetric hyperbolic for-initializing the evolution with random, constraint violating
malism. In particular, we use the second differential orderinitial datay*#= 5*#+ e“# and by assigning random bound-
form of the equations based upon the 10 variah®érather ~ ary dataq(x®) = € at each point of the cubic grid boundary,
than the 50 first-order variables we use a cubic boundary With the €’s random numbers in the range- (0 °,10"19).
aligned with Cartesian coordinates, although the mathematiAlthough differing from the standard numerical definition of
cal theorems only apply to smooth boundaries; and we restability related to convergence, robust stability is computa-
place the gauge conditioff®=0 by y*=q?(x?)y?% where tionally practical for revealing short wavelength instabili-
%= 9,x?| 5 is the free Neumann boundary data in the transties) Under these conditions, the noise in the nonlinear code
formation to a general harmonic coordinate system satisfyingrows linearly at the same rate for 2000 crossing times for
[x2=0. The harmonic boundary constralif=0 now im-  both the 48 and 72 grids. We tested convergence in the
plies g?%= — d9,(9*y*?)|z and the constraing,H2=0 again  nonlinear regime using a gauge wave generated by the har-
determines¢ and y” in terms of the free boundary data monic  coordinate  transformation  x,{/) =x°—x®
(g®,y*B), now through a symmetric hyperbolic system ob- +a®sin2m(y/3t+x+y+z)] acting on the Minkowski met-
tained from adding source terms arising fraf#0 to the  ric, with a*=0.06A,a¥=0.04A. The resulting gauge wave
right-hand side of Eq(5). We use the finite difference tech- has amplitudd|g*#— »*#||..~A. We use periodicity in the
niques described in RR21], where robust stability and con- (X,y) plane to evolve with smooth toroidal boundarieszat
vergence of a linearized harmonic code was demonstrated. i = 1/2. Second-order convergence in the nonlinear regime
the linearized theory, the decoupling of the metric compowas confirmed with the amplitudé=10"*. Figure 2 dem-
nents gives more flexibility in formulating a well-posed onstrates the convergence of the solution and Fig. 3 shows
IBVP. The linearized harmonic code could be consistentljthe absence of anomalous boundary error. Error arising from
implemented with Dirichlet boundary conditions, in which the application of Neumann boundary conditions eventually
case it ran stably for 2000 crossing times even with driggers a nonlinear instability, which occurs after 30 cross-
piecewise-cubic spherical boundary cut out of the Cartesiaing times with the 12®grid. Runs with amplitudeA
grid. However, we have not found a well-posed version of=10"2 were carried out on the 8@Qyrid for 300 crossing
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FIG. 3. Ay=0 slice of the metric component?, evolved for 0

30 crossing times, amplitude=10"1, with a toroidal boundary in gxigﬁ
the (x,y) plane. X

times without encountering the above nonlinear instability
(see Fig. 2 In the case of a cubic boundary, the nonlinear
code cleanly propagates a physical pulse with amplitude
10" that corresponds to an exact linearized solution; but, for

a gauge wave of amplitude=10"3, substantial error arises 8x108
at the edges and corners due to our present method of apply- 4x10°8
ing Neumann boundary conditions and leads to an instability 4X102
after 60 crossing times. 8x10°8

The physically proper boundary data for a given problem
is a separate and difficult problem for nonlinear systems.
One approach is to supplg(x®) by Cauchy-characteristic
matching(CCM) in which an interior Cauchy evolution with

cubic boundary is matched to an exterior characteristic evo- FIG. 4. Sequence ai=0 slices of the metric component”,
y evolved for one crossing time, with the linear matched Cauchy-

!ut!op on a sequence of outgoing m_J" cones extending WQharacteristic code. In the last snapshot, the wave has propagated
infinity (for a review see Ref23]). In simulations of a non- cleanly onto the characteristic grid.

linear scalar wave with periodic source, CCM was demon-
strated to compute the radiated wave form more efficiently

and accurately than existing artificial boundary conditions onith the manifestly well-posed IBVP consisting of a scalar

a large but finite boundarf24]. Previous attempts at CCMin \ave propagating between smooth toroidal boundaries ac-
the gravitational case were plagued by boundary induced iNcording to the flat-space wave equation

stabilities growing on a scale of 10 to 20 grid crossing times.
Although stable behavior of the Cauchy boundary is amly [— 02— 2v0,0,+ 92+ a§+(1—vz)a§]q)=0,
necessary but not a sufficieabndition for CCM, tests car-
ried out with a linearized harmonic Cauchy code with a well-which arises from the transformatias-z+ vt on standard
posed IBVP matched to a linearized characteristic code showmertial coordinates. The value of? represents the velocity
no instabilities. of the boundary relative to observers at rest with respect to
In the tests of CCM, the linearized Cauchy code was supthe Cauchy slicing. For the flat space wave equation in the
plied outer boundary datain Sommerfeld form by the ex- second-order form, there have apparently been no studies of
terior characteristic evolution and boundary data for the charaumerical algorithms which apply Neumann boundary con-
acteristic code was supplied on an interior sphericaditions to such moving boundaries. In fact, only very re-
boundary by the Cauchy evolution. Robust stability for 2000cently has there been a thorough treatment of Neumann
crossing times on a Cauchy grid of4#as confirmed. For a boundary conditions for the flat space wave equation with a
linearized wave pulse, Fig. 4 shows a sequence of profiles aftationary (but curvilineajy boundary[25]. This treatment
the metric componeny”®Y propagating cleanly through the uses Neumann data to update the field at a boundary point at
spherical boundary as the wave pass to the characteristibe current time step by a one-sided finite difference approxi-
grid, where it is propagated to infinity. Further details andmation for the normal derivative. Such stencils for approxi-
tests of CCM and the question of its extension to the nonlinimating normal derivatives apply only when the normal di-
ear theory will be reported elsewhere. rection is tangent to the Cauchy slicing, i.e. whgf z=0.
At present, the major limitation in the nonlinear code The general case in whidji? z# 0 requires a more compli-
stems from the difficulty in handling large values 9% at  cated stencil involving interior points to the future or past of
the boundary. This is evidenced by numerical experimenttghe current time step. We have developed a new approach
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which successfully handles this general case for the above We thank H. Friedrich and B. Schmidt for educating us in
scalar wave test problem but requires further refinement tthe intricacy of the IBVP. The code was made parallel with
handle boundaries with edges and corners before it can beelp from thecAcTus development team of the AEI. The

implemented in the gravitational code. work was supported by NSF grant PHY 9988663.
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