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Semiclassical study of baryon and lepton number violation in high-energy electroweak collisions
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We make use of a semiclassical method for calculating the suppression exponent for topology changing
transitions in high-energy electroweak collisions. In the Standard Model these processes are accompanied by
violation of baryon and lepton number. By using a suitable computational technique we obtain results for
s-wave scattering in a large region of initial data. Our results show that baryon and lepton number violation
remains exponentially suppressed up to very high energies of at least 30 sphaleron(&&3es). We also
conclude that the known analytic approaches inferred from low energy expansion provide reasonably good
approximations up to the sphaleron ene(@yTeV) only.
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[. INTRODUCTION that at energy higher than the sphaleron energy the exponen-
tial suppression disappears. This is indeed what happens at
Nonperturbative phenomena related to tunneling are oftefinite temperaturg¢4—12|, finite fermion density13-17, or
encountered in quantum field theory. Well known exampledn the presence of heavy fermions in the initial s{dt@—20.
are false vacuum decay and instantonlike transitigms lat- ~ But in high energy particle collisions this is not necessarily
ter are accompanied by nonconservation of fermion quanture case, due to the fact that the characteristic size of the
numbers. When these phenomena are governed by a Smaq:]phale_ron C(_)nfigura_tion is much Iarger than the W_ave_length
coupling constant they can generally be studied by semicla®f the incoming particles. At the same time the application of
sical methods. This is certainly the case at low energy or it semiclassical technique becomes problematic because the

situations which involve large number of quanta in the initial'mt"o‘:’II Stateff‘o Iongec; !nvglvfeszrit I2arge nurlnb.er IOf Iquanta.
state. At low energy, collision processes can be well de- s was first noted in Ref421,22, at relatively low en-

scribed by a semiclassical approximation relying on the oy ET9Y the corrections to the collision-induced tunneling rate

istence of classical Euclidean time solutions to the equation&- be calculated by perturbative expansion in the back-
S . . . q around of the instanton. Further studies showed that the ac-
of motion interpolating between initial and final states. In the

. . tual expansion parameter in most models, including elec-
examples mentioned above these are bolyihf@and instan- P P g

) . . troweak theory, i€/Egp,[23—26 and the total cross section
ton [2],_respect|vely. The probability of .the process is then ¢ the induced tunneling has an exponential form
proportional to the exponent of the Euclidean action of these

solutions. As the action is inversely proportional to the 1672
(smal) coupling constant, the processes are highly sup- Utot(E)NeXDI — —Fuc(E/Egn |
pressed. The effect of low energy excitations in the initial g
state(colliding particle$ gives only a pre-exponential factor
and is inessential. where g is the small coupling constant and the function
The situation changes at high energy, namely, at energy df,c(E/Egpy) is a series in fractional powers &f Ep, (for a
the order of the tunneling barrier height which separates inireview seq27-29).
tial and final states. In general, there exists a static unstable While the perturbation theory iB/Egp,is limited to small
solution to the equations of motion that lies on top of theE, the general exponential form of the total cross section
potential barrief3] (properly speaking, at a saddle point of implies that there might exist a semiclassical-type procedure
the potentig). In field theory this solution is often referred to which would allow, at least in principle, to calculate
as the “sphaleron,” a name which we will use throughoutFc(E/Eg,) at ExEgyn. However, since the initial state of
this paper. The minimum height of the barrier is precisely thetwo highly energetic particles is not semiclassical, the stan-
sphaleron energig,,. Naively, from the analogy with quan- dard semiclassical procedure does not apply and a suitable
tum mechanics of one degree of freedom, one would expeaeneralization is needed, which was proposed in R&f%-
32] and further developed in Refg33,34]. The correspond-
ing formalism reduces the calculation of the exponential sup-
*Electronic address: fedor@ms2.inr.ac.ru pression factor to a certain classical boundary value problem,
TElectronic address: levkov@msz2.inr.ac.ru whose analytical solution is not usually possible.
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IElectronic address: peter.tinyakov@cern.ch 1The subscripHG here stands for “holy grailT27].
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This approach is based on the conjecture that, with expoRef. [33]. Now we are in a position of presenting what we
nential accuracy, the two-particle initial state can be substiare confident is the full solution to the numerical problem for
tuted by a multiparticle one provided that the number ofa wide range of energy and incoming particle number, in-
particles is not parametrically largelthough not proven rig- cluding energies above the sphaleron. The field configura-
orously, this conjecture was checked in several orders of petions we analyze in this paper are restricted to be spherically
turbation theory inE/Egpy, in gauge theory31,35 and ex-  symmetric in space. Hence our results apply, strictly speak-
plicitly in quantum mechanics with two degrees of freedoming, to s-wave scattering only.

[36,37)). The few-particle initial state, in turn, can be con- In this paper we will concentrate on obtaining the sup-
sidered as a limiting case of a truly multiparticle one with thepression exponent for collision-induced tunnelingSiJ(2)

number of particleN=N- (47/g?), when the paramete gauge model with the Higgs mechanism, corresponding to
is sent to zero. For the multiparticle initial state the transitionthe electroweak sector of the Standard Model at z&j0

rate is explicitly semiclassical and has the form The problem is particularly interesting because of the baryon
number violation which accompanies such proce4S&s
1672 ~ and the relatively low sphaleron energy,~8 TeV.
o(E,N)~exp — 92 F(E/EspnN) ¢ - (1) Though computational limitations do not allow to reach lit-

erally zero value of the rescaled number of partidlescor-
According to the above conjecture, the functionresponding to particle collisions, we were able to extrapolate

Fua(E/Espy, corresponding to the two-particle incoming the results to zerdN and get a bound on the suppression

state, is reproduced in the linfit—0, exponent(strictly speaking, forsswave scatteringand also
i ~ provide an estimate for this exponent.
lim F(E/Egpn,N)=Fn(E/Egp). In Sec. Il we present the detailed formulation of the prob-
N—0 lem, outline the method and present the main physical re-

sults. In Sec. Il we give the derivation of the semiclassical
method for the gauge model. The lattice formulation of the
equations and subtleties appearing in the discretized version

~ . , are given in Sec. IV. Application of the regularization
F(E/Espn,N) is determined by the action evaluated at a paryethod of Ref[38] is described in Sec. V. Detailed numeri-

ticular solution to the classical field equatidi#2] on a cer- . requits are presented in Sec. VI. Our conclusions are in
tain contour in complex time. In this formulation, the prob- go.

lem, at least in principle, is amenable to a computational
solution. Namely, one has to solve the corresponding classi-
cal boundary value problem numerically and calculate the

function F(E/Esph,N), which then can be used to extract
information aboutFg(E/Egpy). Non-Abelian gauge models have an infinite number of
The implementation of this technique is neverthelesgopologically distinct vacua, labeled by an integer topologi-
highly nontrivial. The differential equations one encounterscal number. Processes changing the topological number are
are partially of the hyperbolic typ@long the Minkowskian accompanied by violation of fermiofbaryon and lepton
parts of the time contoliand partially of elliptic typgalong  numberq39], a phenomenon of great interest for cosmology
the Euclidean part which makes their numerical solution and particle physics. The topologically distinct vacua are
particularly challenging. In the electroweak theory, addi-separated by a potential barrier, whose height, in models with
tional difficulties arise from the need to deal with the largethe Higgs mechanism, is given by the sphaleron energy. To-
number of internal degrees of freedom, unphysical modepology changing transition may occur via tunneling at low
due to gauge invariance, and time translational symmetrgnergies or, at sufficiently high energy and suitable initial
which cause an unwelcome degeneracy in the numerical prestate, via classical evolution over the sphaleron.
cedure used to find the semiclassical solutions. In this paper we study a four-dimensional model which
Moreover, at high energgroughly, at energy higher than captures all the important features of the Standard
the sphaleron energyunneling solutions, interpolating be- Model—an SU(2) gauge theory with the Higgs doublet.
tween vicinities of different vacua in finite time, cease to This model corresponds to the bosonic sector of the Standard
exist. This subtlety turned out to be a general problem in théModel with 6,,=0. To the leading order in the coupling
description of tunneling in systems with many degrees oftonstant, the effect of fermions on the gauge and Higgs fields
freedom, and it has to do with the nontrivial way tunneling dynamics can be ignordd0]. The action of the model is
occurs at high energy—the system prefers to create a state

Therefore, albeit indirectly, the functidfy,g(E/Egpy) is also
calculable semiclassically.
Within the semiclassical framework, the function

Il. FORMULATION OF THE PROBLEM
AND MAIN RESULTS

close to the sphaleron, which then decays into the correct 1 1 )

vacuum. To find the corresponding suppression exponent nu- S= 477an d"'x{ N ETr FuF” +(DMCD)TDM(D

merically one has to use a properly regularized version of the

boundary value problem, developed in Re&¥8]. N(DTD— 1)2] @
In a long program of investigations we have been able to '

gradually overcome all of these hurdles. Preliminary results
for energies below the sphaleron energy were reported iwhere
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_ _ . Im
F,u,v_a,u,AV aVA,u I[A;L!Av]r (3) !
) A iT/2
D,®=(d,—iA,)P, (4) B
with A#=A20a/2 anda=g°/4=. Here we have eliminated c D
inessential constants by an appropriate choice of units. The Rer

dimensional parameters can be restored noting that in the

normalization(2), the gauge boson mass is
FIG. 1. The contour in complex time plane used in the formu-

1 lation of the boundary value proble(B). Crossed circles represent
—_—, (5) singularities of the field. If the field is spherically symmetric in
ﬁ space, the singularities closest to imaginary axis occur=dl, for
. . otherr the singularities generally move to largétet|.
and the Higgs boson mass is
_ suppression is still strong. However, a straightforward appli-
My=VBAMu. cation of the technique df30—32,34 fails for energy above

In most of our calculations the Higgs self-couplingvas set  the sphaleron due to the problems one encounters as the en-
equal toA=0.125, which corresponds thl,=M,,. The  €rgy approaches the height of the barrier in systems with
dependence on the Higgs boson mass is very weak, so thisany degrees of freedom. These problems were studied in
a reasonable approximation. Also we often omit the omni-detail in the context of a quantum mechanical mod¢i|,
present overall factor &y . where a regularization technique was suggested to overcome
Any vacuum configuration in this model can be obtainedthem. o ] ) ]
from the trivial vacuumA,=0, ®=®,=(}) by a certain The basic idea in the proposal [80-32,34 is that, in-
gauge transformatiohj(x)l.i We will be using the temporal stead of a process with exclusive, two-particle initial state,
gauge A,=0, where the vacuum configurations are de-ON€ considers a topology changing process with inclusive
scribed by time-independeb(x), corresponding to residual |n|t|§1I state characterized by q§f|nlte ene@and incoming
gauge invariance. In this gauge, field values at spatial infinit;f’h""rt'CIe number. The transition probabllrl]tw(E,ll\l) can
cannot change during the evolutidntherwise the kinetic then be used to Pro"'df? a bound on the exclusive two-
term becomes infinileand thus one considers only those partlgle cro;s-sec_ﬂon, vv_h|l_e the two-particle transition expo-
U(x) which have some fixed asymptotics at spatial infinity, "€Nt iS obtained in the limizy N—0. .
Often the asymptotit) (x—)—1 is used, so any vacuum The inclusive probability of tu_nnell_ng from a state with
configuration corresponds to a mapping from spBéavith fixed energy and number of particles is
identified infinity, which is homotopically equivalent &,
to the gauge groupU(2)~S3. The degree of this mapping
is precisely the topological humber of the corresponding
vacuum. A gauge choice of this form is convenient for analy-

sis of the excitations about the trivial vacuum. For other

purposes it may however be useful to choose an alternatiy¥heres is the Smatrix, Pg \ are projectors onto subspaces
behavior of the gauge function at spatial infinity, likgx) ~ Of fixed energyE and fixed number of particlel, and the

—expliox/|x|}, which maps thes? of spatial infinity to the stated i_) gnd|f) are pert.urbativ.e excitations about topolog?—
equatorialS? of the SU(2). The twoneighboring vacua then cally distinct vacua. This matrix element can~be written in
map the spac®® either to north or south hemisphere of the double path integral representation. For laige N/ ay and
SU(2). In this gauge, the sphaleron configuration takes theE =E/a,y the path integral can be calculated in the semiclas-
simplest form, and we will use this gauge everywhere in thissical approximation, and this leads to the problem of solving
paper, except for the analysis of the mode expansion in ththe equations of motion of the system on a special contour in
initial state. complex time plane, which detours around singularities, as
Numerous perturbative attempts were made to find thehown in Fig. 1. The presence of branch cut singularities can
probability of the collision-induced topology changing tran- be inferred from the following argument. One notices that,
sitions in this modelsee[27-29 for reviews, giving reli-  for energy below the sphaleron energy, if one continues the
able results only for relatively low energies. A non- solution along a line parallel to the real axis, be this via a
perturbative study of classically allowed over-barrierforward integration of the equation of motion from the AB
transitions was presented [id1]. All solutions found in[41] part of the contour or a backward integration from the CD
are configurations with large numbers of particles in the ini-part of the contour, the field must fall back to the original
tial state and thus they do not correspond to realistic collitopological sector. On the other hand, by construction, on the
sions. Another approach, pursued in this paper, is to use th&B and CD parts of the contour the solution must be in
semiclassical method of30-32,34 adapted for theories different topological sectors. Thus the solution must also be
with gauge degrees of freedom. This method was implein different topological sectors on the AB part of the contour
mented in[33], where the results were obtained for energiesand on the negative real axis and, likewise, on the positive
below Eg,n, What suggested that at the sphaleron energy theeal axis and the continuation of the AB segment to positive

a(E,N>=§ [(FISPePyi)]2, (6)
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time. This may happen only if two branch cut singularities[for complex fields, such a® in (2), this means that both

exist on the two sides of the BC part of the contéeee Fig. (®+®")/2 and @ —P')/2i must be red|

1). Equations(9a—(9¢) specify the boundary value problem
Eventually the semiclassical approximation produces theorresponding to the induced topological transition.

following result (¢ here stands for all physical fields in the  The equations obtained by variation over the auxiliary

mode): parameter§ and ¢ are
4aq _ _ -
a(E,N)fvexp{—a—F(E,N)], E=f dkewy gy (10
w
4a . -
a—F(E,N)=2ImSABCD(go)—NB—ET—ReBi. (7) N=f dkf, gy - (12)
W

Here Saeep(¢) is the action along the time contour, the These equations indirectly fix values ®fand @ for given
parameterd and 6 are Legendre conjugate ®andN; the  energy and number of particles. Alternatively, one canTfix
parameterT is the same as in Fig. 1; we will have to say and 6, solve the boundary value proble(® and obtain the
more aboutd later on. In what follows we will usually drop corresponding values d& and N using Eqs.(10) and (11).
the tilde over the rescaled energy and incoming particle num¥his is especially convenient in numerical calculations.

ber, and the overall &4, factor, restoring it only in the final The interpretation of the solutions to the boundary value
results. problem(9) is as follows. On the part CD of the contour, the
The boundary term saddle-point field is real asymptotically; it describes the evo-

lution of the system after tunneling. On the contrary, it fol-
lows from boundary conditiong9b) that in the initial
asymptotic region the saddle-point field is complex when-
ever##0. Thus, the initial state which maximizes the prob-
ability (7) is not described by a real classical field, i.e. this
is written using frequency componerftsandg, of the field stage of the evolution is essentially quantum evenNat
on the part A of the contour: ~1layy.
There is a subtle point concerning the boundary condition
(90). It can be satisfied in two different ways. Either the
dk I . solution is exactly real on the whole CD part of the contour
‘P(th)|t—>—w+iT/2:f ——— e fe TR d is close t it h tially decayi
(2m)32\ 20, and is close to vacuum, or it has an exponentially decaying
imaginary part and approaches the sphaleron along the com-

1 . . . .
Bi :Ef dk(fkf _k672|wk(Ti7|T/2)_ g: gt I(e2|wk(Ti7|T/2))

+ gy el ek(t7iT2) =ik (8)  plexified unstable direction. This subtlety is important for the
analysis at high energigSec. V), Ex Egp,.
The field ¢ satisfies the field equation The solutions to the boundary value problem can be found

numerically for different values dt andN. In this paper we

study solutions that have spherical symmetry in space. One
S expects that these are most important for large endigh
5_(p:0' (93 perturbative calculations about the instanton suggest that

spatial spherical symmetry is relevant at relatively low ener-

At initial time the frequency components of the solution gies and allN. We do not have a convincing argument in

should satisfy the following equatioff # boundary condi- favor of spherical symmetry for few particle collisions at
tion”): very high energies; in any case, our results as they stand, are

valid for swave scattering.
Our numerical analysis shows that tBe-N plane is di-
fr=e""g,. (9b)  vided into several different regionsee Fig. 2 Values of
E<N-min(M\y,My) are trivially excluded by kinematics.
For 6 different from zero this equation implies that the field For relatively low energie&egion A the transitions between
must be continued to complex values. For a complex fieldthe topologically distinct vacua can occur only via tunneling.
like @ in (2), its real and imaginary parts must be continuedAt the sphaleron energls,, the situation changes. A slight

to complex values separately. excitation of the sphaleron along the unstable direction gives
On the final part of the contoWCD), the field must sat- origin to a solution of the classical equations of motion
isfy the reality condition which evolves towards different topological sectors at large

negative and positive times. Since the sphaleron has exactly
_ one negative mode, there is only one infinitesimal deforma-
Im (X, Tf—2)—0, Ime(X,Ti—»)—0 (9¢)  tion of this type, and thus the corresponding solution has
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FIG. 2. Regions in th&—N plane. B

FIG. 3. Lines ofF(E,N)=const. Lines are labeled by the val-

definite number of particlely,in the initial state. At higher ~UeS Of the suppression exponentlog o=4xF. Diagonal line
glrected from the sphaleron towards the origin is the line of periodic

nergi ne m xcitations of th itive m o . X
energies one may add excitations of the positive Ode|nstantons. Energf is in units of My /a\,, number of particleN

above the sphaleron to obtain over-barrier solutions with difi g of 14, The line labeled by 0F =0) is the boundary of
ferent, and, in particular, smaller initial particle number.

. . . he classically allowed regioB=Ey(N). The “fuzzy” line repre-
These solutions belong to the domain of classically allowe ents the approximate boundary of the classically allowed region

transitions(region B in Fig. 2, where the topology changing ¢.,nd in overbarrier calculations 641].
processes are unsuppressed. The boundary between region A

and region B corresponds to configurations staying for any ihe solutions and is not seen in any order of perturbative
infinite time close to the sphalerdaince there are no bound expansion around the instanton. Non-perturbative ap-

states in the sphaleron bacl_<g_r0L[|_4d], all excitqtions about proaches, however, capture this featdsee also[44] for
the sphaleron fly away at finite time, so the field relaxes tajmijar results in the context of false vacuum decay

the sphaleron solution _ , _ . Our numerical results for the suppression exponent in the
In the classically forbidden region A there is a specialypole classically forbidden region are presented in Figs. 3,
family of solutions, corresponding t9=0 in the boundary 4 The aimost vertical line in Fig. 3 separates the two regions
value problem. These are represented by thelipgN) i (genoted by A.I and A.ll in our earlier discussjomhere the
Fig. 2. In this case, the boundary conditi®b) reduces t0  ynneling process assumes characteristically distinct features.
the reality condition imposed at Its=T/2. The solution to | 550 represents the frontier beyond which numerical calcu-
the resulting boundary value problem is the periodic instaniations pased on a straightforward implementation of the
ton of [43]. The periodic instanton is a real periodic solution nethod 0f[30—32,34 appear to fail. It is clear from Fig. 3
to the Euclidean field equations with periddand tuming  hat our improved numerical technique can go well beyond
points att=0 andt:|T/2.(mod"I'). When analytically CON-  that frontier. Referencp45] presents a comparison between
tinued in the Minkowskian direction through the turning oy results and the analytic predictions for the suppression
points, the periodic instanton is real on the linestkr0 and exponenf (E,N) in the limit of small energy. The two are in
Imt=T/2 and therefore satisfies the boundary value problememarkable agreement which provides a gratifying check of
(9) with #=0. Like any other solution linearizing at large the numerical calculations.
negative times at part A of the contour of Fig. 1, the periodic  Another interesting comparison can be made with the re-
instanton has a certain number of incoming particlesgyts of[41], where the real-time overbarrier solutions close
Eq. (11). For given energyE below the sphaleron, this num- {5 the boundary of the classically allowed region were
ber is such that the suppression exponB(E,N) has a searched via Monte Carlo techniques this way, an ap-
minimum, 1.e., the tran§|tlon occurs at'maX|mum rate_. _ proximation(which, at the same time, is an upper boufut
~ The classically forbidden region A is further subdivided the houndary of the classically allowed region was obtained.
into two regions. For low energigsegion A.) the system is |t js seen that the results §#1] are reasonably close to the
close to the vacuum on the final part of the evolution, so thfboundaryEo(N), found in our calculations.
boundary condition(9c) leads to the exact reality of the oy results by themselves do not reach the physically in-
fields on the part CD of the time contour. At energies higher
than the sphaleron energgrecisely, on the right of the line
E1(N)] the system ends up close to the sphalewith extra 2 [41] the coupling constan was chosen 0.1, while we use
outgoing waves in the sphaleron background this case )\ —0.125. We performed a set of calculations for0.1. The de-
Eqg. (9¢) is truly asymptotic. So, the system tunnels “on top” pendence on is so weak, that the difference for the results would
of the barrier, creating an unstable sphaleron configuratiorye invisible in the graph. Much larger discrepancies appear because
which then decays with probability of order 1 to any of the of the different lattice parameters used in the two calculatiéins.
two neighboring vacua. This situation is realized in the re{41], having only to solve for the real time evolution of the fields, it
gion A.ll. This new qualitative feature of the tunneling at was possible to use a larger lattice and a finer lattice spacing than in
high energies emerges from the existence of the bifurcatiothe present calculations.
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FIG. 4. Dependence of the suppression exponent on the number FIG- 6. Estimate of the suppression exponent for two-particle
of particlesN for different energies. Numbers near the curves arec0!lisions Fug(E) (solid line), lower bound onFyc(E) (dashed

energies in units oMy /ay . line), low energy analytic predictiofil2) (rare dotted lingand ana-

lytic estimate ofl 46,47 (dotted ling.
terestingN=0 limit (corresponding to particle collisions

Studying lowerN in numerical calculations would need lat- bound is displayed in Fig. 5, dashed—dotted line. One can see

ticgs with Iarggr number of Iat_tice points and would require at exponential suppression continues Up to an energy of at
quite substantial amounts of time even on powerful preser’tl!f;ast 250 TeV

day supercomputers. Therefore, some extrapolation must st . .
y sup b P One may also attempt to estimate the funcdik) itself.

be used to get insight on the suppression factor for actuaé\S we discuss in Sec. VI, a good estimate is obtained by
rticl llisions. As w k such extrapolations, we noti e R . .
partic’e CoTiSIons. As WE Seex SUch exapoiations, We no Cextrapolatmg, instead df(E,N), the functionT(N) at fixed

first that it i ite straightforward to obtain a lower bound : ) . .
s " 1S quite staig W ' W N energy, asT(N) is approximately linear inN. Up to the

on the suppression expondnt Insofar asé increases abl ) . L X
bp P sphaleron energy, the estimate obtained in this way is close

—0, and (4r)dF/dN=— 6, by simply continuingr with a . . ;
linear function ofN for each energy one obtains a lower to the_one loop analytic resuﬂt1_8—5]], which gives three
terms in the low-energy expansion,

bound onF. This bound is shown in Figs. 5, 6, dashed line.
It indicates that up to the energWg,, / ayy=20 TeV the sup-

lower bound on the suppression exponEQE,N=0). This

p[eﬁgsmnj%stlll high: the suppression factor is smaller than . A 9/E\43 g /E\2
e >~10 “°for ay,~1/30. —FE)=—|1-=—| +—=|=—] |, (12
For very high energies a bound may be constructed by aw aw|” 8\Eg 161 Eg

exploiting the observation that the lines of constenn E

—N plane have positive curvatusee Fig. 3. So, by ex- whereEy=67M,y/ ey, . Below the sphaleron, our estimate

trapolating these lines linearly td=0 one obtains another is also consistent with the analytic estimate[46,47]. On
the other hand, the behavior Bf,(E) changes dramatically

[ ety —— . at ExEgpy,. We attribute this to the change in the tunneling
12 F7 el High chergy lower bound on Ff) — - — - — T behavior—atE = E,, the system tunnels “on top of the bar-
RN Analytic estimate =========="====: rier.” Our numerical data show that the suppression exponent
10 g Fuc(E) flattens out, and topology changing processes are in
\\ Ay fact much heavier suppressedisat E,, as compared to the
o 8 DAY estimate(12) and the estimate d#6,47. We show our esti-
L.,; \ E mate, together with analytical estimates and our lower
& 6 y bound, in Fig. 6.
\\ It is worth noting that similar effects of dramatic change
4 \\ of the behavior of the system at high energies were observed
\ in lattice calculations of instanton distribution in QCD in
2 0. [54,55.
T~ i Thus, our numerical results, albeit covering a limited
0 1 Egon 10 100 range of energies and initial particle numb.ers, enable us to
Eouy/My obtain both lower bound for and actual estimate of the sup-

pression exponent for the topology changing two-particle
FIG. 5. Lower bound on the suppression exponent for two-Cross-section in the electroweak theory well above the

particle collisions, dashed and dashed—dotted lines. Dotted line isphaleron energy. This cross section remains exponentially
the estimate of46,47). suppressed up to very high energies of at least 250 TeV. In
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fact, the energy, if any, at which the exponential suppression 1 ,
disappears, is most likely much higher, as suggested by com-Bi(ax,¢i) = EJ dk[ — wkei(k) @i —k) —aya_ e ki
parison of our lower bound and actual estimate at energies

exceeding significantl§,, see Fig. 6. +2\2we g, ¢;(K)],

IIl. THE METHOD OF RST 1 :
Bi(bg ,@f) = Ef dk[ — wyes(K) @s(— k) — b b* e KTs

A. General formulation

The quantity we wish to calculate is(E,N), the prob- +2\ 2wy kT @f(— k)], (14
ability of transition from a state with fixed enerdy and . ) )
number of particled\ about one vacuum tany state about Wheree; (k) are the spatial Fourier transforms of the field
another vacuum. The method of semiclassical calculation ot initial and final timesT; and Ty, respectively. The limit
this inclusive multiparticle probability was formulated in 1ii— + is assumed at the end*of the calculation. The com-
[30-32,34. We call it the RST method for brevity, and here plex integration variablea, andby; come from the coherent
we review this prescription in brief. state representation of initial and final states; they are the

The inclusive multiparticle probability6) can be written classical counterparts of annihilation and creation operators.
in functional integral form, where the semiclassical approxi-1he integration over these variables implements the summa-
mation is equivalent to the saddle-point integration. Thelion over initial and final states in Eq6). The functional

double path integral representation fofE,N) reads[30] integrals overp(x) and¢’(x) come from the amplitude and
complex conjugate amplitude, respectively. The integrations

include the boundary valugs  and; ¢ . Integration ovefl
and 9 serve to project onto the subspaces of fixedndN,
respectively.
—iNﬁ—iET—f dkaka:efiﬂfiwkT_f dkbyb? The_inte_gral(13) can be evaluated in t_he saddlg point
approximation, as long as the exponent is proportional to
1l/ayy, implicitly present in the expression, andl,E
~1lay.
Let us now discuss the saddle-point equations for the in-
. (13 tegral(13). We will see that these equations reduce to a cer-
tain boundary value problem for the fieldsand ¢’. The
Here ¢ stands for all physical fields of the theory. The variablesa,, af , b, andb; enter the exponent quadrati-

a(E,N)=f dﬁd?ﬁakdaﬁdbkdbﬁdw(x)dw’(x)exp[

+Bi(ax,¢i) +Bi(bg ,er) + B (2%, @)

+Bf (b_y,¢f)+iS(@)—iS(¢")

boundary term®8; andB; are cally and can be integrated out, yielding
|
1 w
a(E,N)zj dodTde(x)de’ ()] 5(<pf(k)—<p§(k))><exp{—iNﬂ—iETJriS((p)—iS(cp’)—Ef dkl—kz((1+ )
3 Yk
><[<Pi(k)<pi(—k)+<Pi’(k)<pi’(—k)]—47kcpi(k)<p{(—k))], (15)

|
where i.e. the usual field equations. The boundary conditions for

these equations come from the variation with respect to the

y =gl riod, boundary values of the fields. At=T;, because of the

S-function, the variations are subject to the constraint
Spi(X)=0S¢;(x) (at Ty—x). Since J&S/6¢(Tt,X)

An important feature of the representati¢tb) is that the = o(T;.,X) we obtain

exponent on the right-hand si¢idas) contains only the action

and the boundary terms. Thus, the discretization of this ex- ¢(Tf ,x)=¢’(Tf X),
ponent is relatively straightforward.
Let us turn to the saddle point equations. Varying the ex- o(T¢ ,X)=¢@' (T ,X). a7

ponent with respect to the fields(x) and ¢’ (x) we find

Thus, in the final asymptotic region the saddle-point fietds
and ¢’ coincide.

65 _ oS =0, (16) The variation with respect tp; and¢; leads to two equa-

So 5_<p' tions which can be written in the following form:
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[@i(K) + i (K) = 7i(i @] (K) + i (K)), e
A iTr'/2
. 1 ) l B
_iﬁpi(k)+wk¢i(k):7_(_i(Pi,(k)"_wk(Pi,(k))- | o N
“ | C D
These initial boundary conditions simplify when written in Al Ret

terms of frequency components. In the initial asymptotic re-

. , . .
gion (t——=), wherep and¢’ are free fields, we can writt £ 7 The contour used to derive the boundary value problem.

o(X)= {fke—iwkt+ikx+gﬂkceiwkt—iKX}' where
(277')?\ Zwk Y= e wakT. (22)
,(X)zf dk {f/e—iwkt+ikx+gr*eiwktfiKX}. Until now, the initial timeT; was real. However, it is conve-
(277)2 /_Zwk K k nient to reformulate the boundary value problem directly in

(18) terms of the fields on the contour ABCD, at which the initial
time has imaginary part I;=T'/2 (see Fig. J. The ana-

Then the initial boundary conditions become lytical continuation in the initial asymptotic region can be
b g done explicitly by means of Eq§18). In Egs.(19)—(21) this
k= YTk continuation results in the substitution ¢f by
1 —ou(T—T"
=9k (19 ye=e e,
Yk

The simplest boundary conditions are obtained in the case

Finally, there are two saddle-point equations which com&yhen the contour height in imaginary tinfé is equal to the
from the variation of the exponent in EQL5) with respectto  parametefT, leading tok-independenty

¥ and 7. These equations determine the saddle-point values

of ¥ and7 as functions oft andN. In terms of frequency y=e "’
componentd, andg, they readafter using boundary con- ] ) .
ditions (19)] In this case one arrives at the boundary condi{i®b) and

the contourABCD with height T/2 shown in Fig. 1. This

E— | dkwuf.a* (20) formulation will be used in most cases. Then the boundary
= oty value problem(16)—(21) is equivalent to Egs. (9)—(11).
This is the boundary value problem we solve numerically in
_ * the present paper.
N f dkfygy - (22) Let us discuss some subtle points of this boundary value

_ ) problem. First, one notices that the condition of asymptotic
One may recognize the usual expressions for the energy andajity (9c) does not always coincide with the condition of

the number of particles contained in the free classical f'e|dreality at finite time. Of course, if the solution approaches the

n.=f,gx being the occupation number in the mode withyacuum on the part CD of the contour, the asymptotic reality
spatial momentunk. condition (9c) implies that the solution is real at arfipite

The field ¢'(x) originates from the complex conjugate positivet. Indeed, at large enough time the system evolves in
amplitude. This suggests that its saddle point value is comthat case in the linear regime, so the conditi®) means

plex conjugate to that op(x). Indeed, the Ansatz that all physical modes should be real. Due to the equations

[o(t )] = ' (1,X) of motion the fi(_elds are then real on the entire CI'D.—part_of the

Pk LA contour. This situation corresponds to the transition directly

is compatible with the boundary value problettB)—(22). to the neighboring vacuum. However, the situation can be

Then the saddle point values Bfand ¥ are pure imaginary d_rastically different_ if 'Fhe sol_ution on the fi_nal part of the
time contour remains in the interaction region, i.e. close to

7=iT, 9=ié, the sphaleron. Since one of the excitations about the sphale-
. o . ron is unstable, there may exist solutions which approach the
provided the initial energy20) and particle numbe(21) are  sphaleronexponentiallyalong the complexified unstable di-
real. The boundary conditior@7) imply then that the field rection. In that case the solution may be complex at any
¢ is real asymptotically at final time finite time, and become real only asymptotically, &as
+o. Such solution corresponds to tunneling to the sphale-

Im¢(Ty x)—0,  IMe(Tr,x)—0  for Ty—+ee, ron; afterwards the system rolls down classically to the cor-

while Eq. (19) relates the positive and negative frequency

components of the fielg in the initial asymptotic region *The boundary term in Eq(7) is obtained from the boundary

=0k, terms in Eq.(15) by making use of thé& boundary condition$9b).
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rect vacuum(with probability of order 1, inessential for the f,=d,a,—da,, (253
tunneling exponen). We will see in Sec. V that the situa-
'ioIrE] of this sort indeed takes place at high energies x=a+iB, ;=a—iﬂ, (25h)
= S h

Sgcond, the initial boundary conditio(9) (imposed on . — .
the real time axijsmean, thatp and ¢’ = ¢* are different at p=ptiv, $=p-iv, (259
large negative time, while at large positive time they coin- _ _
cide because of the conditigii7). For solutions ending in D.x=(d,—ia,)x, D,x=(d,*tia,)x, (250
the vacuum at positive timgo that the fields are exactly real '
at finite t>0), this means that there should exist a branch —
point in the complex time plane: the contour in Fig. 1 winds ub= ( I~ 38| D ub=| ut 2aﬂ 2
around this point and cannot be deformed to the real time (250

axis. This argumentloes notwork for solutions ending on

the sphaleron at— +, so branch points between the AB- Note that the overbar o, x, andD, denotes changing

part of the contour and the real time axis may be absent. We>—i in the definitions(25) above, which is the same as
have found that this is indeed the case at high enefgies complex conjugatioronly if the six fieldsa,, , «, 8, 1, and
[38)). v are real. In the boundary value problgi®) these fields
become complex and overbar no longer corresponds to nor-
mal complex conjugation.

] ] ] ) ) The equations of motion obtained frof@4) are
Here we consider spherically symmetric configurations

[52] of the SU(2)-Higgs theory. The reason is that one can
entertain the expectation that the most important tunneling 1(r?foy) =i[xDox— xDox1+ —r2[¢Do¢ $Dob],
configurations possess maximum spatial symmetry. On the (263
other hand, without the simplification provided by spherical
symmetry the computational cost of the numerical analysis L i L
would be prohibitive. d0(r?*fop)=i[xD1x— xD1x]+ 5r°[¢D16— ¢D1 4],

In the spherically symmetridnsatzthe original fields are 2
expressed in terms of six real two-dimensional fidgsa,, (26b
a, B, u, andv as follows:

B. Reduction to spherically symmetric configurations

' I T N
Ag(x,t) = an(r Do n, -DMDM+r—2(Xx—1)+§¢>¢_X— 595 (260

1 a(rt) [ P .
Ai(x,t)= al(r t)o-nn;+ (oj—o-nny) D,D,+ F(Xx_lHE(Mb =——¢ (264d)
1+ B6(r,t) - .
+ ———€ikNijo |, (23 11— — .
Tk D,r’D,+ 5 (xx+ 1)+ 2nr%(¢—1) | p=ix¢,
O(x,0)=[u(r,t)+iv(r,Ho nlé, (260
wheren is the unit three-vector in the radial direction afid = = 1—0 2 . _—:.—
is an arbitrary constant two-component complex unit col- _D“r Dyt 2()()(+1)+2)\r ($6 1)_¢ X
umn. This ansatz is symmetric under spatial rotations (26f)

complemented by appropriate rotations in the gauge group _ _ _ o o
and custodial global symmetry transformations. The actiorEquation(26a is of the first order in time—it is Gauss’ law.
(2) expressed in terms of the new fields becomes The spherical Ansat@23) has a residual (1) gauge in-

variance
5= [[at["ar| 12,1, (B,0D,x+ 1B, 9D .0 aya, 2,0, (273
P X—>eiQX, (27b)
2()()( 1)? ——(XX+1)¢¢— X¢2+ SX? _
2 ¢_>e|9./2¢, (270
A (ph—1)2 (24) with gauge functior()(r,t). The complex “scalar” fieldsy
and ¢ haveU(1) charges 1 and 1/2, respectivedy, is the

U(1) gauge fieldf,, is the field strength tensor, aml, in
where the indiceg, v run from 0 to 1 and (25) is the covariant derivative. The residudi(1) gauge
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invariance must be fixed when solving the equations numeri-
cally. We choose the temporal gaugg=0. In this gauge, if
Gauss’ law is obeyed at some moment of time, the other five

/

Imy Imy Imy

N
Jch WRC}( kJRex

h
/

equations guarantee that it is obeyed at any time. This means, r=

in fact, that one of the equations is redundant, and one of the r=c~ilm¢ Img¢ Im¢
fields is not physical—it can be expressed in terms of the {-\ /‘t\ /\
other four fields and their derivatives using Gauss’ law. How- rZO/kJRﬂP \\|/RC¢ \_| /Re¢

ever, numerically it is easier to solve five second order equa-
tions of motion imposing Gauss’ law as one of the boundary
conditions. Also, in thea,=0 gauge, there remains a gauge  FIG. 8. Topological transition in th&U(2) Higgs model: be-
freedom with time independent gauge function, and thishavior of the fields¢ and y. Bold arrows show the change of the
should also be fixed by boundary conditions. field as the radial coordinate increases from0 to r=c. The
The trivial space-independent vacuum of the model is  configurations are showi@&) at initial time, (b) in the middle of the

process, andc) at final time.
bvac=*1,
) . hemisphere oBU(2) before the transition and over the up-
Other vacua are obtained from the trivial one by the gaugger hemisphere after the transition.

(@) (o) (©)

Xvac= —1, a1 vac= 0. (28)

transformations The initial 6-boundary conditions in gauge theory are
a. =30 (299 quite complicated. The basic reason iithatihere is a redun-
pvac e dant field among the five fields,, ¢, ¢, x, x, while the
Xvac=—i€'?, (29b) Q—boundary condition§9b) are to be imposed on phy_sical
ields only. The analytic expressions for the moflesg, in
field ly. Th Iyt p for th flesay
yac= T2 (290  terms of the fieldsy, ¢, a; are cumbersomésee[41,53))

and will not be presented here. It is simpler, and more precise

By regularity, {0 should be zero at the origin. Vacua with
different winding numbers correspond @ —2n7 as r
—o0, For such values of), the fields of the original four-

in the lattice case, to perform this expansion numerically in
the discretized version of the model. This expansion will be
described in the following section.

dimensional model are constant at spatial infinity, and this is To complete the boundary value problem, one has to im-
the standard choice. It allows for a simple description of thepose Gauss’ law and the equation fixing the time independent

topological properties of vacua: since the spHgfat spatial

gauge invariance. Note that both of these equations are not

infinity is mapped to one point in field space, one can com{ull complex valued equation@inlike the #-boundary condi-

pactify the space t&® and consider mapping3®— SU(2),
corresponding to pure gauge field configurations.

tions), otherwise the system would have been overdeter-
mined. The point is that, the reality conditions at final time

One can also make other choice of gauge transformatiot®c) forbid gauge transformations with imaginary gauge

function Q(r) at spatial infinity(as long as the fields are
pure gauge and constant in time thern our case it is
convenient to set)l—(2n—1)7 at r—o. This choice,
called “periodic instanton gauge” in this paper, in the origi-

functions and also guarantee that Gauss’ law does not have
imaginary part. So, only the real part of Gauss’ I26a and
equation fixing only real-valued gauge transformations must
be used. Together with fowt-boundary conditions this gives

nal four-dimensional theory corresponds to mapping of théhe right number of boundary conditions for the system with

sphereS? at spatial infinity onto the equatorial sphese of

five complex valued fielda,, «, B8, u, v. The exact form

the SU(2) gauge group, parametrizing the pure gauge fieldf the gauge fixing condition will be given in Sec. IV, be-

configuration. This behavior of) is equivalent to the re-

cause it is again most conveniently expressed in lattice

quirement that the fields satisfy the following boundary con-terms.

ditions atr=0 andr =,
X|r~>04)_i’ Xlraw%i!

O+ 3 dli0—0, @l wi, (30)

¢_$|r—>04>0'

The conditions for the fielgp atr —0 make the original field
® regular at the origin.

In this gauge na-independent vacuum exists, but transi-
tion between vacua witm=0 andn=1 is described in a
very symmetric way. The behavior of the fielgsand ¢ for
such transition is shown in Fig. 8. In the original four-

dimensional model this topology changing process corre-

One more complication of the problem is the invariance
of the equations under translations along the real time. To
solve the equations numerically this should be fixed in a
controlled way, to make sure the contour winds around the
branching points of the solution, and does not get too close
to them. A method of removing this invariance will also be
described in Sec. IV.

IV. COMPUTATIONAL CHALLENGES
A. Discretized action

To obtain a self-consistent system of equations, the dis-
cretization of the equation®6b)—(26f) should be done in a
gauge invariant way.

First, let us consider the discretized version of the action

sponds to a transition where the fields wind over the lowerK24). The spatial axis is discretized by introducing sites
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i=0,...N, wherery=0, ry=L. The time grid consists of v1j=1Atj 1p, vpj=hjAt
sitest;, j=—1,...Ni+1. We are working in thea,=0

gauge, and omit the subscript in the spatial component of the

gauge field,a;(r,t)=a(r,t). Field variablesy;;, x;; and wl,i:riﬂl,z/ArHl,z,

®ij , ¢ij correspond to field values on the space-time lattice

sites, whilea;; are defined on spatial links and temporal

j?

sites. We also absorb ther; factors in the definition of;; . Woi=1/Ari 150, Wz;=Ary,
The boundary conditions in the periodic instanton gauge, Eq.
(30), are
2 2
W4 =r{Ar;, wsi=Ar;/r{,
Xof:_ﬁa XNj:iu (313 4 i i 5 it
— . — ) W|th Atj+l/2:tj+l_t]" AtJ:(AtJ+l+At])/2, and ana|0-
Xoj=h  Xnj= 1 (31b gous expressions fakr;; h;=1 for j=0N, and 1/2 for]
1 =—1N;+1. Lattice field equations are derived fro{82)
—ian: ian /2T : iati he lattice fiel fter th i-
¢o;=§{e 'aO'/2¢1j+9'a°'/2¢1j}, b=, (310 by variation over the lattice fields, after the boundary condi

tions(31) have been used to exclugg; , xoj, boj, ¢o; and

_ _ . Xnj» Xnjs njs énj from the lattice action.
boj= boj,  Pnj= i (310 The action (32) is exactly invariant under time-

. - ) independent lattice gauge transformations of the form
for all j. In the boundary condition fopy;, the spatial de-

rivative in Eq. 30 was changed into a covariant one to pre-
serve exact lattice gauge invariance. Thus the complex lattice aj—a;+ Qi -,
field variables left are

Xi X+ by by, i=1..N—-1, j=—1,. Ne+1, Y= ey 33
ay, i=0,...N—1, j=—1,...N.+1.
The discretized action reads bij—e Uy
S= (S¢St S+ St This gauge freedom has to be fixed by boundary conditions.
N, N-1

B. Boundary term: normal modes

Sﬁzj;l 2. v1jWqi(1—coga; j+1—aj)),

i To obtain lattice version of Eq9b) one notes that plane
waves are no longer eigenfunctions of the Hamiltonian on
Ny N-1 . . the lattice. To find their analogue one brings the quadratic
S= 2 > vafWai(xijei—xi) (Xij 1~ Xij) part of the actior(32), taken in the limit of continuous time,
j=-1i=1 to the canonical form. We expand it near the space-
independent vacuurt?8)

AW (b1 1~ B (i jr1— di)hs (32
N, N-1 Lo~ — =
i — . ian X=—i—x, x=i—x, (34)
Sr:_j;l ~ Uz,j{Wz,i(e'a"Xi+1,j_Xij)(e Ia”Xi+l,j
— Xij) +Wa (€212, g — i) (72 1y b=—1+i9p, d=—1—id
~ Pl [performing in the end a gauge transformation to the vacuum
Ny N-1 1 (30) is straightforwardl It is also useful to change to the
S=— 2 2, Uaj W5,i§(Xinij_1)2 notations(25),
j=—-11i=1
1 — i— 5, 0 - ~ e e o~ e
+ws; 5(Xinij+1)¢ij¢ij+EXijd’ij_injd’ij x=atiB, x=a-ip,
+)\W4,i(gij¢ij_l)2]1 D=n+iv, d=pm—iv.
where the weights are In these terms, the quadratic part of the actid®) is
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N—-1 N—-1 N—-1

1 . i . i i 1 - .
S(Z)ZEI dt[ 2,0 wyjaf+ 241 (2W3,ia’i2+2W3,i3i2+2W4,iﬂi2+2W4,iVi2)] - Ef dt[ izo 2wy (@ + aji g~ @)?

N—1 N—-1 N—-1
+(Bis1— B+ ;o 2wyl (aif2+ iy 1= ) *+ (Vi 1= 97) %]+ izl (4ws,+ws) B7 + ;1 Wy af — 4o+ 4uf]

N—1
+8\ 21 W4,i7/i2] : (35)
=
|
As seen from Eq(35), the variablesyy, Bo, o, andv, do B 1., 1 ,,
not have kinetic terms. Three of them are fixed by the bound- S= | di{3zi— ez

ary conditions at =0,
Therefore, vectors
o= PBo=po=0.
£k =Oki

are normal modes in the lattice formulation of the theory, and
should be used instead of the usual spherical waves. The
corresponding frequencies a«é

The matrix Oyx; and frequenciesoy are found numeri-
cally. Since they depend only on the spatial lattice param-
eters(size and spacingand coupling constant, and do not
depend on the background vacuum field configuration, it is
1 1 sufficient to perform this diagonalization once for a given
S:J' dt(—dfcﬁ,z— 1S, |, lattice. The first N—3 .eigenvectorsg(w and eigenvalues

2 2 wy correspond to physical modes, and the Mstl of them

have =0 and thus correspond to the gaugmphysical
where the real valued coefficients and S;; are to be read degrees of freedom.
off from Eq. (35), indicesl,J label fields and space points,

ande, stands for the fields; , B; , i, 7; ,a;}. The change of C. Boundary conditions
variables

The fourth one,vq, is determined from the field equation,
which for this variable reads

Vo= Vq.

After the variables with=0 have been excluded in the man-
ner described above, the quadratic action takes the form

(a) 8 boundary conditionsTo derive the lattice version of
the boundary conditions, one takes the variation of the expo-

yi=die nent for the total probability15), which can be written in the
) o ) following form:
brings the kinetic term to the canonical form,
iIS(z)—iS(z")
1., 1 .
S:f dt >Yi _EY|S|JVJ ) o2 )
) AL+ Y22+ 22 ) —dyz gzl )} + ..
1-y

where (36)

g = i S i _ where dots denote terms irrelevant in the current context and

N d, TV d, y=e ?. One has to vary the lattice version (86) with
respect toz, _; (values ofz at the first time sliceand set
The symmetric matrixS,; is then diagonalized z'=z*. The variational equation reads
§;=0! w20y;, . 0S ) 20y .,

197 HIKEKEKI |§ZI’_1—1_72(1+72)z|,71+—722| -1=0
whereOy is an orthogonal matrix. Introducing yet another
set of variableg, by the relations which leads to

= =0T S 1- 1+

Oka¥s=2c: ¥5= Oz o +i 1T1w, Rez, _,— wlmz, _;=0,

we finally bring the action to the diagonal canonical form, (37)
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where the derivatives of the action are equal to the classical (c) Final boundary conditionslt is straightforward to
momenta of the modes implement the reality conditions at final ting@c). Supposing
that the last two time grid point$\, andN;+1 are on the

S real time axis, they are

6z,

=-v1-1(2/0=2 -1).
Im a’i’Nt: Im Bi,NtZO!
Here the inded =1, ... ,4N—3 labels physical degrees of

freedom. One can go back to the original notations by means
of the relation

Im pi N =My y=IMa; y =0, (41)

Im @ N +1=1M B N +1=0,

legleJ(PJ’ Im ,(,Li’Nl+1:|m Vi‘Nt+1:|m a-i,Nt-%—lzo'
wherel=1, ... ,4N—-3.

Finally, we use the gauge transformation For energies below the bifurcation lirie;(N) the time N;

can be chosen to coincide with the point C of the time con-
r tour (so there are only two lattice poinit andN;+ 1 on the
Qizrrex% - m) whole CD part. For higher energies, though, the fields are
! not real along the most part of the real axis, so the part CD of

L . o the time contour has to be as long as possibée Sec. V.
with ¢=0.5 to transform the fields from the periodic instan- (d) Fixing time translational invariancedne more com-

ton gauge(30) to the forme; (34) [of course, other gauge piication is that, in the continuous formulation, the boundary
choices with(2(0)=, ((L)=0 are possible This trans-  yajue problem9) has an invariance under translations along

formation has the form real time (both field equations and boundary conditions are
~ ~vac invariant under such a translatjorifo define properly the
PITOkIPI— Py s (39 boundary value problem, one has to fix the position of the

] . o solution in time. In the lattice version this invariance is vio-
where ¢; stands for the fieldsy;,5;,u;,v;,8; in periodic  |ated by the discretization and finite volume effects, but this

instanton gauge. The matrii; and vectorp®° can be eas- violation does not enable one to control the position of the

ily read off from the expression for the lattice gauge trans{ime contour relative to the branching points of the solution.
formation (33) and definition(34). The existence of this invariance means that one of the

(b) Zero modes parThe #-boundary conditiong37) give  equations is redundariif discretization and finite volume
only 4N—3 (comple® equations, while Bl—4 boundary effects are discardédSomewhat arbitrarily, we take as re-
conditions are required at the initial time. The “left over” dundant one of the real equations entering #heoundary
N—1 conditions correspond td—1 gauge degrees of free- conditions(9b)
dom in the model. As described in Sec. Ill B, for these

—1 equations one has to use the real part of Gauss’ law argfi =arggy, (42)
(26a, for a specific mode. Provided the system linearizes at initial
time, this equation is indeed a consequence of the others. The
Re{Wlilsin(ail1—ai1<ﬁ—W1iSin(ai _1—ai0) reason is that reality conditions at final time imply that the
' ' ' ' ’ ' (conservetlenergy is real. Hence th@nearized energy(10)

o B i o is real at initial time. Then one of the modes automatically
+iWgi(Xi —1Xio— Xi—1Xi0 T 5Wai(bi —10i0 obeys Eq. (42) provided all other modes obey the
2 #-boundary conditior(9b).

o This suggests the following modification of the equations.
- ¢i’_1¢i’0)} =0, (399  One of the equation®b) is changed to
Tl =e""gul,
wherei=1,... N—1. One also makes use of equations that

fix the remaining real gauge freedom. The latter equationghose lattice version ifcf. Eq. (37)]

are 2
1—9? +og|ze _1]?| 20k (1+
Rez, =0 (40 (1-v9) 52 1 oz, -4l wk(1+7y9)
oS
for all L=4N—2,... ,5N—4. These modes have zero fre- x Rea Imz¢ _;—Im 5 RezK,1}=0.
guencyw, =0 and correspond to the unphysical degrees of ZK,-1 ZK, -1
freedom which change under gauge transformation, so Eq. (43)

(40) fixes the residual gauge invariance with real gauge func-

tions completely. Gauge transformations with imaginaryThus, instead of Eq42) one imposes another boundary con-
gauge functions are forbidden by the reality conditions adition, which is not invariant under time translations. The
final time. choice of the latter is a matter of convenience. We control the
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position of the solution in time by imposing the boundary %S %S
condition that fixes the “center-of-mass” of the fieldat the
initial time to be equal to a giveR,

————Uj_ 1t U
@) d@j—1x @y dpik

N-1 + S + s 0 (45)
— T Uikt o=
ReY, wy(ri—R)(xi-1xi,-1-1)?=0. (44 Ieindeirik i
i=1
(all other second derivatives are zgrnd before the next
This prescription works if the modg in Eq. (43) is reason- Newton—Raphson step the fields are changed according to
ably occupied at the initial time, otherwise the equati4®),

which is “thrown away,” is nearly degenerate. Aside from GDJ(FH)_@D(n)
this, the results of the calculations do not depend signifi-
cantly on the mode chosen. Equations(45) can be rewritten in matrix form
The relative phase betweeh, and g, can be used to =) ~ = () ~
check the validity of the calculations. In the linear regime it Dj 7-uj-1+Dj-uj+Dj - uj 0 =0, (46)

should be equal to zero, so the actual value of this phase
indicates how close the system is to the linear regime at th¥/hereu; andb; =95/ de;, are (N—4)-dimensional vectors,
initial time. D =32S9¢)0¢; -1, D;=3°Sldg; dei , D( )

To summarize, the lattice boundary value problem con= a ?Slo¢; 0@ 1k are (EN 4)X (5N~— 4) matrices. By
sists of the field equations, obtained from act{8@) for all multiplying Eq. (46) by D ] L we get
inner lattice pointgi=1,... N—1,j=0,... N;, atotal of
(N—1)(N,+1) equation} the final reality boundary condi- u;=D{u;_1+D{")uj, 1 +b; (47)
tions (41) (N—1 equationg the 6 boundary condition$37)
for all modes except one modg (N—2 equations and a  with D{*)=-D;*-D{*), bj=—D; "b;. This system of
pair of real equation$43), (44) (one complex valued equa- linear equations was solved by the following version of
tion). This makes Kl—1)(N,+3) complex equations for the “divide-and-conquer” elimination algorithm. Excluding;

same number of variables. for somej gives
D. Search for solutions Uj—1=(1-D{*}-D{) " D{Z}-u;_»,+D{*) - D{).u; 4
The equations to be solved make a set of discretized par- +(Dj(f)l. bj+Db;_1)],
tial differential equations which change their signature from
hyperbolic on the Minkowskian parts of the time contour to ... —(1-D( - D(+) 1[D( ) D( ). U A+DM U,
elliptic on the Euclidean part. The problem at hand is a ! b
boundary value problem which cannot be transformed into +(DJ+l bj+bj,q1)].

an initial value one. This means that the equations can be

solved only globally, as a set of nonlinear equations at,&ll  Since the elimination of an equation changes only adjacent

grid coordinates. equations, it is possible to eliminate all equations with pdd
To deal with the nonlinear system of equations we employin parallel, and arrive to a system of the ty{#) again, but

a multidimensional analog of the Newton—Raphson methodvith two times less variables and equations. This is the sec-

which approaches the desired solution iteratively. At eactpnd level of elimination. After a series of eliminations we

iteration, thelinearized equations in the background of the arrive at a system of only two equations fp=0 and j

current approximation are solved. The next approximation is= N;:

obtained by adding the solution to the background, and the

procedure is repeated. The advantage of the algorithm is that Up= 158_)~u_1+ 58+)~UNI+ 60, (483
it does not require positive-definiteness of the matrix of sec-
ond derivatives. It is, however, sensitive to zero modes. In u t:f)F\l:)'u0+IS(NT)'uNﬁl_l_BNt! (48b)

the absence of zero modes, the algorithm converges quadrati-
cally; the accuracy of 10° is typically reached in 35 itera- N N ) o
y y ypicaty ghereD(—) andb have the values resulting from the elimi-

tions. The convergence slows down in the presence of very" ; - - :
soft modes, as typically happens near bifurcation points. nation of all intermediate equations. Solving them together
with the boundary conditiofis(also linearizeyl which in-

E. Elimination algorithm volve u_; anduj for initial boundary condition andy, and
The discrete version of the equations derived fr@&® is
4Unlike the field equations at the intermediate poi@s), which
‘9_8 are analytic, the boundary conditions involve complex conjugation.
Iji So, Eqs(48) and boundary conditions are to be viewed as eight real
matrix equations. All the elimination calculatiofand reconstruc-
[here ¢, ={a,a,B,u,v}(tj,r;) and | runs from 0 to N tion of field values afterwardgan be done, however, with complex
—4,j=0...N;]. The Newton—Raphson iteration is algebra, which is two times more efficient.
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FIG. 10. Visualization of the fielgy for a solution withN=1

FIG. 9. Search for solutions. Each point corresponds to oneandE=3.35. The color tracks the phase of the field. The part cor-
solution of the boundary value problem. The color of the pointsresponding to the Euclidean evolution is inclined for visualization
tracks the suppression expon&E,N). The almost vertical line is  purposes.
the line of bifurcationsE,(N) (cf. Fig. 2.

resentative field configuration is presented in Fig. 10. It de-

U1 for the final one, we determine the correctians;, ~ Scribes the fieldy(r,t), with the phase of the field encoded
Ug, Uy, anduNt+l- Then it is straightforward to reconstruct in color. The Euclidean part of the time contour is inclined to

. : . . , make it distinct from the Minkowskian parts. In the initial
“l?‘t all L'nterlmed;ate points, using the equatio4®) for each  gate(left part of the surfacethe field is close to its vacuum
elimination level.

value, with excitation in the form of the incoming spherical
wave moving towards to=0. The final statdright part of
the surfacg contains the outgoing wave. The phase of the
) o field clearly behaves differently in the initial and final states.
The Newton—Raphson method requires a good initial apThjs confirms that the topological transition indeed has oc-
proximation for the solution. This favors the following gen- ¢\ rred (compare to upper three images in Fig. 8everal
erql strategy. We first find the periodic instantc_m s;olytion,other important properties of the solution may also be seen
which corresponds t@=0 [12] and can be obtained via a jmmediately. These are: the moment when the field goes
minimization procedure. After the periodic instanton IS through =0 in the middle of the Euclidean evolution,
found, we change the parametefsand ¢ in small steps, \yhich of course should happen with the field evolving be-
using fche solution from the previous step as a starting congyeen neighboring vacua; the wide outgoing wave, suggest-
figuration. At each step we then calculate the endéfgyum-  jhg that a large number of low energy particles is created
ber of pqrtlclesN _and the suppression expondf(E,N) for  after the transition; the small and relatively sharp incoming
the solution obtained. wave, meaning that higher energy modes are occupied and

This procedure is illustrated in Fig. 9, where each dotihe numper of particle in the incoming state is smaller.
represents one solution of the boundary value problem. Ini-

tial periodic instanton_ configprations co'rrespond to the pqints V. GOING OVER THE SPHALERON ENERGY
on the upper left line in the figure. Starting from these points,
the value of6 was increased, and lines with constant values The procedure described above works as it is for rela-
of T were obtained until the bifurcation line was met. Datatively low energiesE<Eg,, only. With growing energy, the
obtained in this way make almost straight lines in the leftsolutions on the CD part of the contour tend to stay for a
part of Fig. 9. long time close to the sphaleron. As the energy approaches
The boundary value problei®)—(11) does not explicity = someN-dependent valu&,(N) this time tends to infinity,
refer to the topological properties. Hence, it is not guaranteednd if one continues to search for solutions to the boundary
that its every solution describes a transition between topovalue problem(9) with reality condition imposed at finite
logically distinct vacua. This is not a problem @0, be-  positive time, the solutions above this energy have wrong
cause of the proper topological structure of the periodic intopological properties, i.e. they end up in the same topologi-
stanton solutions. But at non-zetbone should check that cal vacuum as the initial ongsee Fig. 1L This situation is
the solution indeed has correct topology. not specific to theSU(2) gauge model studied here, but
The topological properties of a given solution are associappears quite generally in quantum mechanical tunneling
ated with the behavior of the phases of the fields, see Fig. 8ith multiple degrees of freedom. It was observed also in the
A very useful tool to control the properties of the solution is study of the false vacuum decay in scalar field thel@4]
visualization of the field behavior. The visualization of a rep-and in quantum mechanics with two degrees of freedom

F. Solutions below the sphaleron energy
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FIG. 11. Solution forT/2=2 and #=3.35, without regulariza-
tion. For this solution E/Eg;=1.04, Ney=0.94, so thatE
>E;(N). One observes that the topological properties of the solu
tion are wrong: it begins and ends in the same vacuum.

[36,37]. The phenomenon was studied in detai[38] in the
case of quantum mechanics of two degree of freedom, and

general method of dealing with this difficulty was proposed

g

there and checked against the exact solution of the 'Schr
dinger equation. We describe here its gauge field version.
As suggested i138], the line E;(N) is the bifurcation

line at which two types of solutions to the boundary value

problem(9) meet. These ar@) solutions which end up close
to the same vacuum as the initial one dnd solutions that
arrive at the sphaleron with excited positive modigsthe

case of field theory these excitations fly away quickly in the

form of spherical waves in the sphaleron backgroufdhe
former solutions are unphysical, while solutions of the latte

form determine the tunneling exponent. For the interestind

solutions of type(ii), the condition(9c) is satisfied only as-
ymptotically, so it is very hard to find them numerically. A
way out is to introduce a small regularization parameter int
the equations of motion, which would not allow a solution to
stay close to the sphaleron for infinite time. The final result i
then obtained in the limit of zero regularization parameter.

To implement these ideas we start with the regularize
expression for the cross section,

O-E(E’N):Zf |<f|e—2ei'intASf)Eﬁ)N|i>|2' (49)

wheree is a small parameter anf,,; is a functional propor-

PHYSICAL REVIEW D 68, 036005 (2003

the unregularized one, but with the action modified by add-
ing an imaginary term of the form

5s=ief dtJ dr((r)e(r)—1)=8. (52)

The equations of motiof26) are modified accordingly.

The functional(50) has several important featurép:it is
gauge invariant(ii) it is large and positive on configurations
close to the sphalerofwhere the fields stay for a long time
away from their vacuum valugs(iii ) it does not change the
free dynamics in the linear region, since it does not produce
gquadratic terms in the expansion of the action about vacuum
(this is important for the boundary conditions to be unaf-
fected.

With this regularization one obtains results for all energies
E. The procedure is as follows. One introduces small but
nonzeroe at energies belovie;(N), then obtains solutions
with proper topology for any energy. Then one takes the limit
€—0. Upon taking this limit, the configurations witE
>E;(N) stay for longer time close to the sphaleron, which
means that in the limit oe— 0 the solution tunnels “onto”
tge sphaleron.

Moreover, at the boundary of the classically allowed re-
ion, the solutions to the regularized problem merge
smoothly with the classical over-barrier topology changing
solutions, because the bifurcation on the boundary of the
classically allowed domain is regularized exactly in the same
way as the bifurcation & =E;(N). At the boundary of the
classically allowed regioff =0 by definition, so the regular-
ized version of this functiondF is proportional toe. This
means thafl and ¢ are also proportional te there, and as
the regularization is turned ofg—0, bothT and 6 disap-

joear, leading to purely real classical boundary value problem

n real time.
There is one more complication in tisdJ(2) field theory,
which is relevant to this procedure. For enerdies E{(N)

0the amount of timeT spent on the Euclidean part of the

contour is a growing function of energwas opposed to the

Ssituation in two-dimensional quantum mechanif38]),

while it is zero at the boundary of the classically allowed

degion Eq(N). This means thal as function of energy at

fixed 6 has a maximum somewhere in betwder(N) and
Eo(N) [the calculations show that the maximum is actually
at E;(N), see Fig. 13 ForT close to this maximum value,

the Newton—Raphson method fails because of the presence
of two nearby solutions with equal values ©f This new
bifurcation is absent, if one searches for solutions viithd
energy Einstead of fixedrl. To formulate the boundary value

tional to the time the system spends in the interaction regiorproblem with fixedE instead of fixedT, one simply sets the

In case of gauge-Higgs theory we use the functional
Tint:f dtf dr((r)é(r)—1)° (50)

The path integral fof49) is no longer saturated by classical

contour heightT’ to some conveniently chosen value, and
leavesT as a free variable. This leads to a trivial modification
of the initial boundary conditions,

fk:e_a_wk(T_T,)gk. (52)

solutions spending infinite time close to the sphaleron, whileAn additional equation is then required to find one extra

the original cross sectioa(E,N) is obtained in the limite
—0. The boundary value problem f@49) coincides with

undetermined variabl&. This is the equation involving en-
ergy of the solution, Eq(10). With this modification of the
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procedure, the “bifurcation” corresponding to the maximum suitable for parallel execution, so one divides this time by the
of T disappears. Note however, that this method had to baumber of processors available for the calculatib@serall,
applied with great care—on realistic grids it is hard tothe most strongly constrained is the spatial dige a two
achieve fully linear regime in the initial state, therefore thetimes larger spatial grid means eight times longer processor
difference betweem and T’ must be small, as the depen- time.

dence of the fields on imaginary time is exponential. In our  The main results we present in this paper were obtained
;:_alc;lgtlop’s,dt_;\fe verS|fon othhe bounda(;y vallue problem r\]/\/lﬂ‘bn a grid with spatial size =8 (i.e.,L=8/\2My) and num-

ixed E (T different fromT) was used only t0 cross the por of gpatial grid pointsN, =90. The length of the initial

malﬁ%ﬂ?nﬁ;.erical calculations we introduced small non- " nKoWskian part of the contouT xp was equal to 6. The
zero € as the energy of the solutions approachedN). number of time grid po_intNt on the paft b con'_cour
Simultaneously, the modificatiofb2) was used to get past was equal to 200, while on the_ Euclidean part BQ It was
the maximum ofT atE;(N). In Fig. 9 the solutions obtained equal to 150. The number of points on CD part varied from
2 for energiesE<E;(N) to about 400 for higher energies

with this modification are represented by points on the lin Y ;
that crosses the bifurcation lirg,(N). At higher energies (When thee-regularization was usedOn the largest grids

the modification(52) is no longer needed, and only regular- the amount of memory used was 4Gb, and it took 3 minutes

ization with nonzerce was used. In Fig. 9 solutions to the for one Newton—Raphson iteration on a 16 processor IBM-

regularized problem in region A.ll correspond to points onRS/6000 supercomputer, or about 15 minutes for one full

the curved lines in the right part of the pidines of constant ~ solution.

T). The line with the highest energy has zero suppression We obtained the results for the suppression factor in the

exponent and corresponds to the boundary of the classicallggion ofE andN shown in Fig. 9. For the lattice parameters

allowed region. To connect lines of constdntve obtained a we used, this region is limited mainly by the effects of non-

set of solutions represented by the irregular line in right partinearity at the initial time, preventing us from reaching

of Fig. 9. smaller particle numbers. When energy and particle number
are small simultaneouslibottom-left part of the plot ef-

VI. NUMERICAL RESULTS Iectts of the spatial discretizatidifinite Ar) are also impor-

ant.

There are several factors affecting the choice of the lattice To check the discretization effects, a limited set of calcu-
size and shape. The physical spatial size of the lattit® |ations was performed on smaller grids. The results presented
chosen large enough to make comfortable room for theyere coincide with results obtained withy = 64 with preci-
s_,phaleron_. More importantl_y, _determ_in_e_s how close to the gjon petter than 1%except for very small energipswith
linear regime the system is in the initial state: the fartherNr:45’ on the other hand, the results coincide only for suf-

away from the origin, the smaller becomes the amplitude Oficjently |arge initial particle numbers, exactly as one would
incoming spherical waves. Aftdr is chosen, the lengths of xpect

. e
the parts AB and CD of the time contour are determined The linearization of the system in the initial state can be

fﬁ;ﬁiﬂﬂ:}%ﬂ%&gi:]hev'\;‘:/g?;?s'ig’tl'?::ghs$zlfratia?hecked by evaluating the time dependence of the linear en-
X g b ergy (10) and particle numbef1l) on the part AB of the

boundaryr=L. The length of the CD parip is zero for . . :
: : . : contour. For linearized system, these should be independent
energies below the bifurcation enery- E,(N). For higher of time. For a typical configuration this test is shown in Fig.

energies,T¢p is adjusted to be long enough, so that the so _ e . .
lution gets close to the vacuum configuration, and the regu_lz_'_ The I|nea_r energ_y_commdes with the exact one n the
larization (51) does not contribute significantly to the equa- Ntial state with precision of order of 1% or better, which
tions of motion at the final moment of time when the reality confirms that th(_a solt_Jtlo_n is quite close to the_Ime_ar regime.
boundary conditions are imposed. Anpther test of Imear.|t_y is the amount qf the wolauc_m of the

The lattice spacing\r constrains the precision of the dis- initial boundary conditior{42), which is discarded to impose
cretization in two different ways. First, it is chosen to be the time translation invariance fixing relati¢8ec. IV). This
substantially smaller than the size of the instanton-like par@mount grows towards smallél and apparently this is one
of the configuration, i.e. the characteristic scale of nonlineapf the effects preventing us from going to lowsrwith the
dynamics that occurs near=0 during the topological tran- current spatial lattice size=8. Larger lattices are needed to
sition itself. SecondAr controls the energy of the hardest achieve better linearization on the initial part of the time
mode in the initial state, thus limiting the lowest particle contour and thus reach smaller particle numbers.

numberN that can be reached for given enefgyThe time We made additional checks of the precision of the numeri-
spacingAt is chosen to be smaller thakr to guarantee cal calculations, including conservation of energy and the
stability of the numerical procedure. inverse Legendre transform,

The amount of computer memory required for a lattice of
spatial sizeN, and time lengthN; is approximately 2
X Ny(5N,)?X 16 bytes(see Sec. IV E while the CPU time °The parallelization algorithm is effective only iNycessors
of one Newton—Raphson iteration scales roughly as<N,, so the shortest possible wall clock time in an ideal situation
N((5N;)3. It was noted in Sec. IV E that the algorithm is is proportional toyN,(5N,)2.
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FIG. 12. Particle number evolutiofupper ploj and linear en- FIG. 14. Lines of constan.

ergy evolution(lower ploY for the configuration wittiN=1 andE
=3.35. The exactfull nonlinean energy is also plotted for refer-
ence(straight dotted ling

IF
o=—(4m) | (53)
E
IF
T=—(4m-=| . (54)
N

These checks are satisfied with precision better thar?.10
This means that the precision of the final results is deter-
mined mostly by the quality of the linearization in the initial
state(of the order of 1%

Lines of constani and constan® are shown in Figs. 13
and 14. One observes from Fig. 14 thagrows asN de-
creases, as expected, afids equal to zero on the periodic
instanton line and on the boundary of the classically allowed
region Eo(N). The lines of constanf show thatT also
equals to zero at the boundaBy(N), and reaches a maxi-
mum for givenN (and for given# alsg at the bifurcation

1.8

16 /
14 ,

12

B —
0.8 " T
‘ 5 0.04
06 L—o
04
02 . i ) .
FIG. 15. Surfaces describing the field for solutions withN
00 1 5 — ” . . =1 andE=3.35(upper picturg E=4.48(middle), E=5.22(lower
Ea‘:;Mw picture). The first surface corresponds to deep underbarrier tunnel-
ing, and the last one corresponds to nearly classical over-barrier
FIG. 13. Lines of constaril. transition.
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FIG. 16. Energy density for several values oftRendicated by E=25N=05
numbers near graphgor the middle configuration of Fig. 15N olE @3'
=1, E=3.35). The energy density for the sphaleron solution is« o1t = '3‘3'2-
shown for comparison by solid line. 005 - . ' i
line E;(N). Close to this line we made use of the modifica- 0 5 10 15 20 25 30
tion of the boundary value problem described at the end of mode number
Sec. V. 02 E=25 N=0.54
Representative solutions are shown in Fig. 15. They cor- o5y :‘:1:
respond to deep tunneling regim&<E;(N)], tunneling &« o2}t e lagl” ]
onto the sphalerodE>E;(N)] and classical overbarrier ol ' al
transition atEg(N), all for N=1. One can see from the color [
patterns that the field indeed undergoes the topology chang ~ °,~ & o 5 o " 0
ing transition of the form illustrated in Fig. 8. The incoming mode number

wave is present in the left part of the pictures, becoming

sharper and sharper for higherlene@}e particle number is modes forEay, /My=3.54 and differeni. a; are numbers of par-
the s'a'me.for all plots In the, first picture the topological ticles in each mode in units of &{, for four different types of
transition is seen on the Euclidean part of the contour. In the,odes(see[41] for definitions. Modea, is the Higgs boson mode,
second and third piCtUreS, a Sphalel’on-like Conﬁguration |$Vh||e a2’314 are gauge boson rnodeaz(3 are trans\/ersa4 is ra-
visible on the right, with “extra” wavegexcitations about dial). On the horizontal axis is the mode number for a lattice with
the sphaleronflying away, while the sphaleron itself starts to spatial sizer =8.

decay quite close to the right end of the plaith the regu-

larization parametes tending to zero, the moment of sphale- quencies. This is demonstrated in Fig. 17 for energy slightly
ron decay moves towards larger timeAt large times, the smaller than the sphaleron energy.

wave reflected from the boundary=L appears due to the Finally, let us discuss the extrapolation of the results to
Dirichlet boundary condition§31) imposed atr=L. This  zero number of particles, which we performed to obtain pre-
wave does not alter the results, as it occurs in the lineadictions for the suppression expondny(E) of the two-
regime® particle cross section.

The fact that forE>E;(N) the solution after tunneling Two ways of obtaining the lower bounds &g (E) were
has the form of the sphaleron plus spherical excitations in it€xplained in Sec. Il. One is to continé€N) at each energy
background is illustrated by plotting the spatial energy dendinearly in N to N=0 (this is justified by recalling that
sity at different times after tunneling. In Fig. 16 the energydF/JdN=— @ increases adl—0), while the other is to con-
density distribution is shown for the middle solution of Fig. tinue lines of constanf (see Fig. 3 linearly to N=0 (this
15. As the time increases, the bump on the rigiptherical  gives a lower bound since the lines of constaritave posi-
wave moves towards larger, while the energy density pro- tive curvaturg. Both these extrapolations are straightforward
file approaches that of the sphaleron. to make, insofar as the required derivativesF¢E,N) are

It is also instructive to see that with the number of incom-given for each configuration by the valuesiodnd 8 through
ing particles decreasing, the occupied modes have higher fré¢he relations(53) and (54). In this way we obtained the

bound shown in Fig. 5.
We now elaborate on our estimate of the functiay,(E)
%To get rid of the reflected wave a much larger spatial grid woulditself, Fig 6. Perturbative calculation at low energies]
be needed. shows that while the exponeR{E,N) has singular behavior

FIG. 17. Distribution of particle numben, at initial time over

036005-19



BEZRUKOV et al. PHYSICAL REVIEW D 68, 036005 (2003

L T L quantitative results for semi-inclusive, weakly coupled non-
2 f3 09 b . perturbative processes, and, in particular, for particle colli-
25t ;o B sl | sions.
L/ ” T In this paper we applied this technique to study the sup-
Ay 0.7 . ] pression factor for topology changing transitions, and ac-
06 . companying baryon and lepton number violation, in the
+ SU(2) sector of the electroweak theory up to energies well
g 8 o5t 4 . . :
. above the sphaleron energy. We imposed spatial spherical
041 . ] symmetry, so our results are valid, strictly speaking, for
03 f " 1 swave scattering.
oz | " | Our results show that the known analytic expression for
N the suppression exponent, which contains three terms of low-
! o1 r energy expansion, works well up to the sphaleron energy, but
0 b ol v underestimates the suppression at higher energies.
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By numerical analysis we have found that baryon and
lepton number violation, accompanying topology changing
FIG. 18. Left, T(N)/2 for different energies, labeled by values s-wave particle collisions in the electroweak theory, remains
of Eay/Myy, the points are data from numerical calculation andhighly suppressed up to energies of at lea®50 TeV (and
lines are extrapolations. Right(E)/2 extrapolated to zero particle likely much highey.
number.

Now, Eouy/My,
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