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Pressure and nonlinear susceptibilities in QCD at finite chemical potentials

Rajiv V. Gavai* and Sourendu Gupta†

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
~Received 20 March 2003; published 25 August 2003!

When the free energy density of QCD is expanded in a Taylor series in the chemical potentialm, the
coefficients are the nonlinear quark number susceptibilities. We show that these depend on the prescription for
putting the chemical potential on the lattice, making all extrapolations in the chemical potential prescription
dependent at finite lattice spacing. To put bounds on the prescription dependence, we investigate the magnitude
of the nonlinear susceptibilities over a range of temperature,T, in QCD with two degenerate flavors of light
dynamical quarks at lattice spacing 1/4T. The prescription dependence is removed in quenched QCD through
a continuum extrapolation, and the dependence of the pressureP on m is obtained.
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One of the most important objects in the study of hot a
dense hadronic matter is the phase diagram, particularly
location of the critical end point, characterized by the te
peratureTE and the chemical potentialmE . Much effort has
been expended recently on estimating these quantities a
nite lattice spacing,a, using, implicitly @1# or explicitly
@2–4#, a Taylor series expansion of the free energy dens
This needs the nonlinear susceptibilities which define
response to an appliedm beyond quadratic order. An equall
important question for phenomenology arises from the f
that present day heavy-ion collision experiments access
part of the QCD phase diagram withm.10–80 MeV, i.e.,
baryon chemical potentialmB.30–250 MeV@5#, far from
mE . It is then pertinent to ask how relevant them50 lattice
QCD computations of quantities such as the pressureP are to
these experiments.

In this paper we present the first investigation of the
nonlinear susceptibilities. We uncover essential lattice a
facts, but manage to quantify and remove them in the proc
of taking the continuum limit. We explicitly construct a Tay
lor series expansion forP at m.0, put limits on the region
of linear response, i.e., of reliable extrapolations, and sh
that the m50 lattice computations are clearly relevant
experiments. An interesting sidelight is that there is stro
evidence of short thermalization times in the dense ma
formed in these heavy-ion collisions@6#, which may be re-
lated to large values of transport coefficients@7#. Most com-
putations of such dynamical quantities are based on lin
response theory. The success of the linear approximatio
static quantities at fairly large driving also gives us con
dence in using linear response theory for dynamics. Ano
interesting point is that the radius of convergence of a Tay
series expansion started nearTc @8# must give information on
the location of the critical end point, (TE ,mE), through the
Taylor coefficients, i.e., the nonlinear susceptibilities. Sin
these Taylor coefficients turn out to be prescription dep
dent and subject to strong finite lattice spacing effects
seems that present day estimates of the end point will hav
be sharpened strongly before they can be used as a gui
phenomenology.

*Electronic address: gavai@tifr.res.in
†Electronic address: sgupta@tifr.res.in
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The partition function of QCD at finite temperatureT and
chemical potentialsm f for each flavorf can be written as

Z[e2F/T5E DUe2S(T))
f

DetM ~mf ,T,m f !. ~1!

F is the free energy,S is the gluon part of the action,M is the
Dirac operator, each determinant is for one quark flavor a
the temperatureT enters through the shape of the lattice a
boundary conditions@9#. We shall work with a lattice dis-
cretization and use staggered quarks@10#. In this work we
shall only consider two degenerate flavors of quarks:mu
5md5m @11#, with chemical potentialsmu and md . The
number densities,nf , and the~linear! quark number suscep
tibilities, x f g , are the first and second derivatives of2F/V
with respect tom f and mg @12#. SinceP52F/V for a ho-
mogeneous system, the nonlinear susceptibilities of orden
>3 are also the remaining Taylor coefficients of an exp
sion of P,

x f g•••52
1

V

]nF

]m f ]mg•••
5

T

V

]n logZ

]m f ]mg•••
, ~2!

where we construct the expansion aroundm f50.
We now write systematic rules for the construction of t

nonlinear susceptibilities. The derivatives of logZ needed in
Eq. ~2! can be related to the derivatives ofZ with respect to
the chemical potentialsm f , mg , etc. ~which we denote by
Zf g•••) by the usual formulas for taking connected parts@13#.
The only extra point to remember is that all the odd deriv
tives vanish byCP symmetry. To write the subsequent fo
mulas compactly, we define operatorsOi by

Zf5Z^O1&, and On115
]On

]m f
, ~3!

where angular brackets denote averages over the ense
defined by Eq.~1! at m f50. Diagrammatic rules@14# for the
Oi and the derivatives ofZ, are:

~1! Put downn vertices~each corresponding to a derivativ
of M with respect tom f) and label each with its flavo
index.
©2003 The American Physical Society06-1
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R. V. GAVAI AND S. GUPTA PHYSICAL REVIEW D68, 034506 ~2003!
~2! Join the vertices by lines~each representing a quark! into
sets of closed loops such that each loop contains o
vertices of a single flavor.Oi is denoted by a single loop
joining i vertices.

~3! For degenerate flavors andm f50, the operators are la
beled only by the topology, which is specified com
pletely by the number of vertices per loop and the nu
ber of such loops. Therefore erase the flavor index a
step 2. We denote each resulting operator by the nota
Oi j •••5OiOj •••, wherei 1 j 1•••5n.

~4! For eachnth order derivative ofZ, add all the operator
topologies for fixedn with flavor-dependent multiplicity
equal to the number of ways in which each topolo
arises given the flavor indices.

The number densitiesnu5nd5(T/V)^O1& vanish at
m50. We have considered the~linear! susceptibilitiesx3
5(T/V)^O2& and xud5(T/V)^O11& extensively in a recen
series of papers@21#. The new quantities that we now con
sider are the two third order derivatives

Zuuu5Z^O313O121O111& and Zuud5Z^O121O111&,

~4!

the three fourth order derivatives

Zuuuu5Z^O414O1313O2216O1121O1111&,

Zuuud5Z^O1313O1121O1111&,

Zuudd5Z^O2212O1121O1111&, ~5!

and the five corresponding susceptibilities. The third or
susceptibilities turn out to vanish. The fourth order susce
bilities are

xuuuu5S T

VD FZuuuu

Z
23S Zuu

Z D 2G ,
xuuud5S T

VD FZuuud

Z
23S Zuu

Z D S Zud

Z D G ,
xuudd5S T

VD FZuudd

Z
2S Zuu

Z D 2

22S Zud

Z D 2G .
~6!

The operators contributing to Eqs.~4!,~5! are shown in Fig.
1. Note the interesting fact that beyond the second order
number of distinct operator topologies is greater than
number of susceptibilities@14#; however, by makingNf suf-
ficiently large, all topologies up to any given order can
given a physical meaning.

A perturbative expansion in the continuum procee
through an order-by-order enumeration of interaction ter
In the continuum the diagrams in Fig. 1 are the leading or
~ideal quark gas! part of the perturbative expansion of th
susceptibilities, where each vertex corresponds to the in
tion of ag0 ~since the chemical potential enters the Lagra
03450
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ian asg0m f). Higher order Feynman diagrams correspond
dressing these loops by gluon attachments in all poss
ways.

In the lattice theory the diagrams in Fig. 1 stand for o
erator definitions which need further specification. They
not Feynman diagrams, but mnemonics for the process
taking derivatives ofZ. Since the coupling of fermions to th
chemical potential is nonlinear@15#, hence all derivatives of
M exist and are nonzero in general. Using the iden
Det M5exp(Tr lnM) it is easy to get the usual expressio
O15Tr M 21M 8, whereM 8 is the first derivative ofM with
respect to a chemical potential. Next, using the chain rul

dM21

dm f
52M 21M 8M 21, ~7!

which comes from the identityMM 2151, we recover the
relation O25Tr(2M 21M 8M 21M 81M 21M 9), where M 9
is the second derivative ofM with respect to the chemica
potential. Higher operators can be derived by repeated ap
cation of the chain rule with Eq.~7!, and involve higher
derivatives of M, which we write asM (n) ~a systematic
method for doing this is given in the Appendix!. In particu-
lar,

O35Tr@2~M 21M 8!323M 21M 9M 21M 81M 21M (3)#

O45Tr@26~M 21M 8!423~M 21M 9!2

112M 21M 9~M 21M 8!224M 21M (3)M 21M 8

1M 21M (4)#. ~8!

This completes the lattice definitions of the operators.
Before we proceed to evaluate them and extract the n

linear susceptibilities, we note an ambiguity that arises
the lattice due to the fact that there is no unique way
putting chemical potential on the lattice. One can associa
factor f (am) for the propagation of a quark forward in tim
by one lattice spacing and a factorg(am) for the propagation
of an antiquark. There are exactly four physical conditio
that these two functions must satisfy@15#. In the absence of
chemical potential the usual lattice theory must be recove
hence f (0)5g(0)51. CP symmetry gives f (2am)
5g(am). Finiteness of the energy density is guaranteed
f (am)g(am)51. Finally, the correct continuum limit re
quires f 8(0)51. These constraints imply the further rel
tions, f 9(0)51 and f (n)(0)5(21)ng(n)(0), where the su-

FIG. 1. All topologies which contribute to derivatives up
fourth order, and the notation for the corresponding operators.
6-2
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PRESSURE AND NONLINEAR SUSCEPTIBILITIES IN . . . PHYSICAL REVIEW D68, 034506 ~2003!
perscriptn on f and g denotes thenth derivative. All this
guarantees thatnf andx f g are prescription independent.

The four conditions above also give relations between
remaining f (n), such asf (4)54 f (3)23, but do not fix their
numerical values. Sincem appears linearly in the continuum
Lagrangian, these higher derivatives are all lattice artifa
Any extra conditions imposed to fix them cannot be physic
and must remain at the level of prescription. The usual p
scription, f (am)5exp(am) @16#, which we call the HK pre-
scription, givesf (n)(0)51, but the alternative BG prescrip
tion f (am)5(11am)/A(12a2m2) @17# gives f (3)(0)53
and f (4)(0)59.

The difference between the two prescriptions can
rather significant. At any fixed cutoff, one may try to rough
map two prescriptions on to each other by changingm while
holdingZ fixed by keepingf (am) unchanged. This gives th
relation that for constant physics we must have

amBG5tanh~amHK!, ~9!

where this mapping is for quark chemical potentials. OnNt
54 lattices, the critical end point for 211 flavor QCD has
been determined to be atTE516063.5 MeV and mE

HK

5725635 MeV @1#. The matching formula of Eq.~9! then
shows thatmE

BG.692 MeV, and hence the resultant unce
tainty in mE from this source alone is comparable to t
statistical errors. We next show that this ambiguity vanis
in the continuum limit in all prescriptions. We also sho
later ~Table II! that uncertainties of almost 20% are also e
pected from other finite lattice spacing effects even wit
one prescription, and lattice spacings of 1/12TE may be re-
quired to findmE stable within statistical error bars.

This freedom of choosing a prescription has specific c
sequences for the third and higher derivatives ofM, and
through them for the nonlinear susceptibilities, and hence
F, P and all quantities at finitem and a. At m f50, the de-
rivatives ofM are related by

M (n)5 f (n)an22M 8~n odd!,

M (n)5 f (n)an22M 9~n even!. ~10!

As a result, O35O3
HK1D f (3)a2O1 and O45O4

HK

14D f (3)a2O2, where the superscript HK on an operator d
notes its value obtained in the HK prescription andD f (3)

5 f (3)21. Clearly, the prescription dependence, manifes
as a nonvanishingD f (3) at this order, disappears in the co
tinuum limit, a→0. Sincê O1&50 atm50, the prescription
dependence of̂O3& is invisible. We find thatxuuud5xuuud

HK

1D f (3)(xud /T2)/Nt
2 . Sincexud vanishes within errors, a

we show later,xuuud turns out to be effectively prescriptio
independent. From the relation forO4 we find, on varyingNt
at fixedT,

xuuuu5xuuuu
HK 1D f (3)S xuu

T2 D S 4

Nt
2D . ~11!

Finally, xuudd involves neitherM (3) nor M (4), and hence is
prescription independent. The prescription dependence
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other susceptibilities can be systematically worked out, an
can be shown exactly as above that they become phys
only in the continuum. Mixed derivatives ofT and m also
have similar behavior. If the dependence ona of each sus-
ceptibility were known in any scheme, then one could wr
down an improved prescription by removing finitea effects
systematically. In other schemes every quantity is potenti
prescription dependent at finite lattice spacing.

After this analysis of lattice artifacts in the Taylor coeffi
cients, we return to the Taylor expansion itself. Along t
line mu5md5m, the Taylor series expansion ofP can be
written in the form

DP

T4
5S xuu

T2 D S m

T D 2F11S m/T

m* /TD 2

1OS m4

m
*
4 D G , ~12!

where DP5P(m)2P(m50), we have neglectedxuudd in
anticipation of our numerical results~Tables I and II!, and

m*
T

5A12xuu /T2

uxuuuuu
. ~13!

For an ideal gas in the continuum,xuu /T251 and xuuuu

56/p2, giving m* /T5A2p.4.43. Some remarks are in o
der.

~1! The series within square brackets in Eq.~12! is prescrip-
tion dependent at any nonzero lattice spacing, and he
physical values ofDP can be most reliably extracted b
extrapolating each term in the series to the continuum

~2! For those values ofm at which the second or highe
order terms in the brackets in Eq.~12! are important,
computations ofDP/T4 on lattices with finiteNt are
necessarily prescription dependent. SinceF52PV, the
same is evidently true for all other physical quantitie

TABLE I. Results in two flavor QCD with sea quarkm/Tc

50.1. ForT5Tc the results are based on 2017 configurations,
1.5Tc on 370, for 2Tc on 126 and for 3Tc on 60. AtTc and 3Tc 100
noise vectors were used.xuuuu can be extracted fromm* andxuu

using Eq.~13!.

T/Tc mV /T 106xud /T2 106xuuud 104xuudd m
*
HK/T

1.0 0.2 215 ~5! 3 ~1! 7 ~1! 3.20 ~3!

0.1 28 ~3! 6 ~3! 9 ~2! 3.31 ~5!

0.03 219 ~14! 3 ~19! 11 ~2! 3.38 ~4!

1.5 0.2 20.3 ~22! 20.7 ~6! 0.107~3! 3.73 ~1!

0.1 0.6~22! 20.6 ~7! 0.105~3! 3.84 ~1!

0.03 20.07 ~22! 20.5 ~9! 0.106~3! 3.86 ~2!

2.0 0.2 2~3! 0.5 ~7! 0.097~3! 3.83 ~1!

0.1 2 ~3! 0.5 ~7! 0.098~3! 3.87 ~1!

0.03 1~3! 0.6 ~7! 0.096~3! 3.78 ~2!

3.0 0.2 0.6~3! 0.12 ~8! 0.032~2! 3.87 ~1!

0.1 0.6~3! 0.12 ~8! 0.033~2! 3.88 ~2!

0.03 0.6~3! 0.12 ~8! 0.033~2! 3.88 ~2!
6-3
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R. V. GAVAI AND S. GUPTA PHYSICAL REVIEW D68, 034506 ~2003!
including the energy density. From Eqs.~11! and~13!, it
is clear that the prescription dependence of the quadr
term is (m* /T)2/3Nt

2 . For Nt54 this can be as large a
33% ~see Table II!.

~3! If the series in Eq.~12! is well behaved, i.e., sixth an
higher order susceptibilities are not much larger th
xuuuu, then this expansion must be well approximat
by the leading term form!m* in every prescription, and
hence be effectively independent of prescription@18#.
Other finite lattice spacing effects may still exist.

~4! The series expansion must fail to converge in the vicin
of a phase transition; therefore estimates of (TE ,mE) on
finite lattices must be prescription dependent, as we h
already estimated. Computation of the continuum lim
of several terms in the double series forF(T,m) may
allow us to use series extrapolation methods, such
Padéapproximants or estimates of radius of converge
@19#, to identify (TE ,mE) in the continuum limit.

We turn now to our numerical simulations. For dynamic
sea quark massm/Tc50.1 we studied the higher order su
ceptibilities atT5Tc on a 43103 lattice, 1.5Tc and 2Tc on
43123 lattices, and 3Tc on a 43143 lattice. All the simula-
tions were performed using the hybrid R-algorithm@20# with
molecular dynamics trajectories integrated over one uni
MD time using a leap-frog algorithm with time step of 0.0
units. AtTc autocorrelations of the Wilson line and the qua
condensate were found to be between 150 and 250 traje
ries. With over 2000 saved configurations separated by
trajectories each, this gave the equivalent of about 100 in

TABLE II. Results in quenched QCD withmv /Tc50.1. Qua-
dratic extrapolations to the continuum limit,Nt5`, from the last
three points, are shown.m* andxuuuu are related by Eq.~13!.

T/Tc Nt 106xud /T2 106xuuud xuuuu m
*
HK/T

1.5 4 2~4! 20.7 ~8! 1.48 ~2! 3.81 ~2!

8 0.2 ~20! 0.2 ~2! 0.70 ~1! 4.36 ~4!

10 20.4 ~7! 0.04 ~6! 0.61 ~2! 4.47 ~4!

12 20.5 ~6! 0.00 ~3! 0.56 ~1! 4.55 ~4!

14 20.3 ~5! 20.04 ~3! 0.53 ~1! 4.56 ~4!

` 0.45 ~1! 4.67 ~4!

2.0 4 3~2! 0.9 ~7! 1.51 ~1! 3.83 ~1!

6 0.2 ~9! 0.2 ~1! 1.01 ~1! 4.11 ~1!

8 20.3 ~2! 0.1 ~2! 0.74 ~1! 4.32 ~5!

10 20.3 ~5! 20.05 ~4! 6.37 ~3! 4.45 ~3!

12 20.1 ~4! 0.00 ~3! 0.58 ~1! 4.56 ~3!

14 20.2 ~6! 0.00 ~3! 0.56 ~1! 4.59 ~4!

` 0.49 ~3! 4.76 ~4!

3.0 4 2~4! 0.8 ~8! 1.54 ~1! 3.85 ~1!

8 1.9 ~7! 0.12 ~6! 0.79 ~2! 4.25 ~5!

10 20.1 ~4! 0.01 ~4! 0.66 ~1! 4.40 ~3!

12 20.1 ~3! 20.02 ~1! 0.61 ~1! 4.48 ~4!

14 20.2 ~1! 0.06 ~4! 0.58 ~1! 4.51 ~2!

` 0.496~1! 4.62 ~1!
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pendent configurations. ForT.Tc the autocorrelations were
all less than ten trajectories, and hence all the saved con
rations can be considered statistically independent.

Quark number susceptibilities were evaluated in the H
prescription on stored configurations using valence qu
massesmV /Tc50.2, 0.1, and 0.03. The smallest valen
quark mass is chosen such that the ratio of the (T50) rho
and pion masses reaches its physical value of 0.2 at the
tice spacinga51/4Tc . All quark-line disconnected diagram
of the kind needed for these measurements are evalu
using a straightforward extension of the stochastic met
given for xud in @21# using 10 to 100 noise vectors per co
figuration @22#. Our results for the nonlinear susceptibilitie
which do not vanish by symmetry are shown in Table I. It
clear that of these onlyxuudd and xuuuu are nonzero with
statistical significance. Comparing them to computatio
with sea quark massm/Tc50.2 and various volumes, w
concluded that they are free of sea quark mass and fi
volume effects. Also note the stability in physical quantiti
asmv /Tc decreases from 0.1 to 0.03.

With present day computer resources the continuum li
is hard to take in QCD with dynamical quarks. To investiga
this limit we have evaluated the same quantities in quenc
QCD for T>1.5Tc where the difference in the order of tran
sitions is immaterial@23#. The run parameters are exactly
in @21#. Our results are shown in Table II. These results sh
that there is over 20% movement inm* when going from
Nt54 to the continuum within a fixed prescription. Sincem*
is an estimate of the radius of convergence of the Tay
expansion at the fourth order, it implies that the estimate
the end point,mE , may shift upward by about 20% due t
finite size effects even inside the HK scheme.xuudd remains
significantly nonzero on all the lattices, and there is so
evidence that it becomes either zero or marginally nega
in the continuum@24#. We shall present more detailed studi
in the future. Finally, the results forNt54 are very similar in
the quenched and dynamical theories, leading us to bel
that the continuum limits will also be close.

DP/T4 obtained in quenched QCD, using values ofxuu
from @21# andm* /T obtained here, are shown in Fig. 2. A
RHIC it is seen thatm/Tc50.06!0.15, which implies that
DP/T4 is negligible. In terms of dimensionless variables, t
results in quenched and dynamical QCD are not expecte
differ by more than 5–10 %@25#. For m/Tc.0.45, relevant
to SPS energies, the effects ofm.0 are more significant, bu
can still be reliably extracted using only the leading term
Eq. ~12!. In this whole range ofm/Tc the results of@25#,
including a correction for finite lattice spacing artifacts in t
evaluation ofxuu at Nt54, are the same as our continuu
results, and both are dominated by the leading term of
~12!. Our computations show that form>2Tc , higher order
terms become significant for the continuum limit. As a resu
at these chemical potentials, reweighting onNt54 lattices,
even after correcting for finitea effects in xuu , are quite
different from the continuum values.

In conclusion, we have studied nonlinear susceptibilit
and have shown that they are prescription dependent at fi
lattice spacing. We have found the continuum limit of the
quantities in quenched QCD, and thereby removed these
6-4
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PRESSURE AND NONLINEAR SUSCEPTIBILITIES IN . . . PHYSICAL REVIEW D68, 034506 ~2003!
tifacts. This allows us to compute the finite chemical pote
tial corrections to the pressure relevant to RHIC and S
experiments. Fora51/4T the numerical results for QCD
with and without dynamical quarks are similar, and we fi
the continuum limit of some of these quantities in t
quenched theory. It would be interesting to compare th
with perturbation theory. We have argued that the latt
spacing ambiguity in the critical end point (TE ,mE) evalu-
ated atNt54 is significantly bigger than the statistical error
As a result, a continuum extrapolation is required to obt
the physical value of the end point. This may be possi
with the computation of several nonlinear susceptibilities

We would like to thank J.-P. Blaizot for discussions.

APPENDIX: LATTICE OPERATORS

In this appendix we work in lattice units, i.e., we choo
the lattice spacing to be unity. We introduce the comp
notation

Tr@~M 21M (p1)!n1~M 21M (p2)!n2
•••#

5~n1•p1% n2•p2% ••• !, ~A1!

and further write (1•p) as (p). Since the trace allows only
cyclic permutations, therefore

~a% b% c!5~c% a% b!Þ~b% a% c!, ~A2!

i.e., the ‘‘addition’’ ~represented by% ) is not commutative.
‘‘Multiplication’’ ~denoted by the dot! is distributive over
addition, subject to restrictions due to noncommutativity, i

FIG. 2. DP/T4 as a function ofT/Tc for the values ofm/Tc

shown. Continuum results correct toO(m4) ~full lines! andO(m2)
~dotted lines! are shown.Nt54 results, in the HK prescription
correct toO(m4) and multiplied by 0.47 to compensate for finitea
effects inxuu are shown with dashed lines.
03450
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~n•p% m•p!5@~n1m!•p#,

~n•p% m•p8% l •p!5@~n1 l !•p% m•p8#,
~A3!

but no simplification is possible for (n•p% m•p8% l •p
% •••). Traces can be added, i.e.,

a~n•p!1b~n•p!5~a1b!~n•p!. ~A4!

The point of all this is to simplify the taking of derivatives
These are easy to write,

~n•p!852n~1% n•p!1n@~n21!•p% ~p11!#. ~A5!

The operation of taking derivatives is linear over the ‘‘add
tion’’ % , since this is just the rule for taking derivatives
products.

We have the first examples,

O15~1!, O252~2•1!1~2!. ~A6!

Then, the remaining known ones are obtained simply by
plying the rules again. Since (2•1)8522(3•1)12(1% 2)
and (2)852(1% 2)1(3), wefirst obtain the relation in Eq.
~8!,

O352~3•1!23~1% 2!1~3!. ~A7!

At the fourth order we need the derivatives

~3•1!8523~4•1!13~2•1% 2!,

~1% 2!8522~2•1% 2!1~2•2!1~1% 3!,

~3!852~1% 3!1~4!. ~A8!

As a consequence of the general rule in Eq.~A5!, the coef-
ficients sum up to zero. This is a consequence of the rule
derivatives in Eq.~A5!. Also note that each operator, (•••

% ni•pi % •••), which contributes toOn must satisfy the con-
straint(nipi5n. The expressions in Eq.~A8! give the result
of Eq. ~8!,

O4526~4•1!112~2•1% 2!23~2•2!24~1% 3!1~4!.

~A9!

For eachOn for n>2, the sum of the coefficients is zero, a
can be proved by induction from Eq.~A5!.

Using these rules higher order derivatives, needed for
higher order susceptibilities, can be easily written dow
Since these manipulations are simple rules for rewriting
pressions, not only are they easy to automate inside stan
algebra packages, but can even be readily implemente
macros in text editors such asSED or EMACS.
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