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Moments of nucleon generalized parton distributions in lattice QCD
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Calculation of the moments of generalized parton distributions in lattice QCD requires more powerful
techniques than those previously used to calculate the moments of structure functions. Hence, we present a
novel approach that exploits the full information content from a given lattice configuration by measuring an
overdetermined set of lattice observables to provide maximal statistical constraints on the generalized form
factors at a given virtuality. In an exploratory investigation using unquenched QCD configurations at inter-
mediate sea quark masses, we demonstrate that our new technique is superior to conventional methods and
leads to reliable numerical signals for the=2 flavor singlet generalized form factors up to 3 GeWhe
contribution from connected diagrams in the flavor singlet sector to the total quark angular momentum is
measured to an accuracy of the order of 1%.
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. INTRODUCTION Ogﬂm ..... Mn}:%y{ﬂlismm 570 g, B
Light-cone correlation functions play a special role in the

experimental exploration of the quark and gluon structure O(Ni h D= ;(5_ 5) and curly braceg,
. . . . 2 ’ ’

hadrons. Asymptotic freedom allows quantitative separation, .\ metrization of indices and subtraction of traces. The di-

of the reaction mechanism from the structure of the probe onal matrix element |O{,Ll,¢2 ..... Mn}“:,) can be calcu-

hadron at high energy, so that spin-independent scatterin%g ) P a

experiments unambiguously measure matrix elements of thigted on the lattice and specify then{1)th moments

. ,Mn} Mean

light-cone operator: Jdx x""1q(x). Note that expressions analogous to Eds.
and (2) for spin-dependent observables differ only in their
dh N gamma matrix structure, but will not be considered in the
O(x)=J’Ee Y| —5n nP present work.

Generalized parton distributiot&PD9, as introduced in
N [1-3], correspond to nondiagonal matrix elements
¥ E”)’ (1) (P'|O(x)|P). When expressed in terms of the relevant Lor-
entz invariants{P'|O(x)|P) is specified in terms of two
wheren is a light-cone vector an® denotes a path ordering generalized parton distributions(x,&,t) andE(x,é,t), de-
of the gauge fields in the exponential. Since these matripending on three kinematical variables. In terms of the four-
elements are singled out by their experimental accessibilitynomentum transfed=P’—P, the invariant momentum
it is essential to use all our tools of analytical methods andransfer squared is=A?, the skewedness i§=—n-A/2,
lattice field theory to explore and understand them as fully agndx denotes the momentum fraction. Since the dependence
possible. of the GPDsH(x,&,t) and E(x,&,t), on three kinematical
Diagonal nucleon matrix elementg(x)=(P|O(x)|P),  variables renders their physical interpretation more difficult
measure the familiar quark distributiar(x) specifying the than ordinary parton distributions, it is useful to recall sev-
probability of finding a quark carrying a fractiox of the  eral important physical properties. In the forward limit, i.e.,
nucleon’s momentum in the light-cone frame. Althoughé, t—0, we recover the forward parton distribution function
light-cone correlation functions cannot be calculated directlyas H(x,0,0)=q(x). In what is sometimes referred to as
in lattice QCD, expansion 0O(x) generates the tower of the local limit, integrating over the momentum fractien
twist-two operators yields the familiar electromagnetic form factors,
Jdx H(x,&t)=F4(t) and [dx E(x,&,t)=F,(t). The first
moment of the sum dfl andE yields the total quark angular

N2
xex;{—igf dan-A(an)
—\2
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On the lattice, instead of matrix elements of the light-conenaive linear extrapolation to the physical pion mass yields
operator, Eq.(1), one again calculates nondiagonal matrixserious disagreement with experiment. For example, linear
elements of the local operators, Eg), yielding moments of  extrapolation of the quark momentum fraction exceeds ex-
the generalized parton distributions. Following the notationperiment by the order of 50%10—-14. Although there are
of Ref [2], the nondiagonal matrix element strong indications that physical extrapolation to the chiral
(P’|Of#1: -~ #nl|P) may be expressed in terms of a set of imit may introduce corrections of the required magnitude
generalized form factor6GFF9 Ani(t), Bni(t), andCy(t).  [15], there is presently no quantitative theory for the inter-
The form factorsAi(t) and C(t) multiplied by powers of  mediate mass regime and we must exploit the emerging gen-
¢ yield the momenﬂ—|n(§,t)=fd>§x”l‘lH(x,g,t) and the  gration of computers to perform the requisite calculations
fqrm factorsB;(t) and C,(t) mult|1pl|ed by powers of¢? sufficiently close to the chiral regime.
yield the momeng,(¢,t)=/dx X" "E(x,£1). For generalized parton distributions, the situation is quite

The lowest three moments considered in this work aré jigterent. Since GPDs depend on three variables and experi-
[ mental quantities involve convolutions, there is no prospect
of measuring the full dependence ané, andt. Without
additional input arising from first principles, extraction of
GPDs from experiments such as deeply virtual Compton

i scattering will necessarily be contaminated by uncontrolled
+mP{M1<<0—M2}a>>AaBZO(t) assumptions. Hence, once computer power is sufficient to

obtain quantitative agreement with moments of parton distri-

(P']01]P) = (31)) A )+ (1) A Ba(t),

(P'|Olkaral| Py = Plia((yH2hy) Agy(t)

1 (A ) butions, lattice calculations of the moments of GPDs will
+ EA LAK2((1))Cal), become an essential tool to be used in conjunction with ex-
_ periment to extract and understand the full dependence on
(P'|Olrarzrsl|p) = Pluaprz(( yial)) Agy(t) £, andt. It is thus imperative to develop techniques to cal-
P culate these moments.
+ ﬁP{MP“Z((U'%}“))AaB3O(t) In addition, theorists may also obtain insight into how
QCD works by studying the dependence of hadron structure
+A{#1A#2<<7M3}>>A32(t) on the quark mass. This study can begin immediately, ad-

dressing the behavior of hadrons in a world where the pion

weighs more than 500 MeV. This heavy pion world is much

closer to the nonrelativistic quark model, and as we eventu-
3) ally lower the pion mass, we will learn how QCD evolves
_ _ from the world of heavy quarks to the physical world of light
where P,=(P,+P,)/2 and ((I'))=U(P")I'U(P). The  quarks. Even in the heavy pion world, one can test contem-

GFFs,Ani(t), Bni(t), andCy(t), specify all the information  porary assumptions, such as factorization oftttiependence
about spin-independent generalized parton distributions that g,

is known to be accessible on the lattice. The limitsHoand On the computational side, it is essential to confront the

E discussed above may be reexpressed in terms of the geQggitional challenges that arise for GPDs relative to the or-
eralized form factors. The limit—0 of Aqo is }he familiar  ginary parton distributions. Already for forward parton dis-
parton d'St”bL.Jtlon momentAn0(0)=fdx X'""q(x). The tributions, the tower of operators, E@®), involves operators
electromagnetic form factors are given AYO(t):Fl(t? and . that become increasingly subject to statistical noise as one
Biot) =F(t) for the appropriate flavor combination. Fi- rogresses to higher and higher derivatives. For GPDs, how-
nally, the total quark anglflar momentum is given by the SumZver, we compound the noise of these operators wit’h the
Of AggtBag 8510, =3[ Asc(0) + Bao(0)]. additional noise from the finite momentum transfAt

In the context of this brief review, we may now consider in thi K dd th bl fi ina th
the challenges and opportunities in calculating moments olf-|ence, In this work, we aadress the problem or imposing the

generalized parton distributions on the lattice, and compar@aXimal statistical constraints a lattice calculat_ion can pro-
them with the analogous issues for ordinary parton distribuY/de on the form factorg\,;, By, andC, appearing in Eq.
tions. Experimentally, three decades of deep inelastic scattef3)- We note that we have at our disposal the choice of sev-
ing experiments have provided impressive phenomenologic&ral alternative representations of the hypercubic group on
determinations of parton distributions as a function of mo-the lattice corresponding to the same continuum operator
mentum fraction 7—9]. Hence, for parton distributions, the Ofmrz. .40l as well as the choice of different kinematic
key issues are developing the lattice technology to the pointariables corresponding to the sam&Ve will therefore use

of attaining quantitative agreement with moments of experithis freedom to construct an overdetermined set of lattice
mental parton distributions and using the lattice as a tool tmbservables corresponding to the continuum expressions in
obtain insight into how these distributions arise from QCD.Eq. (3), and thereby significantly improve the measurement
The present status is that computational limitations restricof the form factors. In Sec. I, we will describe the details of
unquenched QCD calculations to the heavy quark regime ithe method. Section Il will compare the results of our
which the pion mass is heavier than roughly 500 MeV andmethod with a conventional analysis and present results for

i
+ ﬁA{“1A“2<<0“3}”‘>>Aa532(t),
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the angular momentum carried by quarllg, The conclu-  A%(t), BJ;(t), andC}(t) where, when relevant, we append a
sions will be presented in the final section and an Appendixjuark flavor labelq. Since the calculation of disconnected
presents the necessary detailed expressions for matrix elgiagrams raises yet another level of complexity, in this
ments in terms of generalized form factors. present work we will restrict our attention primarily to the
flavor nonsinglet combinatiom—d, for which these dia-
grams cancel.

In the usual way, we calculate the nondiagonal matrix

We will calculate the matrix elements of elements by the following ratio of three- and two-point func-
(P’ |O;”1“2 """ “n} PY to extract the generalized form factors tions:

Il. LATTICE CALCULATION OF GENERALIZED
FORM FACTORS

C%P‘( 7,P",P) | C?P(7gp— 7+ Tere, P)C?P(7,P" ) C?P( 7y, P') vz

Ro(7,P",P)=
C2pt( Tonk: P') sz( Tenk— Tt Tsres P,)sz( T, P)sz( Tsnks P)

4

The factors relating this ratio to the physical continuum ma-

trix element are given in EqA2). The correlation functions = g~ Eo(P) (7= 7519 ~Eo(P") (7snk—17)
are given by B "
[2(P)Z(P")] N
N, X E PELP) TH e (POU(P)]
CZP‘(T,P)=Zk (T unpod i QN 7, PIN; (741, P) ), o(P")Eo(P)

’ X{P’|O(7)|P)+ higher states. )
cii(r,p’ p):E (T o) ik{ Q| Ni( 7eni, P") The contributions from higher states in E¢8) and (7) are
S % o suppressed by exponential prefactors whep,— = and

_ T— T @re significantly greater than the inverse of the exci-
X O(T)Nj(7gre, P)[€2), (5 tation energy of the first excited state.

The ratio, Eq.(4), is constructed to exactly cancel all
where |0) denotes the QCD vacuum state. The nucleonsyponential and wave-function overlap factors. The two-
sourceN(r,P) and sinkN(7,P) create and annihilate states point functionsC2P{ ¢, P’) and C?P{ 7., P) decay expo-
with the quantum numbers of the nucleon, and to maximizeentially for the full Euclidean distance between the source
the overlap with the ground state, we used the smearegnd sink and are thus particularly subject to statistical noise
sources defined in Ref14]. The source is located at time with finite statistics. In the worst case, they may even be-
slice 74, the operatoO is inserted at time slice, and the  come negative, and these cases are excluded from the present
sink is positioned at time slices,,. Explicit expressions for work. We note that other possibilities besides &j.may be
the polarized and unpolarized projectdis, unpo @re given  used to cancel the exponential and overlap factors, and this

in the Appendix, Eqs(A3),(A4). freedom will be explored in a subsequent work.
Inserting a complete set of states into Ef) and using For sufficiently large time separations the ratio
the time evolution operator yields R(7,P’,P) will exhibit a plateau yielding the desired lattice
matrix element, and the plateau valR¢P’,P) is obtained
C2P{( 7, P) = 2 e BP—7sdTHT . ALQIN(T,P)|1) by averaging over an appropriate range of time sliegg,to
' ? Tmax:
X(HN(7gc, P)[Q)] R{l’vll‘z ’’’’’ ﬂn}(P,’P)
1 1/2 -
:e_EO(P)(T_Tsr(‘)—[Z(P)Z(P)] _ 1 iax R (T PI P)
Eo(P) Trma— Tmin +5 {papg, LT ).
X THT ynpol (PYU(P)]+ higher states, (6) ®)
, To convert our lattice calculations to the continuuvis
c T,P'-P)=§ THT ol QN(7gni, P k) scheme, we use one-loop perturbative matching at the scale
: 2_
u’=4Ge\f

X<k|e*Ek(P’)(7$nka)o||>

MS _ N lat
X(I|eiE|(P)(T775")|N(TsrC,P)|Q>} Oi (M)_g Z,J(,u,a)O] (a)a (9)

034505-3



HAGLER et al.

PHYSICAL REVIEW D 68, 034505 (2003

so that the lattice matrix element is related to the continuunp’ =(0,0,0) andP’ =(—p,,0,0). With these sinks, we gen-

matrix element by
<P’|O?”S|P>=¢E<P'>E(P)§ ZjR; .

(10

Note that the renormalization constadt(u,a) depends

erate a substantial set of momenta listed in the Appendix,
Table Il, by using a range of values &f However, there are
two special virtualities of note, the virtualiti,,, and the
Breit frame virtualitytg,;; given by the following momen-
tum combinations, or rotations thereof:

only on the operato®, but not on the external states, so that P’'=(0,0,0),P=(p,,0,0)=tyon=(Mm—\p>+m?)?—p?,

Eq. (10) is valid for any external moment®’ andP.

Finally, we write the Euclidean continuum relation be-
tween the renormalized matrix element of the generalized F_;,:(_pl!oro)aﬁ:_F_;,:tBreit:‘l'plzv

current (P'[Oy), ., ... 4|P) and the desired generalized
form factorsAj(t), By;(t), andCJ(t) in the following ab-

breviated notation:

(P'|Of

WIS

Mn}|P>=Ei aiAgiJrEi b;BY,+cCl.

(11)
Full expressions for the kinematic factofs;,b;,c} are
given in the Appendix fon=1, 2, and 3, Eq(A5).

For a givem, we may evaluate th°" generalized form
factors {AJ;(t),B1;(1),C(t)} as follows. We select

N=NS"" sets of operator<;, , and momenta
1420 - Hn
{P’,P} such that Eq(11) specifiesNS™" linearly indepen-

dent combinations of the form factors. Lattice matrix ele-

(12
(13

The virtuality t,,.,, is the lowest virtuality that can be placed
on the lattice for the set of external momenta we use, for
which no spatial momentum exceegs, and would be ex-
pected to have minimal projection error. Since the time com-
ponent does not reduce the virtuality in the Breit frame, the
Breit frame provides the optimal means of providing a large
virtuality with minimal momentum projection error. Hence,
including botht,,,, andtg.i: in our full set of momentum
selections ensures the presence of measurements at both ends
of our t range that have the minimal possible momentum-
induced statistical error. In addition to these considerations,
for certain different virtualitied, there are more available
momentum combinations and thus more constraints than in
the Breit frame. Hence, we obtain comparably small errors
for most of the other virtualities as well.

ments for these Operators and momenta are calculated from Another practica| issue in measuring genera"zed form

the the ratiosR(7,P’,P), in Eq. (4) and matched to con-
tinuum operators via Eq9). If N=NSFF, the GFFs are cal-
culated by inverting Eq(11) and if N>NSFF, they are cal-

factors is the presence of powers of the momentum transfer
A in the kinematical factors in Eq11). The four-momentum
A is—compared to the time component of external momenta

culated by a least-squares fit to the overdetermined systein the cases we consider—a small number, so its presence in

Eq. (12).

kinematical factors amplifies the effect of statistical errors in

Note, that in contrast to the case of forward parton distri-lattice matrix elements on measurements of the associated
butions, where the moments correspond to a single numbdorm factors. Consistent with the pattern observed in(Bj.

(denoted by, or (x"~ 1)), or electromagnetic form factors,
where there are two form factor&{ andF,), we have the
complication of NEF" unknown generalized form factors to

in the general case the factas multiplying AY;(t) contain
i={0,2,...,2(n—1)/2]} factors ofA, the factorsb; mul-
tiplying Bg;(t) containj={1,3, ... 1+2[(n—1)/2]} factors

be determined. We therefore now discuss the strategy fasf A, and the factor, which is nonvanishing only for even
selecting an appropriate set of operators and momenta fqf, hasn factors ofA. Therefore, we expeddy(t) to be the

this task.

A. Practical considerations

quantity that can be extracted most accurately from lattice
calculationsBJ,(t) should have slightly larger error€](t)
is the worst determined when it is nonvanishing, and the

. . . . . ini q q i i
One practical concern is the numerical noise associateffmaining GFFsiy;(t) andB(t), should lie somewhere in
with momentum projection. The three-point function is sub-between these extremes.

ject to noise from the projection of the sink onto momentum

P’ and of the operator onto momentum transierin addi-

tion to being subject to the sink momentum projection, the
two-point functions appearing in the lattice ratio also collect

noise from the projection onto the source momenginde-
ally, for each invariant momentum transteione would like

to selectP andP’ such as to minimize these errors, but each

distinct choice of sink momentur’ requires an expensive

calculation of a new set of backward propagators, whereas

changing A for fixed P’ requires no new propagators.

B. Overdetermined set of lattice observables

To extract generalized form factors from lattice calcula-
tions, we now consider a fixed value of the virtualityhat
can be achieved on the lattice, and abbreviate Ed3.and
(12) in the following schematic form:

<Oicom>:§j: a; Fj,

Hence, denoting the lowest momentum attained on a lattice

with L lattice points in a spatial dimension as=2x/L;.

As a practical matter, we have used two sink momenta,

(14)

(Of°") = \/E'EEJ_: Zijﬁj :
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where we denote the generalized form factors generically byork. In addition, the use of one-loop perturbative renormal-
Fi(t) andj runs over all the form factor labels for the ization introduces systematic errors in the analysis, which
under consideration. Thus, fan=1, F;(t)=A{(t) and ultimately can be improved by higher order corrections or
Fo(t)=AJ(t). Note that the familiar spin nonflip and nonperturbative renormalization.

spin-flip  electromagnetic form factors are defined

by these flavor form factors weighted with the C. Singular value decomposition

. . _ u d
electric charge, i.e., F1(t)=2/3A;,(t) — 1/3A;4(t) and We now turn to the solution of the overdetermined set of

F2(t) =2/3B1((t) — 1/3B1((t). Similarly, for n=2, corre-  gquations, Eq(15), which we write in matrix form as fol-
sponding to the operat®;,,,, , the (t) in Eq. (14) denote  |gws:

Fa(t) =AJ(1), Fot) =B3(t), and F5(t)=C3(t).
Eliminating (O°") from Egs.(14) yields the final form R'=A"-F. (16)

of the set of equations we will use for our analysis: ) ) .
Here, F is the vector of the desired GFFR, denotes the

- 1 statistically measured lattice ratios, aAd is the matrix of
R=—= z zﬁlajk]:kEE ai’j]-‘j . (15) the coefficientsai’j . Changing to a standard notation, we let
VE'E 'k ] n+1 denote the number of GFFs, which we previously
called N®F, and continue to call the number of constraints
In this set of equations, the labruns over theNS™ gen- N, so thatA is anNx (n+ 1) matrix, F is a vector of length
eralized form factors for the given. The labeli denotes a n+1, andR’ is a vector of length\.

specific choice of nucleon momeraandP’, and an index We solve this overdetermined problem by minimization of
combination for a lattice k) representation of a continuum the y? norm,

operatoro?ﬂlﬂ2 _____ uy- We considerN distinct values of . )
this labeli corresponding to the sameandt and require 2 A F—R
GEF . . . . &~ ijv] i
N>N;"". Operationally, to obtain this collection &f equa- 9 2 i=1
tions, we list all external lattice momenta, group them to- X =1 i ' (17)

gether in classes of identical virtual momentum transfer, and
write down for each momentum combination the set of indi-where o, denotes the jackknife error of the lattice measure-

ces{i; of Oy that gives rise to nontrivial kinematic factors ment ofR/ . In this case the jackknife procedure should be
aj; . Note that sets of external momenta in which the spatiaperformed with an appropriate bin size to eliminate autocor-
components differ only by cubic rotations still yield different relation effects. It is convenient to absorb the errorsby

constraints. Rotations changing components along the SPiefining A = Ali/o; andR,=R!/c; so that we seek a vector
polarization axis in general change the kinematic factors ang- 4t minimizés

yield independent equations. Rotations that change compo-

nents orthogonal to the spin polarization axis yield con- X>=|A-F-RJ? (18)
straints that are physically equivalent, but provide additional

statistical constraints in a lattice Monte Carlo calculation.The method of choice to solve E¢L8) in the presence of
The Appendix shows the explicit momentum combinationssingularities or near singularities is singular value decompo-
and the basis of diagonal index combinations we have chasition [17]. It is based on the theorem that aNy< (n+1)

sen in this work. matrix may be decomposed as
Equation(15) is an overdetermined system of linear equa- .
tions that in principle provides the maximal information on A=U-diagwy, ... Wpi1)-V,

the generalized form factors that is attainable from the lat- ) o

tice. We will compare it in Sec. Ill A with the conventional WhereU is anNx(n+1) matrix,Vis (n+1)x(n+1), and
technique of using a uniquely determined system of equadll Wi, the singular values %, are nonnegative. If all they;
tions. In the case of measuring moments of parton distribu@r® nonzero, the solution that minimizes Etg) is given by
tions (see, e.g., Refd.10-14) the conventional technique _ ) -

corresponds to selecting a single row of Ef5), and for F=V-diag1wy, ... ,1n1)-(UT-R), (19)

electromagnetic form factors it corresponds to taking linear , . . . i
o : . . . which provides the optimal vector of form factors, we can
combinations or selecting kinematic variables such fhat

. . achieve this with all the information available.
andF, appear separately in two equations.

It is important to note that Eq15) contains systematic, as If. none of the singular values is z.er'o,'thef method is
well as statistical errors. The lattice action, the discret'e ap(_aqualent to ;tandard least-squares minimization. If one or
T ' q ' more of the singular valuesy;, are zero, the rank of the
proximations to the operatorO;, , . .. and the mayix A is reduced by the number of zero singular values,
nucleon dispersion relation contain lattice artifacts, and sincémplying that the associated directions in the solution space
we use Wilson fermions, the calculation contains errors otannot be explored. In the case of zero or nearly zero singu-
O(a). In principle these lattice artifacts can by addressed byar values, we may opt to avoid exploring the offending di-

improved operators and extrapolation to the continuum limitrections) and minimize Eq(18) in the residual subspace by

but these corrections are beyond the scope of the presergplacing the corresponding factorswl/by zero. In this
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TABLE I. Different combinations of external momenta with virtuality,,,= —0.5925 GeV.

N 1 2 3 4 5 6 7
p’ (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) —10,,0,0)
P (—p1,0,0) (0-p;,0) (0,0-py) (p1,0,0) (0p;,0) (0,0py) (0,0,0)

case, of course, only the components7otorresponding to zggn%,iaggﬂ=4 Ge\?)=0.9884.
nonzero values olv; are determined.

As an example, in the forward case the singular values for A. Comparison of minimally determined
all GFFs other tham\%,(0) are zero and the result is the and overdetermined measurements
minimization in the subspace @{,(0) alone. In this case, To explore how the method works and to compare it with

Al,(0) is still determined simultaneously from several dif- the conventional method of measuring a single operator for
ferent lattice measurements and this procedure thereby autach observable, we consider the case of virtuality
matically incorporates more physical constraints than théviow=—0.5925 GeV, which may be achieved by choosing
conventional method of fitting a single lattice observable. any of the momentum combinations displayed in Table I.
The errors inF are calculated using a jackknife analysis We star:[ by COﬂSIdeEIng only the combination of external
in the following way. The systen(18) is solved simulta- momentaP’=(0,0,0),P=(—p,,0,0), listed in the first col-
neously for the full set of lattice measuremeRtso get the ~umn in Table I. The system of equations, E#5) then con-
average solution vectaF. Then, the appropriate subsamplestains the operators
R, are formed from which the subsample solutigRsare 1 ~u—d 1 ~u—d 1 ~u—d
calculated. The error vector for the solutians, is formed (P"[Otiag 1P).  (P'|OdiagdP). (P'|O%iagdP).
from the F’s by the familiar jackknife formulasee, e.g., 11 Au—d 11 Au—d 11 Au—d
[18], and references therein for details (P'|OnglP),  (P’[Opzq1P). (P|OZylP). (20
In summary, the method introduced in this section pro-with the operator index conventions given in the Appendix,
vides a way to extract maximal information from a set of Egs.(A6),(A7).
lattice calculations. It simultaneously includes all available Plateau plots of the ratio®(r,P’,P), are shown in Fig.
data in a unified manner and corrects for correlations present for three matrix eIements{P’|Oggg’]] P), (P’|Ogifdg’£ P),

in the underlying sample of gauge field configurations.  and (P’|O}|P). Measurements are averaged over the in-

terval [ 7,in=5,7max=9] and this interval is denoted by ver-

tical lines in the plots. The solid horizontal lines show the

extracted plateau values and the dotted lines denote one stan-
In this section, we apply our procedure to the case2 ~ dard deviation.

using the operators in EqgA6),(A7) and thoroughly analyze The resulting lattice matrix elements, together with their

the results. For this exploratory calculatioggéwe use SESAMackknife errors are as follows:

unimproved Wilson configurations on a 2632 lattice at — ,

B=5.6 With ke.= x,5=0.1560. We note that this is the Rgiagyl(P ,P)=0.23270.0224,

heaviest of the three quark masses used in earlier calcula- —ued )

tions of the moments of quark distributiofs4], and using Raiagd P, P)=0.2970+0.0235,

the lattice spacing™'=2.01 GeV from the chirally extrapo-

lated nucleon mass, the pion massr),,=0.446(3) corre-

sponds tom_=896(6) MeV. All the computational details

for calculating smeared sources and sinks, nonrelativistic se-

guential sources, the difference approximations to the opera-

torsO?MlM2 _____ .} SPin polarization projection, and Dirich-

let boundary conditions are as in R¢14]. In this present ﬁu—d(P, P)=—0.05926-0.01162 (21)

work, we relabel the time slices such that the source is at it ' ' '

T =1, the sink is atrg, =13, and boundaries are at We now consider a minimal set of three operators to deter-
7=-—9 andr=22. mine, but not overdetermine, the three generalized form fac-
The one-loop perturbative renormalization constants fotors, Ay, %, B4, 9, andCy, . The subset of diagonal opera-

the cases we consider in this work are taken from Refl.  tor equations alone are insufficiefit9], since the diagonal
Note that in the case of the operat@s,,,, Egs.(A6),(A7),  index combinations are linearly dependent and provide only
the renormalization constant will depend on the index coma system of equations of rank 2.

bination chosen. The diagonal and nondiagonal index com- The minimal choice to determine, but not overdetermine,
binations belong to distinct irreducible representationsthe form factors is to choose two diagonal operators and one
of the lattice point group and have different renormal-off-diagonal operator, analogous to familiar procedures to
ization  factors: zgigg(ﬂ2=4 GeV?)=0.9768 and calculate moments of parton distributiofi, 14 or electro-

Ill. RESULTS

RU-J{P’,P)=0.00832-0.01651,
R’ P)=—0.09768-0.01648,

Riyl(P7,P)=—0.1802+0.0205,
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FIG. 1. Plateau plots of the ratid¥r,P’,P) for then=2 op- N
eratorsOY4-9,, 049, andO¥y .
diag,l Fdiag,2 26 FIG. 2. Generalized form factors obtained by simultaneous fits

. . . _ to N external momentum combinations having virtualify,, . As
magnetic form factor$13,20. The best choice for this pur described in the text, thBl=0 points, denoted by triangles, use

pose '_Sd the set of rzlgltnx eIe_ment$P’|O§iag']] P), three operators at a single external momentum combination to de-
(P"|Ogiag,dP), and(P’|Opq|P), which have the smallest termine the three form factors. The remaining points, denoted by
relative errors and provide a system of three linearly indesquares, use six operators adaxternal momentum combinations
pendent equations. to determine the three form factors.

The form factors and associated errors determined this

way are shown in Fig. 2 by the triangles plotted to the left atthat theC form factor is least accurately determined because

N=0. its coefficients have the highest powersof and the mini-
Still considering the same single choice of external mo-mally determined fitN=0 bears out this expectation. Note

menta, the full set of six matrix elements in EB0) provides  that the overdetermined fiy=1 leaves the errors iA andB

an overdetermined set of equations that yield the form facroughly the same, but substantially reduces thaCofThe

tors and errors labeled=1 in Fig. 2. We previously argued results of the two fits agree within errors, but since the over-
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TABLE Il. Lattice momenta used in our calculation.

p' q p t (GeV?)
(0,0,0 (0,0,0 (0,0,0
0

(-1,0,0 (0,0,0 (—1,0,0)
(0,0,0 (+1,0,0), (01,0), (0,0;£1) (¥1,0,0), (0+1,0), (0,0+1)

-0.592
(-1,0,0) (-1,0,0) (0,0,0
(-1,0,0)  (0£1,0),(0,0+1) (-1,71,0), (-1,07F1) -0.597
(0,0,0 (£1,£1,0), (*1,0+1), (0x1,+1) (¥1,71,0), (+1,071), (071,51) —1.134
(-1,0,0) (-1,%1,0), (-1,0%1) (0,+1,0) (0,07+1) —1.246
(-1,00) (-1,+1,+1) (071,71) —1.844
(-1,00) (-2,0,0) (1,0,0) —2.492
(-1,0,0) (-2,+1,0), (-2,0%1) (151,0), (1,0¥1) —3.090

determined fit exploits the maximal information in the lattice difference,Cg’d(t), is statistically consistent with zero. We
measurements, Eq21), and has smaller overall statistical note this flavor independence is a feature of the chiral quark
errors, we consider it superior. soliton model in Ref[21]

We now progress to the next level by including all the  Although results are not yet available at other quark
external momentum combinations enumerated in Table Imasses to enable extrapolation to the physical quark mass,
The results are displayed in Fig. 2, where the abscissa dgnese results clearly show the behavior of the generalized
notes the total number of momentum combinations includegorm factors in the 900 MeV pion world. For this nonsinglet
in the fit. EntryN corresponds to the inclusion of momentum case, there are no corrections from disconnected diagrams.
sets 1,2... N of Table I. As expected, the errors for each |t js yseful to point out that in all cases for whi¢k0,
form factor decrease significantly as new statistical informathere were no zerdor nearly zerd singular values in our
tion is included by adding momenta in new directions. Thecalculations. Hence, in these cases, the singular value de-
improvement is generally less thafN because measure- composition is completely equivalent to minimizing E48)
ments of different momenta on the same lattices are corrésy conventional least-squares analysis. In the case=6,
lated. o ) o because of the explicit factors afappearing in E¢(3), only

The overall result in Fig. 2 is a strong validation of our the coefficientsAd,(0) can be determined. As expected, the
approach. Comparing the minimally determinbidz 0 result  sjngular value decomposition handled this automatically,
at the far left with the overdetermined result with all seven

momentum combination$y=7 at the far right, we observe

that our method reduces the error in the least accurately de- 0.6\ ' ' ' ' ' ' ' i
termined form factoiC by a factor of 5, the error iiB by a
factor of 3, and the error i by a factor of 2. 1

0.4 i - B u-d i

B. Generalized form factors and quark angular momentum . LTS 20
Having validated our analysis technique, we now apply it [ | EE

to the full set of external momenta and virtualities listed in [, A Ud E
the Appendix, Table II. The results of the full, overdeter- %27 1120 e " 3 T
mined analysis for the flavor nonsinglet generalized form | _ e x 3
factorsAy, %(t), By, (1), andCy %(t) are shown in Fig. 3. Czou'd.—. """" =
We observe that with the present analysis, all three general- ¢g 4 K23 - - -
ized form factors are determined quite accurately throughout — Z.L e
the full range of virtuality up ta=3.1 Ge\’. As expected, 00 04 08 12 16 20 24 28 32
some combinations of external momenta induce more statis- 1| [GeVz]
tical noise than others, but the overall structure of the form

factors is well determlned. Although there_ is no fundam_ental FIG. 3. Generalized form factors!s 4(t), BY; %(t), andCy(t)
argument for the functional dependencetoinis useful to fit ¢4 o)1 available virtualities obtained using the full set of operators
the form factors to the dipole form that provides a goodang external momentum combinations. The dashed curves denote
phenomenological fit to the nucleon electromagnetic formgipgle fits toA andB to guide the eye and extrapolatette 0. The
factors, and the results of least-squares fit by dipole formorm factorC is consistent with zero. Four data points, denoted by
factors are shown foA(t) andB(t). Although the individual  horizontal brackets, have been shifted|Hy=0.2 Ge\? to the right

up and down form factor€y/%(t) are nonvanishing, their for clarity in plotting.
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08— mentum is given by the lowest moment of the longitudinal
I spin distribution

06 . y SAS =3[(1)y,+(1)aal~3068218. (22

:L,__:’ ] \‘1 — ] SinceBY;“(0)~0, the total quark spin and orbital contribu-

0.4 i A20 - tion to the nucleon angular momentum is

0ol —_ ﬁ\‘\}__ ______ - ) 3q=3[A35(0)+B55%0)]

. | Bzou+d ~~~~~~~~ lj ~ 3 [()ut(x)q+0]

I — 2 R SO S 3 ~10.6757). 23

T L Thus, since these two results are equal within errors, if we

6o B2 €& 12 18 5‘0 24 &8 o9@ consider only connected diagrams in the world of 900 MeV
t| [GeV~] pions, we conclude that the quark spin produces 68% of the
nucleon angular momentum and the quark orbital angular

FIG. 4. Flavor singlet generalized form factof$;%(t) and  momentum contribution is negligible. Although this is super-
BY5(t) with dipole fits denoted by dashed curves. Note that theficially consistent with expectations from relativistic quark
singlet combinatioBy; °(t) is consistent with zero, so that the total models, we note that serious physical interpretation and
quark angular momentudy, = 3[A3;%(0)+B33%(0)] is dominated  quantitative comparison with quark models requires consid-
by A. Three data points, denoted by horizontal brackets, have beegration of the disconnected diagrams. The striking fact for
shifted by|t|=0.2 GeV to the right for clarity in plotting. our present purposes, however, is that it is possible to mea-

] ) S sure the connected part to the order of 1%, under the assump-
with the zero singular values resulting in minimization in the 4, thatB%d(O)=OtO.
appropriate subspace @f;,(0). Note that this procedure  Note that quenched connected diagram contributions of
introduces no bias or model assumptions. Rather, it simply s andJ, have been reported in Ref@4,25. Since those
specifies the correct physical subspace. calculations were performed for pion masses ranging above

Since the total quark angular momentum is given by thesg MeV, we would expect quenching effects to be negli-
zero virtuality limitJ,=3[A3%(0)+ B3, “(0)], itis particu-  gible and hence that their results would be statistically con-
larly interesting to study this limit. Two issues need to besistent with ours. The chiral extrapolated results otiGaer
addressed. The first is extrapolationtte 0. This is not a et al. [25] that (66+ 14)% of the nucleon spin arises from
problem for A, since it is just the moment of the spin- the quark spin and that (614)% arises from quark orbital
averaged parton distributiol,o(0) =(x). However, like the  angular momentum are completely compatible with our re-
electromagnetic form factdf,, B cannot be measured &t  syits because of the small quark mass dependence. The re-
=0 since the kinematical factors always contain and  sults forAS by Mathuret al.in Ref.[24] are also consistent
therefore it must be eXtrapOlated. From the behavior of thQ\“th ours. Referencél4] showed that the linear extrapo|a_
flavor nonsinglet combinatioBy,“(t) in Fig. 3, one might tion of AS is essentially constant, only changing from (68
expect significant extrapolation errors. However, as shown in-2)% of the nucleon spin ah_=900 MeV to 69% in the
Fig. 4, the cancellation between the up and down quark corchiral limit. This is consistent with the connected diagram
tributions is nearly complete and the flavor singlet combinachiral extrapolation by Mathuet al. of (62+8)%. The re-
tion Byy%(t) is consistent with zero. Hence, essentially thesults forJ,, however, are inconsistent. From the results of
full contribution comes fromAy; %(0). their Fig. 3 and their 1.045 renormalization factdy, con-

The second issue is the fact that disconnected diagramsjbutes (84-8)% of the spin, which disagrees with our re-
which are beyond the scope of the present work, must alssult of (68+1)%. Webelieve the discrepancy arises because
be included in these flavor singlet matrix elements. Mathur et al. use the dipole prescription to extrapolate the

It is interesting to note that light-cone arguments indicat%umAgg% ngd, whereas, as shown in our Fig. 4, we cal-
that the contribution of each Fock space sector to the gravicylate Aggd(o) directly without extrapolation and only ex-
tomagnetic moment3(0)=3, 4B3;(0)=0 is separately trapolate the nearly vanishirig°.
zero[22]. Although this may not necessarily imply that con-
nected and disconnected diagrams B§0) separately can-
cel, it is suggestive of our result above that the connected
contribution toB(0) was consistent with zero. Note that the  In summary, we have presented a new method for calcu-
separate vanishing of quark and gluon contributionB (t0) lating generalized form factors in lattice QCD that extracts
was also conjectured in Rdi23]. the full information content from a given lattice configura-

With the caveat that we must omit disconnected diagram$ion by measuring an overdetermined set of lattice observ-
for the present, we proceed to quote our lattice results fronables. We demonstrated its effectiveness in an exploratory
connected diagrams. Using the results of Ra#] at x  calculation ofn=2 generalized form factors up to 3 G&V
=0.1560, the quark spin contribution to nucleon angular mo-and showed that it reduces errors to as small as one-fifth of

IV. CONCLUSIONS
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those obtained by a conventional minimally determinedtors with one gamma matrix ant—1 covariant derivatives
analysis. The final error bars fohy,%t), Ays%(t), and investigated in this work is given by
ngd(t) are typically of the order of 5% to 10%, providing £ "
useful information about the Fourier transform of the trans- (O ){/Al,ug ----- un}:hulvlduzvz'” dunvn(o Yoarz - i,
verse structure of the nucleon. Because of fortunate cancel- (A1)
lation in the flavor singlet case, the connected diagram con- ) o o
tributions to the total quark angular momentum are measureyN€re a summation over the indices is implicit. In the
to the order of 1%. Although this exploratory calculation wasfollowing, we will drop the label E or M, and it will be clear
performed for the heaviest of the three SESAM quark massd&om the context if Euclidean or Minkowski expressions are
used in earlier calculation of the moments of parton distribuUsed. . . _ _
tions, we expect the technique to be sufficiently robust to e write matrix elements in terms of Dirac spinors as
treat all the masses. follows:

We note that the first calculation of generalized form fac- _
tors were reported by Schroers [i9] using the standard (P'|O[P)y=U(P")Ko(P",P)U(P).
minimally determined analysis, and more extensive calcula-
tions by the QCDSF Collaboration using our method arelhe ratioR™(P’,P) can be written explicitly in Minkowski
being published simultaneously with this present wi@tk].  Space as

This work provides the foundation for a number of prom-

ising investigations. Then=3 relations introduced in this Rfaom(P',Pngound state

work enable us to calculate thiedependence for three mo- . T ,

ments and thus explore the variation of the transverse struc- =[E(P)E(P)] "G T ynpof P" +m)]

ture of the proton withx. The same methodology can, of 1 _1p1 ,
course, be used to calculate spin-dependent generalized form XZTH  unpo( P+m)]) = 3T TP +m)
factors. In the longer term, extensive calculations with X Ko(P',P)(P+m)], (A2)

emerging multi-Teraflops computers dedicated to lattice
QCD will enable the chiral and continuum calculations re-
quired to have definitive impact on the new generation o
experiments currently being undertakegt—2§.

neglecting all excited states which would introduce a time
fdependence. Note thef"(P’,P) is directly proportional to
(P’'|O|P). The ratio in Eq.(A2) is expressed in a general
form that applies to all quark bilinear operators and projec-
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I o= (1+ y0), F;SPC=%<1+70><1—75y3>,( )
A3

IRoor=3(1+y0), TP =3(1+y0)ysy.. (Ad)

We also record the complete expressions for the kernels
Ko(P’,P) in Eq. (A2). Following the general parametriza-
tion of [2], we have for the lowest three momemis 1,2,3

in Minkowski space

APPENDIX: MATRIX ELEMENTS IN TERMS
OF GENERALIZED FORM FACTORS

In order to find the relation between Minkowski expres- _ ’ y
sions, e.g. QM){#1#2. .-t and the corresponding Euclid- (P'[Olmkz - I[Py =U(P") K2 /(P P)U(P)
ean quantities,(()E){Mlﬂz ,,,,, ) We observe that the opera-
tors under consideration are constructed from gamma s =, 2
matrices and covariant derivativ€&s The conventions we (P quﬂll/lq'P)_U(P )[ 7 Aaal49)

use, consistent with Ref29], are
oMYA,

THEA 2
+i———Bq(A%) [U(P)

4
WE)M:; h, (Y, h,,=diagi,i,i,1), -
<P’|‘/’q7{'u1D'u2}¢q|P>

4
(09),=3 0,,(D")", d,,=diagL11-i), :U(P,)((_i)g{#lyﬂz}Aqyz(Az)
and we will set &")”=%=(aM)*=*. Since all operators are at2leA,

+(—i)iPt# By2(A?)

symmetrized, the general transformation rule for the opera- 2m
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' INTZYNZ . (3 12
+(—|)ch,z(A2) U(P), ol :(E) [Oq122— O3zl

p/|$ 7,@16#25#3},7[, P _ 1
< q q > 02 3:2T/2[O{122}+O{133}_20{144}],

= U( P (— i)ZE{mEﬂzyus}qugo(Aﬁ

12
=3__
+(—D)2AlmAR2yHIA | o (A2) O3 —(§> [O213— Oj233],
TSy #3}0Aa )
+i(—i)2Plpra————“B_ 3(A?) L1
Zm q 02 3:2T/2[O{211}+O{233}_20{244}],
a—#s}aA

+i(—i)?AMAR2—— =B 5(A%) [ U(P).

3 1/2
-3_
(A5) Og —(§> [Oy313 = Oya23],

In practice, we evaluate the ratiy contisasa. -l (pr py py
inserting the kernel,ii{o"l"2 """ ! from Eq.(A5) and the pro-

jectors in Eqs(A3),(A4) into Eq.(A2). For given values of
the nucleon moment® and P’, the ratio is computed nu- (3)1/2
@)
2

1
—3_
Og —ZT,Z[O{311}+ O(322 = 203441,

merically, determining the kinematical coefficients of the [O413— Oja221,
GFFsA(t), B(t), and C(t). Eventually, we transform the

free indice wq iy, . . . .} to Euclidean space with the use of

Eqg. (Al). The system of linear equations is then constructed on=
by equating the Euclidean lattice result and the transformed
Minkowskian parametrization.

1
"= uel Oy + Opazg ~ 203l (A8)

while the four nondiagonal combinations are denoted by
1. Lattice operators

Onondlagn 3_
On the lattice side, we have(#) invariance instead of Nl {hgpaps):
Lorentz invariance, which complicates the classification and
the renormalization of the operators. Followifg0], we Bi23=1 .4 ma<pa<pas,

choose appropriate linear combinations of the operators
Oy, ... 3 corresponding to representations d4H

For the case of one derivative= 2, there are three diag-
onal operators

giving all in all 12 traceless and symmetric linear combina-
tions. It turns out that some of the operators in E48) mix
with different nonsymmetric representatiofef. Ref. [30])
under renormalization. Fortunately, the mixing coefficient
diagn=2_ 1 _ _ turns out to be negligible, at least for the specific case con-
O =2[011% O22~ O3~ Oud] sidered in[10]. It hgs%o be checked if this hglds true for all
potential mixing candidates in the=3 case.
The choice of index combinations for the construction of

Odlagn 2__[ [e) ] . . . .

9172 O35~ Oua the H4) operators is not unique. However, in the continuum
limit all options will lead to the same GFFs. The interesting
question of determining an optimal set of operators that

Odlagn Z_TIZ[ 1—0ul, (A6) minimizes lattice artifacts is beyond the scope of this presen-

2 tation.

which are symmetric and traceless by construction. Addition- 2. Lattice momenta

ally there are six nondiagonal combinations .
y 9 The possible values of the nucleon momeRtand P’

and therefore the momentum transfer squdrate severely

nondia 2_
OM Mzgn 2[0“1“2 0“2/"1]:0{/”1//'2}’ restricted by the lattice momenta. The general three momen-
tum on a periodic lattice is given by
r12=1, 4 wa<po, (A7)
. 2m. 2w
giving in the most general case a set of nine independent P al aLS(pl.pz,pg),
operators. There is no operator mixing for2.
In the case of two derivatives,=3, we take pi=—Lg,—Lst+1,...Ls—1Lg,
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wherea is the lattice spacing in GeV* (we seta=1 in all  fer squared. So far we have propagators available for the
intermediate stepsand L is the spatial lattice extension, two sink momenta’ =(0,0,0) andp’ =(—1,0,0), and the
which is in our case 16. It is clear that the lattice spacing,gj,e forazﬁ’—r_j is restricted byi2<6. We plan to extend

times the spatial extension determines the smallest possibige allowed values in future investigations. The total number
non-zero momentum, while the lattice spacing alone fixes thet differentt is then 16, including the forward case.

largest available momentum. In practice, however, we are \gie thatt depends in a nontrivial manner qﬁ1 andﬁ
even more restricted to valugg<Ls, because large mo- i qjvigually through the energieB,,P,, and not only on

menta lead to considerable noise. For the nucleon four mothe relative momenturd. For eiaht of the 16 possible values
mentaP andP’, we use the continuum dispersion relation, 9. For eight o POSE .
of t, we encountered highly visible fluctuations in the

Po=P,=Vm?+ P2 wherem is the nucleon mass, deter- nucleon propagators with negative values for the two point
mined in our lattice calculation. In order to construct thefunctions at larger>r... We excluded the corresponding
maximally determined set of linear equations, Etd), we  momentum combinations from our analysis. A list of all re-

need to know alp,p’ leading to the same momentum trans- mainingq, p’, p, andt, is shown in Table 1.
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