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Semiclassical study of baryon and lepton number violation in high-energy electroweak collisions
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We make use of a semiclassical method for calculating the suppression exponent for topology changing
transitions in high-energy electroweak collisions. In the Standard Model these processes are accompanied by
violation of baryon and lepton number. By using a suitable computational technique we obtain results for
s-wave scattering in a large region of initial data. Our results show that baryon and lepton number violation
remains exponentially suppressed up to very high energies of at least 30 sphaleron masses~250 TeV!. We also
conclude that the known analytic approaches inferred from low energy expansion provide reasonably good
approximations up to the sphaleron energy~8 TeV! only.
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I. INTRODUCTION

Nonperturbative phenomena related to tunneling are o
encountered in quantum field theory. Well known examp
are false vacuum decay and instantonlike transitions~the lat-
ter are accompanied by nonconservation of fermion quan
numbers!. When these phenomena are governed by a sm
coupling constant they can generally be studied by semic
sical methods. This is certainly the case at low energy o
situations which involve large number of quanta in the init
state. At low energy, collision processes can be well
scribed by a semiclassical approximation relying on the
istence of classical Euclidean time solutions to the equat
of motion interpolating between initial and final states. In t
examples mentioned above these are bounce@1# and instan-
ton @2#, respectively. The probability of the process is th
proportional to the exponent of the Euclidean action of th
solutions. As the action is inversely proportional to t
~small! coupling constant, the processes are highly s
pressed. The effect of low energy excitations in the init
state~colliding particles! gives only a pre-exponential facto
and is inessential.

The situation changes at high energy, namely, at energ
the order of the tunneling barrier height which separates
tial and final states. In general, there exists a static unst
solution to the equations of motion that lies on top of t
potential barrier@3# ~properly speaking, at a saddle point
the potential!. In field theory this solution is often referred t
as the ‘‘sphaleron,’’ a name which we will use througho
this paper. The minimum height of the barrier is precisely
sphaleron energyEsph. Naively, from the analogy with quan
tum mechanics of one degree of freedom, one would exp
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that at energy higher than the sphaleron energy the expo
tial suppression disappears. This is indeed what happen
finite temperature@4–12#, finite fermion density@13–17#, or
in the presence of heavy fermions in the initial state@18–20#.
But in high energy particle collisions this is not necessar
the case, due to the fact that the characteristic size of
sphaleron configuration is much larger than the wavelen
of the incoming particles. At the same time the application
a semiclassical technique becomes problematic becaus
initial state no longer involves a large number of quanta.

As was first noted in Refs.@21,22#, at relatively low en-
ergy the corrections to the collision-induced tunneling r
can be calculated by perturbative expansion in the ba
ground of the instanton. Further studies showed that the
tual expansion parameter in most models, including el
troweak theory, isE/Esph @23–26# and the total cross sectio
of the induced tunneling has an exponential form

s tot~E!;expH 2
16p2

g2
FHG~E/Esph!J ,

where g is the small coupling constant and the functio1

FHG(E/Esph) is a series in fractional powers ofE/Esph ~for a
review see@27–29#!.

While the perturbation theory inE/Esph is limited to small
E, the general exponential form of the total cross sect
implies that there might exist a semiclassical-type proced
which would allow, at least in principle, to calculat
FHG(E/Esph) at E*Esph. However, since the initial state o
two highly energetic particles is not semiclassical, the st
dard semiclassical procedure does not apply and a suit
generalization is needed, which was proposed in Refs.@30–
32# and further developed in Refs.@33,34#. The correspond-
ing formalism reduces the calculation of the exponential s
pression factor to a certain classical boundary value probl
whose analytical solution is not usually possible.

1The subscriptHG here stands for ‘‘holy grail’’@27#.
©2003 The American Physical Society05-1
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BEZRUKOV et al. PHYSICAL REVIEW D 68, 036005 ~2003!
This approach is based on the conjecture that, with ex
nential accuracy, the two-particle initial state can be sub
tuted by a multiparticle one provided that the number
particles is not parametrically large~although not proven rig-
orously, this conjecture was checked in several orders of
turbation theory inE/Esph in gauge theory@31,35# and ex-
plicitly in quantum mechanics with two degrees of freedo
@36,37#!. The few-particle initial state, in turn, can be co
sidered as a limiting case of a truly multiparticle one with t
number of particlesN5Ñ•(4p/g2), when the parameterÑ
is sent to zero. For the multiparticle initial state the transit
rate is explicitly semiclassical and has the form

s~E,N!;expH 2
16p2

g2
F~E/Esph,Ñ!J . ~1!

According to the above conjecture, the functio
FHG(E/Esph), corresponding to the two-particle incomin
state, is reproduced in the limitÑ→0,

lim
Ñ→0

F~E/Esph,Ñ!5FHG~E/Esph!.

Therefore, albeit indirectly, the functionFHG(E/Esph) is also
calculable semiclassically.

Within the semiclassical framework, the functio
F(E/Esph,Ñ) is determined by the action evaluated at a p
ticular solution to the classical field equations@32# on a cer-
tain contour in complex time. In this formulation, the pro
lem, at least in principle, is amenable to a computatio
solution. Namely, one has to solve the corresponding cla
cal boundary value problem numerically and calculate
function F(E/Esph,Ñ), which then can be used to extra
information aboutFHG(E/Esph).

The implementation of this technique is neverthele
highly nontrivial. The differential equations one encounte
are partially of the hyperbolic type~along the Minkowskian
parts of the time contour! and partially of elliptic type~along
the Euclidean part!, which makes their numerical solutio
particularly challenging. In the electroweak theory, ad
tional difficulties arise from the need to deal with the lar
number of internal degrees of freedom, unphysical mo
due to gauge invariance, and time translational symm
which cause an unwelcome degeneracy in the numerical
cedure used to find the semiclassical solutions.

Moreover, at high energy~roughly, at energy higher tha
the sphaleron energy! tunneling solutions, interpolating be
tween vicinities of different vacua in finite time, cease
exist. This subtlety turned out to be a general problem in
description of tunneling in systems with many degrees
freedom, and it has to do with the nontrivial way tunneli
occurs at high energy—the system prefers to create a
close to the sphaleron, which then decays into the cor
vacuum. To find the corresponding suppression exponent
merically one has to use a properly regularized version of
boundary value problem, developed in Ref.@38#.

In a long program of investigations we have been able
gradually overcome all of these hurdles. Preliminary res
for energies below the sphaleron energy were reported
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Ref. @33#. Now we are in a position of presenting what w
are confident is the full solution to the numerical problem
a wide range of energy and incoming particle number,
cluding energies above the sphaleron. The field configu
tions we analyze in this paper are restricted to be spheric
symmetric in space. Hence our results apply, strictly spe
ing, to s-wave scattering only.

In this paper we will concentrate on obtaining the su
pression exponent for collision-induced tunneling inSU(2)
gauge model with the Higgs mechanism, corresponding
the electroweak sector of the Standard Model at zerouW .
The problem is particularly interesting because of the bar
number violation which accompanies such processes@39#
and the relatively low sphaleron energyEsph.8 TeV.
Though computational limitations do not allow to reach l
erally zero value of the rescaled number of particlesÑ, cor-
responding to particle collisions, we were able to extrapol
the results to zeroÑ and get a bound on the suppressi
exponent~strictly speaking, fors-wave scattering! and also
provide an estimate for this exponent.

In Sec. II we present the detailed formulation of the pro
lem, outline the method and present the main physical
sults. In Sec. III we give the derivation of the semiclassi
method for the gauge model. The lattice formulation of t
equations and subtleties appearing in the discretized ver
are given in Sec. IV. Application of the regularizatio
method of Ref.@38# is described in Sec. V. Detailed numer
cal results are presented in Sec. VI. Our conclusions ar
Sec. VII.

II. FORMULATION OF THE PROBLEM
AND MAIN RESULTS

Non-Abelian gauge models have an infinite number
topologically distinct vacua, labeled by an integer topolo
cal number. Processes changing the topological number
accompanied by violation of fermion~baryon and lepton!
numbers@39#, a phenomenon of great interest for cosmolo
and particle physics. The topologically distinct vacua a
separated by a potential barrier, whose height, in models w
the Higgs mechanism, is given by the sphaleron energy.
pology changing transition may occur via tunneling at lo
energies or, at sufficiently high energy and suitable init
state, via classical evolution over the sphaleron.

In this paper we study a four-dimensional model whi
captures all the important features of the Stand
Model—an SU(2) gauge theory with the Higgs double
This model corresponds to the bosonic sector of the Stan
Model with uW50. To the leading order in the couplin
constant, the effect of fermions on the gauge and Higgs fie
dynamics can be ignored@40#. The action of the model is

S5
1

4paW
E d4xH 2

1

2
Tr FmnFmn1~DmF!†DmF

2l~F†F21!2J , ~2!

where
5-2
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SEMICLASSICAL STUDY OF BARYON AND LEPTON . . . PHYSICAL REVIEW D68, 036005 ~2003!
Fmn5]mAn2]nAm2 i @Am ,An#, ~3!

DmF5~]m2 iAm!F, ~4!

with Am5Am
a sa/2 andaW5g2/4p. Here we have eliminated

inessential constants by an appropriate choice of units.
dimensional parameters can be restored noting that in
normalization~2!, the gauge boson mass is

MW5
1

A2
, ~5!

and the Higgs boson mass is

MH5A8lMW .

In most of our calculations the Higgs self-couplingl was set
equal to l50.125, which corresponds toMH5MW . The
dependence on the Higgs boson mass is very weak, so th
a reasonable approximation. Also we often omit the om
present overall factor 1/aW .

Any vacuum configuration in this model can be obtain
from the trivial vacuumAm50, F5Fv5(1

0) by a certain
gauge transformationU(x). We will be using the tempora
gauge A050, where the vacuum configurations are d
scribed by time-independentU(x), corresponding to residua
gauge invariance. In this gauge, field values at spatial infi
cannot change during the evolution~otherwise the kinetic
term becomes infinite! and thus one considers only tho
U(x) which have some fixed asymptotics at spatial infini
Often the asymptoticU(x→`)→1 is used, so any vacuum
configuration corresponds to a mapping from spaceR3 with
identified infinity, which is homotopically equivalent toS3,
to the gauge groupSU(2);S3. The degree of this mappin
is precisely the topological number of the correspond
vacuum. A gauge choice of this form is convenient for ana
sis of the excitations about the trivial vacuum. For oth
purposes it may however be useful to choose an alterna
behavior of the gauge function at spatial infinity, likeU(x)
→exp$isxÕzxz%, which maps theS2 of spatial infinity to the
equatorialS2 of theSU(2). The twoneighboring vacua then
map the spaceR3 either to north or south hemisphere of th
SU(2). In this gauge, the sphaleron configuration takes
simplest form, and we will use this gauge everywhere in t
paper, except for the analysis of the mode expansion in
initial state.

Numerous perturbative attempts were made to find
probability of the collision-induced topology changing tra
sitions in this model~see@27–29# for reviews!, giving reli-
able results only for relatively low energies. A no
perturbative study of classically allowed over-barr
transitions was presented in@41#. All solutions found in@41#
are configurations with large numbers of particles in the
tial state and thus they do not correspond to realistic co
sions. Another approach, pursued in this paper, is to use
semiclassical method of@30–32,34# adapted for theories
with gauge degrees of freedom. This method was imp
mented in@33#, where the results were obtained for energ
below Esph, what suggested that at the sphaleron energy
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suppression is still strong. However, a straightforward ap
cation of the technique of@30–32,34# fails for energy above
the sphaleron due to the problems one encounters as th
ergy approaches the height of the barrier in systems w
many degrees of freedom. These problems were studie
detail in the context of a quantum mechanical model in@38#,
where a regularization technique was suggested to overc
them.

The basic idea in the proposal of@30–32,34# is that, in-
stead of a process with exclusive, two-particle initial sta
one considers a topology changing process with inclus
initial state characterized by definite energyE and incoming
particle numberN. The transition probabilitys(E,N) can
then be used to provide a bound on the exclusive tw
particle cross-section, while the two-particle transition exp
nent is obtained in the limitaWN→0.

The inclusive probability of tunneling from a state wit
fixed energy and number of particles is

s~E,N!5(
i , f

u^ f uŜP̂EP̂Nu i &u2, ~6!

whereŜ is theS-matrix, P̂E,N are projectors onto subspace
of fixed energyE and fixed number of particlesN, and the
statesu i & andu f & are perturbative excitations about topolog
cally distinct vacua. This matrix element can be written
double path integral representation. For largeN5Ñ/aW and
E5Ẽ/aW the path integral can be calculated in the semicl
sical approximation, and this leads to the problem of solv
the equations of motion of the system on a special contou
complex time plane, which detours around singularities,
shown in Fig. 1. The presence of branch cut singularities
be inferred from the following argument. One notices th
for energy below the sphaleron energy, if one continues
solution along a line parallel to the real axis, be this via
forward integration of the equation of motion from the A
part of the contour or a backward integration from the C
part of the contour, the field must fall back to the origin
topological sector. On the other hand, by construction, on
AB and CD parts of the contour the solution must be
different topological sectors. Thus the solution must also
in different topological sectors on the AB part of the conto
and on the negative real axis and, likewise, on the posi
real axis and the continuation of the AB segment to posit

FIG. 1. The contour in complex time plane used in the form
lation of the boundary value problem~9!. Crossed circles represen
singularities of the field. If the field is spherically symmetric
space, the singularities closest to imaginary axis occur atr 50, for
other r the singularities generally move to largeruRetu.
5-3
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BEZRUKOV et al. PHYSICAL REVIEW D 68, 036005 ~2003!
time. This may happen only if two branch cut singulariti
exist on the two sides of the BC part of the contour~see Fig.
1!.

Eventually the semiclassical approximation produces
following result (w here stands for all physical fields in th
model!:

s~E,N!;expH 2
4p

aW
F~Ẽ,Ñ!J ,

4p

aW
F~Ẽ,Ñ!52 ImSABCD~w!2Nu2ET2ReBi . ~7!

Here SABCD(w) is the action along the time contour, th
parametersT andu are Legendre conjugate toE andN; the
parameterT is the same as in Fig. 1; we will have to sa
more aboutu later on. In what follows we will usually drop
the tilde over the rescaled energy and incoming particle n
ber, and the overall 1/aW factor, restoring it only in the fina
results.

The boundary term

Bi5
1

2E dk~ f k f 2ke
22ivk(Ti2 iT/2)2gk* g2k* e2ivk(Ti2 iT/2)!

is written using frequency componentsf k andgk of the field
on the part A of the contour:

w~x,t !u t→2`1 iT/25E dk

~2p!3/2A2vk

~ f ke
2 ivk(t2 iT/2)1 ikx

1gk* eivk(t2 iT/2)2 ikx!. ~8!

The fieldw satisfies the field equation

dS

dw
50. ~9a!

At initial time the frequency components of the solutio
should satisfy the following equation~‘‘ u boundary condi-
tion’’ !:

f k5e2ugk . ~9b!

For u different from zero this equation implies that the fie
must be continued to complex values. For a complex fie
like F in ~2!, its real and imaginary parts must be continu
to complex values separately.

On the final part of the contour~CD!, the field must sat-
isfy the reality condition

Im ẇ~x,Tf→`!→0, Imw~x,Tf→`!→0 ~9c!
03600
e
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@for complex fields, such asF in ~2!, this means that both
(F1F†)/2 and (F2F†)/2i must be real#.

Equations~9a!–~9c! specify the boundary value problem
corresponding to the induced topological transition.

The equations obtained by variation over the auxilia
parametersT andu are

E5E dkvk f kgk* , ~10!

N5E dk f kgk* . ~11!

These equations indirectly fix values ofT and u for given
energy and number of particles. Alternatively, one can fixT
andu, solve the boundary value problem~9! and obtain the
corresponding values ofE and N using Eqs.~10! and ~11!.
This is especially convenient in numerical calculations.

The interpretation of the solutions to the boundary va
problem~9! is as follows. On the part CD of the contour, th
saddle-point field is real asymptotically; it describes the e
lution of the system after tunneling. On the contrary, it fo
lows from boundary conditions~9b! that in the initial
asymptotic region the saddle-point field is complex whe
everuÞ0. Thus, the initial state which maximizes the pro
ability ~7! is not described by a real classical field, i.e. th
stage of the evolution is essentially quantum even atN
;1/aW .

There is a subtle point concerning the boundary condit
~9c!. It can be satisfied in two different ways. Either th
solution is exactly real on the whole CD part of the conto
and is close to vacuum, or it has an exponentially decay
imaginary part and approaches the sphaleron along the c
plexified unstable direction. This subtlety is important for t
analysis at high energies~Sec. V!, E*Esph.

The solutions to the boundary value problem can be fou
numerically for different values ofE andN. In this paper we
study solutions that have spherical symmetry in space. O
expects that these are most important for large enoughN;
perturbative calculations about the instanton suggest
spatial spherical symmetry is relevant at relatively low en
gies and allN. We do not have a convincing argument
favor of spherical symmetry for few particle collisions
very high energies; in any case, our results as they stand
valid for s-wave scattering.

Our numerical analysis shows that theE2N plane is di-
vided into several different regions~see Fig. 2!. Values of
E,N•min(MW,MH) are trivially excluded by kinematics
For relatively low energies~region A! the transitions between
the topologically distinct vacua can occur only via tunnelin
At the sphaleron energyEsph the situation changes. A sligh
excitation of the sphaleron along the unstable direction gi
origin to a solution of the classical equations of moti
which evolves towards different topological sectors at la
negative and positive times. Since the sphaleron has exa
one negative mode, there is only one infinitesimal deform
tion of this type, and thus the corresponding solution h
5-4
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definite number of particlesNsph in the initial state. At higher
energies one may add excitations of the positive mo
above the sphaleron to obtain over-barrier solutions with
ferent, and, in particular, smaller initial particle numb
These solutions belong to the domain of classically allow
transitions~region B in Fig. 2!, where the topology changin
processes are unsuppressed. The boundary between reg
and region B corresponds to configurations staying for
infinite time close to the sphaleron~since there are no boun
states in the sphaleron background@42#, all excitations about
the sphaleron fly away at finite time, so the field relaxes
the sphaleron solution!.

In the classically forbidden region A there is a spec
family of solutions, corresponding tou50 in the boundary
value problem. These are represented by the lineEPI(N) in
Fig. 2. In this case, the boundary condition~9b! reduces to
the reality condition imposed at Imt5T/2. The solution to
the resulting boundary value problem is the periodic inst
ton of @43#. The periodic instanton is a real periodic solutio
to the Euclidean field equations with periodT and turning
points att50 andt5 iT/2 (modT). When analytically con-
tinued in the Minkowskian direction through the turnin
points, the periodic instanton is real on the lines Imt50 and
Im t5T/2 and therefore satisfies the boundary value prob
~9! with u50. Like any other solution linearizing at larg
negative times at part A of the contour of Fig. 1, the perio
instanton has a certain number of incoming particl
Eq. ~11!. For given energyE below the sphaleron, this num
ber is such that the suppression exponentF(E,N) has a
minimum, i.e., the transition occurs at maximum rate.

The classically forbidden region A is further subdivide
into two regions. For low energies~region A.I! the system is
close to the vacuum on the final part of the evolution, so
boundary condition~9c! leads to the exact reality of th
fields on the part CD of the time contour. At energies high
than the sphaleron energy@precisely, on the right of the line
E1(N)] the system ends up close to the sphaleron~with extra
outgoing waves in the sphaleron background!. In this case
Eq. ~9c! is truly asymptotic. So, the system tunnels ‘‘on top
of the barrier, creating an unstable sphaleron configurat
which then decays with probability of order 1 to any of t
two neighboring vacua. This situation is realized in the
gion A.II. This new qualitative feature of the tunneling
high energies emerges from the existence of the bifurca

FIG. 2. Regions in theE–N plane.
03600
s
f-
.
d

n A
n

o

l

-

m

c
,

e

r

n,

-

n

of the solutions and is not seen in any order of perturba
expansion around the instanton. Non-perturbative
proaches, however, capture this feature~see also@44# for
similar results in the context of false vacuum decay!.

Our numerical results for the suppression exponent in
whole classically forbidden region are presented in Figs
4. The almost vertical line in Fig. 3 separates the two regi
~denoted by A.I and A.II in our earlier discussion! where the
tunneling process assumes characteristically distinct featu
It also represents the frontier beyond which numerical cal
lations based on a straightforward implementation of
method of@30–32,34# appear to fail. It is clear from Fig. 3
that our improved numerical technique can go well beyo
that frontier. Reference@45# presents a comparison betwee
our results and the analytic predictions for the suppress
exponentF(E,N) in the limit of small energy. The two are in
remarkable agreement which provides a gratifying check
the numerical calculations.

Another interesting comparison can be made with the
sults of @41#, where the real-time overbarrier solutions clo
to the boundary of the classically allowed region we
searched via Monte Carlo techniques.2 In this way, an ap-
proximation~which, at the same time, is an upper bound! for
the boundary of the classically allowed region was obtain
It is seen that the results of@41# are reasonably close to th
boundaryE0(N), found in our calculations.

Our results by themselves do not reach the physically

2In @41# the coupling constantl was chosen 0.1, while we us
l50.125. We performed a set of calculations forl50.1. The de-
pendence onl is so weak, that the difference for the results wou
be invisible in the graph. Much larger discrepancies appear bec
of the different lattice parameters used in the two calculations.~In
@41#, having only to solve for the real time evolution of the fields,
was possible to use a larger lattice and a finer lattice spacing tha
the present calculations.!

FIG. 3. Lines ofF(E,N)5const. Lines are labeled by the va
ues of the suppression exponent2aWlog s54pF. Diagonal line
directed from the sphaleron towards the origin is the line of perio
instantons. EnergyE is in units ofMW /aW , number of particlesN
is in units of 1/aW . The line labeled by 0 (F50) is the boundary of
the classically allowed regionE5E0(N). The ‘‘fuzzy’’ line repre-
sents the approximate boundary of the classically allowed reg
found in overbarrier calculations of@41#.
5-5
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BEZRUKOV et al. PHYSICAL REVIEW D 68, 036005 ~2003!
terestingN50 limit ~corresponding to particle collisions!.
Studying lowerN in numerical calculations would need la
tices with larger number of lattice points and would requ
quite substantial amounts of time even on powerful pres
day supercomputers. Therefore, some extrapolation must
be used to get insight on the suppression factor for ac
particle collisions. As we seek such extrapolations, we no
first that it is quite straightforward to obtain a lower bou
on the suppression exponentF. Insofar asu increases asN
→0, and (4p)]F/]N52u, by simply continuingF with a
linear function ofN for each energy one obtains a low
bound onF. This bound is shown in Figs. 5, 6, dashed lin
It indicates that up to the energy 8MW /aW.20 TeV the sup-
pression is still high: the suppression factor is smaller th
e260;10226 for aW;1/30.

For very high energies a bound may be constructed
exploiting the observation that the lines of constantF in E
2N plane have positive curvature~see Fig. 3!. So, by ex-
trapolating these lines linearly toN50 one obtains anothe

FIG. 4. Dependence of the suppression exponent on the num
of particlesN for different energies. Numbers near the curves
energies in units ofMW /aW .

FIG. 5. Lower bound on the suppression exponent for tw
particle collisions, dashed and dashed–dotted lines. Dotted lin
the estimate of@46,47#.
03600
nt
till
al
e

.

n

y

lower bound on the suppression exponentF(E,N50). This
bound is displayed in Fig. 5, dashed–dotted line. One can
that exponential suppression continues up to an energy o
least 250 TeV.

One may also attempt to estimate the functionF(E) itself.
As we discuss in Sec. VI, a good estimate is obtained
extrapolating, instead ofF(E,N), the functionT(N) at fixed
energy, asT(N) is approximately linear inN. Up to the
sphaleron energy, the estimate obtained in this way is c
to the one loop analytic result@48–51#, which gives three
terms in the low-energy expansion,

4p

aW
F~E!5

4p

aW
F12

9

8 S E

E0
D 4/3

1
9

16S E

E0
D 2G , ~12!

whereE05A6pMW /aW . Below the sphaleron, our estima
is also consistent with the analytic estimate of@46,47#. On
the other hand, the behavior ofFHG(E) changes dramatically
at E*Esph. We attribute this to the change in the tunnelin
behavior—atE*Esph the system tunnels ‘‘on top of the ba
rier.’’ Our numerical data show that the suppression expon
FHG(E) flattens out, and topology changing processes ar
fact much heavier suppressed atE*Esph as compared to the
estimate~12! and the estimate of@46,47#. We show our esti-
mate, together with analytical estimates and our low
bound, in Fig. 6.

It is worth noting that similar effects of dramatic chang
of the behavior of the system at high energies were obse
in lattice calculations of instanton distribution in QCD
@54,55#.

Thus, our numerical results, albeit covering a limit
range of energies and initial particle numbers, enable u
obtain both lower bound for and actual estimate of the s
pression exponent for the topology changing two-parti
cross-section in the electroweak theory well above
sphaleron energy. This cross section remains exponent
suppressed up to very high energies of at least 250 TeV

er
e

-
is

FIG. 6. Estimate of the suppression exponent for two-part
collisions FHG(E) ~solid line!, lower bound onFHG(E) ~dashed
line!, low energy analytic prediction~12! ~rare dotted line! and ana-
lytic estimate of@46,47# ~dotted line!.
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fact, the energy, if any, at which the exponential suppress
disappears, is most likely much higher, as suggested by c
parison of our lower bound and actual estimate at ener
exceeding significantlyEsph, see Fig. 6.

III. THE METHOD OF RST

A. General formulation

The quantity we wish to calculate iss(E,N), the prob-
ability of transition from a state with fixed energyE and
number of particlesN about one vacuum toany state about
another vacuum. The method of semiclassical calculation
this inclusive multiparticle probability was formulated
@30–32,34#. We call it the RST method for brevity, and he
we review this prescription in brief.

The inclusive multiparticle probability~6! can be written
in functional integral form, where the semiclassical appro
mation is equivalent to the saddle-point integration. T
double path integral representation fors(E,N) reads@30#

s~E,N!5E dqdTdakdak* dbkdbk* dw~x!dw8~x!expH
2 iNq2 iET2E dkakak* e2 iq2 ivkT2E dkbkbk*

1Bi~ak ,w i !1Bf~bk* ,w f !1Bi* ~a2k* ,w i8!

1Bf* ~b2k ,w f8!1 iS~w!2 iS~w8!J . ~13!

Here w stands for all physical fields of the theory. Th
boundary termsBi andBf are
e

ex

03600
n
m-
es

of

-
e

Bi~ak ,w i !5
1

2E dk@2vkw i~k!w i~2k!2aka2ke
22ivkTi

12A2vke
2 ivkTiakw i~k!#,

Bf~bk* ,w f !5
1

2E dk@2vkw f~k!w f~2k!2bk* b2k* e2ivkTf

12A2vke
ivkTfbk* w f~2k!#, ~14!

wherew i , f(k) are the spatial Fourier transforms of the fie
at initial and final timesTi and Tf , respectively. The limit
Ti , f→7` is assumed at the end of the calculation. The co
plex integration variablesak andbk* come from the coheren
state representation of initial and final states; they are
classical counterparts of annihilation and creation operat
The integration over these variables implements the sum
tion over initial and final states in Eq.~6!. The functional
integrals overw(x) andw8(x) come from the amplitude and
complex conjugate amplitude, respectively. The integrati
include the boundary valuesw i , f andw i , f8 . Integration overT
andq serve to project onto the subspaces of fixedE andN,
respectively.

The integral~13! can be evaluated in the saddle poi
approximation, as long as the exponent is proportiona
1/aW , implicitly present in the expression, andN,E
;1/aW .

Let us now discuss the saddle-point equations for the
tegral~13!. We will see that these equations reduce to a c
tain boundary value problem for the fieldsw and w8. The
variablesak , ak* , bk , andbk* enter the exponent quadrat
cally and can be integrated out, yielding
s~E,N!5E dqdTdw~x!dw8~x!)
k

d~w f~k!2w f8~k!!3expH 2 iNq2 iET1 iS~w!2 iS~w8!2
1

2E dk
vk

12gk
2 ~~11gk

2!

3@w i~k!w i~2k!1w i8~k!w i8~2k!#24gkw i~k!w i8~2k!!J , ~15!
for
the

int
where

gk5eiq1 ivkT.

An important feature of the representation~15! is that the
exponent on the right-hand side~rhs! contains only the action
and the boundary terms. Thus, the discretization of this
ponent is relatively straightforward.

Let us turn to the saddle point equations. Varying the
ponent with respect to the fieldsw(x) andw8(x) we find

dS

dw
5

dS

dw8
50, ~16!
x-

-

i.e. the usual field equations. The boundary conditions
these equations come from the variation with respect to
boundary values of the fields. Att5Tf , because of the
d-function, the variations are subject to the constra
dw f(x)5dw f8(x) ~at Tf→`). Since dS/dw(Tf ,x)

5ẇ(Tf ,x) we obtain

ẇ~Tf ,x!5ẇ8~Tf ,x!,

w~Tf ,x!5w8~Tf ,x!. ~17!

Thus, in the final asymptotic region the saddle-point fieldsw
andw8 coincide.

The variation with respect tow i andw i8 leads to two equa-
tions which can be written in the following form:
5-7
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i ẇ i~k!1vkw i~k!5gk~ i ẇ i8~k!1vkw i8~k!!,

2 i ẇ i~k!1vkw i~k!5
1

gk
~2 i ẇ i8~k!1vkw i8~k!!.

These initial boundary conditions simplify when written
terms of frequency components. In the initial asymptotic
gion (t→2`), wherew andw8 are free fields, we can write

w~x!5E dk

~2p!
3
2A2vk

$ f ke
2 ivkt1 ikx1gk* eivkt2 ikx%,

w8~x!5E dk

~2p!
3
2A2vk

$ f k8e
2 ivkt1 ikx1gk8* eivkt2 ikx%.

~18!

Then the initial boundary conditions become

f k5gk f k8 ,

gk* 5
1

gk
g8k* . ~19!

Finally, there are two saddle-point equations which co
from the variation of the exponent in Eq.~15! with respect to
q andT. These equations determine the saddle-point va
of q andT as functions ofE and N. In terms of frequency
componentsf k andgk they read@after using boundary con
ditions ~19!#

E5E dkvk f kgk* , ~20!

N5E dk f kgk* . ~21!

One may recognize the usual expressions for the energy
the number of particles contained in the free classical fie
nk5 f kgk* being the occupation number in the mode w
spatial momentumk.

The field w8(x) originates from the complex conjuga
amplitude. This suggests that its saddle point value is c
plex conjugate to that ofw(x). Indeed, the Ansatz

@w~ t,x!#* 5w8~ t,x!

is compatible with the boundary value problem~16!–~21!.
Then the saddle point values ofT andq are pure imaginary

T5 iT, q5 iu,

provided the initial energy~20! and particle number~21! are
real. The boundary conditions~17! imply then that the field
w is real asymptotically at final time

Im ẇ~Tf ,x!→0, Imw~Tf ,x!→0 for Tf→1`,

while Eq. ~19! relates the positive and negative frequen
components of the fieldw in the initial asymptotic region

f k5gkgk ,
03600
-

e

es

nd
,

-

where

gk5e2u2vkT. ~22!

Until now, the initial timeTi was real. However, it is conve
nient to reformulate the boundary value problem directly
terms of the fields on the contour ABCD, at which the initi
time has imaginary part ImTi5T8/2 ~see Fig. 7!. The ana-
lytical continuation in the initial asymptotic region can b
done explicitly by means of Eqs.~18!. In Eqs.~19!–~21! this
continuation results in the substitution ofgk by

gk5e2u2vk(T2T8).

The simplest boundary conditions are obtained in the c
when the contour height in imaginary timeT8 is equal to the
parameterT, leading tok-independentg

g5e2u.

In this case one arrives at the boundary condition~9b! and
the contourABCD with height T/2 shown in Fig. 1. This
formulation will be used in most cases. Then the bound
value problem~16!–~21! is equivalent3 to Eqs. ~9!–~11!.
This is the boundary value problem we solve numerically
the present paper.

Let us discuss some subtle points of this boundary va
problem. First, one notices that the condition of asympto
reality ~9c! does not always coincide with the condition
reality at finite time. Of course, if the solution approaches
vacuum on the part CD of the contour, the asymptotic rea
condition ~9c! implies that the solution is real at anyfinite
positivet. Indeed, at large enough time the system evolve
that case in the linear regime, so the condition~9c! means
that all physical modes should be real. Due to the equati
of motion the fields are then real on the entire CD-part of
contour. This situation corresponds to the transition direc
to the neighboring vacuum. However, the situation can
drastically different if the solution on the final part of th
time contour remains in the interaction region, i.e. close
the sphaleron. Since one of the excitations about the sph
ron is unstable, there may exist solutions which approach
sphaleronexponentiallyalong the complexified unstable d
rection. In that case the solution may be complex at a
finite time, and become real only asymptotically, ast→
1`. Such solution corresponds to tunneling to the spha
ron; afterwards the system rolls down classically to the c

3The boundary term in Eq.~7! is obtained from the boundary
terms in Eq.~15! by making use of theu boundary conditions~9b!.

FIG. 7. The contour used to derive the boundary value probl
5-8
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rect vacuum~with probability of order 1, inessential for th
tunneling exponentF). We will see in Sec. V that the situa
tion of this sort indeed takes place at high energiesE
*Esph.

Second, the initial boundary conditions~19! ~imposed on
the real time axis! mean, thatw andw85w* are different at
large negative time, while at large positive time they co
cide because of the condition~17!. For solutions ending in
the vacuum at positive time~so that the fields are exactly re
at finite t.0), this means that there should exist a bran
point in the complex time plane: the contour in Fig. 1 win
around this point and cannot be deformed to the real t
axis. This argumentdoes notwork for solutions ending on
the sphaleron att→1`, so branch points between the AB
part of the contour and the real time axis may be absent.
have found that this is indeed the case at high energies~cf.
@38#!.

B. Reduction to spherically symmetric configurations

Here we consider spherically symmetric configuratio
@52# of the SU(2)-Higgs theory. The reason is that one c
entertain the expectation that the most important tunne
configurations possess maximum spatial symmetry. On
other hand, without the simplification provided by spheric
symmetry the computational cost of the numerical analy
would be prohibitive.

In the spherically symmetricAnsatzthe original fields are
expressed in terms of six real two-dimensional fieldsa0 , a1 ,
a, b, m, andn as follows:

A0~x,t !5
1

2
a0~r ,t !s•n,

Ai~x,t !5
1

2 Fa1~r ,t !s•nni1
a~r ,t !

r
~s i2s•nni !

1
11b~r ,t !

r
e i jknjskG , ~23!

F~x,t !5@m~r ,t !1 in~r ,t !s•n#j,

wheren is the unit three-vector in the radial direction andj
is an arbitrary constant two-component complex unit c
umn. This ansatz is symmetric under spatial rotatio
complemented by appropriate rotations in the gauge gr
and custodial global symmetry transformations. The act
~2! expressed in terms of the new fields becomes

S5E dtE
0

`

drF1

4
r 2f mn f mn1~D̄mx̄!Dmx1r 2~D̄mf̄!Dmf

2
1

2r 2
~xx̄21!22

1

2
~xx̄11!f̄f2

i

2
x̄f21

i

2
xf̄2

2lr 2~f̄f21!2G ~24!

where the indicesm, n run from 0 to 1 and
03600
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f mn5]man2]nam , ~25a!

x5a1 ib, x̄5a2 ib, ~25b!

f5m1 in, f̄5m2 in, ~25c!

Dmx5~]m2 iam!x, D̄mx̄5~]m1 iam!x̄, ~25d!

Dmf5S ]m2
i

2
amDf, D̄mf̄5S ]m1

i

2
amD f̄.

~25e!

Note that the overbar onf, x, andDm denotes changingi
→2 i in the definitions~25! above, which is the same a
complex conjugationonly if the six fieldsam , a, b, m, and
n are real. In the boundary value problem~9! these fields
become complex and overbar no longer corresponds to
mal complex conjugation.

The equations of motion obtained from~24! are

]1~r 2f 01!5 i @xD̄0x̄2x̄D0x#1
i

2
r 2@fD̄0f̄2f̄D0f#,

~26a!

]0~r 2f 01!5 i @xD̄1x̄2x̄D1x#1
i

2
r 2@fD̄1f̄2f̄D1f#,

~26b!

FDmDm1
1

r 2
~xx̄21!1

1

2
f̄fGx52

i

2
f2, ~26c!

F D̄mD̄m1
1

r 2
~xx̄21!1

1

2
f̄fG x̄52

i

2
f̄2, ~26d!

FDmr 2Dm1
1

2
~xx̄11!12lr 2~f̄f21!Gf5 ixf̄,

~26e!

F D̄mr 2D̄m1
1

2
~xx̄11!12lr 2~f̄f21!G f̄5 i x̄f.

~26f!

Equation~26a! is of the first order in time—it is Gauss’ law
The spherical Ansatz~23! has a residualU(1) gauge in-

variance

am→am1]mV, ~27a!

x→eiVx, ~27b!

f→eiV/2f, ~27c!

with gauge functionV(r ,t). The complex ‘‘scalar’’ fieldsx
andf haveU(1) charges 1 and 1/2, respectively.am is the
U(1) gauge field,f mn is the field strength tensor, andDm in
~25! is the covariant derivative. The residualU(1) gauge
5-9
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invariance must be fixed when solving the equations num
cally. We choose the temporal gaugea050. In this gauge, if
Gauss’ law is obeyed at some moment of time, the other
equations guarantee that it is obeyed at any time. This me
in fact, that one of the equations is redundant, and one of
fields is not physical—it can be expressed in terms of
other four fields and their derivatives using Gauss’ law. Ho
ever, numerically it is easier to solve five second order eq
tions of motion imposing Gauss’ law as one of the bound
conditions. Also, in thea050 gauge, there remains a gau
freedom with time independent gauge function, and t
should also be fixed by boundary conditions.

The trivial space-independent vacuum of the model is

xvac52 i , fvac561, a1 vac50. ~28!

Other vacua are obtained from the trivial one by the ga
transformations

amvac5]mV, ~29a!

xvac52 ieiV, ~29b!

fvac56eiV/2. ~29c!

By regularity, V should be zero at the origin. Vacua wit
different winding numbers correspond toV→2np as r
→`. For such values ofV, the fields of the original four-
dimensional model are constant at spatial infinity, and thi
the standard choice. It allows for a simple description of
topological properties of vacua: since the sphereS2 at spatial
infinity is mapped to one point in field space, one can co
pactify the space toS3 and consider mappingsS3→SU(2),
corresponding to pure gauge field configurations.

One can also make other choice of gauge transforma
function V(r ) at spatial infinity ~as long as the fields ar
pure gauge and constant in time there!. In our case it is
convenient to setV→(2n21)p at r→`. This choice,
called ‘‘periodic instanton gauge’’ in this paper, in the orig
nal four-dimensional theory corresponds to mapping of
sphereS2 at spatial infinity onto the equatorial sphereS2 of
the SU(2) gauge group, parametrizing the pure gauge fi
configuration. This behavior ofV is equivalent to the re-
quirement that the fields satisfy the following boundary co
ditions atr 50 andr 5`,

xur→0→2 i , xur→`→ i ,

] rf1] rf̄ur→0→0, fur→`→ i , ~30!

f2f̄ur→0→0.

The conditions for the fieldf at r→0 make the original field
F regular at the origin.

In this gauge nor-independent vacuum exists, but tran
tion between vacua withn50 and n51 is described in a
very symmetric way. The behavior of the fieldsx andf for
such transition is shown in Fig. 8. In the original fou
dimensional model this topology changing process co
sponds to a transition where the fields wind over the low
03600
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hemisphere ofSU(2) before the transition and over the u
per hemisphere after the transition.

The initial u-boundary conditions in gauge theory a
quite complicated. The basic reason is that there is a red
dant field among the five fieldsa1 , f, f̄, x, x̄, while the
u-boundary conditions~9b! are to be imposed on physica
fields only. The analytic expressions for the modesf k , gk in
terms of the fieldsx, f, a1 are cumbersome~see@41,53#!
and will not be presented here. It is simpler, and more pre
in the lattice case, to perform this expansion numerically
the discretized version of the model. This expansion will
described in the following section.

To complete the boundary value problem, one has to
pose Gauss’ law and the equation fixing the time independ
gauge invariance. Note that both of these equations are
full complex valued equations~unlike theu-boundary condi-
tions!, otherwise the system would have been overde
mined. The point is that, the reality conditions at final tim
~9c! forbid gauge transformations with imaginary gau
functions and also guarantee that Gauss’ law does not h
imaginary part. So, only the real part of Gauss’ law~26a! and
equation fixing only real-valued gauge transformations m
be used. Together with fouru-boundary conditions this give
the right number of boundary conditions for the system w
five complex valued fieldsa1 , a, b, m, n. The exact form
of the gauge fixing condition will be given in Sec. IV, be
cause it is again most conveniently expressed in lat
terms.

One more complication of the problem is the invarian
of the equations under translations along the real time.
solve the equations numerically this should be fixed in
controlled way, to make sure the contour winds around
branching points of the solution, and does not get too cl
to them. A method of removing this invariance will also b
described in Sec. IV.

IV. COMPUTATIONAL CHALLENGES

A. Discretized action

To obtain a self-consistent system of equations, the
cretization of the equations~26b!–~26f! should be done in a
gauge invariant way.

First, let us consider the discretized version of the act
~24!. The spatial axis is discretized by introducing sitesr i ,

FIG. 8. Topological transition in theSU(2) Higgs model: be-
havior of the fieldsf andx. Bold arrows show the change of th
field as the radial coordinate increases fromr 50 to r 5`. The
configurations are shown:~a! at initial time,~b! in the middle of the
process, and~c! at final time.
5-10
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i 50, . . . ,N, wherer 050, r N5L. The time grid consists o
sites t j , j 521, . . . ,Nt11. We are working in thea050
gauge, and omit the subscript in the spatial component of
gauge field,a1(r ,t)[a(r ,t). Field variablesx i j , x̄ i j and
f i j , f̄ i j correspond to field values on the space-time latt
sites, whileai j are defined on spatial links and tempor
sites. We also absorb theDr i factors in the definition ofai j .
The boundary conditions in the periodic instanton gauge,
~30!, are

x0 j52 i , xN j5 i , ~31a!

x̄0 j5 i , x̄N j52 i , ~31b!

f0 j5
1

2
$e2 ia0 j /2f1 j1eia0 j /2f̄1 j%, fN j5 i , ~31c!

f̄0 j5f0 j , f̄N j52 i ~31d!

for all j. In the boundary condition forf0 j , the spatial de-
rivative in Eq. 30 was changed into a covariant one to p
serve exact lattice gauge invariance. Thus the complex la
field variables left are

x i j , x̄ i j , f i j , f̄ i j , i 51, . . . ,N21, j 521, . . . ,Nt11,

ai j , i 50, . . . ,N21, j 521, . . . ,Nt11.

The discretized action reads

S5~SffSt1Sr1Sint!,

Sff5 (
j 521

Nt

(
i 50

N21

v1,jw1,i~12cos~ai , j 112ai j !!,

St5 (
j 521

Nt

(
i 51

N21

v1,j$w3,i~ x̄ i , j 112x̄ i j !~x i , j 112x i j !

1w4,i~f̄ i , j 112f̄ i j !~f i , j 112f i j !%, ~32!

Sr52 (
j 521

Nt

(
i 50

N21

v2,j$w2,i~eiai j x̄ i 11,j2x̄ i j !~e2 iai j x i 11,j

2x i j !1w1,i~eiai j /2f̄ i 11,j2f̄ i j !~e2 iai j /2f i 11,j

2f i j !%,

Sint52 (
j 521

Nt

(
i 51

N21

v2,j H w5,i

1

2
~ x̄ i j x i j 21!2

1w3,iF1

2
~ x̄ i j x i j 11!f̄ i j f i j 1

i

2
x̄ i j f i j

2 2
i

2
x i j f̄ i j

2 G
1lw4,i~f̄ i j f i j 21!2J ,

where the weights are
03600
e

e
l

q.

-
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v1,j51/Dt j 11/2, v2,j5hjDt j ,

w1,i5r i 11/2
2 /Dr i 11/2,

w2,i51/Dr i 11/2, w3,i5Dr i ,

w4,i5r i
2Dr i , w5,i5Dr i /r i

2 ,

with Dt j 11/25t j 112t j , Dt j5(Dt j 111Dt j )/2, and analo-
gous expressions forDr i ; hj51 for j 50,Nt and 1/2 for j
521,Nt11. Lattice field equations are derived from~32!
by variation over the lattice fields, after the boundary con
tions ~31! have been used to excludex0 j , x̄0 j , f0 j , f̄0 j and
xN j , x̄N j , fN j , f̄N j from the lattice action.

The action ~32! is exactly invariant under time
independent lattice gauge transformations of the form

ai j →ai j 1V i 112V i ,

x i j →eiV ix i j , ~33!

f i j →e2V j /2f i j .

This gauge freedom has to be fixed by boundary conditio

B. Boundary term: normal modes

To obtain lattice version of Eq.~9b! one notes that plane
waves are no longer eigenfunctions of the Hamiltonian
the lattice. To find their analogue one brings the quadra
part of the action~32!, taken in the limit of continuous time
to the canonical form. We expand it near the spa
independent vacuum~28!

x52 i 2x̃, x̄5 i 2x! , ~34!

f5211 i f̃, f̄5212 if!

@performing in the end a gauge transformation to the vacu
~30! is straightforward#. It is also useful to change to th
notations~25!,

x̃5ã1 i b̃, x! 5ã2 i b̃,

f̃5m̃1 i ñ, f! 5m̃2 i ñ.

In these terms, the quadratic part of the action~32! is
5-11
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S(2)5
1

2E dtH (
i 50

N21

w1,i ȧi
21 (

i 51

N21

~2w3,ia8 i
212w3,ib8 i

212w4,im8 i
212w4,in8 i

2!J 2
1

2E dtH (
i 50

N21

2w2,i@~ai1ã i 112ã i !
2

1~ b̃ i 112b̃ i !
2#1 (

i 50

N21

2w1,i@~ai /21m̃ i 112m̃ i !
21~ ñ i 112 ñ i !

2#1 (
i 51

N21

~4w5,i1w3,i !b̃ i
21 (

i 51

N21

w3,i@ã i
224ã im̃ i14m̃ i

2#

18l (
i 51

N21

w4,i ñ i
2J . ~35!
nd

,

n-

,
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,

nd
The

m-
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en

f
po-
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As seen from Eq.~35!, the variablesã0 , b̃0 , m̃0, andñ0 do
not have kinetic terms. Three of them are fixed by the bou
ary conditions atr 50,

ã05b̃05m̃050.

The fourth one,n0, is determined from the field equation
which for this variable reads

ñ05 ñ1 .

After the variables withi 50 have been excluded in the ma
ner described above, the quadratic action takes the form

S5E dtS 1

2
dI

2w8 I
22

1

2
w̃ ISIJw̃JD ,

where the real valued coefficientsdI andSIJ are to be read
off from Eq. ~35!, indicesI ,J label fields and space points
andw̃ I stands for the fields$ã i ,b̃ i ,m̃ i ,ñ i ,ai%. The change of
variables

yI5dI w̃ I

brings the kinetic term to the canonical form,

S5E dtS 1

2
ẏI

22
1

2
yIS̃IJyJD ,

where

S̃IJ5
1

dI
SIJ

1

dJ
.

The symmetric matrixS̃IJ is then diagonalized

S̃IJ5OIK
T vK

2 OKJ ,

whereOKJ is an orthogonal matrix. Introducing yet anoth
set of variableszI by the relations

OKJyJ5zK , yJ5OJK
T zK ,

we finally bring the action to the diagonal canonical form
03600
- S5E dtS 1

2
żI

22
1

2
v I

2zI
2D .

Therefore, vectors

j (K)I5OKI

are normal modes in the lattice formulation of the theory, a
should be used instead of the usual spherical waves.
corresponding frequencies arevK

2 .
The matrix OKJ and frequenciesvK are found numeri-

cally. Since they depend only on the spatial lattice para
eters~size and spacing! and coupling constantl, and do not
depend on the background vacuum field configuration, i
sufficient to perform this diagonalization once for a giv
lattice. The first 4N23 eigenvectorsj (K)I and eigenvalues
vK correspond to physical modes, and the restN21 of them
have v50 and thus correspond to the gauge~unphysical!
degrees of freedom.

C. Boundary conditions

(a) u boundary conditions.To derive the lattice version o
the boundary conditions, one takes the variation of the ex
nent for the total probability~15!, which can be written in the
following form:

iS~z!2 iS~z8!

2
1

2

v

12g2
$~11g2!~z21

2 1z821
2 !24gz21z218 %1 . . .

~36!

where dots denote terms irrelevant in the current context
g5e2u. One has to vary the lattice version of~36! with
respect tozI ,21 ~values ofz at the first time slice! and set
z85z* . The variational equation reads

i
dS

dzI ,21
2

v I

12g2
~11g2!zI ,211

2v Ig

12g2
zI ,21* 50

which leads to

dS

dzI ,21
1 i

12g

11g
v I RezI ,212

11g

12g
v I Im zI ,2150,

~37!
5-12
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where the derivatives of the action are equal to the class
momenta of the modes

dS

dzI ,21
52v1,21~zI ,02zI ,21!.

Here the indexI 51, . . . ,4N23 labels physical degrees o
freedom. One can go back to the original notations by me
of the relation

zI5j IJdJw̃J ,

whereI 51, . . . ,4N23.
Finally, we use the gauge transformation

V i5p expS 2
r i

c~L2r i !
D

with c50.5 to transform the fields from the periodic insta
ton gauge~30! to the form w̃J ~34! @of course, other gauge
choices withV(0)5p, V(L)50 are possible#. This trans-
formation has the form

w̃J5gKJwJ2w̃J
vac, ~38!

wherewJ stands for the fieldsa j ,b j ,m j ,n j ,aj in periodic
instanton gauge. The matrixgKJ and vectorw̃J

vac can be eas-
ily read off from the expression for the lattice gauge tra
formation ~33! and definition~34!.

(b) Zero modes part.Theu-boundary conditions~37! give
only 4N23 ~complex! equations, while 5N24 boundary
conditions are required at the initial time. The ‘‘left over
N21 conditions correspond toN21 gauge degrees of free
dom in the model. As described in Sec. III B, for theseN
21 equations one has to use the real part of Gauss’
~26a!,

ReFw1,i 21sin~ai 21,212ai 21,0!2w1,isin~ai ,212ai ,0!

1 iw3,i~ x̄ i ,21x i ,02x i ,21x̄ i ,0!1
i

2
w4,i~f̄ i ,21f i ,0

2f i ,21f̄ i ,0!G50, ~39!

wherei 51, . . . ,N21. One also makes use of equations th
fix the remaining real gauge freedom. The latter equati
are

RezL,2150 ~40!

for all L54N22, . . . ,5N24. These modes have zero fr
quencyvL50 and correspond to the unphysical degrees
freedom which change under gauge transformation, so
~40! fixes the residual gauge invariance with real gauge fu
tions completely. Gauge transformations with imagina
gauge functions are forbidden by the reality conditions
final time.
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(c) Final boundary conditions.It is straightforward to
implement the reality conditions at final time~9c!. Supposing
that the last two time grid points,Nt and Nt11 are on the
real time axis, they are

Im a i ,Nt
5Im b i ,Nt

50,

Im m i ,Nt
5Im n i ,Nt

5Im ai ,Nt
50, ~41!

Im a i ,Nt115Im b i ,Nt1150,

Im m i ,Nt115Im n i ,Nt115Im ai ,Nt1150.

For energies below the bifurcation lineE1(N) the timeNt
can be chosen to coincide with the point C of the time co
tour ~so there are only two lattice pointsNt andNt11 on the
whole CD part!. For higher energies, though, the fields a
not real along the most part of the real axis, so the part CD
the time contour has to be as long as possible~see Sec. V!.

(d) Fixing time translational invariance.One more com-
plication is that, in the continuous formulation, the bounda
value problem~9! has an invariance under translations alo
real time~both field equations and boundary conditions a
invariant under such a translation!. To define properly the
boundary value problem, one has to fix the position of
solution in time. In the lattice version this invariance is vi
lated by the discretization and finite volume effects, but t
violation does not enable one to control the position of
time contour relative to the branching points of the solutio

The existence of this invariance means that one of
equations is redundant~if discretization and finite volume
effects are discarded!. Somewhat arbitrarily, we take as re
dundant one of the real equations entering theu-boundary
conditions~9b!

argf k5arggk , ~42!

for a specific mode. Provided the system linearizes at ini
time, this equation is indeed a consequence of the others.
reason is that reality conditions at final time imply that t
~conserved! energy is real. Hence the~linearized! energy~10!
is real at initial time. Then one of the modes automatica
obeys Eq. ~42! provided all other modes obey th
u-boundary condition~9b!.

This suggests the following modification of the equation
One of the equations~9b! is changed to

u f ku5e2uugku,

whose lattice version is@cf. Eq. ~37!#

~12g2!FU dS

dzK,21
U2

1vK
2 uzK,21u2G22vK~11g2!

3FRe
dS

dzK,21
Im zK,212Im

dS

dzK,21
RezK,21G50.

~43!

Thus, instead of Eq.~42! one imposes another boundary co
dition, which is not invariant under time translations. T
choice of the latter is a matter of convenience. We control
5-13
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position of the solution in time by imposing the bounda
condition that fixes the ‘‘center-of-mass’’ of the fieldx at the
initial time to be equal to a givenR,

Re(
i 51

N21

w4,i~r i2R!~x i ,21x̄ i ,2121!250. ~44!

This prescription works if the modezK in Eq. ~43! is reason-
ably occupied at the initial time, otherwise the equation~42!,
which is ‘‘thrown away,’’ is nearly degenerate. Aside fro
this, the results of the calculations do not depend sign
cantly on the mode chosen.

The relative phase betweenf k and gk can be used to
check the validity of the calculations. In the linear regime
should be equal to zero, so the actual value of this ph
indicates how close the system is to the linear regime at
initial time.

To summarize, the lattice boundary value problem c
sists of the field equations, obtained from action~32! for all
inner lattice points@ i 51, . . . ,N21, j 50, . . . ,Nt , a total of
(N21)(Nt11) equations#, the final reality boundary condi
tions ~41! (N21 equations!, theu boundary conditions~37!
for all modes except one modezK (N22 equations!, and a
pair of real equations~43!, ~44! ~one complex valued equa
tion!. This makes (N21)(Nt13) complex equations for the
same number of variables.

D. Search for solutions

The equations to be solved make a set of discretized
tial differential equations which change their signature fro
hyperbolic on the Minkowskian parts of the time contour
elliptic on the Euclidean part. The problem at hand is
boundary value problem which cannot be transformed i
an initial value one. This means that the equations can
solved only globally, as a set of nonlinear equations at allr ,t
grid coordinates.

To deal with the nonlinear system of equations we emp
a multidimensional analog of the Newton–Raphson met
which approaches the desired solution iteratively. At ea
iteration, thelinearizedequations in the background of th
current approximation are solved. The next approximatio
obtained by adding the solution to the background, and
procedure is repeated. The advantage of the algorithm is
it does not require positive-definiteness of the matrix of s
ond derivatives. It is, however, sensitive to zero modes
the absence of zero modes, the algorithm converges quad
cally; the accuracy of 1029 is typically reached in 3–5 itera
tions. The convergence slows down in the presence of v
soft modes, as typically happens near bifurcation points.

E. Elimination algorithm

The discrete version of the equations derived from~32! is

]S

]w j I
50

@here w j I 5$a,a,b,m,n%(t j ,r i) and I runs from 0 to 5N
24, j 50 . . .Nt]. The Newton–Raphson iteration is
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]2S

]w j I ]w j 21,K
uj 21,K1

]2S

]w j I ]w jK
ujK

1
]2S

]w j I ]w j 11,K
uj 11,K1

]S

]w j I
50 ~45!

~all other second derivatives are zero! and before the nex
Newton–Raphson step the fields are changed according

w j I
(n11)5w j I

(n)1ujI .

Equations~45! can be rewritten in matrix form

D̃ j
(2)

•uj 211D̃ j•uj1D̃ j
(1)

•uj 111b̃ j50, ~46!

whereuj andbj5]S/]w j I are (5N24)-dimensional vectors
D̃ j

(2)5]2S/]w j I ]w j 21,K , D̃ j5]2S/]w j I ]w jK , D̃ j
(1)

5]2S/]w j I ]w j 11,K are (5N24)3(5N24) matrices. By
multiplying Eq. ~46! by D̃ j

21 we get

uj5D j
(2)

•uj 211D j
(1)

•uj 111bj ~47!

with D j
(6)52D̃ j

21
•D̃ j

(6) , bj52D̃ j
21

•b̃ j . This system of
linear equations was solved by the following version
‘‘divide-and-conquer’’ elimination algorithm. Excludinguj
for somej gives

uj 215~12D j 21
(1)

•D j
(2)!21@D j 21

(2)
•uj 221D j 21

(1)
•D j

(1)
•uj 11

1~D j 21
(1)

•bj1bj 21!#,

uj 115~12D j 11
(2)

•D j
(1)!21@D j 11

(2)
•D j

(2)
•uj 211D j 11

(1)
•uj 12

1~D j 11
(2)

•bj1bj 11!#.

Since the elimination of an equation changes only adjac
equations, it is possible to eliminate all equations with odj
in parallel, and arrive to a system of the type~47! again, but
with two times less variables and equations. This is the s
ond level of elimination. After a series of eliminations w
arrive at a system of only two equations forj 50 and j
5Nt :

u05D̂0
(2)

•u211D̂0
(1)

•uNt
1b̂0 , ~48a!

uNt
5D̂Nt

(2)
•u01D̂Nt

(1)
•uNt111b̂Nt

, ~48b!

whereD̂ (6) and b̂ have the values resulting from the elim
nation of all intermediate equations. Solving them toget
with the boundary conditions4 ~also linearized!, which in-
volve u21 andu0 for initial boundary condition anduNt

and

4Unlike the field equations at the intermediate points~45!, which
are analytic, the boundary conditions involve complex conjugati
So, Eqs.~48! and boundary conditions are to be viewed as eight r
matrix equations. All the elimination calculations~and reconstruc-
tion of field values afterwards! can be done, however, with comple
algebra, which is two times more efficient.
5-14
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uNt11 for the final one, we determine the correctionsu21 ,

u0 , uNt
, anduNt11. Then it is straightforward to reconstruc

u at all intermediate points, using the equations~47! for each
elimination level.

F. Solutions below the sphaleron energy

The Newton–Raphson method requires a good initial
proximation for the solution. This favors the following ge
eral strategy. We first find the periodic instanton solutio
which corresponds tou50 @12# and can be obtained via
minimization procedure. After the periodic instanton
found, we change the parametersT and u in small steps,
using the solution from the previous step as a starting c
figuration. At each step we then calculate the energyE, num-
ber of particlesN and the suppression exponentF(E,N) for
the solution obtained.

This procedure is illustrated in Fig. 9, where each d
represents one solution of the boundary value problem.
tial periodic instanton configurations correspond to the po
on the upper left line in the figure. Starting from these poin
the value ofu was increased, and lines with constant valu
of T were obtained until the bifurcation line was met. Da
obtained in this way make almost straight lines in the l
part of Fig. 9.

The boundary value problem~9!–~11! does not explicitly
refer to the topological properties. Hence, it is not guarant
that its every solution describes a transition between to
logically distinct vacua. This is not a problem atu50, be-
cause of the proper topological structure of the periodic
stanton solutions. But at non-zerou one should check tha
the solution indeed has correct topology.

The topological properties of a given solution are asso
ated with the behavior of the phases of the fields, see Fig
A very useful tool to control the properties of the solution
visualization of the field behavior. The visualization of a re

FIG. 9. Search for solutions. Each point corresponds to
solution of the boundary value problem. The color of the poi
tracks the suppression exponentF(E,N). The almost vertical line is
the line of bifurcationsE1(N) ~cf. Fig. 2!.
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resentative field configuration is presented in Fig. 10. It
scribes the fieldx(r ,t), with the phase of the field encode
in color. The Euclidean part of the time contour is inclined
make it distinct from the Minkowskian parts. In the initia
state~left part of the surface! the field is close to its vacuum
value, with excitation in the form of the incoming spheric
wave moving towards tor 50. The final state~right part of
the surface! contains the outgoing wave. The phase of t
field clearly behaves differently in the initial and final state
This confirms that the topological transition indeed has
curred ~compare to upper three images in Fig. 8!. Several
other important properties of the solution may also be s
immediately. These are: the moment when the field g
through x50 in the middle of the Euclidean evolution
which of course should happen with the field evolving b
tween neighboring vacua; the wide outgoing wave, sugg
ing that a large number of low energy particles is crea
after the transition; the small and relatively sharp incom
wave, meaning that higher energy modes are occupied
the number of particle in the incoming state is smaller.

V. GOING OVER THE SPHALERON ENERGY

The procedure described above works as it is for re
tively low energiesE&Esph only. With growing energy, the
solutions on the CD part of the contour tend to stay fo
long time close to the sphaleron. As the energy approac
someN-dependent valueE1(N) this time tends to infinity,
and if one continues to search for solutions to the bound
value problem~9! with reality condition imposed at finite
positive time, the solutions above this energy have wro
topological properties, i.e. they end up in the same topolo
cal vacuum as the initial one~see Fig. 11!. This situation is
not specific to theSU(2) gauge model studied here, b
appears quite generally in quantum mechanical tunne
with multiple degrees of freedom. It was observed also in
study of the false vacuum decay in scalar field theory@34#
and in quantum mechanics with two degrees of freed

e
s

FIG. 10. Visualization of the fieldx for a solution withN51
andE53.35. The color tracks the phase of the field. The part c
responding to the Euclidean evolution is inclined for visualizati
purposes.
5-15



nd
ed
hr
.

ue
e

he

te
in

A
nt
to
t i
r.
e

io

al
il

d-

s
e

uce
um

af-

ies
but

it

ch

re-
ge
ng
the
me

-

lem

e

ed
t

lly
,
ence

e

nd
n

tra
-

lu

BEZRUKOV et al. PHYSICAL REVIEW D 68, 036005 ~2003!
@36,37#. The phenomenon was studied in detail in@38# in the
case of quantum mechanics of two degree of freedom, a
general method of dealing with this difficulty was propos
there and checked against the exact solution of the Sc¨-
dinger equation. We describe here its gauge field version

As suggested in@38#, the line E1(N) is the bifurcation
line at which two types of solutions to the boundary val
problem~9! meet. These are~i! solutions which end up clos
to the same vacuum as the initial one and~ii ! solutions that
arrive at the sphaleron with excited positive modes~in the
case of field theory these excitations fly away quickly in t
form of spherical waves in the sphaleron background!. The
former solutions are unphysical, while solutions of the lat
form determine the tunneling exponent. For the interest
solutions of type~ii !, the condition~9c! is satisfied only as-
ymptotically, so it is very hard to find them numerically.
way out is to introduce a small regularization parameter i
the equations of motion, which would not allow a solution
stay close to the sphaleron for infinite time. The final resul
then obtained in the limit of zero regularization paramete

To implement these ideas we start with the regulariz
expression for the cross section,

se~E,N!5(
i , f

u^ f ue22eT̂intŜP̂EP̂Nu i &u2, ~49!

wheree is a small parameter andTint is a functional propor-
tional to the time the system spends in the interaction reg
In case of gauge-Higgs theory we use the functional

Tint5E dtE dr~f̄~r !f~r !21!8. ~50!

The path integral for~49! is no longer saturated by classic
solutions spending infinite time close to the sphaleron, wh
the original cross sections(E,N) is obtained in the limite
→0. The boundary value problem for~49! coincides with

FIG. 11. Solution forT/252 andu53.35, without regulariza-
tion. For this solution E/Esph51.04, NaW50.94, so that E
.E1(N). One observes that the topological properties of the so
tion are wrong: it begins and ends in the same vacuum.
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the unregularized one, but with the action modified by ad
ing an imaginary term of the form

dS5 i eE dtE dr~f̄~r !f~r !21!8. ~51!

The equations of motion~26! are modified accordingly.
The functional~50! has several important features:~i! it is

gauge invariant;~ii ! it is large and positive on configuration
close to the sphaleron~where the fields stay for a long tim
away from their vacuum values!; ~iii ! it does not change the
free dynamics in the linear region, since it does not prod
quadratic terms in the expansion of the action about vacu
~this is important for the boundary conditions to be un
fected!.

With this regularization one obtains results for all energ
E. The procedure is as follows. One introduces small
nonzeroe at energies belowE1(N), then obtains solutions
with proper topology for any energy. Then one takes the lim
e→0. Upon taking this limit, the configurations withE
.E1(N) stay for longer time close to the sphaleron, whi
means that in the limit ofe→0 the solution tunnels ‘‘onto’’
the sphaleron.

Moreover, at the boundary of the classically allowed
gion, the solutions to the regularized problem mer
smoothly with the classical over-barrier topology changi
solutions, because the bifurcation on the boundary of
classically allowed domain is regularized exactly in the sa
way as the bifurcation atE5E1(N). At the boundary of the
classically allowed regionF50 by definition, so the regular
ized version of this functionalFe is proportional toe. This
means thatT andu are also proportional toe there, and as
the regularization is turned off,e→0, bothT and u disap-
pear, leading to purely real classical boundary value prob
in real time.

There is one more complication in theSU(2) field theory,
which is relevant to this procedure. For energiesE,E1(N)
the amount of timeT spent on the Euclidean part of th
contour is a growing function of energy~as opposed to the
situation in two-dimensional quantum mechanics@38#!,
while it is zero at the boundary of the classically allow
region E0(N). This means thatT as function of energy a
fixed u has a maximum somewhere in betweenE1(N) and
E0(N) @the calculations show that the maximum is actua
at E1(N), see Fig. 13#. For T close to this maximum value
the Newton–Raphson method fails because of the pres
of two nearby solutions with equal values ofT. This new
bifurcation is absent, if one searches for solutions withfixed
energy E, instead of fixedT. To formulate the boundary valu
problem with fixedE instead of fixedT, one simply sets the
contour heightT8 to some conveniently chosen value, a
leavesT as a free variable. This leads to a trivial modificatio
of the initial boundary conditions,

f k5e2u2vk(T2T8)gk . ~52!

An additional equation is then required to find one ex
undetermined variableT. This is the equation involving en
ergy of the solution, Eq.~10!. With this modification of the

-
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procedure, the ‘‘bifurcation’’ corresponding to the maximu
of T disappears. Note however, that this method had to
applied with great care—on realistic grids it is hard
achieve fully linear regime in the initial state, therefore t
difference betweenT and T8 must be small, as the depen
dence of the fields on imaginary time is exponential. In o
calculations, the version of the boundary value problem w
fixed E (T8 different from T) was used only to cross th
maximum ofT.

In our numerical calculations we introduced small no
zero e as the energy of the solutions approachedE1(N).
Simultaneously, the modification~52! was used to get pas
the maximum ofT at E1(N). In Fig. 9 the solutions obtaine
with this modification are represented by points on the l
that crosses the bifurcation lineE1(N). At higher energies
the modification~52! is no longer needed, and only regula
ization with nonzeroe was used. In Fig. 9 solutions to th
regularized problem in region A.II correspond to points
the curved lines in the right part of the plot~lines of constant
T). The line with the highest energy has zero suppress
exponent and corresponds to the boundary of the classic
allowed region. To connect lines of constantT, we obtained a
set of solutions represented by the irregular line in right p
of Fig. 9.

VI. NUMERICAL RESULTS

There are several factors affecting the choice of the lat
size and shape. The physical spatial size of the latticeL is
chosen large enough to make comfortable room for
sphaleron. More importantly,L determines how close to th
linear regime the system is in the initial state: the farth
away from the origin, the smaller becomes the amplitude
incoming spherical waves. AfterL is chosen, the lengths o
the parts AB and CD of the time contour are determin
completely; the length of the AB partTAB is slightly smaller
thanL, so that the incoming wave does not reach the spa
boundaryr 5L. The length of the CD partTCD is zero for
energies below the bifurcation energyE,E1(N). For higher
energies,TCD is adjusted to be long enough, so that the
lution gets close to the vacuum configuration, and the re
larization ~51! does not contribute significantly to the equ
tions of motion at the final moment of time when the real
boundary conditions are imposed.

The lattice spacingDr constrains the precision of the dis
cretization in two different ways. First, it is chosen to
substantially smaller than the size of the instanton-like p
of the configuration, i.e. the characteristic scale of nonlin
dynamics that occurs nearr 50 during the topological tran
sition itself. Second,Dr controls the energy of the harde
mode in the initial state, thus limiting the lowest partic
numberN that can be reached for given energyE. The time
spacingDt is chosen to be smaller thanDr to guarantee
stability of the numerical procedure.

The amount of computer memory required for a lattice
spatial sizeNr and time lengthNt is approximately 2
3Nt(5Nr)

2316 bytes~see Sec. IV E!, while the CPU time
of one Newton–Raphson iteration scales roughly
Nt(5Nr)

3. It was noted in Sec. IV E that the algorithm
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suitable for parallel execution, so one divides this time by
number of processors available for the calculations.5 Overall,
the most strongly constrained is the spatial sizeNr : a two
times larger spatial grid means eight times longer proces
time.

The main results we present in this paper were obtai
on a grid with spatial sizeL58 ~i.e.,L58/A2MW) and num-
ber of spatial grid pointsNr590. The length of the initial
Minkowskian part of the contourTAB was equal to 6. The
number of time grid pointsNt on the part AB of the contour
was equal to 200, while on the Euclidean part BC it w
equal to 150. The number of points on CD part varied fro
2 for energiesE,E1(N) to about 400 for higher energie
~when thee-regularization was used!. On the largest grids
the amount of memory used was 4Gb, and it took 3 minu
for one Newton–Raphson iteration on a 16 processor IB
RS/6000 supercomputer, or about 15 minutes for one
solution.

We obtained the results for the suppression factor in
region ofE andN shown in Fig. 9. For the lattice paramete
we used, this region is limited mainly by the effects of no
linearity at the initial time, preventing us from reachin
smaller particle numbers. When energy and particle num
are small simultaneously~bottom-left part of the plot!, ef-
fects of the spatial discretization~finite Dr ) are also impor-
tant.

To check the discretization effects, a limited set of calc
lations was performed on smaller grids. The results prese
here coincide with results obtained withNr564 with preci-
sion better than 1%~except for very small energies!. With
Nr545, on the other hand, the results coincide only for s
ficiently large initial particle numbers, exactly as one wou
expect.

The linearization of the system in the initial state can
checked by evaluating the time dependence of the linear
ergy ~10! and particle number~11! on the part AB of the
contour. For linearized system, these should be indepen
of time. For a typical configuration this test is shown in F
12. The linear energy coincides with the exact one in
initial state with precision of order of 1% or better, whic
confirms that the solution is quite close to the linear regim
Another test of linearity is the amount of the violation of th
initial boundary condition~42!, which is discarded to impose
the time translation invariance fixing relation~Sec. IV!. This
amount grows towards smallerN, and apparently this is one
of the effects preventing us from going to lowerN with the
current spatial lattice sizeL58. Larger lattices are needed t
achieve better linearization on the initial part of the tim
contour and thus reach smaller particle numbers.

We made additional checks of the precision of the num
cal calculations, including conservation of energy and
inverse Legendre transform,

5The parallelization algorithm is effective only ifNprocessors

,ANt, so the shortest possible wall clock time in an ideal situat
is proportional toANt(5Nr)

3.
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u52~4p!
]F

]N U
E

, ~53!

T52~4p!
]F

]E U
N

. ~54!

These checks are satisfied with precision better than 1023.
This means that the precision of the final results is de
mined mostly by the quality of the linearization in the initi
state~of the order of 1%!.

Lines of constantT and constantu are shown in Figs. 13
and 14. One observes from Fig. 14 thatu grows asN de-
creases, as expected, andu is equal to zero on the periodi
instanton line and on the boundary of the classically allow
region E0(N). The lines of constantT show thatT also
equals to zero at the boundaryE0(N), and reaches a maxi
mum for givenN ~and for givenu also! at the bifurcation

FIG. 12. Particle number evolution~upper plot! and linear en-
ergy evolution~lower plot! for the configuration withN51 andE
53.35. The exact~full nonlinear! energy is also plotted for refer
ence~straight dotted line!.

FIG. 13. Lines of constantT.
03600
r-

d

FIG. 14. Lines of constantu.

FIG. 15. Surfaces describing thex field for solutions withN
51 andE53.35~upper picture!, E54.48~middle!, E55.22~lower
picture!. The first surface corresponds to deep underbarrier tun
ing, and the last one corresponds to nearly classical over-ba
transition.
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line E1(N). Close to this line we made use of the modific
tion of the boundary value problem described at the end
Sec. V.

Representative solutions are shown in Fig. 15. They c
respond to deep tunneling regime@E,E1(N)#, tunneling
onto the sphaleron@E.E1(N)# and classical overbarrie
transition atE0(N), all for N51. One can see from the colo
patterns that the field indeed undergoes the topology ch
ing transition of the form illustrated in Fig. 8. The incomin
wave is present in the left part of the pictures, becom
sharper and sharper for higher energy~the particle number is
the same for all plots!. In the first picture the topologica
transition is seen on the Euclidean part of the contour. In
second and third pictures, a sphaleron-like configuration
visible on the right, with ‘‘extra’’ waves~excitations about
the sphaleron! flying away, while the sphaleron itself starts
decay quite close to the right end of the plot~with the regu-
larization parametere tending to zero, the moment of sphal
ron decay moves towards larger times!. At large times, the
wave reflected from the boundaryr 5L appears due to the
Dirichlet boundary conditions~31! imposed atr 5L. This
wave does not alter the results, as it occurs in the lin
regime.6

The fact that forE.E1(N) the solution after tunneling
has the form of the sphaleron plus spherical excitations in
background is illustrated by plotting the spatial energy d
sity at different times after tunneling. In Fig. 16 the ener
density distribution is shown for the middle solution of Fi
15. As the time increases, the bump on the right~spherical
wave! moves towards largerr, while the energy density pro
file approaches that of the sphaleron.

It is also instructive to see that with the number of inco
ing particles decreasing, the occupied modes have higher

6To get rid of the reflected wave a much larger spatial grid wo
be needed.

FIG. 16. Energy density for several values of Ret ~indicated by
numbers near graphs! for the middle configuration of Fig. 15 (N
51, E53.35). The energy density for the sphaleron solution
shown for comparison by solid line.
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quencies. This is demonstrated in Fig. 17 for energy sligh
smaller than the sphaleron energy.

Finally, let us discuss the extrapolation of the results
zero number of particles, which we performed to obtain p
dictions for the suppression exponentFHG(E) of the two-
particle cross section.

Two ways of obtaining the lower bounds onFHG(E) were
explained in Sec. II. One is to continueF(N) at each energy
linearly in N to N50 ~this is justified by recalling that
]F/]N}2u increases asN→0), while the other is to con-
tinue lines of constantF ~see Fig. 3! linearly to N50 ~this
gives a lower bound since the lines of constantF have posi-
tive curvature!. Both these extrapolations are straightforwa
to make, insofar as the required derivatives ofF(E,N) are
given for each configuration by the values ofT andu through
the relations~53! and ~54!. In this way we obtained the
bound shown in Fig. 5.

We now elaborate on our estimate of the functionFHG(E)
itself, Fig 6. Perturbative calculation at low energies@45#
shows that while the exponentF(E,N) has singular behavio

d

s

FIG. 17. Distribution of particle numbernk at initial time over
modes forEaW /MW53.54 and differentN. ai are numbers of par-
ticles in each mode in units of 1/aW for four different types of
modes~see@41# for definitions!. Modea1 is the Higgs boson mode
while a2,3,4 are gauge boson modes (a2,3 are transverse,a4 is ra-
dial!. On the horizontal axis is the mode number for a lattice w
spatial sizer 58.
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of the form N log(N), the functionT(E,N) is regular inN
and close to a linear function. At largeN the numerical data
also demonstrate that the behavior ofT is close to linear. This
is shown in Fig. 18. ForE.Esph numerical results sugges
that T(N) is almost constant at smallN. These properties
justify a linear extrapolation ofT(N) to N50 with energy
kept constant. After obtainingT(E) at zero particle number
FHG is readily found by integrating Eq.~54! starting from
the instanton valueFHG(E50)51. The resulting estimate i
presented in Fig. 6, solid line.

VII. CONCLUSIONS

Our study shows that the semiclassical procedure cou
to suitable computational techniques is capable of produc

FIG. 18. Left,T(N)/2 for different energies, labeled by value
of EaW /MW , the points are data from numerical calculation a
lines are extrapolations. Right,T(E)/2 extrapolated to zero particl
number.
n,

s.

s

03600
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quantitative results for semi-inclusive, weakly coupled no
perturbative processes, and, in particular, for particle co
sions.

In this paper we applied this technique to study the s
pression factor for topology changing transitions, and
companying baryon and lepton number violation, in t
SU(2) sector of the electroweak theory up to energies w
above the sphaleron energy. We imposed spatial sphe
symmetry, so our results are valid, strictly speaking,
s-wave scattering.

Our results show that the known analytic expression
the suppression exponent, which contains three terms of l
energy expansion, works well up to the sphaleron energy,
underestimates the suppression at higher energies.

By numerical analysis we have found that baryon a
lepton number violation, accompanying topology chang
s-wave particle collisions in the electroweak theory, rema
highly suppressed up to energies of at least;250 TeV ~and
likely much higher!.
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