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Lattice gauge theory with baryons at strong coupling
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We study the effective Hamiltonian for strong-coupling lattice QCD in the case of a nonzero baryon density.
In leading order the effective Hamiltonian is a generalized antiferromagnet. For naive fermions, the symmetry
is U(4N;) and the spins belong to a representation that depends on the local baryon number. Next-nearest-
neighbor(NNN) terms in the Hamiltonian break the symmetryli¢N;) X U(N;). We transform the quantum
problem to a Euclidean sigma model which we analyze inNg &kpansion. In the vacuum sector we recover
spontaneous breaking of chiral symmetry for the nearest-neighbor and NNN theories. For a nonzero baryon
density we study the nearest-neighbor theory only, and show that the pattern of spontaneous symmetry break-
ing depends on the baryon density.
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[. INTRODUCTION matter based on lattice QCD in the strong-coupling linit.
The lattice cutoff here is indispensable, and no continuum

. . ... limit is contemplated. We regard the cutoff theory as a model
The study of quantum chromodynamics at high density 'Shat contains the ingredients of true QCD—Ilocal gauge in-

st o s ey ) s e e 60 e s o
- ) , E%tandlng infrared properties, viz. color confinement and
of c_olor superconductlwty_(CSQ [2,3]. The_ stimulus for this spontaneous breaking of chiral symmetry.
revival was the obse_rvatlo[m,S] that the mstanton-lnduced_ We work in the Hamiltonian formalism, which is more
quark—quark interaction can be much stronger than that inamenable than the Euclidean formalism to strong-coupling
duced by simple one-gluon exchange, and can thus give erturbation theory and to qualitative study of the ensuing
transition temperature on the order of 100 MeV. Subsequertffective theory15—18. The fermion kinetic Hamiltonian is
work [6] showed that the perturbative color-magnetic inter-a perturbation that mixes the zero-flux states that are the
action also gives rise to a strong pairing interaction. ground-state sector of the electric term in the gauge Hamil-
These and other dynamical consideratiprisunderlie a  tonian. In second order, it moves color-singlet fermion pairs
picture of the ground state of high-density QCD in which thearound the lattice; the effective Hamiltonian for these pairs is
SU(3) gauge symmetry is spontaneously broken by a BCSa generalized antiferromagnet, with spin operators con-
like condensate. The details of the breaking, which includestructed of fermion bilinears.
both the Higggor Meissney effect and the rearrangement of ~ We depart from studies of the vacuum by allowing a
global symmetries and Goldstone bosons, depend on quaR@ckground baryon density, which is perforce static in sec-
masses, chemical potentials, and temperature. Prominent f{id order in perturbation theory. Our aim at this stage is to
the list of possibilities are those of color-flavor locking in discover the ground state of the theory with this background.
three-flavor QCD[8] and crystalline superconductivity— N third order(whenN.=3) the baryons become dynamical;
with broken translation invariance—when there are two fla-We display the effective Hamiltonian but make no attempt to

vors with different densitief9]. For a review seg10]. treat it. _ , ,
As noted, CSC at high density is so far a prediction of The symmetry group of the effective antiferromagnet is

) ; ; ; e same as the global symmetry group of the original gauge
e Coupin anaie One expecs i cupIng (0 b e Thiscapends on e omuacon chosen e aic
reliable calculations demand extremely high densifies. fermions. Following 16], we begin withN; copies of naive,

Th f weak lina methods to make predictions f nearest-neighbor, four-component fermions. These suffer
€ use ol weak-coupling methods 1o make predictions 10k, species doubling19] and possess a glob&l (4N;)

moderate den5|t|e§ IS thu; not an appllcathn of QCD, bUt_O ymmetry group that contains the ordinary chiral symmetries
a model based on it. It is imperative to confirm these pred|c[as well as the axiall(1)] assubgroups. We subsequently
tions by other methods and other models. A true lattice gaugf eak the too-large symmetry group with next-nearest-
theory calculation, constructing QCD at finite density from neighbor (NNN) couplings along the axes in the fermion
first principles and allowing a continuum limit, would of Kopping Hamiltonian. A glance at the menu of fermion for-
course be best of all. Standard lattice Monte Carlo methodsnylations reveals the reasons for our choice. Wilson fermi-
unfortunately, fall afoul of well-known technical problems gns [20] have no chiral symmetry and make comparison of
when the chemical potential is made nonzero, although we
do note remarkable progress made recently in the small-
regime[12,13]. 1An early discussion of our program, with early results, was given
In this paper we initiate a study of high-density quarkin [14].
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results to continuum CSC difficult if not impossible. Stag- site determines the representationlf4N;) carried by the
gered fermiond21] likewise possess only a reduced axial spin at that site. In second order, baryon number is static; it
symmetry while suffering a reduced doubling problem. Thebecomes mobile in the next order, whefer N.=3) the
overlap action{22] is nonlocal in time and hence possessegiew term in the effective Hamiltonian is a baryon hopping
no Hamiltonian; attempt23] to construct an overlap Hamil- term.
tonian directly have not borne fruit. Finally, domain-wall fer- ~ The baryon operators responsible for the hopping are
mions[24,25 have been showfi8] to lose chiral symmetry composite operators that do not obey canonical anticommu-
and regain doubling when the coupling is strong. tation relations. If this were not the case, then the effective
As we discuss below, while the NNN theory still exhibits Hamiltonian in third order would strongly resemble that of
doubling in the free fermion spectrum, we are not interestedhe t—J model[34],
in the perturbative fermion propagator but in the spectrum of
the confining theory. It is essential for our model that the . nin;
unbroken symmetry is now (N;) X U(N;), since this is the Hy_y=—t2 clcjs+3> (3 ST
symmetry of the continuum theory—except for the axial <'§> w
U(1). Thelatter can still be broken by harfd.
Our emphasis on the global symmetries is a consequenggere ¢, is an annihilation operator for an electron at gite
of the fact that the gauge field is not present in the groundgyiith spins, and the number operatons=c/c; and spin op-
state sector and does not reappear in strong-coupling pertyiatorss = ¢! oc; are constructed from it. The added term
bation theory. In other Wofds’ conﬂner_ng_nt |sk|anem_at|c J' is a more complicated hopping and interaction term. The
fe_ature of_the theory, Iez_ivmg no pos_S|b|I|ty of Seeing the;_3 model describes a doped antiferromagnet; it arises as the
H|ggs—Melssn(_ar effect Q|rectly: This is but an InSFance.Ofstrong—binding limit of Hubbard model, a popular model for
confinement-Higgs duality, typical of gauge theories withi;norant magnetism and possibly for high-superconduc-
matter f|eld§ in t_he fundamental representafi28l. Our aim ivity. The model is not particularly tractable and, absent new
is thus to |denF|fy the pat_tern of spontaneous br_eaklng 0{heoretical developments, does not offer much hope for
global symmetries. For various valueshef andNy, this can o qoress in our finite-density problem. It is nonetheless

be compared to weak-coupling resUi29]. worth pondering the fact that a model connected, however

.This Paper is largely an exposition of formalism, "’,‘longtentatively, with superconductivity appears in a study of
with partial results. We study the nearest-neighbor am'fe”ohigh-density nuclear matter

magnetic Hamiltonian, both with and without a uniform In the remainder of this paper, we work only @ 1/g?)

baryc.)nic.baquround de'nsity. we transform the quantum,pe e he baryons are fixed in position. Motivated by the
Hamiltonian into a path integral for a nonlinear model,

X : similarity of our Hamiltonian to the Heisenberg antiferro-
where the manifold of ther field depends on the baryon aqnet we apply condensed matter methods developed for
background. We then investigate the limit of larye and

o that problem. Indeed, condensed matter physicists have gen-
show that the global (4N¢) symmetry is indeed spontane- 4 5jized thesU(2), spin-1/2 Heisenberg model ®U(N) in

ously broken. many representatiorj84—41], which corresponds to adding

_Adding in the NNN couplings is a problem of vacuum 5,01 and color degrees of freedom to the electrbfibese
alignmen{33]. We do this in the vacuum sector and recovergre exactly the generalizations needed for our effective

the result[16] that the U(N;) < U(Ny) chiral symmetr'y.is Hamiltonian. WithN, colors andN (single-componeitfla-
broken to the vectolJ(Ny). The analysis for the finite- ¢ 5 sjte of the lattice can be constrained to contain a
density theory is more involved and we defer it to a futureqq|qy_singlet combination ofN, particles. The flavor indi-

publication. ._ces of the spin then make up a representatiorS b N)

Other groups have recently studied the strong-coupling,,,se young diagram has, columns andn rows (see Fig.
effective Hamiltonian for naive and Wilson fermions at non- 1). We set

zero chemical potentidl30-32. We differ from their ap-
proaches in eschewing mean field theory in favor of the exact
transformation to ther model, which is amenable to semi-
classical treatment. As noted above, we base our program on
NNN fermions; we also work at fixed baryon density. and the correspondence is completentii we include
In Sec. Il we review the derivation of the effective Hamil- NNN terms in the Hamiltonian
tonian of lattice gauge theory in strong-coupling perturbation In Sec. Ill we derive ao model representation for the
theory[16,17. The second-order Hamiltonigi®(1/g?)] is  partition function of the antiferromagnet. Following Read
an antiferromagnet withJ (4N;) spins; the global symmetry and Sachdey39], we employ spin coherent statg43] to
group isU(4N;) for the nearest-neighbor theory, broken to define theo field. N andm determine the target space of the
U(N;) X U(N;) by NNN terms. The baryon number at each o model to be the symmetric spa¢g(N)/[U(m)XxU(N
—m)]; the number of color®. becomes an overall coeffi-

+J. (1)

N=4N; (1.2

The breaking of the naive fermions’ symmetry by longer-range
terms is a featur¢l6] of SLAC fermions[26] and also occurs if 3We refer the reader to the paper by Read and Sacfg@or a
naive fermions are placed on a bcc lattjéd]. survey, including a phase diagram in the¢,N.) plane.
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then we have a situation where the even spins, say, are fixed

? in direction while each odd spin wanders the submanifold,
independent of the other odd spins. This means a ground

state whose degeneracy is exponential in the volume, similar

m to some frustrated models or the antiferromagnetic Potts
model[45]. The cure to this disease comes from @EL/N,)

* fluctuations, which couple the odd spins to each other and
make them align. In the end we find that tHéN) symmetry

is broken by the vacuum t&)(2m—N)><XU(N—m)xXU(N
- N - —m). Perturbing this ground state with the NNN terms is
C technically difficult, and we do not attempt it here despite its
obvious physical interest.
FIG. 1. The representation &f(4Ns) carried by the spin in the We close with a brief summary and discussion. The
e_ffective an_tiferromagnetn is re_lated to the baryon number at the O(1/N,) calculation in theB+0 case is relegated to an ap-
site according tan=B+2N;, with |B|<2N;. pendix, as are othgbut not al) technical details.

cient of the actiorf. As for the quantum Hamiltonian, the
nearest-neighbor theory is symmetric untgiN) while the Il. THE EFFECTIVE HAMILTONIAN
NNN terms break the symmetry td(N;) X U(N¢) (while
leaving the manifold unchanggd
The N, multiplying the action invites a larg, analysis,
and in Sec. IV we study the vacuum sector, meaning zero H=Hg+Hy+He. (2.1
baryon number, thereby. We return to an exercise proposed
and solved by Smif17], in generalizing the vacuum sector Here Hg is the electric term, a sum over links4) of the
to allow baryon number- B on alternating sites; this means SU(N.) Casimir operator on each link,
specifying conjugate representationslofN) on alternating
sites, with, respectivelym and N—m rows. As shown by
Read and Sachdg¢@9], in this situation one can carry out an
alternatingU (N) rotation to convert the antiferromagnet into
a ferromagnet withidentical spins on alternating sites, and Next is the magnetic term, a sum over plaquettes,
the classical =) analysis gives a homogeneous ground
state. The result is, as one might expect, thaN) is broken 1
to U(m)XU(N—m) in the classical vacuum; the ground Hu=2—92 % (Ne=TrUp). 23
state energy is independentraf The 1N, corrections to the
energy do depend om, however, and they select the self- Finally we have the fermion Hamiltonian,
conjugatem=N/2 configuration(i.e., B=0 everywherg as
the lowest-energy vacuum. Thus the true ground state breaks . st
U(N)—U(N/2)XU(N/2).5 When we add NNN terms to He=—i2 ¢3"@, > D) I Uniiu| o4, .+ He.
. . . nu >0 k=0
the action as a perturbation, we find that the ground state ap
breaksU(N¢) X U(N;) to the vectorU(N;), as expected. (2.4
We turn to nonzero baryon density in Sec. V. We study.

homogeneous states, in which all sites carry the same repr%—he fermion fieldy;" carries colora and flavorf at siten.
sentation ofU(N), with m>N/2. The classical vacuum of he functionD(j) is a kernel that defines the lattice fermion

. . derivative. It can yield a naive, nearest-neighbor action if
the o model is more elusive than for the vacuum sector,

N1a . i L . .
since now there are identical manifolds on adjacent sites buI?(J)_ 291; along-range SLAC derivative26] if D(j)

the coupling is antiferromagnetic. We begin by studying the_b(t_.l)]élt') otr anyt?mgtw ftvxgelr(" su<|:rt1 a_? al g’\t”\l action
two-site problem, and we learn that when one of the classical Sme>1ythrunca mg tet oy de:ne 0 ldgb ' elrms.
spins is fixed then when the energy is minimized the other borg c gr_o;]m s ac;: S f_elgrmlrr:e He afone_
spin is still free to wander a submanifold of the original to be any state with zero electric field, whatever its fermion

symmetric space. If we replicate this to the infinite lattice ©ONeNL

For anSU(N,) gauge theory withN; flavors of fermions,
we write the lattice Hamiltonian

1
He=59%> EZ,. (2.2
27 &

ji—1

11 |E7,=0)

nu

0)[x)e= Xk - (2.5

“The inverse gauge couplingg® multiplies the quantum Hamil-

tonian, and hence serves only to set the energy scale. h h 0 and d ith
SThis result was obtained by Smit using a HoIstein—Primakof‘fT ese states have energy=0 and are degenerate with re-

transformation on the quantum Hamiltonian. We note in passingP€ct to all the fermionic degrees of freedom. We consider

that the 1N, calculation includes the effect of the time-derivative Perturbation theory inV=Hy+Hg. Both Hy and He are
terms in the action that were dropped in the leading order, and thestims of operators that are strictly bounded, independegt of
termsdo remember the difference between the ferromagnet and thexcept for the explicit coefficient i, . We can dismiss
antiferromagnet. first-order perturbations by noting thel, andHg are mul-
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tilinear in link operatorsU and U, which are raising/ whereCr=(N2—1)/(2N,) is the quadratic Casimir of the
lowering operators for the electric field; thus there are nofundamental representation SUU(N,).
nonzero matrix elements within the zero-field sector. The perturbationdd, and Hg are explicitly of O(1/g?)

We proceed to higher orders, and seek an effective Hamilang 0(1), respectively; each energy denominator gives a

tonian that acts in the zero-field secfd@]. DefinePqy to be  ¢5c10r of 142. Thus toO(L/g%) we can forget abouH, .
the projector onto the subspace of all the-0 states. Then o result to this order is

perturbation theory iV gives an effective Hamiltonian,

He= PoVQDVPy+PoVQDVQDVR+- -+ . (2.6
e~ PoVQDVRy+ PoVQDVQDVR 29 Heoi=PoHeDHEPo+ PoHeDHEDHEP,. (2.9

HereQ=1- P, projects onto the subspace orthogonal to the
E=0 states; the operatdd=(e,—Hg) ! supplies energy
denominators, so that SinceHg has no nonzero matrix elements within tBe=0
sector, we have dispensed within Eqg. (2.9). The firzst term
_ in Eq. (2.9 arises for any value o, and isO(1/g°); the
Qb= E;&ozstateJM €0 €, (A]. @7 caseN.=2 must be treated carefully, but all casés>2 are
generic. The second term is speciaNig=3 and isO(1/g*).

The intermediate statgls.) contain flux excitations. In
second and third order the patterns of flux can only be strings
of lengthj in the fundamental representation of the color A. Second order: The antiferromagnet
group. Thus the energy denominators are
We calculate explicitly the first term iH . Each term in

o€, = — EQZCF|J’| 2.8 He creates a string of flux of length which must be de-
2 ' stroyed by the conjugate term. Thus
|
HE =22 [-K(IX (4"a,, ni,-,;><0|(H U) (H u*) 10) (7%, 1529), (2.10
j>0 nu aB yé
|
where we define the same site and color but different flavors, and likewise
(D) j.k. Leaving the flavor indices explicit, we obtain
: D(]
29l HE = 2N 2 KOISKW AP T A,
The matrix element of the gauge fields yieldsNdY/5, 595, » j#0
independent of.
As they appear in Eq2.10, eachy is next to ay on a _dj;O K(j)En: (Y. (2.14

different site. This invites a Fierz transformation on the prod-

uct of fermion fields, which we write generally as i . i ) )
Each fermion bilinear in parentheses is a color singlet lo-

1 cated at a given site. The second term contains the baryon
(l/f;raul//j)(l/fl%dfl):5jklﬂiT</f|—Z2 Sk TAY) density B/ =N_ y4!y,, and the sum=,B/ is the total
A baryon numbeB’.
X ( l/,er(/,j)_ (2.12 We now combine the Dirac indices with the flavor indices
and write

Herei,j,k,| are combined site, flavor, and color indices, and
we have assumed the&nd| are always different whilgand (YTTAY9) (1T AU =8 TM ) (Y TM 7).
k might be equalas in Eq.(2.10]. The matriced™” are the (2.19
16 Dirac matrices, normalized td'¢)2=1, and we have
defined We have defined new matricé4” as direct products of the

4x 4 Dirac matrices and thg(N;) flavor generators,
sh=3 TrTa, Ma,=+1. (2.13

This sign factor ist 1 according to whethdP” commutes or - EThis baryon number is positive semidefinite, and is zero for the
anticommutes with,, ; it will be a constant companion in  drained statésee below. The conventional baryon numbe, is
our calculations. As they appear H{Z , the indices,| are  zero in the half-filled state, and thi&,=B,+ 2N;.
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If there arem operatorsh’, then the statéy) lies in the
representation withN, columns andn rows (see Fig. 1 Its
baryon number i8,=m.

The second-order effective Hamiltonian(?) preserves
B, . the baryon number on each site. Thus any distribution of
B/ defines a sector within whicH'Z is to be diagonalized.

In other words, baryons constitute a fixed background in
which to study “mesonic” dynamics. The baryon number at
each site fixes the representationlbfN) at that site, which

is the space of states in which the char@5act.

FIG. 2. Young diagram of the representationtbf4N;¢) carried
by the baryon operator.

M7=TAQ\?3, (2.16
and we have normalized them conventionally according to
! 1 ’
TrM7™M 7 =§5’7’7 . (2.17

C. Global symmetries and doubling

The j=1 terms in Eq.(2.19 are of the foerr’er’L;‘,
and they commute with the generators

The M7 generate &J(N) algebra, withN=4N;.
An alternating flip

I (a,)"

o

In—

¥n (2.18 Qn:; Q7 (2.23

(spin diagonalizatiof16]) removes ther,, matrices from the
oddj terms inHg, and hence removes the sign factefs
from the oddj terms inH{Z). We have finally

of a globalU(N) symmetry group. This symmetry is in fact
familiar from the lattice Hamiltonian of naive, nearest-
neighbor fermions: Spin diagonalization bf; naive Dirac
2 fermions transforms the Hamiltonian into that ol dstag-
Hé?f’=N— > KGOS M) (WM 7Y) 04 gered fermions. In the weak coupling limit, there are in fact
c Nuj 8N; fermion flavors—the doubling problem. This doubling
is partially reflected in the accident&)(4Ng) symmetry,
—(dNCE K(j))B’. (2.19  which is intact in theg—o limit and is respected by the
] effective Hamiltonian. Retaining terms in the fermion Hamil-
) . ) tonian(and thus ingf)) that involve odd separatiojsioes
_The oddi t_erms are of the fornM - M which can be written .t preak this symmetry.
in any basis for th&J (4Ny) algebra. The evepterms, how- The Nielsen—Ninomiya theorefl9] guarantees that any
ever, contairs;, which is defined only in the original basis fermijon Hamiltonian of finite range will possess the full dou-
(2.16. bling problem. This is a statement, however, about weak cou-
pling only, since the dispersion relation of free fermions is
B. Single-site states irrelevant if the coupling is strong and the fermions are con-

In the zero-field sector in which we work, Gauss’ law fined. It is interes_ting _that the acciden_ta(4Nf) sym_metry
constrains the fermion state at each site to be a color Sing|erl]onetheless survives into strong coupling as a vestige of dou-

The drained statgdr), with 7|dry=0 for all (a,f), is the bling.

unique state witlB’=0. The other color singlet states may re-lz—irI](etr:ZrJr?lfl)lr; Eﬁ,fa,zetlrg) ;Vs'tzoegsg. ]t(:r%tshi?w ?ﬁzec:rih?r?:l,
be generated by repeated application of the baryon creatio?u . ) SY! Y, nierr the oniginal
ermion Hamiltonian. It is easy to see via spin diagonaliza-

operator, tion, which leaves the evenpterms unchanged, that the only
bIg...= saﬁ...zﬂ”f Tha.. .| (2.20  9generators left unbroken are tiE’ corresponding to
with N, operatorsy. (Here and henceforth, the indices M7=1®A% and ys®\?, (2.249
f,g, ... combine the flavor and Dirac indicgs.
As noted above, at each sitethe operators which form the U(N;) X U(Ns)g chiral algebra. This of
. course makes no difference to the Nielsen—Ninomiya theo-
Q7= UM M= gt M 7y (2.2)  rem, which will enforce eightfold doubling in the perturba-

tive propagator even without thd(4N;) symmetry. If we
generate &J(N) algebra, withN=4N;. The drained state is are interested in the realization of the global symmetries of
obviously a singlet under this algebra. The creation operatothe continuum theory, though, we can study this lattice
b;rg,,_ is in the symmetric representation Of(N) with one  theory which has the same symmetry. The simplest theory

row andN, columns(see Fig. 2 one may study is thus one containing nearest-neighbor and
Repeated application dﬂg,,_ to the drained state gives NNN terms. We shall proceed to discard terms with longer
the state range; we shall begin with the nearest-neighbor theory, with
its accidental doubling symmetry, and later break this sym-
Ix)=b'b". . .|dn. (2.2 metry toU(N;), X U(N¢)g with the NNN terms.
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Two essential differences will always remain between thiSNhereg“M(n)z(—l)zv¢u”v. The baryon operators are
lattice theory and the continuum theory. One is the presence | of 18 1yt
of the axialU(1) symmetry on the lattice. This symmetry is b = €ap, " YY", (2.33

exact, broken by no anomaly, and may make the drawing O\];vhere we have writtenh to represent the compound index

conclusions for the continuum theory less than straightfor—]c hl. taking values in the symmetric three-index represen-
ward unless it is broken by hand. The other difference is th(% 9ny, 9 Y P

fact that the effective Hamiltonian for baryotsee belowis ~ uon of U(N) (f.g, ... once more combine flavor and
also a short-ranged hopping Hamiltonian. If the baryondXirac indices. The odd; part Of'_'igf)’ like that of HEY, IS
were almost free, we would say that they are surely double§YMMetric under th&J(N) doubling symmetry. The even-
like the original quarks. The fact that the simplicity of the Part gggaksU(N) O U(N) XU(Np)r. _

hopping terms is only apparent, and that the baryons are still Heff IS @ baryon hopping term. As mentioned in the Intro-

coupled strongly to mesonic excitations, offers the possibilityduction, lhowever, its simplicity is deceptive. The baryon op-
that doubling may not return. eratorsb, are composite and hence do not obey canonical

anticommutation relations, i.e.,
D. Third order: The baryon kinetic term Lo
. . . . . {bn-bn/ }¢5II’5nn’ . (234)
The third-order term i o, which only exists in the case
of N.=3, is calculated via The separation dfl into a canonical kinetic energy and an
interaction term is a challenge for the future.
H®=PoHDH:DHP,. (2.29 g

. Because of the complexity of the third-order effective
<0|UaBU yoU e£|0>: 6 €aye€por (2.26 Hamiltonian, we restrict ourselves henceforth to the second-
order theory, in which baryons are a fixed background. The

and the same can be proven for a chain of links, theory defined byH? is a generalized spin model, with

1 spins chosen to be in representationdJgiN) according to
(0| H U H U) H U |0>:§6a766ﬂ5§' the baryon distribution. We revief89] in this section how to
ap vé 4 29 convert the spin model into & model. Theo field at each
(2.27) site will move in a manifold determined by the baryon num-
Thus[f,g, ... are herdtemporarily flavor indices, ber at that site.

~ A. Coherent state basis
HE=—12 R (i a0 a,v8l,)
of j>0 AL L We employ a generalization of spin coherent stfd&$to
the he derive a path integral for the spin model IelfEff . We recall
X(Un " @ty j;) €aye€por T H.C. (228 thata given site carries generat®g of U(N) in a repre-
sentation withN, columns andn rows, with B/, =m.
First we choose a basis for the Lie algebradgiN). This
- (D(j))3 consists of the generato®, withi,j=1, ... N, whose ma-

The kernel is

KD=——"s5 5 (229 trix elements in the fundamental rep are
6(9°Celj|)? | P
. . . L . . . (S})fg:5if5jg- 3.1
Again, spin diagonalization simplifies the oflderms, but
not the ever]'- terms. The result is The Corresponding Charges are
HE = HEr+ Habn (230 | 1
Q=2 ¥aS¥a— 5NcI|
with “«
3 . ~ . Tl | t 1 .
Hig= —1 2 R() 2 by'b, 27.(m)+H.c, =2 Watla 5Ned] (32
1> nw a
j odd

(2.3 where we have subtracted a constant for convenience. The

where ,,(n) is the usual staggered-fermion sign factor, andCartan subalgebra consists of the operators

- g Hi=Qi. (3.3
HOW= =i 2 K(D2 bll[a,@a,@a,dib, .0.(n)
j>0 nu

128, We build the coherent states from the state of highest

weight. The highest-weight statd’ ) in the representation
+H.c., (2.32  is an eigenstate of the Cartan generators,
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(N/2)| W)  for i=1,...m,
Hi|Wo)=1 .
(N/2)|Wo)y for i=m+1,...N.
(3.9
In this state, the generators take the simple form
(WolQj|Wo)= 3 NeAyj , (3.9
with
1 0
A= . .
( 0 - 1N—m) (3 6)

The state| W) is invariant(up to a phaseunder the sub-
group of U(N) that commutes with\ ; this isU(m) <X U(N
—m). The most general rotation ¢¥ ) is carried out with
the generatorQ} that arenot in the corresponding subalge-
bra. We choose parameteiﬁ, with Ae[1m] andue[m
+1,N], and write

m N
|a>=ex;{ )\Zl ﬂ=2m+1 (a)Qf—a%"Q)) ||Wo). (3.7)

The only generator4* that appear in Eq(3.7) are those
that lower anH; that starts fromN./2 in Eq. (3.4) while
raising anotheH; that starts from—N./2. Any other genera-
tor would annihilate|¥,) and thus give no effect in the
exponential.
The coherent states are normalized,
(ala)=1, (3.9

and over-complete,

f daja)(a]=1. (3.9

PHYSICAL REVIEW D58, 034501 (2003

whereX e U(m) andY € U(N—m). All matrices in the orbit
will give the same matrix> when inserted into Eq(3.19),
and thus in integrating over the configuration space ane
must choose only a single representative of each orbit. This
set of representatives, the coset spbldd&)/[U(m) <X U(N
—m)], is the quotient space of the noninvariant subgroup
U(m)xXU(N—m).

The measure over the coset space must be invariant under
unitary rotations,

la)—R(V)|a), (3.149

whereR(V) represents the rotatioviin Hilbert space. Equa-
tion (3.10 shows that this is a rotation

o—VaV'

(3.19

and by Eq.(3.11), this means that a measure lhmust be
invariant undetJ —VU. This fixes the measure uniquely to
be the Haar measure id(N), and thus one can integrate
over the coset space by integrating with respecttover
U(N) and using Eq(3.11.

A representation whose Young diagram INas m rows is
the conjugate to the representation wittrows. Its coherent
state space can be constructed to look the same, with only a
sign difference. To do this we start with thewestweight
state, which satisfief. Eq. (3.4)]

_(Nc/2)|q’0>
(N/2)[ W)

for i=1,...m,

Hi[¥o)= for i=m+1,... N

(3.16

This introduces a minus sign into E(.5). The subsequent
steps are identical, with only the replacement of 8310

by

(alQjlay=— 3 N¢oy; - (3.17

In Eqg. (3.9 the integral is over the coset space Here, too,o is given in terms ofA andU by Eq. (3.11.

U(N)/TU(m)XU(N—m)] (see below. Matrix elements of
the generators are given by

(alQjlay= 3 Neoyj, (3.10
where the matrixs; is given by a unitary rotation from,
(3.1)

The matrixU(a) is built out of them> (N—m) matrix alﬁ,

0 a
U:
Rl —ar o

o is both Hermitian and unitary.

The manifold of matriceso is the coset space
U(N)/[U(m)XU(N—m)], a submanifold ofJ(N). This is
because for any matrixJ(a), one can generate an orbit
U(a)V by multiplying with a matrix

:

o=U(a)AU(a)".

(3.12

X 0
), (3.13

0Y

B. Partition function

The partition functionZ=Tre A" can be written as a
path integral by inserting the completeness relati®®) at
every slice of imaginary time. This gives

sz Da(7)exp—S, (3.18

where the action is

B
SZJ dr
0

The HamiltonianH (o) is a transcription of the quantum
Hamiltonian to the classicalr matrices. Starting with the
qguantum operato®/, we have

n= ¢EM "= Mirjllﬂrj:sg n

=MQj(n)+ 3N TrM7.

1—(a(7)|a(r+d7))
dr

+H(o(7))|. (3.19

(3.20

034501-7
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Expressed in these variables, the quantum Hamiltonian is folds on all sites. The Hamiltonian is then

4 N, |2 . .
Hé%f)=nEM 3,QIQY (st HY, (3.21) H(0)=<?C) nEM J(—Dlolol, (s (@)

j#0 j#0
whereJ;=(2/N;)K(j). We transcribe this according to Eq. m is a new parameter in the theory, and we can ask what
(3.10 to obtain the classical Hamiltonian, value ofm gives the lowest energy for the ground state. We

N\ 2 will see thatm=N/2 is indeed preferred, but only in the

H(U):<7c nzﬂ JJUZ‘TXH,;(S’;)]H: (3.22 next-to-leading order in ;.
j#0

A. Large-N¢ limit

where In the largeN, limit, we seek the classical saddle pdint
7T M 7T (3.23 of S We assume the saddle is at a configuratiqfir) that is
In— Tn- ' independent of time, and so we drop the time derivative. We

Recall that eaclr, is anNx N matrix ranging over the coset P€9in with the nearest-neighbor Hamiltonidn,

space appropriate to site
The time-derivative term iSis a Berry phas€39]. It can H= —JE (rr?(r;a;‘
be expressed in terms of the mattixthat determinesr via

Eq. (3.11). The result i8
B
SZJ dr
0 3.2 Again, the matricesr, are Hermitian and unitary, and the
(3.249 expansion coefficientss? are real and satisfy=(o7)?

A, will vary from site to site ifm does. If one takes the route =N/2. The minimum ofH is clearly at a constant fieldr,

of Eq. (3.17) for a representation with—m rows, then the = 9o, Which can be diagonalized t@,= A by aU(N) rota-

kinetic term for that site acquires a minus sigee below.  tion. This is a Nel state in the original variables. ThgN)
The number of colors has largely dropped out of the probSymmetry is broken toU(m)xU(N—m) and there are

lem, sinceo is just anNX N unitary matrix field. The ex- 2m(N—m) Goldstone bosons. _

plicit factors of N, in Egs. (3.22 and (3.24) invite a semi- The classical energy densitger link) is €= —JN/2, in-

classical approximation in the larges limit. This of course ~dependent ofn. Thus at leading order in ¢, the optimal

neglects theN-dependence of the couplings~ 1/NZ, but value ofmis undetgrmmed, and any alternating background

the common scale of the couplings only serves to set aRf Paryon number is equally good. _

energy scale. The ground state will be independent of this Since it tums out that the N corrections selecm

scale, although correlations and the temperature scale wiff N/2, let us consider the effect of the NNN term fhfor

reflect it. We take the point of view that after &lk=3, and  this case only. The perturbation is

we are interested in properties of the effective theory for this

value only. TheN.— < limit, for fixed couplingsJ;, will be H'=J0"> o’¢”, -st. 4.3

a device for investigating the properties of a generalized ef- Ny e

fective theory.

J
N =3 2 Tronon - (4.2
C

2

> TrAnuﬁaTUﬁH(a(T))}

It breaks the U(N) symmetry to SU(N;) XSU(Nf)g

XU(1)axXU(1)g. Assuming thatl’ <J, we again seek the

minimum energy configuration in the form of a constant
The simplest way to set the baryon density to zero is jusfield; we minimize

to chooseB,=0 on each site, meaningn=N/2=2N;. It

turns out to be just as easy to consider a slightly generalized ¢ = 2 R 4.4

case[17], in which B, is chosen to alternat&,==*b, on T " '

even and odd sublattices. This means to choose a represen-

tation with m=N/2+b rows on even sites ald—m=N/2  among theU(N)-equivalento= o states that minimize the

—b rows on odd sites, which gives a pair of conjugate rep-nearest-neighbor action. It is not hard to sh@ee Appendix

resentations otJ(N). In view of Eq.(3.17, we can substi- A) thate’ is minimized foro=y,®1. This is a condensate

tute c— — o on the odd sites and thus have identical mani-that is symmetric under the vector generattg=1o\?

IV. ZERO DENSITY

"TheB’ term from Eq.(2.19 indeed disappears. We have dropped °Note that the kinetic term is pure imaginary.

an additive constant that is independenBof 1%This classical Hamiltonian is ferromagnetic; the antiferromag-
8This is correct only ifU is of the form given in Eq(3.12, and in  netic nature of the quantum Hamiltoni&B.21) is preserved by the
that caseJ cannot be integrated over all &f(N). alternating signs in the time-derivative term.
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but not under the axial generatoys®\?, and thus it breaks the index» as the compoundd|, +) with «=1, ... m(N

the chiral symmetry to the vector subgroufU(N;)y
xXU(1)g.

—m) and thex corresponding to the eigenvalue ©f Since
the originall 7 are real, we have

a+ —la—
B. 1/N. corrections (Fem)x=1e. (4.19
Returning to the nearest-neighbor theory, we considefhus we eliminatd“~ and write
fluctuations around the,= A minimum of S. First we res- N
caler—27/N; in _order_tq put the kinetic and potential terms S=5,+ _cf dTE (1) Im 18+% g o+
on an equal footing, giving 8 n
_Nefer S n t J St a2
8—7 Odr -2 (—=1)"TrAU,9,U, +§ - ||n+,1_|n 7. (4.13
J E ) The alternating sign in Eq4.13 is what makes the
2 ~ Tronon g, (4.9 theory antiferromagnetic. It forces us to differentiate between
even and odd sites, and we transform to momentum space as
with 8=N.B/2. Recalling Eq(3.12, we can write follows (dropping the+ superscript
a Aik-n
Up=e", (4.9 2 1€ n even,
. . " ) . . . In= N_; | eik'(n*i) n odd (4.14
whereA,, is anti-Hermitian and anticommutes with. It is s 2k '

more convenient to work with the Hermitian matrix The even sites comprise an fcc lattice with lattice constant 2,

L.=2A A (4.7) and the moment& take values in its Brillouin zone. We
o obtain
in terms of which we expand N | \a
_ _¢ * *\ @ 1
p=A+Ly— 3L2A. 4.9 S=S+g 2 de('l '2)kM(k)(|2)k' (419
If we further expandL, in the basis of generators af(N), Here
_ Jd—9, —Jdy(k)
L, 2,7 17M 7, (4.9 M= (4.16
Jdy(k) Jd+4,

we find that thel 7 corresponding to generators &f(m)

X U(N—m) vanish; this is the subgroup under which the e Gayssian path integral over theld now gives the
vacuum is symmetric. The field, thus contains &(N free energy,

—m) real degrees of freedom, corresponding to the Gold-

and y(k)=(1/d)Z , cosk,,.

stone bosons. N 1 Ew(k) Jd
We expandJ,, and o, in powers ofL,; using Eq.(4.9), F=Fq+ m(N—m)?C > | Zlog| 2 sinh——| - =
we obtain to second order kK B
(4.17
NC (_ l)n ’ ’
S=5p+ 7f dr> g C" 717 where w(K)=dIN1— »?(k) and Fo=
n

—1JdNNy(N./2)?. For the ground state energy, we tgBe

J —o and obtain(restoring all constants
g2 (In+;¢—|n>2} (4.10 ,
s N, 1 m(N—m)
Eo=—JINNd| = | |1+ — ———
The coefficient matrix is 2 Ne N
, / dk\d
cnm :Tr(A[M TM7 ]), (41]) XJBZ E) (1- /1_,}/2(k))} (4.18

and the classical energy is

This is exactly the result of SmjtL7]. The O(1/N.) correc-
tions lift the degeneracy of the ground states with different
values ofm. The integral in Eq.(4.18 is positive and its
coefficient contains the number of Goldstone bosons. Thus
C is antisymmetric and purely imaginary; we show in Ap- the state of lowest energy is that witl=N/2, and the sym-
pendix B thatC has eigenvalues 1, each with degeneracy metry breaking scheme idJ(N)—U(N/2)XU(N/2). Fur-
m(N—m). We change basis so as to diagonalze&nd write  ther breaking by the NNN terms was discussed above.

c

J 2
SOI - E(?) NNSdﬂ
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? A= o0 ) (5.4)

0 - 1N—mi
1 m The N.—¢e limit is the classical limit, in which we seek
2 values ofa , that minimizeH(o?). A global U(N) rotation,
viz.,

- 3

O'i—>V0'iVT, (55)

FIG. 3. TwoU(N) spins in different representations. can be used to diagonalizg so thato;=A ;. Now we have
to minimize TrA ;0. The case of conjugate representations,
V. NONZERO BARYON DENSITY m,=N—m;, is easy:o, is a unitary rotation ofA,, which

The zero-density theories considered in the preceding seéln this casg can be rotated into- A;. This is the unique
tion were defined by selecting representations wittand ~ antiferromagnetic ground state; ando, can be copied to
N—m rows on alternating sites. For amy, this led to as the odd and even sublattices of an infinite lattice to give the
model with identical degrees of freedom on all sites—afterclassical Nel state considered in the preceding section.
redefinition of the spins on the odd sublattice—and ferro- The casem;=m,=m is more complex. We considen
magnetic couplingd! We eventually settled om=N/2 as >N/2 for definiteness; the other case is similarly handled.

. . . . 2
the background that gives the ground state of lowest energyVe Write explicitly"* [from Egs.(3.10)~(3.12]
Introducing nonzero baryon density means changiran

some sites of the lattice. Since in general there will be rep- cog2yaah) - sin(2ya'a)
resentations on different sites that are not mutually conju- Jata
gate, different sites will carry variables that do not live in 0= . . (5.9
the same submanifold df(N). We here limit ourselves to sin2ya'a) .

. - . . ——a —cog2ya'a)
the simpler case of uniforrm, where adjacent sites carry [aal

identical spins—but the coupling antiferromagnetic
In order to learn how to work with such a theory, we a'a is a square matrix of dimensioN—m and aa' is a
begin by studying the two-site problem. The results of thissquare matrix of dimensiom. Sinceo, is a rotation ofA,
study will lead directly to aransatzfor the ground state of a
lattice with a fixed density of baryons. 2m—N=Tro,=Trcog2\aa’)—Trcog2aa),
(5.7

A. The two-site problem .
wo-ste p and hence the energy is

1. Classical solution

2
Consider, therefore, two sites with quantum spgihsand E= £<&) TrAo (5.9
Q, that carry representations Bf(N) with m; andm, rows, 212
andN. columns(see Fig. 3. N\ 2
The quantum Hamiltonian is :J<7c [Trcog2aTa)+ 2m—N]. (5.9

H=JQ7Q7, (5.
E is minimized when all the eigenvalues afa are equal to
an antiferromagnetic coupling. The corresponding classicatr?/4. This means that thid—m column vectorsy form an

o model has the interaction Hamiltonian orthogonal set irm dimensions, with
J[Ng\? t m\?
H(O’):z(?) Tro,0,, (5.2 a -a= 5 Sij - (5.10
where Sincem>N-—m by assumption, such a set of vectors can
always be found.
_ T i fae (2 : _
oi=UjAU; . (5.3 Sincea'a=(7/4)1y_, We have sin(2a'a)=0 and so

the off-diagonal blocks of E(5.6) vanish. The lower-right

The twoA matrices reflect the different valuesof accord-  block of o is the unit matrixly_,. We know that ¢)?

ing to =1 sinceA?=1 and thus the upper-left block must have
eigenvaluest 1. Equating traces af, and A, we find that
the upper-leftmxXm block must take the form

UThe (—1)" factor in the kinetic energy retained information
about the antiferromagnetic nature of the quantum problem; it did
not affect the classical analysis. 12This generalizes a parametrization found4d].
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| I R R B
[ I O |
Fel-4 -+
AN
bo-d-b-
M=y mAmymt (5.1)
where
12m—N 0
AM = 5.1
( 0 . (5.12

and UM eU(m). o™ represents the cosét(m)/[U(2m
—N)XU(N—m)].
We conclude that the classical ground state of BwsO

X FIG. 4. Coupling two spins in
! a 7-row representation dfJ(12)

! to the representation with minimal
! Casimir operator.

J
H=>[(Q:+Q2)*-Qi-Q3l. (5.14

Qi and Q% are constants, the quadratic Casimir operator in
them-row, N.-column representation &f (N). The first term
in Eq. (5.14 is minimized by couplingQ,; and Q, to the
representation that minimizes the Casimir, which is the rep-
resentation with Bh— N rows andN, columns(see Fig. 4.
The ground state has discrete degeneracy equal to the dimen-
sion of this representation.

The exact quantum solution naturally shows no sign of

two-site problem is degenerate, even beyond breaking thg,,ntaneous symmetry breaking and hence it is not of much

overallU(N) symmetry. The solutions can be written as

1, O
"1:A1:(0 ~ 1, )
—-m

oM 0
72700 1y,

[to which a globalU(N) rotation can be appligdA particu-
lar instance ofe(™ is A(™, given by Eq.(5.12. The sym-

(5.13

metry of the vacuum is the set of rotations that leaves both

o, and o, invariant, namely, U(2m—N)xXU(N—m)

XU(N—m).

2. Quantum fluctuations

relevance to the infinite volume problem. More interesting is
the problem where the state @ is fixedandQ, is allowed
to vary. This breaks by hand the glok&{N) while allowing
guantum fluctuations to lift any remaining degeneracy in the
relative orientation of the two spins, so it can be regarded as
quantization in the presence of spontaneous symmetry break-
ing. In effect, this is mean field theory.

We replace the Hamiltonia(s.1) by

N2

HYF=3 2, (Q7)Q7. (5.19

To minimize the energy we maximize the mean field by
choosing the state dp; to be the highest-weight state. This
state diagonalizes the generatbksof the Cartan subalgebra
while other generators @f (N) have expectation value zero.

The classical solution of the two-site problem will guide Thus
us in approaching the problem of an infinite lattice below.
We expect that spontaneous symmetry breaking will give a
vacuum of the same character, with continuous degeneracy.
There are, however, two kinds of degeneracy in the two-site
problem: that which results from breaking the glob&IN)  The operatordd; all commute, and their eigenvalues make
to U(m) X U(N—m), and that which comes of breaking the up the weight diagram of the representattdmiF is a dot
U(m) subgroup toU(2m—N)XU(N—m). The latter de-
generacy is connected with freedom in choosing the orienta=———
tion of o, relative too. Itis instructive to see how quantum  L3viore precisely, the weight diagram shows eigenvalues of the
mechanical fluctuations lift the classical degeneracies. N—1 traceless diagonal generators ®E(N). These can be ob-
The quantum two-site problem is easy to solve. We retained by isolating th&J (1) member of the sé; and taking linear
write the Hamiltonian(5.1) as combinations of the rest.

N

HMF:321 (Hy)Ho; . (5.16
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manifold. A mean-fieldansatzfor the even spins, as noted in
the discussion of the two-spin problem, will still leave a
discrete degeneracy for the odd spins; the symmetry break-
ing scheme will depend on how the odd spins are allocated to
the available states. Furthermore, one can contemplate mak-
ing a nonuniformansatzfor the evenspins as well, reducing
the phase space available for odd spins with unequal neigh-
bors but adding entropy on the even sublattice. The situation
FIG. 5. Weight diagram foN=3, m=1, N.=2 [the sextet of is reminiscent of that in the antiferromagnetic Potts model
SU(3)]. Thehighest-weight state lies at the top of the triangle; all [45], the phase structure of which is not yet understood.
states at the base minimiz¢"'. All values of N, give the same This Potts-like discrete degeneracy, however, is an artifact
triangular shape, with multiplicity of one along the boundary. Theregf the mean-field approach that, like the classiaabatz
are Nc+1 states at the base. Fdf=4 the triangle becomes a assumes a fixed state for the spins on the even sites. An
tetrahedron, and there arbl{+1)(N.+2)/2 states at its base. essential difference between owr model and the Potts

. . . model is that our degrees of freedom are continuous and will
product of the weight vectors of the two spins. The energy iy oy ate as soon as they are allowed to do so. A given odd

minimized by choosing foQ, a state that lies opposite the i il not be surrounded by a uniform fixed background;
highest-weight state in the weight diagram. As shown in théq neighboring even spins will be influenceddytheir odd
example of Fig. 5, this still leaves a degeneracy, albeit ggjghiors, and will induce an interaction among the odd
discrete one. We stress that this degeneracy comes from fregs;n that makes them rotate together. This should reduce the
dom in the relative orientation @, andQ,; itremains after gniropy of the ground state to zero. The systematic way to
quantum fluctuations lift the continuous degeneracy of the,q this effect is to carry out aN{/ expansion around the
classical system. , _classicalansatz which we do in Appendix C. The result is a

In the No— limit, the discrete degeneracy becomes in-fe romagnetic interaction among the, on the odd sites.

finite and presumably it _is well described by the continuousr, ;s the ground state turns out to be the two-site solution,
degeneracy of the classical problem. replicateduniformly over the lattice:

A4

B. Infinite lattice o,=A, n even,

At N.=2 we seek the saddle point of the action, which (m)
we assume to be a time-independent configuration. The clas- | 0 dd (5.20
sical Hamiltonian of ther model is In 0 1y_n/’ n odd '
He J S Troo.. : (517 where M =UMAMyMT js 3 global degree of freedom.
255 et ' The symmetry group of the vacuum $(2m—N)xU(N
—m)XU(N—m).
Seeking an antiferromagnetic ground state, wesget A on

the sublattice of even sites. The odd sites are then governed VI. SUMMARY AND DISCUSSION

by
Let us summarize the results presented in this paper. In
Hodd— 34 TrAo. . 5.1 the vacuum sector,' we have redenveq Smit’s result for the
nEO:dd 7n (.18 lowest-energy configuration of alternatifgy,= = (m—N/2)

sites. The result is indeeld,=0; the U(4N;) symmetry of
This is just the two-site problem studied above, replicatedhe nearest-neighbor theory is spontaneously broken to
over the lattice. As we saw above, the ground state configug(2N,)x U(2N;). We extended this result to the NNN-
ration is degenerate with respect to the configuration at eaclheory and found that its) (N;) X U(N;) chiral symmetry is

odd site, broken to the vectolJ(N;) flavor subgroup. Adding net
(m) 0 baryon number to the system, we examined the case of uni-
_[9n form baryon densityB,,=m—2N;>0. Here our study was
On . (5.19 . . ,
0 Iy limited to the nearest-neighbor theory, and we found alNe

like ground state that breakd(N) to U(2m—N)XU(N
A uniform choice for the odd sites;{™ =A™ for instance, —m)xU(N—m). The number of Goldstone bosomgg
breaks the U(N) symmetry to U(2m—N)XU(N—m)  thus depends on the baryon dendity as
X U(N—m); a nonuniform choice can break the symmetry
all the way to U(N—m). The entropy of this classical Nee=2(3|B,|—10N;)(6N;—|B,|). (6.1
ground state is evidently proportional to the volume.

As noted for the two-site problem, the continuous degen- Directions for future work begin with adding NNN inter-
eracy of the ground state is an artifact of the classidgl, actions to thé8>0 theory and extracting from it a prediction
—oo limit. Quantum fluctuations will spread each odd spin’s for the breaking of the continuum-like chiral symmefijhe
wave function over theU(m)/[U(2m—N)XU(N—m)] axial U(1) symmetry can be broken by hahénother di-
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rection is to gain greater freedom in fixing the baryon den-¢’ occurs when ali-” are zero except those corresponding to
sity. A constant value oB,>0 means a baryon density that A, =—3, namely, those foM 7=BRN2=pl®\% and M7

is close to the maximum allowed on the lattice; the density= 8ys®\3=p?®@\?; the energy is independent of thasé.
can be lowered by setting,,# 0 only on a sparse sublattice, Thus the set of solutions can be written in the form

along the lines shown ifil4]. An ultimate goal, as for the

Hubbard model, is the incorporation of the third-order term 0 0 uU o
in the effective Hamiltonian in order to have a theory with 0O O O U pl+ip? pl—ip?
dynamical baryons. Perhaps an instructive half-measureoy= U 0o o ol° 2 ®U+ 5 VAR
would be to study the second-order theory in the presence of
a disordered baryon background. 0 U o o

The strong-coupling effective theory can be regarded as a (A2)

QCD-like model, possessing gauge invariance and the cor- , 2 .
rect degrees of freedom. In that case the lattice spacing f2ec@lling t,hat‘fo_]",r we haveUU'=1, soUeU(Ny). A
merely a parameter, an overall scale. More insight can bghiral rotationoo—V'ooV, with

gained by considering the strong-coupling theory to repre- Uu 0 o
sent QCD at large distances, derived by some
renormalization-group transformation from a weak-coupling u
short-distance Hamiltonian. On the one hand, one would ex- Y= | 9 o
pect any such effective Hamiltonian to contain many terms

of great complexity; on the other hand, a simple lattice 0
theory such as ours might offer a qualitative approximation (A3)
to the real theoryas long as one accepts the loss of Lorentz ;s o, into pt=1y,, which is invariant only under vector
invariancg. We can estimate the lattice spacing to be somg;nsformations generated g \2.

scale at which the running QCD coupling is large, certainly
greater than the radius of a proton. The limitation that the
lattice puts on the density then becomes a physical issue.
Taking the lattice spacing to be on the order of 1 fm, the To analyze the matrice€ andD,,, given by Eqgs(4.11)
highest baryon density allowed by the lattice is2fm™ 3. and (C18), we begin with theU(N) generatorsM 7 that lie
For low values ofN¢ this may not be enough to see finite- outside the subalgebta=U(m)x U(N—m) that commutes
density phase transitions, in particular a transition to colofyith

superconductivity. Perhaps a way out is to consider an un-

physically large number of flavors. <1m 0 )

0 —1y-m .

o

1 1
=§(1+p3)®U+ E(1—,03)®1,

= O O o

0
1
0

o
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under Grant No. 222/02-1. commutator [MP92 MP'9'2'] Jies in H; in order for

Tr(A[MP92 MP'9’2']) to be nonzero, the commutator must
APPENDIX A: MINIMIZING THE have a nonzero component in the Cartan subalgebtd. of
NEXT-NEAREST-NEIGHBOR TERM This is only possible ia#a’ and (p,q)=(p’,q’). Thus in
this basisC takes the form

1
(Mpql)fg: §(5pf5qg+ 5p95qf)r (B2)

Thes/ signs are defined only when the’ are written in

the basisM7=T"®\?=p*® cP@\?. We choose a chiral 0 1
basis for the gamma matrices, so that= p°, ;= p3c', and C=i mN=m)) (B4)
B=p'. The energy4.4) is a sum of squares, —Inn-m) 0
DiagonalizingC gives eigenvalues 1. The generators cor-
€ =2 A,?(o”)2, (A1) responding to the basis that diagonalizzare
n
(MPH) (= (MPIHIMP®) = 5,054+, (B5)

with the constraintEﬂ(a”)zz N/2. The coefficientsA,
=3 ,s% take on the value$—3,~1,1,3,. The minimum of (MPA7) (= (MPI—iMP®) = 5,544 (B6)
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As for D: The only anticommutators among théP9=
that do not vanishinote the bounds onp(q)] are between

MPI* andMP'9" ~, viz.,
{MPI* M p’q'f}fg: Sqq OptOprgt Oppr OqrtSqg- (B7)

Noting that MP9~=(MPI")T we find thatD, takes the
block-diagonal form

ngt,p’q’t: -> Tr[{(MquT’Mp’q“’}
m(n)
(m)
o 0
x| ™ ) (B8)
0 —Iyom
=84 2> (=)0 . (B9)
m(n)
We summarize this by writing
P B10
- 0 En ® N—m» ( )
whereE,, is anmXxm matrix given by
En=2 (In=af"). (B11)
m(n)

It is easy to prove that the eigenvalueskofange from O to
4d. In particular,D is positive.

APPENDIX C: 1/N, CORRECTIONS TO THE B#0
PROBLEM

We build on theN =« vacua described in Sec. V by

allowing fluctuations around them. We let thg on the even
sites fluctuate around; we let the o, on odd sites roll
freely around theJ (m)/[U(2m—N) X U(N—m)] manifold

PHYSICAL REVIEW D68, 034501 (2003

Here aﬁzEm(n)am, wherem(n) are the nearest neighbors
of the even siten. We expand the field on the even sites

aroundo,= A in the manner of Eq(4.8),
1
on=A+Ln—§L2A (n even, (C2
while for the odd sites we writésee Appendix D
12m—N 0
= 1 i
on=Unl SAT LS LA Un  (n 0dd),
(C3
with
Inom 0
S A
and
ulm o
U,= : (CH
0 1N—m

L, describes the fluctuations of the even spins around their

classical value\. U, rotates the odd spins within the mani-

fold of their classical values, while; describes their fluc-

tuations outside that manifold. We further define

d_yy (12mN 0 )UT:<UE1m)
n 0 —A’ n 0

o=

1Nm>’ .

the classical field on the odd sites.
We leaveS®® alone and expan8®®"and S*F around the
classical values of the fields,

covered by Eq(&_3.19), and also execute small oscillations off qever_ _ 1
the manifold into the U(N)/[U(m)XU(N—m)] coset

space. Our goal is an effective action for the classical part

(5.19 of the odd spins. To reach this, we integrate out the f

dr >, TrAL.d,L,,

n even

(C7)

drz

n even

J
even spins; the off-manifold fluctuations of the odd spins SAF=S,+ =

1 — _
=TrL2Ao,—Tr LnLn)
must be included for consistency in theNl/expansion.

(Tr Laon— 5

The counterpart of the actidd.5) for our problem has an 1
antiferromagnetic spin—spin interaction, with ne 1)" fac- +de dr >, ( —TrAL,+ ETr Lﬁ) (C8)
tors. We separate it into odd, even, and coupled terms, n odd

S= &(SOdd‘F geven SAF) Here
2 1
- 0 O )
L,=U, 0 L U, (C9)

s°dd=f dr >, TrAU!9.U,,
n odd
is the rotated fluctuation field on the odd sites, and the Her-

Seven_f dr TrAUL?TUn, mitian matrice&rn andL, are sums over the odd neighbors
n”“even of the even site,
= f dr >, =Trono® (C1) o=, 0%, (C10
n even m(n)

034501-14
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— ~ where M, is themx m matrix

Ly=> L. (C1D)
m(n) 1
. — . . . Mo=7 (3,4 JEy). (C20
Since botho, and A are block diagonal, the first trace in 4
each integral in Eq(C9) is zero. - _
Now we organize the partition function as follows: The quantities? (and!9) for eachq=1, ... N—m are com-
plex m-component vectors; they are rotations of tha(Rl
f H do- lexd — —¢| godd, 1S, —m) real components” (and| ”) into the basis that diago-
modd " nalizesC. The matrixE,, is given by Eq(B11); it carries the

dependence oEn. Performing the Gaussian integration we

dJ ~
+—= f dr >, TrL2||Zeven (c1y  get
2 n"odd
1 Ng(J\? e
i — - 1z af o4—11q
with Zeveri ]n! Det/\A/lnexF{ 5 (4) fdrln M, In}.
(C21
Zeyeri f( H dl—n) F{ ZdeE ) ] )
n even n even Finally we separate the integréC12) over the odd spins
1 J ] - into an integral over the classical fiete!’ and an integral
X| = ZTrALno’!TLn— ZTr L2Ao,— ETr LnLn”. over the fluctuations around it. We obtain
(C13 7= f Dol exp— | so+(N-m) 3 Triog i1, )
Zovenis a product of decoupled single-site integrals. Again
we expand in the group algebra, dJ ~
P grotip &g XJ m €XP— [S"dd+Jdr{72 42
L,=1M7, (C14 mq
N — o —
where the sum is over thenﬁ?(N—_m) generators ofJ(N) — Z) % IﬁT/\/lnllﬂH. (C22

that are not inJ(m) X U(N—m). L, can be expanded simi-
larly and we obtain the following form for the integral over farem stands for an odd sitey for an even one.

the even fields: Equatlon(C22) gives an effective action for the classical

N, J odd Spll’lSa’ . These enter the exponents throud [via
Zeven:f D|neXF{ JdTE ('"M"” 17+ +ld .?7” Egs. (B11) and (C20)] and throughl 9 [via Egs.(C9) and

(C12)]. The action in the first exponent is minimized when
(C19 each matrixEn((rﬁD has the largest number of zero eigenval-
where ues, each of which makes Tr ldgf,, approach— . It is easy
to check thate,, has zm N zero eigenvalueghe maximal
M,’,”"Z _ %Cnn’aTJr %Dr’{”’ _ (C16 numbej when thea on all the odd sitesn(n) align, i.e.,

cl _ — —
The matrixC is the same as in Eq4.11), Tn= 0o UM/UEM=N)XU(N=-m)]. (C23

’ ’ SR I
C7 =Tr(A[M7,M7']), (C17) Moreover, when Eq(CZS) holds, all thel s align parallel
to each other andl} is maximized; also the eigenvalues of
while the new matrixD varies with the siten according to 4! are maximizedto + ). Thus the action in the second

the averager, of its neighboring spins, exponent also has a minimum at this point in configuration
, . space. These effects add up to an effeci@gomagnetic
D" ==Tr{M",M " Aay). (C18 interaction among the®nearest neighbons of each even

siten. This effective interaction will align the classical spins
We study the two matrices in Appendix B. DiagonaliziBg on the odd sublattice to the same direction in their submani-
as before, we arrive at fold, U(m)/[U(2m—N)XU(N—m)].
The divergences in the effective action have their origin in

N, TN
Zeven‘ln_c[, U’ DI exp~ 2 f d) 1% Ml Gaussian integrals in the even fluctuation fielgs and the
coefficient matrixM, acquires zero eigenvalues. The correct
+£(|qa@+ﬁ1lq)“ (C19 range of integration ovetk, is of course not infinite, but
4 noon ' rather the volume of thé&J(N)/[U(m)XU(N—m)] mani-

034501-15
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fold. This will regulate the divergences, but leave the effec-

tive action for the odd spins attractive.

APPENDIX D: FLUCTUATIONS ON THE ODD SITES

PHYSICAL REVIEW D68, 034501 (2003

0
a=um|_|.
a

(D6)

The 2(N—m)? degrees of freedom im complement the

In the classical analysis, the fields on the odd sites tak&(N—m)(2m—N) degrees of freedom inherent (™ to

values in the submanifolt (m)/[U(2m—N)XU(N—m)]
of the manifoldU (N)/[U(m) X U(N—m)]. We denote these

valueso®,

0'C|=(U(m) ° ) (D1)

0 Iy-m

Here

oM =y mA Mym*t (D2
with U™ e U(m), and

lom-n
A(m>:( 0 _1N_m). (D3)

o™ contains 2l —m)(2m—N) independent degrees of
freedom. Anyo e U(N)/[U(m) X U(N—m)] can be written
as

cog2./aa’) —a—Sin(Z\/Era)
a (D4)
0-: .
- —sm(jg\/éra) al  —cog2afa)

[cf. Eq. (5.6)], which coincides with Eq(D1) if

(D5)

Recall thata is anmX (N—m) matrix, so the zero block has
dimensions (Bn—N) X (N—m).

We allow motion out of the submanifold by allowiragto
vary further,

give 2m(N—m), the dimensionality of the entire
U(N)/JTU(m)XU(N—m)] coset space.

Writing o with the generalizeé we have

Lom-n 0

0 cog2Vaa') -

0
_sin(2Va'a)

o=U Va'a ut,
sin(2\/a;f§)_T _
———F——a' —cog2Va'a)
Va'a
(D7)
with
um o
= . D
v ( 0 1N—m) ( 8)
We can also write this as
_ 12m—N 0
o=Ul ol2(N-m] (7 3T (09)

ol?N"Mlis a matrix in the manifoldJ (2(N—m))/[U(N
—m)XU(N—m)]. Indeed fora=(m/2)1y_,, Wwe have

- 1me O _—
[2(N-m)] — =—A. D10
d ( 0 1Nm) (010
Since U(2(N-m))/[U(N-m)XU(N—m)] is a self-
conjugate manifold, its structure neaP(N~™I=—A is the

same as its structure nea?™~™I1= A, which corresponds

to a=0. Expandingo2N~™1 around— A gives Eq.(C3).
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