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Moments of nucleon generalized parton distributions in lattice QCD
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Calculation of the moments of generalized parton distributions in lattice QCD requires more powerful
techniques than those previously used to calculate the moments of structure functions. Hence, we present a
novel approach that exploits the full information content from a given lattice configuration by measuring an
overdetermined set of lattice observables to provide maximal statistical constraints on the generalized form
factors at a given virtualityt. In an exploratory investigation using unquenched QCD configurations at inter-
mediate sea quark masses, we demonstrate that our new technique is superior to conventional methods and
leads to reliable numerical signals for then52 flavor singlet generalized form factors up to 3 GeV2. The
contribution from connected diagrams in the flavor singlet sector to the total quark angular momentum is
measured to an accuracy of the order of 1%.
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I. INTRODUCTION

Light-cone correlation functions play a special role in t
experimental exploration of the quark and gluon structure
hadrons. Asymptotic freedom allows quantitative separa
of the reaction mechanism from the structure of the pro
hadron at high energy, so that spin-independent scatte
experiments unambiguously measure matrix elements of
light-cone operator:

O~x!5E dl

4p
eilxc̄S 2

l

2
nDn”P

3expF2 igE
2l/2

l/2

dan•A~an!GcS l

2
nD , ~1!

wheren is a light-cone vector andP denotes a path orderin
of the gauge fields in the exponential. Since these ma
elements are singled out by their experimental accessib
it is essential to use all our tools of analytical methods a
lattice field theory to explore and understand them as fully
possible.

Diagonal nucleon matrix elements,q(x)5^PuO(x)uP&,
measure the familiar quark distributionq(x) specifying the
probability of finding a quark carrying a fractionx of the
nucleon’s momentum in the light-cone frame. Althou
light-cone correlation functions cannot be calculated direc
in lattice QCD, expansion ofO(x) generates the tower o
twist-two operators
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Oq
$m1m2 , . . . ,mn%

5c̄qg$m1iDJ m2
¯ iDJ mn%cq , ~2!

with DJ5 1
2 (DW 2DQ ), and curly braces$m1 , . . . ,mn% mean

symmetrization of indices and subtraction of traces. The
agonal matrix elementŝPuO q

$m1m2 , . . . ,mn%uP& can be calcu-
lated on the lattice and specify the (n21)th moments
*dx xn21q(x). Note that expressions analogous to Eqs.~1!
and ~2! for spin-dependent observables differ only in the
gamma matrix structure, but will not be considered in t
present work.

Generalized parton distributions~GPDs!, as introduced in
@1–3#, correspond to nondiagonal matrix elemen
^P8uO(x)uP&. When expressed in terms of the relevant Lo
entz invariants,̂ P8uO(x)uP& is specified in terms of two
generalized parton distributions,H(x,j,t) andE(x,j,t), de-
pending on three kinematical variables. In terms of the fo
momentum transferD5P82P, the invariant momentum
transfer squared ist5D2, the skewedness isj52n•D/2,
andx denotes the momentum fraction. Since the depende
of the GPDs,H(x,j,t) and E(x,j,t), on three kinematical
variables renders their physical interpretation more diffic
than ordinary parton distributions, it is useful to recall se
eral important physical properties. In the forward limit, i.e
j, t→0, we recover the forward parton distribution functio
as H(x,0,0)5q(x). In what is sometimes referred to a
the local limit, integrating over the momentum fractionx
yields the familiar electromagnetic form factor
*dx H(x,j,t)5F1(t) and *dx E(x,j,t)5F2(t). The first
moment of the sum ofH andE yields the total quark angula
momentum1

2 *dx x@H(x,j,t)1E(x,j,t)#5Jq . We note that
both these results are independent ofj. And finally, at
skewednessj50, the t dependence specifies the transve
Fourier transform with respect to the impact parameter of
light-cone wave function@4#. For a possible interpretation o
GPDs with nonzeroj, see Refs.@5,6#.
©2003 The American Physical Society05-1
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On the lattice, instead of matrix elements of the light-co
operator, Eq.~1!, one again calculates nondiagonal mat
elements of the local operators, Eq.~2!, yielding moments of
the generalized parton distributions. Following the notat
of Ref. @2#, the nondiagonal matrix elemen
^P8uO $m1 , . . . ,mn%uP& may be expressed in terms of a set
generalized form factors~GFFs! Ani(t), Bni(t), andCn(t).
The form factorsAni(t) andCn(t) multiplied by powers of
j2 yield the momentHn(j,t)5*dx xn21H(x,j,t) and the
form factorsBni(t) and Cn(t) multiplied by powers ofj2

yield the momentEn(j,t)5*dx xn21E(x,j,t).
The lowest three moments considered in this work are

^P8uOm1uP&5^^gm1&&A10~ t !1
i

2m
^^sm1a&&DaB10~ t !,

^P8uO$m1m2%uP&5 P̄$m1^^gm2%&&A20~ t !

1
i

2m
P̄$m1^^sm2%a&&DaB20~ t !

1
1

m
D$m1Dm2%^^1&&C2~ t !,

^P8uO$m1m2m3%uP&5 P̄$m1P̄m2^^gm3%&&A30~ t !

1
i

2m
P̄$m1P̄m2^^sm3%a&&DaB30~ t !

1D$m1Dm2^^gm3%&&A32~ t !

1
i

2m
D$m1Dm2^^sm3%a&&DaB32~ t !,

~3!

where P̄m5(Pm1Pm8 )/2 and ^^G&&5Ū(P8)GU(P). The
GFFs,Ani(t), Bni(t), andCn(t), specify all the information
about spin-independent generalized parton distributions
is known to be accessible on the lattice. The limits forH and
E discussed above may be reexpressed in terms of the
eralized form factors. The limitt→0 of An0 is the familiar
parton distribution moment,An0(0)5*dx xn21q(x). The
electromagnetic form factors are given byA10(t)5F1(t) and
B10(t)5F2(t) for the appropriate flavor combination. F
nally, the total quark angular momentum is given by the s
of A201B20 as t→0, Jq5 1

2 @A20(0)1B20(0)#.
In the context of this brief review, we may now consid

the challenges and opportunities in calculating moments
generalized parton distributions on the lattice, and comp
them with the analogous issues for ordinary parton distri
tions. Experimentally, three decades of deep inelastic sca
ing experiments have provided impressive phenomenolog
determinations of parton distributions as a function of m
mentum fraction@7–9#. Hence, for parton distributions, th
key issues are developing the lattice technology to the p
of attaining quantitative agreement with moments of exp
mental parton distributions and using the lattice as a too
obtain insight into how these distributions arise from QC
The present status is that computational limitations res
unquenched QCD calculations to the heavy quark regim
which the pion mass is heavier than roughly 500 MeV a
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naive linear extrapolation to the physical pion mass yie
serious disagreement with experiment. For example, lin
extrapolation of the quark momentum fraction exceeds
periment by the order of 50%@10–14#. Although there are
strong indications that physical extrapolation to the chi
limit may introduce corrections of the required magnitu
@15#, there is presently no quantitative theory for the int
mediate mass regime and we must exploit the emerging g
eration of computers to perform the requisite calculatio
sufficiently close to the chiral regime.

For generalized parton distributions, the situation is qu
different. Since GPDs depend on three variables and exp
mental quantities involve convolutions, there is no prosp
of measuring the full dependence onx, j, and t. Without
additional input arising from first principles, extraction o
GPDs from experiments such as deeply virtual Comp
scattering will necessarily be contaminated by uncontrol
assumptions. Hence, once computer power is sufficien
obtain quantitative agreement with moments of parton dis
butions, lattice calculations of the moments of GPDs w
become an essential tool to be used in conjunction with
periment to extract and understand the full dependence ox,
j, and t. It is thus imperative to develop techniques to c
culate these moments.

In addition, theorists may also obtain insight into ho
QCD works by studying the dependence of hadron struc
on the quark mass. This study can begin immediately,
dressing the behavior of hadrons in a world where the p
weighs more than 500 MeV. This heavy pion world is mu
closer to the nonrelativistic quark model, and as we even
ally lower the pion mass, we will learn how QCD evolve
from the world of heavy quarks to the physical world of lig
quarks. Even in the heavy pion world, one can test conte
porary assumptions, such as factorization of thet dependence
@16#.

On the computational side, it is essential to confront
additional challenges that arise for GPDs relative to the
dinary parton distributions. Already for forward parton di
tributions, the tower of operators, Eq.~2!, involves operators
that become increasingly subject to statistical noise as
progresses to higher and higher derivatives. For GPDs, h
ever, we compound the noise of these operators with
additional noise from the finite momentum transferD.
Hence, in this work, we address the problem of imposing
maximal statistical constraints a lattice calculation can p
vide on the form factorsAni , Bni , andCn appearing in Eq.
~3!. We note that we have at our disposal the choice of s
eral alternative representations of the hypercubic group
the lattice corresponding to the same continuum oper
O$m1m2 , . . . ,mn% as well as the choice of different kinemat
variables corresponding to the samet. We will therefore use
this freedom to construct an overdetermined set of lat
observables corresponding to the continuum expression
Eq. ~3!, and thereby significantly improve the measurem
of the form factors. In Sec. II, we will describe the details
the method. Section III will compare the results of o
method with a conventional analysis and present results
5-2
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the angular momentum carried by quarks,Jq . The conclu-
sions will be presented in the final section and an Appen
presents the necessary detailed expressions for matrix
ments in terms of generalized form factors.

II. LATTICE CALCULATION OF GENERALIZED
FORM FACTORS

We will calculate the matrix elements o
^P8uOq

$m1m2 , . . . ,mn%uP& to extract the generalized form facto
a

o
s
iz
r

e

03450
ix
le-

Ani
q (t), Bni

q (t), andCn
q(t) where, when relevant, we append

quark flavor labelq. Since the calculation of disconnecte
diagrams raises yet another level of complexity, in th
present work we will restrict our attention primarily to th
flavor nonsinglet combinationu2d, for which these dia-
grams cancel.

In the usual way, we calculate the nondiagonal mat
elements by the following ratio of three- and two-point fun
tions:
RO~t,P8,P!5
CO

3pt~t,P8,P!

C2pt~tsnk,P8!
FC2pt~tsnk2t1tsrc,P!C2pt~t,P8!C2pt~tsnk,P8!

C2pt~tsnk2t1tsrc,P8!C2pt~t,P!C2pt~tsnk,P!
G 1/2

. ~4!
ci-
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The factors relating this ratio to the physical continuum m
trix element are given in Eq.~A2!. The correlation functions
are given by

C2pt~t,P!5(
j ,k

~Gunpol! jk^VuNk~t,P!N̄j~tsrc,P!uV&,

CO
3pt~t,P8,P!5(

j ,k
~Gpol! jk^VuNk~tsnk,P8!

3O~t!N̄j~tsrc,P!uV&, ~5!

where uV& denotes the QCD vacuum state. The nucle
sourceN̄(t,P) and sinkN(t,P) create and annihilate state
with the quantum numbers of the nucleon, and to maxim
the overlap with the ground state, we used the smea
sources defined in Ref.@14#. The source is located at tim
slice tsrc, the operatorO is inserted at time slicet, and the
sink is positioned at time slicetsnk. Explicit expressions for
the polarized and unpolarized projectorsGpol/unpol are given
in the Appendix, Eqs.~A3!,~A4!.

Inserting a complete set of states into Eq.~5! and using
the time evolution operator yields

C2pt~t,P!5(
l

e2El (P)(t2tsrc)Tr@Gunpol̂ VuN~t,P!u l &

3^ l uN̄~tsrc,P!uV&#

5e2E0(P)(t2tsrc)
@Z~P!Z̄~P!#1/2

E0~P!

3Tr@GunpolU~P!Ū~P!#1higher states, ~6!

CO
3pt~t,P8,P!5(

k,l
Tr$Gpol̂ VuN~tsnk,P8!uk&

3^kue2Ek(P8)(tsnk2t)Ou l &

3^ l ue2El (P)(t2tsrc)uN̄~tsrc,P!uV&%
-

n

e
ed

5e2E0(P)(t2tsrc)2E0(P8)(tsnk2t)

3
@Z~P!Z̄~P8!#1/2

E0~P8!E0~P!
Tr@GpolU~P8!Ū~P!#

3^P8uO~t!uP&1higher states. ~7!

The contributions from higher states in Eqs.~6! and ~7! are
suppressed by exponential prefactors whentsnk2t and
t2tsrc are significantly greater than the inverse of the ex
tation energy of the first excited state.

The ratio, Eq.~4!, is constructed to exactly cancel a
exponential and wave-function overlap factors. The tw
point functionsC2pt(tsnk,P8) andC2pt(tsnk,P) decay expo-
nentially for the full Euclidean distance between the sou
and sink and are thus particularly subject to statistical no
with finite statistics. In the worst case, they may even
come negative, and these cases are excluded from the pr
work. We note that other possibilities besides Eq.~4! may be
used to cancel the exponential and overlap factors, and
freedom will be explored in a subsequent work.

For sufficiently large time separations the rat
R(t,P8,P) will exhibit a plateau yielding the desired lattic
matrix element, and the plateau valueR̄(P8,P) is obtained
by averaging over an appropriate range of time slices,tmin to
tmax,

R̄$m1m2 , . . . ,mn%~P8,P!

5
1

tmax2tmin
(

t5tmin

tmax

R$m1m2 , . . . ,mn%~t,P8,P!.

~8!

To convert our lattice calculations to the continuumMS
scheme, we use one-loop perturbative matching at the s
m254 GeV2

Oi
MS~m!5(

j
Zi j ~m,a!Oj

lat~a!, ~9!
5-3
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so that the lattice matrix element is related to the continu
matrix element by

^P8uOi
MSuP&5AE~P8!E~P!(

j
Zi j R̄j . ~10!

Note that the renormalization constantZO(m,a) depends
only on the operatorO, but not on the external states, so th
Eq. ~10! is valid for any external momenta,P8 andP.

Finally, we write the Euclidean continuum relation b
tween the renormalized matrix element of the generali
current ^P8uO$m1m2 , . . . ,mn%

q uP& and the desired generalize

form factorsAni
q (t), Bn j

q (t), andCn
q(t) in the following ab-

breviated notation:

^P8uO$m1m2 , . . . ,mn%
q uP&5(

i
aiAni

q 1(
j

bjBn j
q 1cCn

q .

~11!

Full expressions for the kinematic factors$ai ,bj ,c% are
given in the Appendix forn51, 2, and 3, Eq.~A5!.

For a givenn, we may evaluate theNn
GFF generalized form

factors $Ani
q (t),Bn j

q (t),Cn
q(t)% as follows. We select

N>Nn
GFF sets of operatorsO$m1m2 , . . . ,mn%

q
and momenta

$P8,P% such that Eq.~11! specifiesNn
GFF linearly indepen-

dent combinations of the form factors. Lattice matrix e
ments for these operators and momenta are calculated
the the ratiosR(t,P8,P), in Eq. ~4! and matched to con
tinuum operators via Eq.~9!. If N5Nn

GFF, the GFFs are cal-
culated by inverting Eq.~11! and if N.Nn

GFF, they are cal-
culated by a least-squares fit to the overdetermined sys
Eq. ~11!.

Note, that in contrast to the case of forward parton dis
butions, where the moments correspond to a single num
~denoted byvn or ^xn21&), or electromagnetic form factors
where there are two form factors (F1 andF2), we have the
complication ofNn

GFF unknown generalized form factors t
be determined. We therefore now discuss the strategy
selecting an appropriate set of operators and momenta
this task.

A. Practical considerations

One practical concern is the numerical noise associa
with momentum projection. The three-point function is su
ject to noise from the projection of the sink onto momentu
P8 and of the operator onto momentum transferD. In addi-
tion to being subject to the sink momentum projection,
two-point functions appearing in the lattice ratio also colle
noise from the projection onto the source momentumP. Ide-
ally, for each invariant momentum transfert, one would like
to selectP andP8 such as to minimize these errors, but ea
distinct choice of sink momentumP8 requires an expensiv
calculation of a new set of backward propagators, wher
changing D for fixed P8 requires no new propagator
Hence, denoting the lowest momentum attained on a lat
with Ls lattice points in a spatial dimension aspl52p/Ls .
As a practical matter, we have used two sink momen
03450
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PW 85(0,0,0) andPW 85(2pl ,0,0). With these sinks, we gen
erate a substantial set of momenta listed in the Appen
Table II, by using a range of values ofD. However, there are
two special virtualities of note, the virtualitytvlow and the
Breit frame virtuality tBreit given by the following momen-
tum combinations, or rotations thereof:

PW 85~0,0,0!,PW 5~pl ,0,0!⇒tvlow5~m2Apl
21m2!22pl

2 ,

~12!

PW 85~2pl ,0,0!,PW 52PW 8⇒tBreit54pl
2 , ~13!

The virtuality tvlow is the lowest virtuality that can be place
on the lattice for the set of external momenta we use,
which no spatial momentum exceedspl , and would be ex-
pected to have minimal projection error. Since the time co
ponent does not reduce the virtuality in the Breit frame,
Breit frame provides the optimal means of providing a lar
virtuality with minimal momentum projection error. Henc
including bothtvlow and tBreit in our full set of momentum
selections ensures the presence of measurements at both
of our t range that have the minimal possible momentu
induced statistical error. In addition to these consideratio
for certain different virtualitiest, there are more available
momentum combinations and thus more constraints tha
the Breit frame. Hence, we obtain comparably small err
for most of the other virtualities as well.

Another practical issue in measuring generalized fo
factors is the presence of powers of the momentum tran
D in the kinematical factors in Eq.~11!. The four-momentum
D is—compared to the time component of external mome
in the cases we consider—a small number, so its presenc
kinematical factors amplifies the effect of statistical errors
lattice matrix elements on measurements of the associ
form factors. Consistent with the pattern observed in Eq.~3!,
in the general case the factorsai multiplying Ani

q (t) contain
i 5$0,2, . . . ,2@(n21)/2#% factors ofD, the factorsbj mul-
tiplying Bn j

q (t) contain j 5$1,3, . . . 112@(n21)/2#% factors
of D, and the factorc, which is nonvanishing only for even
n, hasn factors ofD. Therefore, we expectAn0

q (t) to be the
quantity that can be extracted most accurately from lat
calculations,Bn0

q (t) should have slightly larger errors,Cn
q(t)

is the worst determined when it is nonvanishing, and
remaining GFFs,Ani

q (t) andBn j
q (t), should lie somewhere in

between these extremes.

B. Overdetermined set of lattice observables

To extract generalized form factors from lattice calcu
tions, we now consider a fixed value of the virtualityt that
can be achieved on the lattice, and abbreviate Eqs.~10! and
~11! in the following schematic form:

^Oi
cont&5(

j
ai j Fj ,

^Oi
cont&5AE8E(

j
Zi j R̄j , ~14!
5-4
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where we denote the generalized form factors generically
Fj (t) and j runs over all the form factor labels for then
under consideration. Thus, forn51, F1(t)5A10

q (t) and
F2(t)5A20

q (t). Note that the familiar spin nonflip an
spin-flip electromagnetic form factors are defin
by these flavor form factors weighted with th
electric charge, i.e., F1(t)52/3A10

u (t)21/3A10
d (t) and

F2(t)52/3B10
u (t)21/3B10

d (t). Similarly, for n52, corre-
sponding to the operatorO$mn% , theFi(t) in Eq. ~14! denote
F1(t)5A20

q (t), F2(t)5B20
q (t), andF3(t)5C2

q(t).
Eliminating ^Oi

cont& from Eqs.~14! yields the final form
of the set of equations we will use for our analysis:

R̄i5
1

AE8E
(
jk

Zi j
21ajkFk[(

j
ai j8 Fj . ~15!

In this set of equations, the labelj runs over theNn
GFF gen-

eralized form factors for the givenn. The labeli denotes a
specific choice of nucleon momentaP andP8, and an index
combination for a lattice H~4! representation of a continuum

operatorO$m1m2 , . . . ,mn%
q

. We considerN distinct values of

this label i corresponding to the samen and t and require
N.Nn

GFF. Operationally, to obtain this collection ofN equa-
tions, we list all external lattice momenta, group them
gether in classes of identical virtual momentum transfer,
write down for each momentum combination the set of in
ces$i% of O$ i % that gives rise to nontrivial kinematic factor
ai j . Note that sets of external momenta in which the spa
components differ only by cubic rotations still yield differe
constraints. Rotations changing components along the
polarization axis in general change the kinematic factors
yield independent equations. Rotations that change com
nents orthogonal to the spin polarization axis yield co
straints that are physically equivalent, but provide additio
statistical constraints in a lattice Monte Carlo calculatio
The Appendix shows the explicit momentum combinatio
and the basis of diagonal index combinations we have c
sen in this work.

Equation~15! is an overdetermined system of linear equ
tions that in principle provides the maximal information o
the generalized form factors that is attainable from the
tice. We will compare it in Sec. III A with the conventiona
technique of using a uniquely determined system of eq
tions. In the case of measuring moments of parton distri
tions ~see, e.g., Refs.@10–14#! the conventional techniqu
corresponds to selecting a single row of Eq.~15!, and for
electromagnetic form factors it corresponds to taking lin
combinations or selecting kinematic variables such thatF1
andF2 appear separately in two equations.

It is important to note that Eq.~15! contains systematic, a
well as statistical errors. The lattice action, the discrete

proximations to the operatorsO$m1m2 , . . . ,mn%
q

, and the

nucleon dispersion relation contain lattice artifacts, and si
we use Wilson fermions, the calculation contains errors
O(a). In principle these lattice artifacts can by addressed
improved operators and extrapolation to the continuum lim
but these corrections are beyond the scope of the pre
03450
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work. In addition, the use of one-loop perturbative renorm
ization introduces systematic errors in the analysis, wh
ultimately can be improved by higher order corrections
nonperturbative renormalization.

C. Singular value decomposition

We now turn to the solution of the overdetermined set
equations, Eq.~15!, which we write in matrix form as fol-
lows:

R85A8•F. ~16!

Here, F is the vector of the desired GFFs,R8 denotes the
statistically measured lattice ratios, andA8 is the matrix of
the coefficientsai j8 . Changing to a standard notation, we l
n11 denote the number of GFFs, which we previous
called NGFF, and continue to call the number of constrain
N, so thatA is anN3(n11) matrix,F is a vector of length
n11, andR8 is a vector of lengthN.

We solve this overdetermined problem by minimization
the x2 norm,

x25(
i 51

N S (
j 51

n11

Ai j8 Fj2Ri8

s i

D 2

, ~17!

wheres i denotes the jackknife error of the lattice measu
ment ofRi8 . In this case the jackknife procedure should
performed with an appropriate bin size to eliminate autoc
relation effects. It is convenient to absorb the errorss i by
definingAi j 5Ai j8 /s i andRi5Ri8/s i so that we seek a vecto
F that minimizes

x25uA•F2Ru2. ~18!

The method of choice to solve Eq.~18! in the presence of
singularities or near singularities is singular value decom
sition @17#. It is based on the theorem that anyN3(n11)
matrix may be decomposed as

A5U•diag~w1 , . . . ,wn11!•V,

whereU is anN3(n11) matrix,V is (n11)3(n11), and
all wi , the singular values ofA, are nonnegative. If all thewi
are nonzero, the solution that minimizes Eq.~18! is given by

F5V•diag~1/w1 , . . . ,1/wn11!•~UT
•R!, ~19!

which provides the optimal vector of form factors,F; we can
achieve this with all the information available.

If none of the singular values is zero, the method
equivalent to standard least-squares minimization. If one
more of the singular values,wi , are zero, the rank of the
matrix A is reduced by the number of zero singular valu
implying that the associated directions in the solution sp
cannot be explored. In the case of zero or nearly zero sin
lar values, we may opt to avoid exploring the offending d
rection~s! and minimize Eq.~18! in the residual subspace b
replacing the corresponding factors 1/wi by zero. In this
5-5
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TABLE I. Different combinations of external momenta with virtualitytvlow520.5925 GeV2.

N 1 2 3 4 5 6 7

PW 8 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (2pl ,0,0)

PW (2pl ,0,0) (0,2pl ,0) (0,0,2pl) (pl ,0,0) (0,pl ,0) (0,0,pl) (0,0,0)
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case, of course, only the components ofF corresponding to
nonzero values ofwi are determined.

As an example, in the forward case the singular values
all GFFs other thanAn0

q (0) are zero and the result is th
minimization in the subspace ofAn0

q (0) alone. In this case
An0

q (0) is still determined simultaneously from several d
ferent lattice measurements and this procedure thereby a
matically incorporates more physical constraints than
conventional method of fitting a single lattice observable

The errors inF are calculated using a jackknife analys
in the following way. The system~18! is solved simulta-
neously for the full set of lattice measurementsR to get the
average solution vectorF. Then, the appropriate subsampl
Rl are formed from which the subsample solutionsFl are
calculated. The error vector for the solution,sF , is formed
from the Fl ’s by the familiar jackknife formula~see, e.g.,
@18#, and references therein for details!.

In summary, the method introduced in this section p
vides a way to extract maximal information from a set
lattice calculations. It simultaneously includes all availab
data in a unified manner and corrects for correlations pre
in the underlying sample of gauge field configurations.

III. RESULTS

In this section, we apply our procedure to the casen52
using the operators in Eqs.~A6!,~A7! and thoroughly analyze
the results. For this exploratory calculation, we use SES
unimproved Wilson configurations on a 163332 lattice at
b55.6 with ksea5kval50.1560. We note that this is th
heaviest of the three quark masses used in earlier calc
tions of the moments of quark distributions@14#, and using
the lattice spacinga2152.01 GeV from the chirally extrapo
lated nucleon mass, the pion mass (am)p50.446(3) corre-
sponds tomp5896(6) MeV. All the computational detail
for calculating smeared sources and sinks, nonrelativistic
quential sources, the difference approximations to the op
torsO$m1m2 , . . . ,mn%

q , spin polarization projection, and Dirich

let boundary conditions are as in Ref.@14#. In this present
work, we relabel the time slices such that the source is
tsrc51, the sink is attsnk513, and boundaries are a
t529 andt522.

The one-loop perturbative renormalization constants
the cases we consider in this work are taken from Ref.@14#.
Note that in the case of the operatorsO$mn% , Eqs.~A6!,~A7!,
the renormalization constant will depend on the index co
bination chosen. The diagonal and nondiagonal index c
binations belong to distinct irreducible representatio
of the lattice point group and have different renorm
ization factors: Zdiag

n52(m254 GeV2)50.9768 and
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Znondiag
n52 (m54 GeV2)50.9884.

A. Comparison of minimally determined
and overdetermined measurements

To explore how the method works and to compare it w
the conventional method of measuring a single operator
each observable, we consider the case of virtua
tvlow520.5925 GeV2, which may be achieved by choosin
any of the momentum combinations displayed in Table I.

We start by considering only the combination of extern
momenta,PW 85(0,0,0),PW 5(2pl ,0,0), listed in the first col-
umn in Table I. The system of equations, Eq.~15! then con-
tains the operators

^P8uOdiag,1
u2d uP&, ^P8uOdiag,2

u2d uP&, ^P8uOdiag,3
u2d uP&,

^P8uO$10%
u2duP&, ^P8uO$20%

u2duP&, ^P8uO$21%
u2duP&, ~20!

with the operator index conventions given in the Append
Eqs.~A6!,~A7!.

Plateau plots of the ratios,R(t,P8,P), are shown in Fig.
1 for three matrix elements,^P8uOdiag,1

u2d uP&, ^P8uOdiag,2
u2d uP&,

and ^P8uO$20%
u2duP&. Measurements are averaged over the

terval @tmin55,tmax59# and this interval is denoted by ver
tical lines in the plots. The solid horizontal lines show t
extracted plateau values and the dotted lines denote one
dard deviation.

The resulting lattice matrix elements, together with th
jackknife errors are as follows:

R̄diag,1
u2d ~P8,P!50.232760.0224,

R̄diag,2
u2d ~P8,P!50.297060.0235,

R̄diag,3
u2d ~P8,P!50.0083260.01651,

R̄$10%
u2d~P8,P!520.0976860.01648,

R̄$20%
u2d~P8,P!520.180260.0205,

R̄$21%
u2d~P8,P!520.0592660.01162. ~21!

We now consider a minimal set of three operators to de
mine, but not overdetermine, the three generalized form
tors,A20

u2d , B20
u2d , andC20

u2d . The subset of diagonal opera
tor equations alone are insufficient@19#, since the diagona
index combinations are linearly dependent and provide o
a system of equations of rank 2.

The minimal choice to determine, but not overdetermi
the form factors is to choose two diagonal operators and
off-diagonal operator, analogous to familiar procedures
calculate moments of parton distributions@10,14# or electro-
5-6
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magnetic form factors@13,20#. The best choice for this pur
pose is the set of matrix elementŝP8uOdiag,1

u2d uP&,
^P8uOdiag,2

u2d uP&, and ^P8uO$20%
u2duP&, which have the smalles

relative errors and provide a system of three linearly in
pendent equations.

The form factors and associated errors determined
way are shown in Fig. 2 by the triangles plotted to the left
N50.

Still considering the same single choice of external m
menta, the full set of six matrix elements in Eq.~20! provides
an overdetermined set of equations that yield the form f
tors and errors labeledN51 in Fig. 2. We previously argued

FIG. 1. Plateau plots of the ratiosR(t,P8,P) for the n52 op-
eratorsOdiag,1

u2d , Odiag,2
u2d , andO$20%

u2d .
03450
-

is
t

-

-

that theC form factor is least accurately determined becau
its coefficients have the highest powers ofD, and the mini-
mally determined fit,N50 bears out this expectation. Not
that the overdetermined fit,N51 leaves the errors inA andB
roughly the same, but substantially reduces that ofC. The
results of the two fits agree within errors, but since the ov

FIG. 2. Generalized form factors obtained by simultaneous
to N external momentum combinations having virtualitytvlow . As
described in the text, theN50 points, denoted by triangles, us
three operators at a single external momentum combination to
termine the three form factors. The remaining points, denoted
squares, use six operators andN external momentum combination
to determine the three form factors.
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TABLE II. Lattice momenta used in our calculation.

pW 8 qW pW t (GeV2)

~0,0,0! ~0,0,0! ~0,0,0!
0

~21,0,0! ~0,0,0! (21,0,0)
~0,0,0! (61,0,0), (0,61,0), (0,0,61) (71,0,0), (0,71,0), (0,0,71)

20.592
(21,0,0) (21,0,0) ~0,0,0!
(21,0,0) (0,61,0),(0,0,61) (21,71,0), (21,0,71) 20.597
~0,0,0! (61,61,0), (61,0,61), (0,61,61) (71,71,0), (71,0,71), (0,71,71) 21.134
(21,0,0) (21,61,0), (21,0,61) (0,71,0) (0,0,71) 21.246
(21,0,0) (21,61,61) (0,71,71) 21.844
(21,0,0) (22,0,0) (1,0,0) 22.492
(21,0,0) (22,61,0), (22,0,61) (1,71,0), (1,0,71) 23.090
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determined fit exploits the maximal information in the latti
measurements, Eq.~21!, and has smaller overall statistic
errors, we consider it superior.

We now progress to the next level by including all t
external momentum combinations enumerated in Tabl
The results are displayed in Fig. 2, where the abscissa
notes the total number of momentum combinations inclu
in the fit. EntryN corresponds to the inclusion of momentu
sets 1,2, . . . ,N of Table I. As expected, the errors for ea
form factor decrease significantly as new statistical inform
tion is included by adding momenta in new directions. T
improvement is generally less thanAN because measure
ments of different momenta on the same lattices are co
lated.

The overall result in Fig. 2 is a strong validation of o
approach. Comparing the minimally determined,N50 result
at the far left with the overdetermined result with all sev
momentum combinations,N57 at the far right, we observe
that our method reduces the error in the least accurately
termined form factorC by a factor of 5, the error inB by a
factor of 3, and the error inA by a factor of 2.

B. Generalized form factors and quark angular momentum

Having validated our analysis technique, we now appl
to the full set of external momenta and virtualities listed
the Appendix, Table II. The results of the full, overdete
mined analysis for the flavor nonsinglet generalized fo
factorsA20

u2d(t), B20
u2d(t), andC2

u2d(t) are shown in Fig. 3.
We observe that with the present analysis, all three gene
ized form factors are determined quite accurately through
the full range of virtuality up tot53.1 GeV2. As expected,
some combinations of external momenta induce more st
tical noise than others, but the overall structure of the fo
factors is well determined. Although there is no fundamen
argument for the functional dependence ont, it is useful to fit
the form factors to the dipole form that provides a go
phenomenological fit to the nucleon electromagnetic fo
factors, and the results of least-squares fit by dipole fo
factors are shown forA(t) andB(t). Although the individual
up and down form factorsC2

u/d(t) are nonvanishing, thei
03450
I.
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-
e

e-

e-

it

al-
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difference,C2
u2d(t), is statistically consistent with zero. W

note this flavor independence is a feature of the chiral qu
soliton model in Ref.@21#.

Although results are not yet available at other qua
masses to enable extrapolation to the physical quark m
these results clearly show the behavior of the generali
form factors in the 900 MeV pion world. For this nonsingl
case, there are no corrections from disconnected diagram

It is useful to point out that in all cases for whichtÞ0,
there were no zero~or nearly zero! singular values in our
calculations. Hence, in these cases, the singular value
composition is completely equivalent to minimizing Eq.~18!
by conventional least-squares analysis. In the case oft50,
because of the explicit factors ofD appearing in Eq.~3!, only
the coefficientsAn0

q (0) can be determined. As expected, t
singular value decomposition handled this automatica

FIG. 3. Generalized form factorsA20
u2d(t), B20

u2d(t), andC2
u2d(t)

for all available virtualities obtained using the full set of operato
and external momentum combinations. The dashed curves de
dipole fits toA andB to guide the eye and extrapolate tot50. The
form factorC is consistent with zero. Four data points, denoted
horizontal brackets, have been shifted byutu50.2 GeV2 to the right
for clarity in plotting.
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with the zero singular values resulting in minimization in t
appropriate subspace ofAn0

q (0). Note that this procedure
introduces no bias or model assumptions. Rather, it sim
specifies the correct physical subspace.

Since the total quark angular momentum is given by
zero virtuality limit Jq5 1

2 @A20
u1d(0)1B20

u1d(0)#, it is particu-
larly interesting to study this limit. Two issues need to
addressed. The first is extrapolation tot50. This is not a
problem for A, since it is just the moment of the spin
averaged parton distributionA20(0)5^x&. However, like the
electromagnetic form factorF2 , B cannot be measured att
50 since the kinematical factors always containD, and
therefore it must be extrapolated. From the behavior of
flavor nonsinglet combinationB20

u2d(t) in Fig. 3, one might
expect significant extrapolation errors. However, as show
Fig. 4, the cancellation between the up and down quark c
tributions is nearly complete and the flavor singlet combi
tion B20

u1d(t) is consistent with zero. Hence, essentially t
full contribution comes fromA20

u1d(0).
The second issue is the fact that disconnected diagra

which are beyond the scope of the present work, must
be included in these flavor singlet matrix elements.

It is interesting to note that light-cone arguments indic
that the contribution of each Fock space sector to the gr
tomagnetic momentB(0)5(q,gB20

q,g(0)50 is separately
zero@22#. Although this may not necessarily imply that co
nected and disconnected diagrams forB(0) separately can
cel, it is suggestive of our result above that the connec
contribution toB(0) was consistent with zero. Note that th
separate vanishing of quark and gluon contributions toB(0)
was also conjectured in Ref.@23#.

With the caveat that we must omit disconnected diagra
for the present, we proceed to quote our lattice results fr
connected diagrams. Using the results of Ref.@14# at k
50.1560, the quark spin contribution to nucleon angular m

FIG. 4. Flavor singlet generalized form factorsA20
u1d(t) and

B20
u1d(t) with dipole fits denoted by dashed curves. Note that

singlet combinationB20
u1d(t) is consistent with zero, so that the tot

quark angular momentumJq5
1
2 @A20

u1d(0)1B20
u1d(0)# is dominated

by A. Three data points, denoted by horizontal brackets, have b
shifted byutu50.2 GeV2 to the right for clarity in plotting.
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mentum is given by the lowest moment of the longitudin
spin distribution

1
2 DS5 1

2 @^1&Du1^1&Dd#; 1
2 0.682~18!. ~22!

SinceB20
u1d(0);0, the total quark spin and orbital contribu

tion to the nucleon angular momentum is

Jq5 1
2 @A20

u1d~0!1B20
u1d~0!#

; 1
2 @^x&u1^x&d10#

; 1
2 0.675~7!. ~23!

Thus, since these two results are equal within errors, if
consider only connected diagrams in the world of 900 M
pions, we conclude that the quark spin produces 68% of
nucleon angular momentum and the quark orbital angu
momentum contribution is negligible. Although this is supe
ficially consistent with expectations from relativistic qua
models, we note that serious physical interpretation a
quantitative comparison with quark models requires cons
eration of the disconnected diagrams. The striking fact
our present purposes, however, is that it is possible to m
sure the connected part to the order of 1%, under the assu
tion thatB20

u1d(0)5060.
Note that quenched connected diagram contributions

DS andJq have been reported in Refs.@24,25#. Since those
calculations were performed for pion masses ranging ab
500 MeV, we would expect quenching effects to be neg
gible and hence that their results would be statistically c
sistent with ours. The chiral extrapolated results of Go¨ckeler
et al. @25# that (66614)% of the nucleon spin arises from
the quark spin and that (6614)% arises from quark orbita
angular momentum are completely compatible with our
sults because of the small quark mass dependence. Th
sults forDS by Mathuret al. in Ref. @24# are also consisten
with ours. Reference@14# showed that the linear extrapola
tion of DS is essentially constant, only changing from (6
62)% of the nucleon spin atmp5900 MeV to 69% in the
chiral limit. This is consistent with the connected diagra
chiral extrapolation by Mathuret al. of (6268)%. The re-
sults for Jq , however, are inconsistent. From the results
their Fig. 3 and their 1.045 renormalization factor,Jq con-
tributes (8468)% of the spin, which disagrees with our re
sult of (6861)%. Webelieve the discrepancy arises becau
Mathur et al. use the dipole prescription to extrapolate t
sumA20

u1d1B20
u1d , whereas, as shown in our Fig. 4, we ca

culateA20
u1d(0) directly without extrapolation and only ex

trapolate the nearly vanishingB20
u1d .

IV. CONCLUSIONS

In summary, we have presented a new method for ca
lating generalized form factors in lattice QCD that extra
the full information content from a given lattice configur
tion by measuring an overdetermined set of lattice obse
ables. We demonstrated its effectiveness in an explora
calculation ofn52 generalized form factors up to 3 GeV2

and showed that it reduces errors to as small as one-fift

e

en
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those obtained by a conventional minimally determin
analysis. The final error bars forA20

u2d(t), A20
u1d(t), and

B20
u2d(t) are typically of the order of 5% to 10%, providin

useful information about the Fourier transform of the tra
verse structure of the nucleon. Because of fortunate can
lation in the flavor singlet case, the connected diagram c
tributions to the total quark angular momentum are measu
to the order of 1%. Although this exploratory calculation w
performed for the heaviest of the three SESAM quark mas
used in earlier calculation of the moments of parton distri
tions, we expect the technique to be sufficiently robust
treat all the masses.

We note that the first calculation of generalized form fa
tors were reported by Schroers in@19# using the standard
minimally determined analysis, and more extensive calcu
tions by the QCDSF Collaboration using our method
being published simultaneously with this present work@25#.

This work provides the foundation for a number of prom
ising investigations. Then53 relations introduced in this
work enable us to calculate thet dependence for three mo
ments and thus explore the variation of the transverse st
ture of the proton withx. The same methodology can, o
course, be used to calculate spin-dependent generalized
factors. In the longer term, extensive calculations w
emerging multi-Teraflops computers dedicated to latt
QCD will enable the chiral and continuum calculations
quired to have definitive impact on the new generation
experiments currently being undertaken@26–28#.
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APPENDIX: MATRIX ELEMENTS IN TERMS
OF GENERALIZED FORM FACTORS

In order to find the relation between Minkowski expre
sions, e.g. (OM) $m1m2 , . . . ,mn%, and the corresponding Euclid
ean quantities, (OE) $m1m2 , . . . ,mn% , we observe that the opera
tors under consideration are constructed from gam
matrices and covariant derivativesD. The conventions we
use, consistent with Ref.@29#, are

~gE!m5 (
n51

4

hmn~gM!n, hmn5diag~ i, i, i,1!,

~DE!m5 (
n51

4

dmn~DM!n, dmn5diag~1,1,1,2 i!,

and we will set (aM)n505(aM)n54. Since all operators are
symmetrized, the general transformation rule for the ope
03450
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tors with one gamma matrix andn21 covariant derivatives
investigated in this work is given by

~OE!$m1m2 , . . . ,mn%5hm1n1
dm2n2

¯ dmnnn
~OM!$n1n2 , . . . ,nn%,

~A1!

where a summation over the indicesn i is implicit. In the
following, we will drop the label E or M, and it will be clea
from the context if Euclidean or Minkowski expressions a
used.

We write matrix elements in terms of Dirac spinors
follows:

^P8uOuP&5Ū~P8!KO~P8,P!U~P!.

The ratioRO
cont(P8,P) can be written explicitly in Minkowski

space as

RO
cont~P8,P!uground state

5@E~P8!E~P!#21/2~ 1
2 Tr@Gunpol~P” 81m!#

3 1
2 Tr@Gunpol~P” 1m!# !21/2 1

4 Tr@Gpol~P” 81m!

3KO~P8,P!~P” 1m!#, ~A2!

neglecting all excited states which would introduce a tim
dependence. Note thatRO

cont(P8,P) is directly proportional to
^P8uOuP&. The ratio in Eq.~A2! is expressed in a genera
form that applies to all quark bilinear operators and proj
tors Gpol/unpol relevant to this work.

The Minkowski space expressions for the QCDSF and
LHPC projectors used in our analysis are as follows:

Gunpol
LHPC5 1

4 ~11g0!, Gpol
LHPC5 1

4 ~11g0!~12g5g3!,
~A3!

Gunpol
QCDSF5 1

2 ~11g0!, Gpol
QCDSF5 1

2 ~11g0!g5g2 . ~A4!

We also record the complete expressions for the kern
KO(P8,P) in Eq. ~A2!. Following the general parametriza
tion of @2#, we have for the lowest three momentsn51,2,3
in Minkowski space

^P8uO$m1m2, . . . ,%uP&5Ū~P8!KO
$m1m2, . . . ,%

~P8,P!U~P!

^P8uc̄qgm1cquP&5Ū~P8!H gm1Aq,1~D2!

1 i
sm1aDa

2m
Bq,1~D2!J U~P!

^P8uc̄qg$m1DJ m2%cquP&

5Ū~P8!H ~2 i!P̄$m1gm2%Aq,2~D2!

1~2 i!iP̄$m1
sm2%aDa

2m
Bq,2~D2!
5-10
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1~2 i!
D$m1Dm2%

m
Cq,2~D2!J U~P!,

^P8uc̄qg$m1DJ m2DJ m3%cquP&

5Ū~P8!H ~2 i!2P̄$m1P̄m2gm3%Aq,30~D2!

1~2 i!2D$m1Dm2gm3%Aq,32~D2!

1 i~2 i!2P̄$m1P̄m2
sm3%aDa

2m
Bq,30~D2!

1 i~2 i!2D$m1Dm2
sm3%aDa

2m
Bq,32~D2!J U~P!.

~A5!

In practice, we evaluate the ratioRO
cont,$m1m2 , . . . ,%(P8,P) by

inserting the kernelsK O
$m1m2 , . . . ,% from Eq.~A5! and the pro-

jectors in Eqs.~A3!,~A4! into Eq. ~A2!. For given values of
the nucleon momentaP and P8, the ratio is computed nu
merically, determining the kinematical coefficients of t
GFFs A(t), B(t), and C(t). Eventually, we transform the
free indices$m1m2 , . . . ,% to Euclidean space with the use
Eq. ~A1!. The system of linear equations is then construc
by equating the Euclidean lattice result and the transform
Minkowskian parametrization.

1. Lattice operators

On the lattice side, we have H~4! invariance instead o
Lorentz invariance, which complicates the classification a
the renormalization of the operators. Following@30#, we
choose appropriate linear combinations of the opera
O$m1m2 , . . . ,% , corresponding to representations of H~4!.

For the case of one derivative,n52, there are three diag
onal operators

O1
diag,n525 1

2 @O111O222O332O44#,

O2
diag,n525

1

21/2
@O332O44#,

O3
diag,n525

1

21/2
@O112O22#, ~A6!

which are symmetric and traceless by construction. Additi
ally there are six nondiagonal combinations

Om1 ,m2

nondiag,n525 1
2 @Om1m2

1Om2m1
#5O$m1m2% ,

m1,251, . . . ,4; m1,m2 , ~A7!

giving in the most general case a set of nine independ
operators. There is no operator mixing forn52.

In the case of two derivatives,n53, we take
03450
d
d

d

rs

-

nt

O1
n535S 3

2D 1/2

@O$122%2O$133%#,

O2
n535

1

21/2
@O$122%1O$133%22O$144%#,

O3
n535S 3

2D 1/2

@O$211%2O$233%#,

O4
n535

1

21/2
@O$211%1O$233%22O$244%#,

O5
n535S 3

2D 1/2

@O$311%2O$322%# ,

O6
n535

1

21/2
@O$311%1O$322%22O$344%#,

O7
n535S 3

2D 1/2

@O$411%2O$422%#,

O8
n535

1

21/2
@O$411%1O$422%22O$433%#, ~A8!

while the four nondiagonal combinations are denoted by

Om1 ,m2 ,m3

nondiag,n535O$m1m2m3% ,

m1,2,351, . . . ,4; m1,m2,m3 ,

giving all in all 12 traceless and symmetric linear combin
tions. It turns out that some of the operators in Eqs.~A8! mix
with different nonsymmetric representations~cf. Ref. @30#!
under renormalization. Fortunately, the mixing coefficie
turns out to be negligible, at least for the specific case c
sidered in@10#. It has to be checked if this holds true for a
potential mixing candidates in then53 case.

The choice of index combinations for the construction
the H~4! operators is not unique. However, in the continuu
limit all options will lead to the same GFFs. The interesti
question of determining an optimal set of operators t
minimizes lattice artifacts is beyond the scope of this pres
tation.

2. Lattice momenta

The possible values of the nucleon momentaP and P8
and therefore the momentum transfer squaredt are severely
restricted by the lattice momenta. The general three mom
tum on a periodic lattice is given by

PW 5
2p

aLs
pW 5

2p

aLs
~p1 ,p2 ,p3!,

pi52Ls ,2Ls11, . . . ,Ls21,Ls ,
5-11
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wherea is the lattice spacing in GeV21 ~we seta51 in all
intermediate steps!, and Ls is the spatial lattice extension
which is in our case 16. It is clear that the lattice spac
times the spatial extension determines the smallest pos
non-zero momentum, while the lattice spacing alone fixes
largest available momentum. In practice, however, we
even more restricted to valuespi!Ls , because large mo
menta lead to considerable noise. For the nucleon four
mentaP and P8, we use the continuum dispersion relatio

P05P45Am21PW 2, where m is the nucleon mass, dete
mined in our lattice calculation. In order to construct t
maximally determined set of linear equations, Eq.~14!, we
need to know allpW ,pW 8 leading to the same momentum tran
si,

ur

G.

nd

-

03450
g
le
e

re

o-
,

fer squaredt. So far we have propagators available for t
two sink momentapW 85(0,0,0) andpW 85(21,0,0), and the
value forqW [pW 82pW is restricted byqW 2,6. We plan to extend
the allowed values in future investigations. The total num
of different t is then 16, including the forward case.

Note thatt depends in a nontrivial manner onpW 8 and pW
individually through the energiesP4 ,P48 , and not only on
the relative momentumqW . For eight of the 16 possible value
of t, we encountered highly visible fluctuations in th
nucleon propagators with negative values for the two po
functions at larget@tsrc. We excluded the correspondin
momentum combinations from our analysis. A list of all r
mainingqW , pW 8, pW , andt, is shown in Table II.
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