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Collective modes of an anisotropic quark-gluon plasma
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We analyze the collective modes of high-temperature QCD in the case when there is an anisotropy in the
momentum-space distribution function for the gluons. We perform a tensor decomposition of the gluon self-
energy and solve the dispersion relations for both stable and unstable modes. Results are presented for a class
of anisotropic distribution functions which can be obtained by stretching or squeezing an isotropic distribution
function along one direction in momentum space. We find that there are three stable modes and either one or
two unstable modes, depending on whether the distribution function is stretched or squeezed. The presence of
unstable modes which have exponential growth can lead to a more rapid thermalization and isotropization of
the soft modes in a quark gluon plasma and therefore may play an important role in the dynamical evolution
of a quark-gluon plasma.
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[. INTRODUCTION tic Boltzmann collisions. However, they did point out that
since a large number of the unstable modes could be excited

In the ongoing ultrarelativistic heavy collision experi- then it is possible that their combined effect on the overall
ments at the BNL Relativistic Heavy lon Collid¢RHIC)  dynamics could be significant. In this paper we perform a
and the upcoming experiments at the CERN Large Hadrofletailed study of the hard-thermal-loop resummed gluon
Collider (LHC) the behavior of nuclear matter under extremeself-energy including a complete tensor decomposition of the
conditions will be studied. The hope of these experiments iself-energy, and identification of all stable and unstable col-
to create temperatures which are high enough for nucledgctive modes.
matter to undergo a phase transition to a quark-gluon plasma In Sec. Il we set up the framework used to obtain the
(QGP. The quark-gluon plasma, if generated, is expected td1ard-thermal-loop self-energy in a system with an aniso-
expand, cool, and then hadronize in the final stage of it§fopic momentum space distribution. In Sec. Il we present a
evolution. In this context, an outstanding question faced byensor decomposition of the self-energy and dielectric ten-
experimentalists and theorists is whether or not the systerdors. In Sec. IV we work out the details of the tensor decom-
will “thermalize” fast enough to allow a thermodynamic de- Position and give expressions for the self-energy “structure
scription of the system during the central part of its evolu-functions.” In Sec. V we discuss the static limit of the vari-
tion. ous self-energy structure functions. In Sec. VI we use the

In this paper we study the role of the collective modes ofteénsor decomposition of the dielectric tensor to determine
finite-temperature QCD in the thermalization, particularly dispersion relations for all stable and unstable modes. In Sec.
the isotropization, of a finite-temperature QGP with aniso-VIlI we present analytic expressions for the self-energy struc-
tropic momentum-space distribution functions. This questiorfure functions in the small-anisotropy limit. Finally, in Sec.
has been addressed in previous papers in which the existen¥#l we present conclusions and an outlook for the applica-
of instabilities of a QGP were studied. In Refgl—3] tion of the results found here. We provide a summary of our
Mrowczyrski discussed the existence of instabilities to chro-notational conventions and expressions for the various self-
momagnetic fluctuations with a particular orientation of the€nergy structure functions in two Appendixes.
chromoelectric field and wave vector. In those papers
Mr()wczy'rski' showed that there existed an instability which Il HARD-THERMAL-LOOP SELF-ENERGY
was the equivalent of the Weibel or filamentation instability
in electrodynamic$4]. Weibel showed in his original paper ~ We begin by repeating some of the steps necessary to
that, within electrodynamics, unstable transverse modes exiglerive the hard-thermal-loop resummed gluon self-energy
in plasmas with anisotropic momentum distributions and hevithin semiclassical transport theof§—3]. Within this ap-
also derived their rate of growth in linear response theoryproach partons are described by their phase-space densities
These types of instabilities are potentially very important toand their time evolution is given by Vlasov-type transport
QGP evolution at RHIC or LHC due to the large amount ofequations[6,7]. In this paper we will concentrate on the
momentum-space anisotropy in the gluon distribution funcphysics at the soft scalk;~gT<T, which is the first scale at
tions at7~1 fm/c. which collective motion appears. At this scale the magnitude

Mrowczyrski and Randrup have recently performed phe-of the field fluctuations i®\~ /g T and derivatives are of the
nomenological estimates of the growth rate of the instabili-scaled,~gT. With this power counting a systematic trunca-
ties for two types of anisotropic distribution functiofs].  tion of the terms contributing to the transport equations for
They found that the degree of amplification of the Weibelsoft momenta can be realized.
instability is not expected to dominate the dynamics of a At leading order in the coupling constant the color cur-
QGP; instead it is comparable to the contribution from elas+ent, J#, induced by a soft gauge fieldd*, with four-
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momentumK = (w,k) can be obtained by performing a co-

variant gradient expansion of the quark and gluon Wigner

functions in mean-field approximation. The result is
d3p
(2m)®

Ji’rﬁ'da(x)=9f VH[2N8N(p,X) +N¢(on% (p,X)

—on?(p,X)], @

where V#=(1k/w) is the gauge field four-velocity,
SN?3(p,X) is the fluctuating part of the gluon density, an
on% (p,X) and én?(p,X) are the fluctuating parts of the
quark and anti-quark densities, respectively. Note

transforms as a vector in the adjoint representatioil (

= 6N?T?) and én? transforms as a vector in the fundamen-

tal representationdn.. = on% t%).

The quark and gluon density matrices above satisfy the

following transport equations:

[V:Dx,on.(p,X)]=+gV,F*(p,X)d,n.(p), (2

[V-Dx,6N(p,X)]=—gV,F*(p,X)d,N(p), )

where isDy=dx+igA(X) is the covariant derivative.
Solving the transport equatiofi®) and(3) for the fluctua-
tions SN and on.. gives the induced current via E@L):

d®p
(2m)
X Falg(X—VT)U(X—VT,X),

J{;d(X)zng wvaaﬁ,)f(p)f d7U(X,X—=V7)

3

(4)
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dp
(2m)®

1B § ViKg
VA (P 9~y re

(€)

This tensor is symmetrid]#”(K) =11"#(K), and transverse,
K#IT1#"(K)=0. Note that the same result can be obtained
using diagrammatic methods if one assumes that the distri-
bution function is symmetric undgr— —p [8].

In the linear approximation the equation of motion for the

T4 (K) =g f

q 9auge fields can be obtained by expressing the induced cur-

rent in terms of the self-energy

Jina(K) =T#*(K)A"(K), (10)
and plugging this into Maxwell’s equation
=K, F*(K)=J{4(K) + Jg(K), (12)
to obtain
[K2g*" = KHK"+TT#(K)JA(K) == Jg(K), (12

whereJg,, is an external current. Using the gauge invariance
of the self-energy we can write this in terms of a physical
electric field by specifying a particular gauge. In the tempo-
ral axial gauge defined b&,=0 we obtain

[(K2— w?) 8 — KK + 11 (K)]E/(K)

=[A"HK)JTEN(K) =i wJp(K). (13

Inverting the propagator allows us to determine the response

whereU(X,Y) is a gauge parallel transporter defined by the©f the system to the external source

path-ordered integral

U(X,Y)=Pexp{—igf;dZMA“(Z) , (5)

Fop=0d.Ag—dgA,—I19[A,,A,] is the gluon field strength
tensor, and

f(p)=2NcN(p) +N¢[n,(p)+n_(p)]. (6)

Neglecting terms of subleading order gn(implying U—1
andF,z—d,Az—dA,) and performing a Fourier transform
of the induced current to momentum space we obtain

3

AY(K),
()

P V}'Kﬁ
77_)3\/M(9ﬁ))f(p)( 9ys~ K-V+ie

wheree is a small parameter that has to be sent to zero in the

end.

From this expression of the induced current the self-

energy is obtained via

3Jind(K)

I#(K) = <4 K’

8

which gives

E'(K)=iwAT(K)JL(K). (14)
The dispersion relations for the collective modes can be ob-
tained by finding the poles in the propagatdt(K).

IIl. TENSOR DECOMPOSITION

In this section we develop a tensor basis for an anisotropic
system in which there is only one preferred direction. As
mentioned above the self-energy is symmetric and trans-
verse. As a result not all componentsIbf” are independent
and we can restrict our considerations to the spatial part of
I1#7, denoted1". We therefore need to construct a basis for
a symmetric 3-tensor that—apart from the momentum
k'—also depends on a fixed anisotropy three-ventpmwith
n?=1. Following Ref.[9] we first define the projection op-
erator
All =81 —K'kl/K?, (15
and use it to construat'=A'inl which obeysn-k=0. With
this we can construct the remaining three tensors

Bl =k'ki/k?, (16)

Cli=n'nl/n?,

17)
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Dii=kni+kin'. (18 dQ . o'+ &v.n)n' | vk
IJ(K) o il — 1,
. _ 47"’ (1+&(v.n)?)? K-V+ie
Any symmetric 3-tensol can now be decomposed into the (24)
basis spanned by the four tensé®B,C, andD
where
T=aA+bB+cC+dD. (19
. . . 2 deSO(pz)
Furthermore, the inverse of any such tensor is then given as = dpp*——. (25)
Tl g ias (a+c)B—a*(bc—n*k?d*)C—dD We can then decompose the self-energy into four structure
B b(a-+c)—n2k2d? ' functions
20 1= oAl + BB+ yCll + 6D, (26)
IV. SELF-ENERGY STRUCTURE FUNCTIONS which are determined by taking the following contractions:
The spacelike components of the self-energy tensor can KTk =Kk28,
be written as
_ nTIK =n2%k?6,
| | ]kl
j = — i R
HO="g f ”‘”(p) vl NIl =n%(a+y),
(21 )
TrI"=2a+ B+ . (27)

At this point the distribution functiorf(p) is completely

arbitrary. In order to proceed we need to specify a form forln Appendix B we collect the resulting integral expressions
the distribution function. In what follows we will assume for the structure functions. All four structure functions de-
that f(p) can be obtained from an arbitrary isotropic distri- pend onmp , w, k, &, andk-n=cosé,. In the limit é&—0 the
bution function by the rescaling of only one direction in structure functionse and 8 reduce to the isotropic hard-
momentum space. In practice this means that, given any isahermal-loop self-energies andand 6 vanish

tropic distribution functionf <(p?), we can construct an an-

isotropic version by changing the argument a(K,0) =11+(K),
F(P)=fisoP?+ £(p-1)?) (22 il
: BK.0)= 17 11L(K),
wheren is the direction of the anisotropy angt>—1 is a
adjustable anisotropy parameter. Note thiat0 corresponds Y(K,0)=
to a contraction of the distribution in thedirection whereas 5(K,0)=0 28)
—1<£<0 corresponds to a stretching of the distribution in ' '

the n direction. This assumption allows us to simplify Eq. with
(21) by performing a change of variables o

(K sz w? 1 2—k2| w+k -

B2=pA 1+ £(v-n)?]. @3 0=% et 2ok %=k @

After making this change of variables it is possible to inte- I (K 2| @, w+k 1 30
grate out thep| dependence, giving L(K)=mp)| Fplog = (30

(a) (b)

0.8 0.4

2

FIG. 1. Real and imaginary parts efm3 as
a function of reakw/k are shown in(a) and in(b)
the real part ofa/m3 is shown forw/k=iT/k
with 6,=x/4 and£={0,1,1¢ in both cases.

(Re o, Im o)/my,

0 0.5 1 1.5 2
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(b)

2

)/m,,

= FIG. 2. Angular dependence of2, m? , and
g0 m? at fixed (a) £é=10 and(b) £é=—0.9.
NE; 5
2 4 -
o 05 1 1.5 0 0.5 1 1.5
0, 6,
For finite ¢ the analytic structure of the structure functions is K2
the same as in the isotropic case. There is a cut in the com- mé: lim — — 8,
plex w plane which we can chose to run along the kealxis 0—s0 @
from —k<w<k. For real valuedw the structure functions
are complex for allo<k and real foro>k. For imaginary m§= lim vy,
valuedw all four structure functions are real valued. In Fig. w—0

1 we plot the structure functioa for real and imaginary
values ofw, ¢={0,1,1Q, and 6,,= =/4.

With these structure functions in hand we can construct
the propagatoA'/ (K) using the expressions from the previ-
ous section. WritingA~*(K) in terms of our tensor basis  writing the static limit of the propagator®3) and (34) in

A1(K) = (k2= 0%+ a) A+ (f— w?)B terms of these masses gives

, . nk?
m5= lim—Im§. (36)

w—0

-1_ 2
+yC+ D (31) Apt=k*+mg (37)
and applying the inversion formu(@20) we obtain an expres- _ w?
sion for the propagator Agt=— p[(szr M5, +m3) (k?+m3) —m3]. (38)

_ 2_ 2 _ .2
A(K)=ApA+ (K"~ ot aty)AgB+[ (B~ o) Ag?! can be factorized into

X Ag—AA]C—5A¢D, (32 2
_ [0}

with Agt=— 1z (K+mi)(K?+m?), (39

A MK =KP—w?+a, (33 where

At (K)=(K*= 0’ +a+y)(B—w?)—KNn?s. (34 2m2 =M= M*—4(mi(mZ+m?)—md), (40
Note that we can reorganizi(K) and write it as with

A(K)=A[A—C]+Ag[(K*— w?+a+y)B M2=m2+m?+m?. (41)

+(B—w?)C—8D]. (35

In_the isotropic limit, é£50, m2=m’=m3=m?=0 and
V. STATIC LIMIT m? =mp. For finite ¢ it is possible to evaluate all four

. _masses defined above analytically. The resultsrfpandmg

In order to see how the momentum-space anisotropy ifyre listed in Appendix B. In Fig. 2 we plot the angular de-
the distribution functions affects the response to static e|eCpendence ofmz, m2+ , and m? at fixed é€=10 and é=
tric and magnetic fluctuations we examine the limit-0 of  _ g |n the casé>0 (Fig. 23 we see that for sma#t,, the
the propagatore33) and (34). Approaching along thoe real  scalem?=m3 and for 6, nearm/2, m2<m3. For smallé,
axis V\Z'e find that to I(laadmg Ol’dﬁh“*f’y'vO(wf.), f the scalesn? andm? are negative. The fact that, andm_

~O(«%), and 6~O(iw).” We can therefore define four 5.0 non yanishing is in agreement with the findings of Coo-

mass scales per et al. [10]; however, they neglected to consider the fact
m2= lim a that these masses might be negative and would therefore not
* el0 correspond to screening of the magnetic interaction. The fact

that these quantities are negative indicates thatfef the
system possesses an instability to transverse and “mixed”

lidentical results can be obtained by coming in along the imagi€xternal perturbations associated wit§ andm?® , respec-
nary axis with a suitable redefinition af?. tively. The transverse instability is present for afyy# /2
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6,=0 0,=m/4 6,=1/2
2 =
Z o z
il Al Yy
15 2 7 74
& // i ] ,/ 11 ~ / d FIG. 3. Angular dependence @f,, w. , and
3 ! ‘/ ~ ) / // w_ for mg=mD/\/§ , &=10, and ¢,
e 1 s 1 =1 — o, ={0,m/4,mI2}.
——| @,
% o5 1 15 20 05 1 15 20 05 1 15 2
k/m8 k/mg k/mg
while the mixed instability is only present fof,< g™ B. Unstable modes
with 97" depending on the value &f. In the caset<0 For non-zeroé the propagator also has poles along the

(Fig. 2b we see that for smal, the scalen? <mj3 and for  imaginaryw axis? The dispersion relation for these modes
6, nearm/2, m2=m3 . For 6,= /4 the scalem? is nega- can be determined by taking—iI" with T real valued and
tive again, signaling the presence of an instability in the syssolving forI'(k). In this case we factorize the inverse propa-
tem. In the next section we will discuss these instabilities ingator as
more detail. 4 s 2o 2
Ag =T+ Q)+ Q2), (47)
VI. COLLECTIVE MODES
o o 1 ] ) where (). on the right-hand side are evaluatedoatil .
A similar factorization ofAg™ can be achieved in the However, in contrast to the stable modes there is at most one

non-static case allowing us to determine the dispersion relaso|ytion in this case since numerically we find tif2 >0

tions for all of the collective modes in the system. for all T>0.
For £>0 there is also an unstable mode present jnso
A. Stable modes that in this case there are two unstable modes in the system

First, let us consider the stable collective modes whichvhich can be found by solving
have poles at real valued>Kk. In this case we factorizég*
as r2=-02(r.), (48)

Agt= (02— 0%) (02— 02), (42) 2= —Kk2—a(il,). (49

a

where

_ — Note that in both cases there are two solutions corresponding
202 =020~ 4 (a+y+k2)B—KN?5°], (43  to modes with positive and negative growth rates. One of
these corresponds to an exponentially growing solution and
and the other an exponentially decaying one. In Fig. 4a we plot
—, ) I' ,(k) andT"_(k) with §&=10 andé,= /8. For £<0 there
W =a+p+y+ks (44 is no longer an unstable mode coming frdrg and there is,
therefore, only one unstable mode coming frbm. In Fig.

Note that the quantity under the square root in &@) can 4b we plotT_ (k) with &= —0.9 andd, = /2.

be written as &— B+ y+k?)?+4k?n%5%, which is always
positive for realw> k. Therefore there are at most two stable
modes Coming fronAG_ VIl. SMALL § EXPANSION
The remaining stable collective mode comes from the
zero of A, *. The dispersion relations for all of the collective
modes can be determined by finding the solutions to

In the small¢ limit it is possible to obtain analytic expres-
sions for all of the structure functions order-by-ordegiriro
linear order iné
0i=0%(w.), (45)

Z2

1
_ 2_ = 2
wi=k2+a(wa). (46) a=Il{(z2)+¢ —12(3+5 Cos 2,,)mg 6(1+00320n)mD

In the isotropic limit(28) w,=w,=wr andw_=w, . For
finite ¢ there are three stable quasiparticle modes with dis-
persion relations which depend on the angle of propagation
with respect to the anisotropy vectdt,. In Fig. 3 we plot

the dispersion relations for all three modes fog= /3, & 2We have checked for poles at complexnumerically but found
=10, and6,,={0,7/4,m/2}. none.

1
+ ZHT(Z)((1+3 cos ¥,)—z%(3+5 cos X,,)) |,

036004-5
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08| S = e ™
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= 4 > / N
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= / T /m, / \
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FIG. 4. T (k) andI" _(k) as a function ofk
with (a) £=10 andé,,= «/8 and(b) £&=—0.9 and
\"'\,' 0,= 7l2.

0 01 02 03 04 05 06 07 0 05 1
k/my, k/m,,

1
77 2B=I1 (2)+¢& 5(1+3cos 2,)m3+11, (2)

X

22
cos 20,,— 5(1+3 cos 29,1)”,
y= §(3HT(Z)—mD)(z —1)sirfé,,

= 3—§k[422m2D+3HT(z)(1—422)]cos¢9n , (50)
wherez= w/k.

A. Static limit

Apt=K*—w?+a=0

Agt=(K*=w?+a+y)(B—w?)=0,
(53)

wherea, B, andy are given by Eq(50). Note again that
there is only one unstable mode coming frag* since
B@)>0 for all ['>0.

VIIl. CONCLUSIONS

In this paper we have derived a tensor basis for the gluon
self-energy in a high-temperature quark-gluon plasma with
an anisotropic momentum-space distribution. We then re-
stricted the distribution function by requiring that it could be
obtained from an isotropic distribution function by the res-

Using the Ilnear expansions and the fact that in the Stat'%almg of one direction specified by an anisotropy veator,

limit IT, — — mD andIl{— —imw/(4k) we can write for the
masses36)

m2=— §(1+cos 20,,),

- 3
mG=1+ 5(3cos,—1),

I [

2
m=3s Sirto,,
~ aa
m3=—¢ 25infhcost,, (51)

wherem?=m?/m3 . Using these we can obtain sméllex-
pressions fom.. defined in Eq.(40)

m2 =1+ 2(3 cos¥,—1),

m? =— gcos 26, . (52

B. Collective modes

and strength¢. Positive values of correspond to a contrac-
tion of the isotropic distribution function alongwhile nega-

tive values of¢ correspond to a stretching alomg Within

this framework we could derive analytic forms for all of the
structure functions associated with the tensor basis. Using
these expressions we were then able to identify and deter-
mine the dispersion relations for the collective modes for
both positive and negativé. We found that foré>0 there
were at most three stable and two unstable modes with dis-
persion relations which depended on the angle between the
wave vector,k, and the anisotropy vector. FG<0 we
found that there were also three stable modes but only one
unstable mode. Additionally, we obtained analytic expres-
sions for the structure functions in the limit of sméllThese
results should provide a reference point for the systematic
study of the isotropization of a relativistic plasma.

The study of Mrevczyrski and Randrup suggests that
during heavy-ion collisions the rate of isotropization via col-
lective modes is comparable with collisions and therefore
cannot be ignorefb]. In this paper we have made no attempt
to discuss the phenomenological rate for instability growth
because there are a number of questions which would need to
be addressed prior to making any definitive statements about
the role of instabilities in plasma evolution and their ex-
pected contribution to observables. This is because we have
only derived the self-energy in a linear expansion in the fluc-
tuations and to leading-order in the coupling constant. As-

Sinceé is O(¢) it can be ignored in the expansion of Eg. suming that there is truly exponential growth of the fields in
(43) so that to linear order ig the collective modes satisfy the direction of the anisotropy this means that the linear ap-

036004-6
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proximation will break down very quickly. In practice the m2 [ d(cosh) -+ £k,cosd
non-linear terms in the transport equations will become im-« (K, §) = szf 5 d 5 [ o —k,cos6
portant and regulate the growth of the modes which have kn [1+¢&cos6]

become unstable. k) 2
Within electrodynamics the coupling constant is small and +k2| 2— ( cosf— = Z) 1

it is possible to experimentally study the Weibel instability k?

[11]. However, with QCD the story is dramatically different

since for_experimentally reali;able situations the coupling X R(w—k,c080,k,sin 6)], (B1)

constant is large and the non-linear effects due to gluon self-

interaction become important much sooner than any non-

linear effects would for QED. Nevertheless, this does not M2 2 d(cosh) 1

diminish from the fact that these unstable modes exist angy (K ¢)=— D J

will therefore have a role to play in plasma evolution. In k? 2 [1+¢cog6]?

order to assess this role, however, detailed studies of the time .

evolution of anisotropic quark-gluon plasmas will need to be X[1= (@ gkosh)R(w —kzcos6,k,sinb)],

performed. (B2)

d(cos#) 1
K,&)=m3 f
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{ w?+ &k?cos o

k2
— 2P(w2— £k2cog )

X
2
wk
2( cose——z> - sz}
k2

We summarize here the notation and conventions which X R(w—k,cosf,k,sin 0)], (B3)
we use in the main body of the text.

Natural unitsii=c=1.

Metric: g#"=g,,,=diag(1-1,—1,—-1).

(w+ £k, cos0)k?
+ 2
K

APPENDIX A: NOTATION AND CONVENTIONS

. o m3w  d(cosf) w+ £k,cosh
4-vectors: Indicated by Greek indices, ekf:=(w,k). O(K,&) = 4~2f 5 2[kz+(k20050
3-vectors: Indicated by lowercase Latin characters. Upper k™n [1+¢cosd]
I;a;:n kllrll(clhzci.;, likei,j,k use a Euclidean 3-metric, e.§. — wk,)R(w—k,c086,k,sin )], (B4)

Fourier transform: wheres?=(1— w?/k?)(k¥k?) and

27qu’) 1 1

%K) = Ay @K Xi R(a,b)= - = '
a dee 10 @0=J, 2ma-bcosgtie \Jatb+iefa—b+ie
(BS)

) d*K Whena andb are real valuedR can be simplified to

00= | e 00,
sgna)®(a?—b?% i0(b%—a?)

R(a,b)= - (B6)

Ja2—b? —a? '
APPENDIX B: ANALYTIC EXPRESSIONS
FOR STRUCTURE FUNCTIONS with ®(x) being the usual step function. Note that the re-
maining integration ove# can also be done analytically but

In this appendix we collect the integral and analytic €x-yq reguits are rather unwieldy so we do not list them here.

pressions for the structure functioas B, y, ands. Choos-
ing n=z andk to lie in the x-z plane k,/k,=tané,) we

havev-n=cosé andv-k=k,cospsin 6+k,cos6. Using this Static limit

parametrization thep integration in all four structure func- In the limit — 0 it is possible to obtain analytic expres-
tions defined by the contractions in E7) can be per- sions for all four structure functions. The results foy, and
formed analytically: mg defined in Eq/(36) are
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Jek
m2=— k2 arctan/¢— — arctan——— |, (B7)
2k \f \/k + k2 VK2 + k2
K3(L1+£) Vek,
[Ve+(1+ &)arctan/e](kK2+ £k2) + £k, (k Je+ arctan
VK2 + £kZ VK2 + £kZ
m5=mp (B8)
2VE(1+£)(KP+ £kD)
with similar results form’ and m3.
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