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Well-posed initial-boundary evolution in general relativity
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Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einstein’s
equations in harmonic coordinates to show that it is well posed for homogeneous boundary data and for
boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code,
which satisfies convergence tests in the nonlinear regime and is stable in the weak field regime. A linearized
version has been stably matched to a characteristic code to compute the gravitational wave form radiated to
infinity.
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The wave form emitted in the inspiral and merger of
relativistic binary is theoretical input crucial to the success
the fledgling gravitational wave observatories. A compu
tional approach is necessary to treat the highly nonlinear
gime of a black hole or neutron star collision. Developi
this computational ability has been the objective of the
nary black hole~BBH! Grand Challenge@1# and other world
wide efforts. The Grand Challenge based a Cauchy evolu
code on the Arnowitt-Deser-Misner~ADM ! @2# formulation
of Einstein’s equations. Exponentially growing instabiliti
encountered with that code have been traced to impro
boundary conditions@3#. ~Even in the absence of boundarie
an ADM system linearized off a Minkowski metric has
power law instability@4#; this triggers an exponential insta
bility when the background Minkowski metric is treated
non-Cartesian, e.g. spherical, coordinates.! Other groups
have encountered difficulties in treating boundaries~see Ref.
@5# for a recent discussion! and the working practice is to
forestall problems by placing the outer boundary far from
region of physical interest~see e.g. Ref.@6#! or compactify
the spacetime~see e.g. Ref.@7#!.

This deficiency extends beyond numerical relativity to
lack of analytic understanding of the initial-boundary val
problem ~IBVP! for general relativity. The local version o
the IBVP is schematically represented in Fig. 1. Giv
Cauchy data on a spacelike hypersurfaceS and boundary
data on a timelike hypersurfaceB, the problem is to deter
mine a solution in an appropriate domain of dependen
Although there is considerable mathematical understand
of the gravitational initial value problem~for reviews see
Ref. @8#!, until recently the IBVP has received little attentio
~see e.g. Refs.@9,10#!. Indeed, only relatively recently ha
the method of maximally dissipative boundary conditio
@11,12# been extended to the nonlinear IBVP with boundar
containing characteristics@13,14# such as occurs in symme
ric hyperbolic formulations of general relativity. Friedric
and Nagy@10# have applied these methods to give the fi
demonstration of a well-posed IBVP for Einstein’s equatio
The Friedrich-Nagy work is of seminal importance for intr
ducing the maximally dissipative technique into general re
tivity. Their formulation, which uses an orthonormal tetra
the connection and the curvature tensor as evolution v
ables, is quite different from the metric formulations impl
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mented in current codes designed to tackle the BBH pr
lem. Although it is not apparent how to apply the details
the Friedrich-Nagy work to other formalisms, the gene
principles can be carried over provided Einstein’s equati
are formulated in the symmetric hyperbolic form

(
a

Aa~u!]au5S~u! ~1!

with coordinatesxa5(t,x,y,z)5(t,xi) and evolution vari-
ablesu5(u1 , . . . ,uN), whereAa areN3N symmetric ma-
trices andAt is positive definite.

The simplest symmetric hyperbolic version of Einstein
equations employs harmonic coordinates satisfyingHa

ªA2ghxa5]b(A2ggab)50, in which the well-
posedness of the initial value problem was first establis
@15,16#. Well-posedness expresses the existence of a un
solution with continuous dependence on the data. In the n
linear case, existence is only guaranteed for a short ti
reflecting the possibility of singularity formation. Here w
show how this approach~i! can be applied to the IBVP prob
lem in harmonic coordinates,~ii ! can be implemented as
robustly stable, convergent 3-dimensional nonlinear Cau
evolution code and~iii ! can be accurately matched, in th
linearized approximation, to an exterior characteristic evo
tion code to provide the proper physical boundary condit
for computing the wave form radiated to infinity by an is
lated source. Reference@17# discusses the suitability of har

FIG. 1. Schematic representation of the domain of depende
D1 of the initial value problem and the domain of dependen
D1øD2 of the IBVP.
©2003 The American Physical Society01-1
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monic coordinates for numerical work and for simulating t
approach to a curvature singularity.

We base the evolution on the metric densitygab

5A2ggab, with g5det(gab)5det(gab). As in Eq. ~B.87!
of Fock @18#, we split the Einstein tensor intoGab5E ab

1 1
2 gabB2Bab, where Bab52(2g)21/2¹ (aHb) vanishes

whenHa50, where

E ab5
1

2g
gmn]m]ngab1Sab ~2!

and whereSab contains no second derivatives of the metr
When the harmonic conditionsHa50 are satisfied, the re
duced Einstein equationsE ab50 have principal part which
is governed by the wave operatorgmn]m]n . In terms of the
evolution variablesu5(gab,T ab,X ab,Y ab,Z ab), where
T ab5] tg

ab, X ab5]xg
ab, Y ab5]yg

ab and Z ab5]zg
ab,

we put these wave equations in symmetric hyperbolic fo
~1! by a standard construction@19#.

We adapt the harmonic coordinates to the boundary
that the evolution region lies inz,0, with the boundary
fixed at z50 in the numerical grid. We writexa5(xa,z)
5(t,x,y,z) to denote coordinates adapted to the bound
so thatxa5(xa,z)5(t,xi) depending whether the Latin in
dex is near the beginning or end of the alphabet. We furt
adapt the coordinates so thatgzauB50 ~and henceT zauB
50). For any timelikeB, these harmonicgaugeconditions
can be satisfied and they are assumed throughout the fol
ing discussion.

We base the well-posedness of the homogeneous IBV
Theorems 2.1 and 2.2 of Secchi@14#, which require thatu
satisfy a boundary condition of the formMu50, whereM is
a matrix independent ofu and of maximal rank such that th
normal fluxF z5(u,Azu) associated with an energy norm b
non-negative. Secchi’s theorems include the present
where the boundary is ‘‘characteristic with constant ran
i.e. Az has a fixed number of 0 eigenvalues. The above ga
conditions considerably simplify this maximally dissipativ
condition for the reduced systemE ab50. The boundary ma-
trix takes the formAz5gzzC, whereC is a constant matrix,
and the flux inequality reduces to

F z52(
a,b

T abZ ab>0. ~3!

HereF z is identical to the standard energy flux for the su
of 10 independent scalar fields. This requirement can be
isfied in many ways, e.g. by combinations of the homo
neous Dirichlet boundary condition] tg

ab5T ab50, the ho-
mogeneous Neumann condition]zg

ab5Z ab50 and the
homogeneous Sommerfeld condition (] t1]z)g

ab5T ab

1Z ab50 on the various field components. All these boun
ary conditions have the required formMu50. The maximal-
ity of the rank ofM ensures that boundary conditions only
applied to variables propagating along characteristics en
ing the evolution region from the exterior@20#. For instance,
assignment of a boundary condition to the variableT ab

2Z ab, which propagates from the interior toward th
boundary, would violate Eq.~3!.
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Whereas the well-posedness of the IBVP for the redu
system can be accomplished by a variety of boundary c
ditions, it can only be established for the full system in
limited sense. The Bianchi identities and reduced equati
imply ¹m(Bmn2 1

2 gmnB)50, which has the explicit form

gmn]m]nHa1Cn
am]mHn1Dn

aHn50, ~4!

whereCn
am andDn

a depend algebraically onu andHa. Thus
Ha obeys a symmetric hyperbolic equation of form~1!. Har-
monic Cauchy data satisfying the Hamiltonian and mom
tum constraints andHa50 also satisfy] tH

a50 on S by
virtue of the reduced equations, so that uniqueness gua
teesHa50 in the domain of dependenceD1 ~see Fig. 1! and
hence the well-posedness of the Cauchy problem for the
system. To extend well-posedness to the homogeneous IB
i.e. to include regionD2, we impose boundary conditions fo
the reduced system that imply the homogeneous boun
conditionsHz50 and]zH

a50 for the harmonic constraints
Combined with the gauge conditiongza50, the condition
Hz

ª]bgzb1]zg
zz50 requires the Neumann boundary co

dition Zzz50. We also impose the homogeneous Neuma
boundary conditionsZ ab50 so that]zH

a
ª]bZab1]z

2gaz

50 requires]z
2gaz50 at the boundary. Remarkably, subje

to the above conditions, the reduced equationE az50 implies
]z

2gaz50 at the boundary! Underlying this result is thatSaz

50 at the boundary due to the local reflection symme
implied by the above conditions. This establishes the ma
mally dissipative boundary conditionsHz5]zH

a50 for the
constraint propagation equations~4! which ensure that the
full Einstein system is satisfied.

In practice, homogeneous boundary conditions do not c
respond to a given physical problem, e.g. homogeneous N
mann data at the end of a string lead to a free end po
whereas the end point might be undergoing a forced osc
tion requiring inhomogeneous data. This flexibility is su
plied within the maximally dissipative formalism by the ab
ity to extend the homogeneous boundary conditionMu50
to the inhomogeneous formM (xa)(u2q(xa))50 @10#. This
preserves the well-posedness of the IBVP for the redu
system with inhomogeneous Neumann dataZ zz5qzz and
Z ab5qab. For the full system, the gauge conditiongza50
and the boundary constraintHz50 forces qzz50. Next,
]zH

a50 implies

Da~Z ab/A2gzz/g!50, ~5!

where Da is the connection intrinsic to the boundary. Th
appearance of the metric andDa in Eq. ~5! introducesu
dependence in the boundary data so that Secchi’s theo
do not apply. However, the theory does apply to bound
datadqab linearized off a nonlinear solution with homoge
neous data, either exact or generated numerically. Then
~5! has the form

]bdqab1Fbc
a ~xd!dqbc50, ~6!

whereFbc
a (xd) is explicitly known via the metric and con

nection of the homogeneous solution. The principal part
1-2
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Eq. ~6! is identical to the analogous equation in the lineariz
version of the harmonic IBVP treated in Ref.@21#. In terms
of the coordinatesxa5(t,xA)5(t,x,y) on the boundary, a
simple transformation of variables~see Ref.@21#! recasts Eq.
~6! as a symmetric hyperbolic system of equations forf
5 1

2 dABdqAB and yA5dqtA. ~Here dAB is the Kronecker
delta.! This system uniquely determinesf andyA in terms of
their initial values and the 3 pieces of free boundary d
yAB5dqAB1dAB(dqtt2dCDdqCD). ~This is in accord with
Ref. @10#, although there is no direct correspondence with
three free pieces of boundary data in Ref.@10#.! Since only
coordinate conditions have been imposed here, the only
striction on physical generality is the linearity of the boun
ary data.

The IBVP also requires consistency between the Cau
data and boundary data atSøB, which determines the de
gree of differentiability of the solution@14#. As in the string
example, consistent homogeneous Neumann boundary
and Cauchy data imply a virtual reflection symmetry acr
the boundary, which is broken in the inhomogeneous c
Although the IBVP is well-posed for the reduced system a
for the constrained system with boundary data lineari
about the homogeneous case, no available theorems gu
tee well-posedness for the constrained inhomogeneous
In this respect, the analytic underpinnings are not as gen
as the Friedrich-Nagy formulation. Numerical simulatio
are necessary to shed further light on this question. The
feature of our formulation is thatif a solution exists, as pro-
vided by a convergent numerical simulation, then it nec
sarily satisfies the constraints, since the constraint propaga
tion equation~4! is then satisfied with maximally dissipative
homogeneous boundary data. In the strong field converge
tests described below, exact solutions provide the Cau
and boundary data.

In constructing a code to demonstrate these results,
take considerable liberty with the symmetric hyperbolic fo
malism. In particular, we use the second differential or
form of the equations based upon the 10 variablesgab rather
than the 50 first-order variablesu; we use a cubic boundar
aligned with Cartesian coordinates, although the mathem
cal theorems only apply to smooth boundaries; and we
place the gauge conditiongza50 by gza5qa(xb)gzz, where
qa5]zx

auB is the free Neumann boundary data in the tra
formation to a general harmonic coordinate system satisfy
hxa50. The harmonic boundary constraintHz50 now im-
plies qzz52]a(qagzz)uB and the constraint]zH

a50 again
determinesf and yA in terms of the free boundary dat
(qa,yAB), now through a symmetric hyperbolic system o
tained from adding source terms arising fromqaÞ0 to the
right-hand side of Eq.~5!. We use the finite difference tech
niques described in Ref.@21#, where robust stability and con
vergence of a linearized harmonic code was demonstrate
the linearized theory, the decoupling of the metric comp
nents gives more flexibility in formulating a well-pose
IBVP. The linearized harmonic code could be consisten
implemented with Dirichlet boundary conditions, in whic
case it ran stably for 2000 crossing times even with
piecewise-cubic spherical boundary cut out of the Cartes
grid. However, we have not found a well-posed version
04150
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the nonlinear theory that avoids Neumann boundary con
tions and the associated numerical complications which
describe below.

We tested robust stability@22# of the nonlinear code by
initializing the evolution with random, constraint violatin
initial datagab5hab1eab and by assigning random bound
ary dataq(xa)5e at each point of the cubic grid boundar
with the e ’s random numbers in the range (210210,10210).
~Although differing from the standard numerical definition
stability related to convergence, robust stability is compu
tionally practical for revealing short wavelength instabi
ties.! Under these conditions, the noise in the nonlinear co
grows linearly at the same rate for 2000 crossing times
both the 483 and 723 grids. We tested convergence in th
nonlinear regime using a gauge wave generated by the
monic coordinate transformation (x,y)5xB→xB

1aBsin@2p(A3t1x1y1z)# acting on the Minkowski met-
ric, with ax50.06A,ay50.04A. The resulting gauge wave
has amplitudeuugab2habuu`'A. We use periodicity in the
(x,y) plane to evolve with smooth toroidal boundaries az
561/2. Second-order convergence in the nonlinear reg
was confirmed with the amplitudeA51021. Figure 2 dem-
onstrates the convergence of the solution and Fig. 3 sh
the absence of anomalous boundary error. Error arising f
the application of Neumann boundary conditions eventua
triggers a nonlinear instability, which occurs after 30 cro
ing times with the 1203 grid. Runs with amplitudeA
51023 were carried out on the 803 grid for 300 crossing

FIG. 2. TheL` norm of the finite-difference errorge
zz5gana

zz

2gnum
zz , rescaled by a factor of 1/D2, for a gauge wave. The uppe

two ~mostly overlapping! curves demonstrate convergence to t
analytic solution for a wave with amplitudeA51021 with grid
sizes 803 and 1203. We also plot uHu` , the L` norm of
A(Ht)21d i j H

iH j , to demonstrate that convergence of the harmo
constraints is enforced by the boundary conditions. The lower cu
represents evolution of the same gauge wave withA51023 for 300
crossing times with grid size 803.
1-3
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times without encountering the above nonlinear instabi
~see Fig. 2!. In the case of a cubic boundary, the nonline
code cleanly propagates a physical pulse with amplit
1027 that corresponds to an exact linearized solution; but,
a gauge wave of amplitudeA51023, substantial error arise
at the edges and corners due to our present method of a
ing Neumann boundary conditions and leads to an instab
after 60 crossing times.

The physically proper boundary data for a given probl
is a separate and difficult problem for nonlinear system
One approach is to supplyq(xa) by Cauchy-characteristic
matching~CCM! in which an interior Cauchy evolution with
cubic boundary is matched to an exterior characteristic e
lution on a sequence of outgoing null cones extending
infinity ~for a review see Ref.@23#!. In simulations of a non-
linear scalar wave with periodic source, CCM was dem
strated to compute the radiated wave form more efficien
and accurately than existing artificial boundary conditions
a large but finite boundary@24#. Previous attempts at CCM in
the gravitational case were plagued by boundary induced
stabilities growing on a scale of 10 to 20 grid crossing tim
Although stable behavior of the Cauchy boundary is onla
necessary but not a sufficientcondition for CCM, tests car-
ried out with a linearized harmonic Cauchy code with a we
posed IBVP matched to a linearized characteristic code s
no instabilities.

In the tests of CCM, the linearized Cauchy code was s
plied outer boundary dataq in Sommerfeld form by the ex
terior characteristic evolution and boundary data for the ch
acteristic code was supplied on an interior spheri
boundary by the Cauchy evolution. Robust stability for 20
crossing times on a Cauchy grid of 453 was confirmed. For a
linearized wave pulse, Fig. 4 shows a sequence of profile
the metric componentgxy propagating cleanly through th
spherical boundary as the wave pass to the characte
grid, where it is propagated to infinity. Further details a
tests of CCM and the question of its extension to the non
ear theory will be reported elsewhere.

At present, the major limitation in the nonlinear cod
stems from the difficulty in handling large values ofg tz at
the boundary. This is evidenced by numerical experime

-0.5
-0.25

0
0.25

0.5 -0.5
-0.25

0
0.25

0.5
0.92

0.96

1

1.04

1.08

FIG. 3. A y50 slice of the metric componentgzz, evolved for
30 crossing times, amplitudeA51021, with a toroidal boundary in
the (x,y) plane.
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with the manifestly well-posed IBVP consisting of a sca
wave propagating between smooth toroidal boundaries
cording to the flat-space wave equation

@2] t
222v] t]z1]x

21]y
21~12v2!]z

2#F50,

which arises from the transformationz→z1vt on standard
inertial coordinates. The value ofg tz represents the velocity
of the boundary relative to observers at rest with respec
the Cauchy slicing. For the flat space wave equation in
second-order form, there have apparently been no studie
numerical algorithms which apply Neumann boundary co
ditions to such moving boundaries. In fact, only very r
cently has there been a thorough treatment of Neum
boundary conditions for the flat space wave equation wit
stationary ~but curvilinear! boundary @25#. This treatment
uses Neumann data to update the field at a boundary poi
the current time step by a one-sided finite difference appro
mation for the normal derivative. Such stencils for appro
mating normal derivatives apply only when the normal
rection is tangent to the Cauchy slicing, i.e. whengtzuB50.
The general case in whichgtzuBÞ0 requires a more compli
cated stencil involving interior points to the future or past
the current time step. We have developed a new appro
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-0.2
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0.4

0

-8
-8
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8x10
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FIG. 4. Sequence ofz50 slices of the metric componentgxy,
evolved for one crossing time, with the linear matched Cauc
characteristic code. In the last snapshot, the wave has propag
cleanly onto the characteristic grid.
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which successfully handles this general case for the ab
scalar wave test problem but requires further refinemen
handle boundaries with edges and corners before it ca
implemented in the gravitational code.
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