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Collective modes of an anisotropic quark-gluon plasma

Paul Romatschke and Michael Strickland
Institut für Theoretische Physik, Technische Universita¨t Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

~Received 22 April 2003; published 28 August 2003!

We analyze the collective modes of high-temperature QCD in the case when there is an anisotropy in the
momentum-space distribution function for the gluons. We perform a tensor decomposition of the gluon self-
energy and solve the dispersion relations for both stable and unstable modes. Results are presented for a class
of anisotropic distribution functions which can be obtained by stretching or squeezing an isotropic distribution
function along one direction in momentum space. We find that there are three stable modes and either one or
two unstable modes, depending on whether the distribution function is stretched or squeezed. The presence of
unstable modes which have exponential growth can lead to a more rapid thermalization and isotropization of
the soft modes in a quark gluon plasma and therefore may play an important role in the dynamical evolution
of a quark-gluon plasma.
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I. INTRODUCTION

In the ongoing ultrarelativistic heavy collision exper
ments at the BNL Relativistic Heavy Ion Collider~RHIC!
and the upcoming experiments at the CERN Large Had
Collider ~LHC! the behavior of nuclear matter under extrem
conditions will be studied. The hope of these experiment
to create temperatures which are high enough for nuc
matter to undergo a phase transition to a quark-gluon pla
~QGP!. The quark-gluon plasma, if generated, is expected
expand, cool, and then hadronize in the final stage of
evolution. In this context, an outstanding question faced
experimentalists and theorists is whether or not the sys
will ‘‘thermalize’’ fast enough to allow a thermodynamic de
scription of the system during the central part of its evo
tion.

In this paper we study the role of the collective modes
finite-temperature QCD in the thermalization, particula
the isotropization, of a finite-temperature QGP with anis
tropic momentum-space distribution functions. This quest
has been addressed in previous papers in which the exist
of instabilities of a QGP were studied. In Refs.@1–3#
Mrówczyński discussed the existence of instabilities to ch
momagnetic fluctuations with a particular orientation of t
chromoelectric field and wave vector. In those pap
Mrówczyński showed that there existed an instability whi
was the equivalent of the Weibel or filamentation instabil
in electrodynamics@4#. Weibel showed in his original pape
that, within electrodynamics, unstable transverse modes e
in plasmas with anisotropic momentum distributions and
also derived their rate of growth in linear response theo
These types of instabilities are potentially very important
QGP evolution at RHIC or LHC due to the large amount
momentum-space anisotropy in the gluon distribution fu
tions att;1 fm/c.

Mrówczyński and Randrup have recently performed ph
nomenological estimates of the growth rate of the instab
ties for two types of anisotropic distribution functions@5#.
They found that the degree of amplification of the Weib
instability is not expected to dominate the dynamics o
QGP; instead it is comparable to the contribution from el
0556-2821/2003/68~3!/036004~8!/$20.00 68 0360
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tic Boltzmann collisions. However, they did point out th
since a large number of the unstable modes could be exc
then it is possible that their combined effect on the ove
dynamics could be significant. In this paper we perform
detailed study of the hard-thermal-loop resummed glu
self-energy including a complete tensor decomposition of
self-energy, and identification of all stable and unstable c
lective modes.

In Sec. II we set up the framework used to obtain t
hard-thermal-loop self-energy in a system with an ani
tropic momentum space distribution. In Sec. III we presen
tensor decomposition of the self-energy and dielectric t
sors. In Sec. IV we work out the details of the tensor deco
position and give expressions for the self-energy ‘‘struct
functions.’’ In Sec. V we discuss the static limit of the var
ous self-energy structure functions. In Sec. VI we use
tensor decomposition of the dielectric tensor to determ
dispersion relations for all stable and unstable modes. In S
VII we present analytic expressions for the self-energy str
ture functions in the small-anisotropy limit. Finally, in Se
VIII we present conclusions and an outlook for the applic
tion of the results found here. We provide a summary of o
notational conventions and expressions for the various s
energy structure functions in two Appendixes.

II. HARD-THERMAL-LOOP SELF-ENERGY

We begin by repeating some of the steps necessar
derive the hard-thermal-loop resummed gluon self-ene
within semiclassical transport theory@1–3#. Within this ap-
proach partons are described by their phase-space den
and their time evolution is given by Vlasov-type transpo
equations@6,7#. In this paper we will concentrate on th
physics at the soft scale,k;gT!T, which is the first scale a
which collective motion appears. At this scale the magnitu
of the field fluctuations isA;AgT and derivatives are of the
scale]x;gT. With this power counting a systematic trunc
tion of the terms contributing to the transport equations
soft momenta can be realized.

At leading order in the coupling constant the color cu
rent, Jm, induced by a soft gauge field,Am, with four-
©2003 The American Physical Society04-1
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momentumK5(v,k) can be obtained by performing a co
variant gradient expansion of the quark and gluon Wig
functions in mean-field approximation. The result is

Jind
m,a~X!5gE d3p

~2p!3
Vm@2NcdNa~p,X!1Nf~dn1

a ~p,X!

2dn2
a ~p,X!#, ~1!

where Vm5(1,k/v) is the gauge field four-velocity
dNa(p,X) is the fluctuating part of the gluon density, an
dn1

a (p,X) and dn2
a (p,X) are the fluctuating parts of th

quark and anti-quark densities, respectively. Note thatdNa

transforms as a vector in the adjoint representation (dN
[dNaTa) anddn6

a transforms as a vector in the fundame
tal representation (dn6[dn6

a ta).
The quark and gluon density matrices above satisfy

following transport equations:

@V•DX ,dn6~p,X!#57gVmFmn~p,X!]nn6~p!, ~2!

@V•DX ,dN~p,X!#52gVmFmn~p,X!]nN~p!, ~3!

where isDX5]X1 igA(X) is the covariant derivative.
Solving the transport equations~2! and~3! for the fluctua-

tions dN anddn6 gives the induced current via Eq.~1!:

Jind
m ~X!5g2E d3p

~2p!3
VmVa] (p)

b f ~p!E dtU~X,X2Vt!

3Fab~X2Vt!U~X2Vt,X!, ~4!

whereU(X,Y) is a gauge parallel transporter defined by t
path-ordered integral

U~X,Y!5P expF2 igE
X

Y

dZmAm~Z!G , ~5!

Fab5]aAb2]bAa2 ig@Am ,An# is the gluon field strength
tensor, and

f ~p!52NcN~p!1Nf@n1~p!1n2~p!#. ~6!

Neglecting terms of subleading order ing ~implying U→1
andFab→]aAb2]bAa) and performing a Fourier transform
of the induced current to momentum space we obtain

Jind
m ~K !5g2E d3p

~2p!3
Vm] (p)

b f ~p!S ggb2
VgKb

K•V1 i e DAg~K !,

~7!

wheree is a small parameter that has to be sent to zero in
end.

From this expression of the induced current the s
energy is obtained via

Pmn~K !5
dJind

m ~K !

dAn~K !
, ~8!

which gives
03600
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Pmn~K !5g2E d3p

~2p!3
Vm] (p)

b f ~p!S gnb2
VnKb

K•V1 i e D .

~9!

This tensor is symmetric,Pmn(K)5Pnm(K), and transverse
KmPmn(K)50. Note that the same result can be obtain
using diagrammatic methods if one assumes that the di
bution function is symmetric underp→2p @8#.

In the linear approximation the equation of motion for t
gauge fields can be obtained by expressing the induced
rent in terms of the self-energy

Jind
m ~K !5Pmn~K !An~K !, ~10!

and plugging this into Maxwell’s equation

2 iK mFmn~K !5Jind
n ~K !1Jext

n ~K !, ~11!

to obtain

@K2gmn2KmKn1Pmn~K !#An~K !52Jext
n ~K !, ~12!

whereJext
n is an external current. Using the gauge invarian

of the self-energy we can write this in terms of a physic
electric field by specifying a particular gauge. In the temp
ral axial gauge defined byA050 we obtain

@~k22v2!d i j 2kikj1P i j ~K !#Ej~K !

5@D21~K !# i j Ej~K !5 ivJext
i ~K !. ~13!

Inverting the propagator allows us to determine the respo
of the system to the external source

Ei~K !5 ivD i j ~K !Jext
j ~K !. ~14!

The dispersion relations for the collective modes can be
tained by finding the poles in the propagatorD i j (K).

III. TENSOR DECOMPOSITION

In this section we develop a tensor basis for an anisotro
system in which there is only one preferred direction.
mentioned above the self-energy is symmetric and tra
verse. As a result not all components ofPmn are independen
and we can restrict our considerations to the spatial par
Pmn, denotedP i j . We therefore need to construct a basis
a symmetric 3-tensor that—apart from the moment
ki—also depends on a fixed anisotropy three-vectorni , with
n251. Following Ref.@9# we first define the projection op
erator

Ai j 5d i j 2kikj /k2, ~15!

and use it to constructñi5Ai j nj which obeysñ•k50. With
this we can construct the remaining three tensors

Bi j 5kikj /k2, ~16!

Ci j 5ñi ñ j /ñ2, ~17!
4-2
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PL~K !5mD
2 F v

2k
log

v1k

v2k
21G . ~30!
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Di j 5ki ñj1kj ñi . ~18!

Any symmetric 3-tensorT can now be decomposed into th
basis spanned by the four tensorsA,B,C, andD

T5a A1b B1c C1d D. ~19!

Furthermore, the inverse of any such tensor is then give

T215a21A1
~a1c!B2a21~bc2ñ2k2d2!C2dD

b~a1c!2ñ2k2d2
.

~20!

IV. SELF-ENERGY STRUCTURE FUNCTIONS

The spacelike components of the self-energy tensor
be written as

P i j ~K !52g2E d3p

~2p!3
v i] l f ~p!S d j l 1

v j kl

K•V1 i e D .

~21!

At this point the distribution functionf (p) is completely
arbitrary. In order to proceed we need to specify a form
the distribution function. In what follows we will assum
that f (p) can be obtained from an arbitrary isotropic dist
bution function by the rescaling of only one direction
momentum space. In practice this means that, given any
tropic distribution functionf iso(p

2), we can construct an an
isotropic version by changing the argument

f ~p!5 f iso„p
21j~p•n̂!2

…, ~22!

where n̂ is the direction of the anisotropy andj.21 is a
adjustable anisotropy parameter. Note thatj.0 corresponds
to a contraction of the distribution in then̂ direction whereas
21,j,0 corresponds to a stretching of the distribution
the n̂ direction. This assumption allows us to simplify E
~21! by performing a change of variables top̃

p̃25p2@11j~v•n!2#. ~23!

After making this change of variables it is possible to in
grate out theu p̃u dependence, giving
03600
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n

r
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P i j ~K !5mD
2 E dV

4p
v i

v l1j~v.n!nl

~11j~v.n!2!2 S d j l 1
v j kl

K•V1 i e D ,

~24!

where

mD
2 52

g2

2p2E
0

`

dpp2
d f iso~p2!

dp
. ~25!

We can then decompose the self-energy into four struc
functions

P i j 5aAi j 1bBi j 1gCi j 1dDi j , ~26!

which are determined by taking the following contraction

kiP i j kj5k2b,

ñiP i j kj5ñ2k2d,

ñiP i j ñ j5ñ2~a1g!,

Tr P i j 52a1b1g. ~27!

In Appendix B we collect the resulting integral expressio
for the structure functions. All four structure functions d
pend onmD , v, k, j, andk̂•n̂5cosun . In the limit j→0 the
structure functionsa and b reduce to the isotropic hard
thermal-loop self-energies andg andd vanish

a~K,0!5PT~K !,

b~K,0!5
v2

k2 PL~K !,

g~K,0!50,

d~K,0!50, ~28!

with

PT~K !5
mD

2

2

v2

k2 F12
v22k2

2vk
log

v1k

v2kG , ~29!
FIG. 1. Real and imaginary parts ofa/mD
2 as

a function of realv/k are shown in~a! and in~b!
the real part ofa/mD

2 is shown forv/k5 iG/k
with un5p/4 andj5$0,1,10% in both cases.
4-3
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FIG. 2. Angular dependence ofma
2 , m1

2 , and
m2

2 at fixed ~a! j510 and~b! j520.9.
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For finitej the analytic structure of the structure functions
the same as in the isotropic case. There is a cut in the c
plex v plane which we can chose to run along the realv axis
from 2k,v,k. For real valuedv the structure functions
are complex for allv,k and real forv.k. For imaginary
valuedv all four structure functions are real valued. In Fi
1 we plot the structure functiona for real and imaginary
values ofv, j5$0,1,10%, andun5p/4.

With these structure functions in hand we can constr
the propagatorD i j (K) using the expressions from the prev
ous section. WritingD21(K) in terms of our tensor basis

D21~K !5~k22v21a!A1~b2v2!B

1gC1dD ~31!

and applying the inversion formula~20! we obtain an expres
sion for the propagator

D~K !5DAA1~k22v21a1g!DGB1@~b2v2!

3DG2DA#C2dDGD, ~32!

with

DA
21~K !5k22v21a, ~33!

DG
21~K !5~k22v21a1g!~b2v2!2k2ñ2d2. ~34!

Note that we can reorganizeD(K) and write it as

D~K !5DA@A2C#1DG@~k22v21a1g!B

1~b2v2!C2dD#. ~35!

V. STATIC LIMIT

In order to see how the momentum-space anisotropy
the distribution functions affects the response to static e
tric and magnetic fluctuations we examine the limitv→0 of
the propagators~33! and~34!. Approaching along the realv
axis we find that to leading ordera;g;O(v0), b
;O(v2), and d;O( iv).1 We can therefore define fou
mass scales

ma
25 lim

v→0
a,

1Identical results can be obtained by coming in along the ima
nary axis with a suitable redefinition ofmd

2 .
03600
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mb
25 lim

v→0
2

k2

v2 b,

mg
25 lim

v→0
g,

md
25 lim

v→0

ñk2

v
Im d. ~36!

Writing the static limit of the propagators~33! and ~34! in
terms of these masses gives

DA
215k21ma

2 ~37!

DG
2152

v2

k2 @~k21ma
21mg

2!~k21mb
2 !2md

4#. ~38!

DG
21 can be factorized into

DG
2152

v2

k2 ~k21m1
2 !~k21m2

2 !, ~39!

where

2m6
2 5M26AM424~mb

2~ma
21mg

2!2md
4!, ~40!

with

M25ma
21mb

21mg
2 . ~41!

In the isotropic limit, j→0, ma
25mg

25md
25m2

2 50 and
m1

2 5mD
2 . For finite j it is possible to evaluate all fou

masses defined above analytically. The results forma andmb
are listed in Appendix B. In Fig. 2 we plot the angular d
pendence ofma

2 , m1
2 , and m2

2 at fixed j510 and j5
20.9. In the casej.0 ~Fig. 2a! we see that for smallun the
scalem1

2 >mD
2 and forun nearp/2, m1

2 <mD
2 . For smallun

the scalesma
2 andm2

2 are negative. The fact thatma andm2

are non-vanishing is in agreement with the findings of Co
per et al. @10#; however, they neglected to consider the fa
that these masses might be negative and would therefore
correspond to screening of the magnetic interaction. The
that these quantities are negative indicates that forj.0 the
system possesses an instability to transverse and ‘‘mix
external perturbations associated withma

2 and m2
2 , respec-

tively. The transverse instability is present for anyunÞp/2
i-
4-4
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FIG. 3. Angular dependence ofva , v1 , and
v2 for mg5mD /A3, j510, and un

5$0,p/4,p/2%.
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while the mixed instability is only present forun,uc
mixed

with uc
mixed depending on the value ofj. In the casej,0

~Fig. 2b! we see that for smallun the scalem1
2 <mD

2 and for
un nearp/2, m1

2 >mD
2 . For un*p/4 the scalem2

2 is nega-
tive again, signaling the presence of an instability in the s
tem. In the next section we will discuss these instabilities
more detail.

VI. COLLECTIVE MODES

A similar factorization ofDG
21 can be achieved in the

non-static case allowing us to determine the dispersion r
tions for all of the collective modes in the system.

A. Stable modes

First, let us consider the stable collective modes wh
have poles at real valuedv.k. In this case we factorizeDG

21

as

DG
215~v22V1

2 !~v22V2
2 !, ~42!

where

2V6
2 5V̄26AV̄424@~a1g1k2!b2k2ñ2d2#, ~43!

and

V̄25a1b1g1k2. ~44!

Note that the quantity under the square root in Eq.~43! can
be written as (a2b1g1k2)214k2ñ2d2, which is always
positive for realv.k. Therefore there are at most two stab
modes coming fromDG .

The remaining stable collective mode comes from
zero ofDA

21 . The dispersion relations for all of the collectiv
modes can be determined by finding the solutions to

v6
2 5V6

2 ~v6!, ~45!

va
25k21a~va!. ~46!

In the isotropic limit ~28! va5v15vT and v25vL . For
finite j there are three stable quasiparticle modes with
persion relations which depend on the angle of propaga
with respect to the anisotropy vector,un . In Fig. 3 we plot
the dispersion relations for all three modes formD5A3, j
510, andun5$0,p/4,p/2%.
03600
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B. Unstable modes

For non-zeroj the propagator also has poles along t
imaginaryv axis.2 The dispersion relation for these mod
can be determined by takingv→ iG with G real valued and
solving forG(k). In this case we factorize the inverse prop
gator as

DG
215~G21V1

2 !~G21V2
2 !, ~47!

where V6 on the right-hand side are evaluated atv5 iG.
However, in contrast to the stable modes there is at most
solution in this case since numerically we find thatV1

2 .0
for all G.0.

For j.0 there is also an unstable mode present inDA so
that in this case there are two unstable modes in the sys
which can be found by solving

G2
2 52V2

2 ~ iG2!, ~48!

Ga
252k22a~ iGa!. ~49!

Note that in both cases there are two solutions correspon
to modes with positive and negative growth rates. One
these corresponds to an exponentially growing solution
the other an exponentially decaying one. In Fig. 4a we p
Ga(k) andG2(k) with j510 andun5p/8. For j,0 there
is no longer an unstable mode coming fromDA and there is,
therefore, only one unstable mode coming fromG2 . In Fig.
4b we plotG2(k) with j520.9 andun5p/2.

VII. SMALL j EXPANSION

In the small-j limit it is possible to obtain analytic expres
sions for all of the structure functions order-by-order inj. To
linear order inj

a5PT~z!1jF z2

12
~315 cos 2un!mD

2 2
1

6
~11cos 2un!mD

2

1
1

4
PT~z!„~113 cos 2un!2z2~315 cos 2un!…G ,

2We have checked for poles at complexv numerically but found
none.
4-5
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FIG. 4. Ga(k) and G2(k) as a function ofk
with ~a! j510 andun5p/8 and~b! j520.9 and
un5p/2.
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z22b5PL~z!1jF1

6
~113 cos 2un!mD

2 1PL~z!

3S cos 2un2
z2

2
~113 cos 2un! D G ,

g5
j

3
~3PT~z!2mD

2 !~z221!sin2un ,

d5
j

3k
@4z2mD

2 13PT~z!~124z2!#cosun , ~50!

wherez5v/k.

A. Static limit

Using the linear expansions and the fact that in the st
limit PL→2mD

2 andPT→2 ipv/(4k) we can write for the
masses~36!

m̂a
252

j

6
~11cos 2un!,

m̂b
2511

j

6
~3 cos 2un21!,

m̂g
25

j

3
sin2un ,

m̂d
252j

p

4
sinuncosun , ~51!

wherem̂25m2/mD
2 . Using these we can obtain small-j ex-

pressions form6 defined in Eq.~40!

m̂1
2 511

j

6
~3 cos 2un21!,

m̂2
2 52

j

3
cos 2un . ~52!

B. Collective modes

Sinced is O(j) it can be ignored in the expansion of E
~43! so that to linear order inj the collective modes satisfy
03600
ic

DA
215k22v21a50

DG
215~k22v21a1g!~b2v2!50,

~53!

wherea, b, and g are given by Eq.~50!. Note again that
there is only one unstable mode coming fromDG

21 since
b( iG).0 for all G.0.

VIII. CONCLUSIONS

In this paper we have derived a tensor basis for the gl
self-energy in a high-temperature quark-gluon plasma w
an anisotropic momentum-space distribution. We then
stricted the distribution function by requiring that it could b
obtained from an isotropic distribution function by the re
caling of one direction specified by an anisotropy vector,n̂,
and strength,j. Positive values ofj correspond to a contrac
tion of the isotropic distribution function alongn̂ while nega-
tive values ofj correspond to a stretching alongn̂. Within
this framework we could derive analytic forms for all of th
structure functions associated with the tensor basis. Us
these expressions we were then able to identify and de
mine the dispersion relations for the collective modes
both positive and negativej. We found that forj.0 there
were at most three stable and two unstable modes with
persion relations which depended on the angle between
wave vector,k, and the anisotropy vector. Forj,0 we
found that there were also three stable modes but only
unstable mode. Additionally, we obtained analytic expr
sions for the structure functions in the limit of smallj. These
results should provide a reference point for the system
study of the isotropization of a relativistic plasma.

The study of Mro´wczyński and Randrup suggests th
during heavy-ion collisions the rate of isotropization via co
lective modes is comparable with collisions and theref
cannot be ignored@5#. In this paper we have made no attem
to discuss the phenomenological rate for instability grow
because there are a number of questions which would nee
be addressed prior to making any definitive statements a
the role of instabilities in plasma evolution and their e
pected contribution to observables. This is because we h
only derived the self-energy in a linear expansion in the fl
tuations and to leading-order in the coupling constant. A
suming that there is truly exponential growth of the fields
the direction of the anisotropy this means that the linear
4-6
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proximation will break down very quickly. In practice th
non-linear terms in the transport equations will become
portant and regulate the growth of the modes which h
become unstable.

Within electrodynamics the coupling constant is small a
it is possible to experimentally study the Weibel instabil
@11#. However, with QCD the story is dramatically differe
since for experimentally realizable situations the coupl
constant is large and the non-linear effects due to gluon s
interaction become important much sooner than any n
linear effects would for QED. Nevertheless, this does
diminish from the fact that these unstable modes exist
will therefore have a role to play in plasma evolution.
order to assess this role, however, detailed studies of the
evolution of anisotropic quark-gluon plasmas will need to
performed.

ACKNOWLEDGMENTS

M.S. and P.R. would like to thank S. Mro´wczyński and A.
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APPENDIX A: NOTATION AND CONVENTIONS

We summarize here the notation and conventions wh
we use in the main body of the text.

Natural units:\5c51.
Metric: gmn5gmn5diag(1,21,21,21).
4-vectors: Indicated by Greek indices, e.g.Km5(v,k).
3-vectors: Indicated by lowercase Latin characters. Up

Latin indices like i , j ,k use a Euclidean 3-metric, e.g.k
5ki , kiki5k2.

Fourier transform:

j m~K !5E d4XeiK •Xj m~X!

j m~X!5E d4K

~2p!4
e2 iK •Xj m~K !.

APPENDIX B: ANALYTIC EXPRESSIONS
FOR STRUCTURE FUNCTIONS

In this appendix we collect the integral and analytic e
pressions for the structure functionsa, b, g, andd. Choos-
ing n5 ẑ and k to lie in the x-z plane (kx /kz5tanun) we
havev•n5cosu and v•k5kxcosfsinu1kzcosu. Using this
parametrization thef integration in all four structure func
tions defined by the contractions in Eq.~27! can be per-
formed analytically:
03600
-
e

d

g
lf-
n-
t
d

e
e

n
e

h

er

-

a~K,j!5
mD

2

k2ñ2E d~cosu!

2

v1jkzcosu

@11j cos2u#2 H v2kzcosu

1k2Fs22S cosu2
vkz

k2 D 2G
3R~v2kzcosu,kxsinu!J , ~B1!

b~K,j!52
mD

2 v2

k2 E d~cosu!

2

1

@11j cos2u#2

3@12~v1jkzcosu!R~v2kzcosu,kxsinu!#,

~B2!

g~K,j!5mD
2 E d~cosu!

2

1

k2@11j cos2u#2 H v21jk2cos2u

22
k2

kx
2 ~v22jkz

2cos2u!

1
~v1jkzcosu!k4

kx
2 F2S cosu2

vkz

k2 D 2

2s2G
3R~v2kzcosu,kxsinu!J , ~B3!

d~K,j!5
mD

2 v

k4ñ2E d~cosu!

2

v1jkzcosu

@11j cos2u#2
@kz1~k2cosu

2vkz!R~v2kzcosu,kxsinu!#, ~B4!

wheres25(12v2/k2)(kx
2/k2) and

R~a,b!5E
0

2pdf

2p

1

a2b cosf1 i e
5

1

Aa1b1 i eAa2b1 i e
.

~B5!

Whena andb are real valuedR can be simplified to

R~a,b!5
sgn~a!Q~a22b2!

Aa22b2
2

iQ~b22a2!

Ab22a2
, ~B6!

with Q(x) being the usual step function. Note that the r
maining integration overu can also be done analytically bu
the results are rather unwieldy so we do not list them he

Static limit

In the limit v→0 it is possible to obtain analytic expres
sions for all four structure functions. The results forma and
mb defined in Eq.~36! are
4-7
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ma
252

mD
2

2kx
2Aj

S kz
2 arctanAj2

kzk
2

Ak21jkx
2

arctan
Ajkz

Ak21jkx
2D , ~B7!

mb
25mD

2

@Aj1~11j!arctanAj#~k21jkx
2!1jkzS kzAj1

k2~11j!

Ak21jkx
2

arctan
Ajkz

Ak21jkx
2D

2Aj~11j!~k21jkx
2!

, ~B8!

with similar results formg
2 andmd
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