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Pressure and nonlinear susceptibilities in QCD at finite chemical potentials
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When the free energy density of QCD is expanded in a Taylor series in the chemical potentra
coefficients are the nonlinear quark number susceptibilities. We show that these depend on the prescription for
putting the chemical potential on the lattice, making all extrapolations in the chemical potential prescription
dependent at finite lattice spacing. To put bounds on the prescription dependence, we investigate the magnitude
of the nonlinear susceptibilities over a range of temperaflir@) QCD with two degenerate flavors of light
dynamical quarks at lattice spacing T/4The prescription dependence is removed in quenched QCD through
a continuum extrapolation, and the dependence of the preBsoinew is obtained.
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One of the most important objects in the study of hot and The partition function of QCD at finite temperatufeand
dense hadronic matter is the phase diagram, particularly, thehemical potentialg:; for each flavorf can be written as
location of the critical end point, characterized by the tem-
peratureTg and the chemical potentiaglz . Much effort has T B
been expended recently on estimating these quantities at fi- ~ £=€ FT=| DUe S(T)H DetM(m¢, T, ). (1)
nite lattice spacinga, using, implicitly [1] or explicitly
[2—_4], a Taylor series_ expansion of_ t_h_e_ free energy c_iensityF
This needs the nonlinear susceptibiliies which define theDirac operator, each determinant is for one quark flavor and
response to an applied beyond quadratic order. An equally '

: ; . he temperaturd@ enters through the shape of the lattice and
important question for phenomenology arises from the fac oundary condition§9]. We shall work with a lattice dis-
that present day heavy-ion collision experiments access th y )

part of the QCD phase diagram wifh~10—80 MeV, i.e., cretization and use staggered quarks]. In this work we.:
baryon chemical potentigks=30-250 MeV/[5], far from shall only consu?ier two c.iegenerate. flavors of quarnks:
ue. Itis then pertinent to ask how relevant the=0 lattice = —Ma=m [11], with chemical potentialg., and wgy. The
QCD computations of quantities such as the presBume to ~ Number densities);, and the(linean quark number suscep-
these experiments. tibilities, xtq, are the first and second derivatives-of/V

In this paper we present the first investigation of thesawith respect tou; and g [12]. SinceP=—F/V for a ho-
nonlinear susceptibilities. We uncover essential lattice artimogeneous system, the nonlinear susceptibilities of ander
facts, but manage to quantify and remove them in the process 3 are also the remaining Taylor coefficients of an expan-
of taking the continuum limit. We explicitly construct a Tay- sion of P,
lor series expansion fdP at >0, put limits on the region
of linear response, i.e., of reliable extrapolations, and show 1 I"F T " logZz
that the x=0 lattice computations are clearly relevant to Xfg-- =7y It g RV It Ipg - @
experiments. An interesting sidelight is that there is strong
evidence of short thermalization times in the dense mattefyhere we construct the expansion aroyng=0.
formed in these heavy-ion collisioi§], which may be re- We now write systematic rules for the construction of the
lated to large values of transport coefficiefit Most com-  nonlinear susceptibilities. The derivatives of Bgeeded in
putations of such dynamical quantities are based on linegq. (2) can be related to the derivatives Dfwith respect to
response theory. The success of the linear approximation ihe chemical potentialg. g, etc. (which we denote by
static quantities at fairly large driving also gives us COﬂfI-ng_”) by the usual formulas for taking connected p#t(3).
dence in using linear response theory for dynamics. Anothethe only extra point to remember is that all the odd deriva-
interesting point is that the radius of convergence of a Taylofiyes vanish byCP symmetry. To write the subsequent for-
series expansion started ndar{ 8] must give information on  mulas compactly, we define operat@s by
the location of the critical end pointTE,«g), through the
Taylor coefficients, i.e., the nonlinear susceptibilities. Since 90,
these Taylor coefficients turn out to be prescription depen- Z;=2Z(0y), and On+1=7—, ()
dent and subject to strong finite lattice spacing effects, it K

seems that present day estimates of the end point will have {ghere angular brackets denote averages over the ensemble
be sharpened strongly before they can be used as a guide §@fined by Eq(1) at u;=0. Diagrammatic rulef14] for the

is the free energ\sis the gluon part of the actioM is the

phenomenology. O; and the derivatives af, are:
(1) Put downn vertices(each corresponding to a derivative
*Electronic address: gavai@tifr.res.in of M with respect tou) and label each with its flavor
TElectronic address: sgupta@tifr.res.in index.
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(2) Join the vertices by line@ach representing a quaiikto OO 'Oﬁ j

sets of closed loops such that each loop contains only Q
vertices of a single flavo0; is denoted by a single loop
joining i vertices.

(3) For degenerate flavors ang =0, the operators are la- OO0 O O O O

beled only by the topology, which is specified com-
pletely by the number of vertices per loop and the num- OO0 O

ber of such loops. Therefore erase the flavor index after 111 4
step 2. We denote each resulting operator by the notation
0;;...=0;0j---, wherei+j+---=n. FIG. 1. All topologies which contribute to derivatives up to

(4) For eachnth order derivative o, add all the operator fourth order, and the notation for the corresponding operators.
topologies for fixedh with flavor-dependent multiplicity
equal to the number of ways in which each topology
arises given the flavor indices.

ian asyous). Higher order Feynman diagrams correspond to
dressing these loops by gluon attachments in all possible
ways.

o o ; In the lattice theory the diagrams in Fig. 1 stand for op-
The number densitiesn,=ny=(T/V)(O anish at S . o
1=0 \?Ve have conlslideréd t}?(dzin(ear) )éuslgep;bili[[iesxg erator definitions which need further specification. They are

= (TIV)(O,) and yuq=(T/V)(Oyy) extensively in a recent not Feynman diagrams, but mnemonics for the process of

series of paperf21]. The new quantities that we now con- takmg_ denvatlve_s O.Z' Since the coupling of fe”’?"’”? to the
sider are the two third order derivatives chemical potential is nonline4l5], hence all derivatives of

M exist and are nonzero in general. Using the identity
Z  =7({0x430.,4+0 and Z,,4=2Z(O;,+ 0110, Det M=exp(TrInM) it is easy to get the usual expression
uuu=2(0s 12+ Osd) uua=Z{Orz+ Oz 0O,=Tr M~IM’, whereM’ is the first derivative oM with
(4) respect to a chemical potential. Next, using the chain rule

the three fourth order derivatives dM~1

5 =—M M'M1 (7)
Zyuuu=2Z{04+ 4013+ 309,+6011,+ O1117), i

which comes from the identitf M “*=1, we recover the
relation O,=Tr(—M " M'M~IM’'+M~tM"), where M”

is the second derivative dfl with respect to the chemical
potential. Higher operators can be derived by repeated appli-
cation of the chain rule with Eq(7), and involve higher
Uerivatives of M, which we write asM™ (a systematic
method for doing this is given in the Appendixn particu-

Zyuud=2Z(O13+ 30115+ 01117,
Zyuda=2Z{O2pt 20115+ O1117), 5

and the five corresponding susceptibilities. The third order
susceptibilities turn out to vanish. The fourth order suscepti-

bilities are lar,

quuu:(g) e 27) } O3=TI’[2(M71M’)3—3|\/|71|\/|”|\/|*1M’+M*1M(3)]

: 0,=Tr —6(M~IM")*—3(M~1M")2
T Z,

quud:(v) uuud _ 7)(_)} +12M—1MH(M—1M/)2_4M—1M(3)M—1M1

: , + MM, ®)
_ T Zuudd Z Zud

Xuwdd= |y || =7 ~ |7 -2 Z I This completes the lattice definitions of the operators.

) (6) Before we proceed to evaluate them and extract the non-

linear susceptibilities, we note an ambiguity that arises on

The operators contributing to Eqggt),(5) are shown in Fig. the lattice due to the fact that there is no unique way of
1. Note the interesting fact that beyond the second order, theutting chemical potential on the lattice. One can associate a
number of distinct operator topologies is greater than thdactor f(au) for the propagation of a quark forward in time
number of susceptibilitiegl4]; however, by makindN; suf- by one lattice spacing and a facfau) for the propagation
ficiently large, all topologies up to any given order can beof an antiquark. There are exactly four physical conditions
given a physical meaning. that these two functions must satigfi5]. In the absence of

A perturbative expansion in the continuum proceedschemical potential the usual lattice theory must be recovered,
through an order-by-order enumeration of interaction termshence f(0)=g(0)=1. CP symmetry gives f(—au)
In the continuum the diagrams in Fig. 1 are the leading order=g(ax). Finiteness of the energy density is guaranteed if
(ideal quark gaspart of the perturbative expansion of the f(au)g(aw)=1. Finally, the correct continuum limit re-
susceptibilities, where each vertex corresponds to the insequires f'(0)=1. These constraints imply the further rela-
tion of ay, (since the chemical potential enters the Lagrang+ions, f”(0)=1 and f("(0)=(—1)"g™(0), where the su-
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perscriptn on f and g denotes thenth derivative. All this TABLE I. Results in two flavor QCD with sea quan/T,

guarantees that; and x4 are prescription independent. =0.1. ForT=T, the results are based on 2017 configurations, for
The four conditions above also give relations between thé-5Tc on 370, for ZI'; on 126 and for 3, on 60. AtT. and 3T 100

remainingf(”), such asf(4):4f(3)_3, but do not fix their nojse vectors were useg,,,, can be extracted fronx, and y,,

numerical values. Since appears linearly in the continuum Using Ea.(13).

Lagrangian, these higher derivatives are all lattice artifacts; 5 oK

Any extra conditions imposed to fix them cannot be physicaI,T/TC my/T  10xua/T ¥ 10%uuga /T

and must remain at the level of prescription. The usual pre- 19 .2 —15(5) 3(1) 7 (1) 3.20(3)
scription, f (au) = explaw) [16], which we call the HK pre- 0.1 -8(3) 6 (3) 92 331(5
scription, givesf("(0)=1, but the alternative BG prescrip- 003 -19(14  3(19 112 33804
tion f(aw)=(1+au)/\(1—au?) [17] gives f©®)(0)=3
and f(4)(0): 9. 15 0.2 —-0.3(22 -0.7(6) 0.107(3) 3.73(1)
The difference between the two prescriptions can be 01 0.6(22 —-0.6(7) 0.105(3) 3.84(1)
rather significant. At any fixed cutoff, one may try to roughly 0.03 -007(22 -05(9 0.106(3) 3.86(2
map two prescriptions on to each other by changinghile
holding Z fixed by keeping (ax) unchanged. This gives the 8'12 2223 g'g g; g'gg;g 22?8
relation that for constant physics we must have 0.03 13) 0.6(7) 0.096(3 3.78(2)
aupe=tanfamyy), ©) 3.0 02 0.6(3) 0.12(8) 0.032(2) 3.87(1)
0.1 0.6(3) 0.12(8) 0.033(2) 3.88(2)

where this mapping is for quark chemical potentials. KOn
=4 lattices, the critical end point for+21L flavor QCD has
been determined to be afg=160+3.5MeV and u2*

=h725i 3;]5 Mg(\;i[l]‘ The matchlnr? formuria of E‘i('g) then other susceptibilities can be systematically worked out, and it
shows thaiug “=692 MeV, and hence the resultant uncer- o e shown exactly as above that they become physical
tainty in pg from this source alone is comparable to0 the oy in the continuum. Mixed derivatives af and x also
statistical errors. We next show that this ambiguity vanishes,,ve similar behavior. If the dependence @of each sus-
in the continuum limit in .aII. prescriptions. We also show ceptibility were known in any scheme, then one could write
later (Table 1)) that uncertainties of almost 20% are also eX-qqwn an improved prescription by removing findeeffects
pected from other finite lattice spacing effects even withingy siematically. In other schemes every quantity is potentially
one prescription, and lattice spacings of Wg2may be re-  hrescription dependent at finite lattice spacing.
quired to findug stable within statistical error bars. After this analysis of lattice artifacts in the Taylor coeffi-
This freedom of choosing a prescription has specific CONgjents, we return to the Taylor expansion itself. Along the

sequences for the third and higher derivativesMf and |, y=pg=p, the Taylor series expansion & can be
through them for the nonlinear susceptibilities, and hence fo\'}vrittenu in the fo,rm

ﬁ 2

T

F, P and all quantities at finitee anda. At u=0, the de-
rivatives ofM are related by AP

MM =fMa"=2M"(n even. (100 whereAP=P(u)—P(1=0), we have neglecteg, qq in
anticipation of our numerical resultables | and I), and

0.03 0.6(3) 0.12(8) 0.033(2) 3.88(2)

2
+0

n
4
Moy

Xuu
T2

. (12

ulT
My [T

M®=£Ma"=2M’(n odd), T4

As a result, 0;=05+Af®a20, and 0O,=0K

+4A1f®a?0,, where the superscript HK on an operator de-

. . . o 3 Moy 12,/ T
notes its value obtained in the HK prescription ahfl® ==N7 T (13)
=f(3)—1. Clearly, the prescription dependence, manifested [ Xuuud

as a nonvanishing f® at this order, disappears in the con- . . _ 2
tinuum limit,a—0. Since{O,)=0 atu =0, the prescription For azn |c_ie_al gas in the continuung,,/T°=1 and Xuuuy
dependence ofOs) is invisible. We find thab(uuud:)(:'uKud ;6/77 , giving u, /T=\/27=4.43. Some remarks are in or-
+AF®)(xua/ TA)INZ. Since x4 vanishes within errors, as ©°"
we show latery,,,q turns out to be effectively prescription (1) The series within square brackets in ER) is prescrip-
independent. From the relation for, we find, on varying\, tion dependent at any nonzero lattice spacing, and hence
at fixedT, physical values oA P can be most reliably extracted by
extrapolating each term in the series to the continuum.
(2) For those values ol at which the second or higher
order terms in the brackets in E¢l2) are important,
computations ofAP/T# on lattices with finiteN, are
Finally, xuuaq involves neithet @) nor M®, and hence is necessarily prescription dependent. Sifice — PV, the
prescription independent. The prescription dependence of same is evidently true for all other physical quantities,

N (11)

Xuu
Xuuuu™ Xt'&(uu"_ Af(S)( ?)
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TABLE II. Results in quenched QCD witm, /T,=0.1. Qua-  pendent configurations. F@r>T, the autocorrelations were
dratic extrapolations to the continuum limi;=c°, from the last  all less than ten trajectories, and hence all the saved configu-

three points, are showm, and .., are related by Eq13). rations can be considered statistically independent.
Quark number susceptibilities were evaluated in the HK
TTe Ny 10xu/T* 1®xwud  Xeww  wfIT prescription on stored configurations using valence quark
15 4 2(4) —-0.7(8) 1.48(22 3.81(2 massesmV/T_CZO.Z, 0.1, and 0.03. Thg smallest valence
8 0.2(20) 022 070(1) 4.36(4) quark_mass is chosen suc_h that the ratio of theQ) rho
10 -04(7) 0.04(6) 0612 4.47(4) e}nd pion masses reaches its physmal value of 0.2 at the lat-
12 -05(6) 0003 056(1) 455() tice spacinga= 1/4T. . All quark-line disconnected diagrams
14 -03(5 —0043) 053(1) 4564 of the kind needed for these measurements are evaluated
using a straightforward extension of the stochastic method
o 0.45(1) 4.67(4) given for x,q in [21] using 10 to 100 noise vectors per con-
figuration[22]. Our results for the nonlinear susceptibilities
20 4 3(2) 09(7)  1.51(1)  3.83(1)  \yhjch do not vanish by symmetry are shown in Table I. It is
6 0.2(9) 02(1) 101(1) 411(1)  clear that of these only,ygq and xyuuy are Nonzero with
8 -03( 01(2) 0.74(1) 432(5  statistical significance. Comparing them to computations
10 -03(5 -0054 637(3 445(Q3)  with sea quark mass/T,=0.2 and various volumes, we
12 -0.1(4 0.00(3) 0.58(1) 4.56(3 concluded that they are free of sea quark mass and finite
14 -0.2(6) 0.00(3) 0.56(1) 4.59(4) volume effects. Also note the stability in physical quantities
asm, /T decreases from 0.1 to 0.03.
- 0:49(8) 476(4 With present day computer resources the continuum limit
3.0 4 2(4) 0.8(8) 1.54(1) 3.85(1) is hard to take in QCD with dynamical quarks. To investigate
8 1.9(7) 0.12(6) 0.79(2) 4.25(5) this limit we have evaluated the same quantities in quenched
10 -0.1(4) 0.01(4) 0.66(1) 4.40(3 QCD for T=1.5T; where the difference in the order of tran-
12 -01(3 —0.02(1) 061(1) 4.48(4) sitions is immateria[23]. The run parameters are exactly as
14  -02() 0.06(4) 058(1) 451(2 in [21]. Our results are shown in Table Il. These results show
that there is over 20% movement pn, when going from
* 0.496(1)  4.62(1) N;=4 to the continuum within a fixed prescription. Sineg

is an estimate of the radius of convergence of the Taylor
including the energy density. From Ed&1) and(13), it expansion at the fourth order, it implies that the estimate of

is clear that th(g prezscription dependence of the quadratiyn?t:';?zsgf?éﬁi’eyeanyirslzi'geutﬂvgal_r'?( z)éhaebr;;tdi??mi?r?sto
i T Nf. ForN,=4 thi | L . o .
tge;;; (Ize%tr;b)le/:; v POt this can be as large as significantly nonzero on all the lattices, and there is some
(3) If the series in E. (12) is well behaved, i.e., sixth and evidence that it becomes either zero or marginally negative
hiah q d Gbilit ; . h | h in the continuunj24]. We shall present more detailed studies
\gher order SUSCepubllities areé not much 1arger thar, e fyyre, Finally, the results fot,=4 are very similar in

Xuuuu, then this expansion must be well approximatedy, o o ,enched and dynamical theories, leading us to believe
by the leading term fop. < s, in every prescription, and  yh4¢ the continuum limits will also be close.

hence _bg effeqtively independent of pre_script[drs]. AP/T* obtained in quenched QCD, using valuesyaf,

Other finite lattice spacing effects may still exist.  fom [21] and , /T obtained here, are shown in Fig. 2. At
(4) The series expansion must fail to converge in the vicinityrHiC it is seen thaj/T,=0.06<0.15, which implies that

of a phase transition; therefore estimates (ug) on  AP/T#is negligible. In terms of dimensionless variables, the

finite lattices must be prescription dependent, as we havgesults in quenched and dynamical QCD are not expected to

already estimated. Computation of the continuum limitdiffer by more than 5—10 %25]. For u/T.=0.45, relevant

of several terms in the double series #(T,x) may  to SPS energies, the effectsof>0 are more significant, but

allow us to use series extrapolation methods, such asan still be reliably extracted using only the leading term of

Padeapproximants or estimates of radius of convergenceEq. (12). In this whole range ofu/T, the results of25],

[19], to identify (Tg,ug) in the continuum limit. including a correction for finite lattice spacing artifacts in the
We turn now to our numerical simulations. For dynamicalevaluation ofy,, at N;=4, are the same as our continuum
sea quark mass/T.=0.1 we studied the higher order sus- results, and both are dominated by the leading term of Eq.

ceptibilities atT=T, on a 4x 10° lattice, 1.9, and 2T, on  (12). Our computations show that far=2T,, higher order

4x 12 lattices, and J, on a 4x 14° lattice. All the simula-  terms become significant for the continuum limit. As a result,
tions were performed using the hybrid R-algorith2@] with at these chemical potentials, reweighting =4 lattices,
molecular dynamics trajectories integrated over one unit oéven after correcting for finita effects in y,,, are quite

MD time using a leap-frog algorithm with time step of 0.01 different from the continuum values.

units. At T, autocorrelations of the Wilson line and the quark  In conclusion, we have studied nonlinear susceptibilities
condensate were found to be between 150 and 250 trajectand have shown that they are prescription dependent at finite
ries. With over 2000 saved configurations separated by 1@ttice spacing. We have found the continuum limit of these
trajectories each, this gave the equivalent of about 100 indeguantities in quenched QCD, and thereby removed these ar-
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05 - ' ' (n-pem-p)=[(n+m)-p],
0.4} 1.03 (n-pem-p’®l-p)=[(n+l)-pe&m-p’],
I (A3)
T: 03¢ but no simplification is possible forn(pem-p'®l-p
g | @ ---). Traces can be added, i.e.,
0.2} 0.73
I a(n-p)+b(n-p)=(a+b)(n-p). (A4)
o1y 0.44 The point of all this is to simplify the taking of derivatives.
I 015 © ! These are easy to write,
0 =% 2 73

T, (n-p)'=—n(len-p)+n[(n—1)-p&(p+1)]. (A5)

FIG. 2. AP/T* as a function ofT/T, for the values ofu/T. ~ The operation of taking derivatives is linear over the “addi-
shown. Continuum results correct@(u*) (full lines) andO(u?)  tion” @, since this is just the rule for taking derivatives of
(dotted lineg are shown.N,=4 results, in the HK prescription, products.
correct toO(u?) and multiplied by 0.47 to compensate for finite We have the first examples,
effects iny,, are shown with dashed lines.

0;=(1), Ox=—(2:1)+(2). (A6)

tifacts. This allows us to compute the finite chemical poten-Then, the remaining known ones are obtained simply by ap-
tial corrections to the pressure relevant to RHIC and SP$IYing the rules again. Since (2)'=—2(3-1)+2(192)
experiments. Form=1/4T the numerical results for QCD and (2 =—(1®2)+(3), wefirst obtain the relation in Eqg.
with and without dynamical quarks are similar, and we find(8).
the continuum limit of some of these quantities in the _
guenched theory. It would be interesting to compare them 05=2(3-1)=3(182)+(3). (A7)
with perturbation theory. We have argued that the latticeat the fourth order we need the derivatives

spacing ambiguity in the critical end poinT§,ug) evalu-

ated atN,=4 is significantly bigger than the statistical errors. (3-1)'=—-3(4-1)+3(2-182),
As a result, a continuum extrapolation is required to obtain ,
the physical value of the end point. This may be possible (182)'=-2(2-162)+(2-2)+(193),

with the computation of several nonlinear susceptibilities. ,
(3)'=—(1®3)+(4). (A8)

We would like to thank J.-P. Blaizot for discussions. .
As a consequence of the general rule in E&p), the coef-

ficients sum up to zero. This is a consequence of the rule for
derivatives in Eq.(A5). Also note that each operator, -(-

In this appendix we work in lattice units, i.e., we choose®n;-p;® - - -), which contributes t®, must satisfy the con-
the lattice spacing to be unity. We introduce the compacstraint=n;p;=n. The expressions in EA8) give the result
notation of Eq. (8),

APPENDIX: LATTICE OPERATORS

T (MM Py (M ~IM (P2))N2. ] 0,=-6(4-1)+122-1©2)—3(2-2)—4(1©3)+(4).

=(N1-P1&Ny- P& - - +), (A1) (A9)

For eachO,, for n=2, the sum of the coefficients is zero, as
can be proved by induction from EGAS).
Using these rules higher order derivatives, needed for the
(adbac)=(coadb)#(bdasdc), (A2) higher order susceptibilities, can be easily written down.
Since these manipulations are simple rules for rewriting ex-
i.e., the “addition” (represented by ) is not commutative. pressions, not only are they easy to automate inside standard
“Multiplication” (denoted by the dotis distributive over algebra packages, but can even be readily implemented as
addition, subject to restrictions due to noncommutativity, i.e.macros in text editors such asbD or EMACS.

and further write (1p) as (p). Since the trace allows only
cyclic permutations, therefore
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