
v, Israel

PHYSICAL REVIEW D 68, 034501 ~2003!
Lattice gauge theory with baryons at strong coupling
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We study the effective Hamiltonian for strong-coupling lattice QCD in the case of a nonzero baryon density.
In leading order the effective Hamiltonian is a generalized antiferromagnet. For naive fermions, the symmetry
is U(4Nf) and the spins belong to a representation that depends on the local baryon number. Next-nearest-
neighbor~NNN! terms in the Hamiltonian break the symmetry toU(Nf)3U(Nf). We transform the quantum
problem to a Euclidean sigma model which we analyze in a 1/Nc expansion. In the vacuum sector we recover
spontaneous breaking of chiral symmetry for the nearest-neighbor and NNN theories. For a nonzero baryon
density we study the nearest-neighbor theory only, and show that the pattern of spontaneous symmetry break-
ing depends on the baryon density.
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I. INTRODUCTION

The study of quantum chromodynamics at high density
almost as old as the theory itself@1#. In recent years the field
has attracted wide interest in the wake of a revival of the i
of color superconductivity~CSC! @2,3#. The stimulus for this
revival was the observation@4,5# that the instanton-induce
quark–quark interaction can be much stronger than that
duced by simple one-gluon exchange, and can thus giv
transition temperature on the order of 100 MeV. Subsequ
work @6# showed that the perturbative color-magnetic int
action also gives rise to a strong pairing interaction.

These and other dynamical considerations@7# underlie a
picture of the ground state of high-density QCD in which t
SU(3) gauge symmetry is spontaneously broken by a BC
like condensate. The details of the breaking, which inclu
both the Higgs~or Meissner! effect and the rearrangement
global symmetries and Goldstone bosons, depend on q
masses, chemical potentials, and temperature. Promine
the list of possibilities are those of color-flavor locking
three-flavor QCD@8# and crystalline superconductivity—
with broken translation invariance—when there are two
vors with different densities@9#. For a review see@10#.

As noted, CSC at high density is so far a prediction
weak-coupling analysis. One expects the coupling to beco
weak only at high densities, and in fact it turns out th
reliable calculations demand extremely high densities@11#.
The use of weak-coupling methods to make predictions
moderate densities is thus not an application of QCD, bu
a model based on it. It is imperative to confirm these pred
tions by other methods and other models. A true lattice ga
theory calculation, constructing QCD at finite density fro
first principles and allowing a continuum limit, would o
course be best of all. Standard lattice Monte Carlo metho
unfortunately, fall afoul of well-known technical problem
when the chemical potential is made nonzero, although
do note remarkable progress made recently in the smam
regime@12,13#.

In this paper we initiate a study of high-density qua
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matter based on lattice QCD in the strong-coupling lim1

The lattice cutoff here is indispensable, and no continu
limit is contemplated. We regard the cutoff theory as a mo
that contains the ingredients of true QCD—local gauge
variance, fermions with color and flavor—and shares its o
standing infrared properties, viz. color confinement a
spontaneous breaking of chiral symmetry.

We work in the Hamiltonian formalism, which is mor
amenable than the Euclidean formalism to strong-coup
perturbation theory and to qualitative study of the ensu
effective theory@15–18#. The fermion kinetic Hamiltonian is
a perturbation that mixes the zero-flux states that are
ground-state sector of the electric term in the gauge Ham
tonian. In second order, it moves color-singlet fermion pa
around the lattice; the effective Hamiltonian for these pairs
a generalized antiferromagnet, with spin operators c
structed of fermion bilinears.

We depart from studies of the vacuum by allowing
background baryon density, which is perforce static in s
ond order in perturbation theory. Our aim at this stage is
discover the ground state of the theory with this backgrou
In third order~whenNc53) the baryons become dynamica
we display the effective Hamiltonian but make no attempt
treat it.

The symmetry group of the effective antiferromagnet
the same as the global symmetry group of the original ga
theory. This depends on the formulation chosen for the lat
fermions. Following@16#, we begin withNf copies of naive,
nearest-neighbor, four-component fermions. These su
from species doubling@19# and possess a globalU(4Nf)
symmetry group that contains the ordinary chiral symmetr
@as well as the axialU(1)] as subgroups. We subsequent
break the too-large symmetry group with next-neare
neighbor ~NNN! couplings along the axes in the fermio
hopping Hamiltonian. A glance at the menu of fermion fo
mulations reveals the reasons for our choice. Wilson fer
ons @20# have no chiral symmetry and make comparison

1An early discussion of our program, with early results, was giv
in @14#.
©2003 The American Physical Society01-1



g-
ia
h
e

-
r-

ts
te
o

he

ia

n
nd
rt

he
o

ith

o

ng
rro
m
um

n

-

m
e

re

lin
n-

a
i-

il-
io

to
ch

c; it

ng

are
mu-
ive
of

m
he
the

or

ew
for
ss
ver
of

he
o-

for
gen-

g

tive

n a

e
d

e

-

g

B. BRINGOLTZ AND B. SVETITSKY PHYSICAL REVIEW D68, 034501 ~2003!
results to continuum CSC difficult if not impossible. Sta
gered fermions@21# likewise possess only a reduced ax
symmetry while suffering a reduced doubling problem. T
overlap action@22# is nonlocal in time and hence possess
no Hamiltonian; attempts@23# to construct an overlap Hamil
tonian directly have not borne fruit. Finally, domain-wall fe
mions@24,25# have been shown@18# to lose chiral symmetry
and regain doubling when the coupling is strong.

As we discuss below, while the NNN theory still exhibi
doubling in the free fermion spectrum, we are not interes
in the perturbative fermion propagator but in the spectrum
the confining theory. It is essential for our model that t
unbroken symmetry is nowU(Nf)3U(Nf), since this is the
symmetry of the continuum theory—except for the ax
U(1). Thelatter can still be broken by hand.2

Our emphasis on the global symmetries is a conseque
of the fact that the gauge field is not present in the grou
state sector and does not reappear in strong-coupling pe
bation theory. In other words, confinement is akinematic
feature of the theory, leaving no possibility of seeing t
Higgs–Meissner effect directly. This is but an instance
confinement-Higgs duality, typical of gauge theories w
matter fields in the fundamental representation@28#. Our aim
is thus to identify the pattern of spontaneous breaking
global symmetries. For various values ofNc andNf , this can
be compared to weak-coupling results@29#.

This paper is largely an exposition of formalism, alo
with partial results. We study the nearest-neighbor antife
magnetic Hamiltonian, both with and without a unifor
baryonic background density. We transform the quant
Hamiltonian into a path integral for a nonlinears model,
where the manifold of thes field depends on the baryo
background. We then investigate the limit of largeNc and
show that the globalU(4Nf) symmetry is indeed spontane
ously broken.

Adding in the NNN couplings is a problem of vacuu
alignment@33#. We do this in the vacuum sector and recov
the result@16# that theU(Nf)3U(Nf) chiral symmetry is
broken to the vectorU(Nf). The analysis for the finite-
density theory is more involved and we defer it to a futu
publication.

Other groups have recently studied the strong-coup
effective Hamiltonian for naive and Wilson fermions at no
zero chemical potential@30–32#. We differ from their ap-
proaches in eschewing mean field theory in favor of the ex
transformation to thes model, which is amenable to sem
classical treatment. As noted above, we base our program
NNN fermions; we also work at fixed baryon density.

In Sec. II we review the derivation of the effective Ham
tonian of lattice gauge theory in strong-coupling perturbat
theory @16,17#. The second-order Hamiltonian@O(1/g2)# is
an antiferromagnet withU(4Nf) spins; the global symmetry
group isU(4Nf) for the nearest-neighbor theory, broken
U(Nf)3U(Nf) by NNN terms. The baryon number at ea

2The breaking of the naive fermions’ symmetry by longer-ran
terms is a feature@16# of SLAC fermions@26# and also occurs if
naive fermions are placed on a bcc lattice@27#.
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site determines the representation ofU(4Nf) carried by the
spin at that site. In second order, baryon number is stati
becomes mobile in the next order, where~for Nc53) the
new term in the effective Hamiltonian is a baryon hoppi
term.

The baryon operators responsible for the hopping
composite operators that do not obey canonical anticom
tation relations. If this were not the case, then the effect
Hamiltonian in third order would strongly resemble that
the t –J model @34#,

Ht2J52t(̂
i j &
s

cis
† cjs1J(̂

i j &
S Si•Sj2

ninj

4 D1J 8. ~1.1!

Here cjs is an annihilation operator for an electron at sitej
with spin s, and the number operatorsni5ci

†ci and spin op-
eratorsSi5

1
2 ci

†sci are constructed from it. The added ter
J8 is a more complicated hopping and interaction term. T
t –J model describes a doped antiferromagnet; it arises as
strong-binding limit of Hubbard model, a popular model f
itinerant magnetism and possibly for high-Tc superconduc-
tivity. The model is not particularly tractable and, absent n
theoretical developments, does not offer much hope
progress in our finite-density problem. It is nonethele
worth pondering the fact that a model connected, howe
tentatively, with superconductivity appears in a study
high-density nuclear matter.

In the remainder of this paper, we work only toO(1/g2),
where the baryons are fixed in position. Motivated by t
similarity of our Hamiltonian to the Heisenberg antiferr
magnet, we apply condensed matter methods developed
that problem. Indeed, condensed matter physicists have
eralized theSU(2), spin-1/2 Heisenberg model toSU(N) in
many representations@34–41#, which corresponds to addin
flavor and color degrees of freedom to the electrons.3 These
are exactly the generalizations needed for our effec
Hamiltonian. WithNc colors andN ~single-component! fla-
vors, a site of the lattice can be constrained to contai
color-singlet combination ofmNc particles. The flavor indi-
ces of the spin then make up a representation ofSU(N)
whose Young diagram hasNc columns andm rows ~see Fig.
1!. We set

N54Nf ~1.2!

and the correspondence is complete~until we include
NNN terms in the Hamiltonian!.

In Sec. III we derive as model representation for th
partition function of the antiferromagnet. Following Rea
and Sachdev@39#, we employ spin coherent states@43# to
define thes field. N andm determine the target space of th
s model to be the symmetric spaceU(N)/@U(m)3U(N
2m)#; the number of colorsNc becomes an overall coeffi

e
3We refer the reader to the paper by Read and Sachdev@39# for a

survey, including a phase diagram in the (N,Nc) plane.
1-2
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cient of the action.4 As for the quantum Hamiltonian, th
nearest-neighbor theory is symmetric underU(N) while the
NNN terms break the symmetry toU(Nf)3U(Nf) ~while
leaving the manifold unchanged!.

TheNc multiplying the action invites a large-Nc analysis,
and in Sec. IV we study the vacuum sector, meaning z
baryon number, thereby. We return to an exercise propo
and solved by Smit@17#, in generalizing the vacuum secto
to allow baryon number6B on alternating sites; this mean
specifying conjugate representations ofU(N) on alternating
sites, with, respectively,m and N2m rows. As shown by
Read and Sachdev@39#, in this situation one can carry out a
alternatingU(N) rotation to convert the antiferromagnet in
a ferromagnet withidentical spins on alternating sites, an
the classical (Nc5`) analysis gives a homogeneous grou
state. The result is, as one might expect, thatU(N) is broken
to U(m)3U(N2m) in the classical vacuum; the groun
state energy is independent ofm. The 1/Nc corrections to the
energy do depend onm, however, and they select the se
conjugatem5N/2 configuration~i.e., B50 everywhere! as
the lowest-energy vacuum. Thus the true ground state br
U(N)→U(N/2)3U(N/2).5 When we add NNN terms to
the action as a perturbation, we find that the ground s
breaksU(Nf)3U(Nf) to the vectorU(Nf), as expected.

We turn to nonzero baryon density in Sec. V. We stu
homogeneous states, in which all sites carry the same re
sentation ofU(N), with m.N/2. The classical vacuum o
the s model is more elusive than for the vacuum sect
since now there are identical manifolds on adjacent sites
the coupling is antiferromagnetic. We begin by studying
two-site problem, and we learn that when one of the class
spins is fixed then when the energy is minimized the ot
spin is still free to wander a submanifold of the origin
symmetric space. If we replicate this to the infinite latti

4The inverse gauge coupling 1/g2 multiplies the quantum Hamil-
tonian, and hence serves only to set the energy scale.

5This result was obtained by Smit using a Holstein–Primak
transformation on the quantum Hamiltonian. We note in pass
that the 1/Nc calculation includes the effect of the time-derivativ
terms in the action that were dropped in the leading order, and t
termsdo remember the difference between the ferromagnet and
antiferromagnet.

FIG. 1. The representation ofU(4Nf) carried by the spin in the
effective antiferromagnet.m is related to the baryon number at th
site according tom5B12Nf , with uBu<2Nf .
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then we have a situation where the even spins, say, are fi
in direction while each odd spin wanders the submanifo
independent of the other odd spins. This means a gro
state whose degeneracy is exponential in the volume, sim
to some frustrated models or the antiferromagnetic P
model@45#. The cure to this disease comes from theO(1/Nc)
fluctuations, which couple the odd spins to each other
make them align. In the end we find that theU(N) symmetry
is broken by the vacuum toU(2m2N)3U(N2m)3U(N
2m). Perturbing this ground state with the NNN terms
technically difficult, and we do not attempt it here despite
obvious physical interest.

We close with a brief summary and discussion. T
O(1/Nc) calculation in theBÞ0 case is relegated to an ap
pendix, as are other~but not all! technical details.

II. THE EFFECTIVE HAMILTONIAN

For anSU(Nc) gauge theory withNf flavors of fermions,
we write the lattice Hamiltonian

H5HE1HU1HF . ~2.1!

Here HE is the electric term, a sum over links (nm) of the
SU(Nc) Casimir operator on each link,

HE5
1

2
g2(

nm
Enm

2 . ~2.2!

Next is the magnetic term, a sum over plaquettes,

HU5
1

2g2 (
p

~Nc2Tr Up!. ~2.3!

Finally we have the fermion Hamiltonian,

HF52 i(
nm

cn
†a fam(

j .0
D~ j !S )

k50

j 21

Un1km̂,mD
ab

cn1 j m̂
b f

1H.c.

~2.4!

The fermion fieldcn
a f carries colora and flavorf at siten.

The functionD( j ) is a kernel that defines the lattice fermio
derivative. It can yield a naive, nearest-neighbor action
D( j )5 1

2 d j ,1 ; a long-range SLAC derivative@26# if D( j )5
2(21) j / j ; or anything in between, such as a NNN actio
obtained by truncating the SLAC kernel to itsj 51,2 terms.

For g@1 the ground state ofH is determined byHE alone
to be any state with zero electric field, whatever its fermi
content,

u0&ux&F5F)
nm

uEnm
2 50&G ux&F . ~2.5!

These states have energye050 and are degenerate with re
spect to all the fermionic degrees of freedom. We consi
perturbation theory inV5HU1HF . Both HU and HF are
sums of operators that are strictly bounded, independentg
except for the explicit coefficient inHU . We can dismiss
first-order perturbations by noting thatHU andHF are mul-

f
g

se
e

1-3
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tilinear in link operatorsU and U†, which are raising/
lowering operators for the electric field; thus there are
nonzero matrix elements within the zero-field sector.

We proceed to higher orders, and seek an effective Ha
tonian that acts in the zero-field sector@42#. DefineP0 to be
the projector onto the subspace of all theE50 states. Then
perturbation theory inV gives an effective Hamiltonian,

Heff5P0VQDVP01P0VQDVQDVP01••• . ~2.6!

HereQ512P0 projects onto the subspace orthogonal to
E50 states; the operatorD[(e02HE)21 supplies energy
denominators, so that

QD5 (
EÞ0 states

ul&
1

e02el
^lu. ~2.7!

The intermediate statesul& contain flux excitations. In
second and third order the patterns of flux can only be stri
of length j in the fundamental representation of the co
group. Thus the energy denominators are

e02el52
1

2
g2CFu j u, ~2.8!
d

nd
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whereCF5(Nc
221)/(2Nc) is the quadratic Casimir of the

fundamental representation ofSU(Nc).
The perturbationsHU and HF are explicitly of O(1/g2)

and O(1), respectively; each energy denominator gives
factor of 1/g2. Thus toO(1/g4) we can forget aboutHU .
Our result to this order is

Heff5P0HFDHFP01P0HFDHFDHFP0 . ~2.9!

SinceHF has no nonzero matrix elements within theE50
sector, we have dispensed withQ in Eq. ~2.9!. The first term
in Eq. ~2.9! arises for any value ofNc and isO(1/g2); the
caseNc52 must be treated carefully, but all casesNc.2 are
generic. The second term is special toNc53 and isO(1/g4).

A. Second order: The antiferromagnet

We calculate explicitly the first term inHeff . Each term in
HF creates a string of flux of lengthj, which must be de-
stroyed by the conjugate term. Thus
Heff
(2)52(

j .0
@2K~ j !#(

nm
~cn

†a famcn1 j m̂
b f

!^0u S) U D
ab

S) U†D
gd

u0&~cn1 j m̂
†gg

amcn
dg!, ~2.10!
ise

lo-
ryon

es

the
where we define

K~ j !5
@D~ j !#2

1
2 g2CFu j u

.0. ~2.11!

The matrix element of the gauge fields yields (1/Nc)daddbg ,
independent ofj.

As they appear in Eq.~2.10!, eachc† is next to ac on a
different site. This invites a Fierz transformation on the pro
uct of fermion fields, which we write generally as

~c i
†amc j !~ck

†amc l !5d jkc i
†c l2

1

4 (
A

sA
m~c i

†GAc l !

3~ck
†GAc j !. ~2.12!

Here i , j ,k,l are combined site, flavor, and color indices, a
we have assumed thatk andl are always different whilej and
k might be equal@as in Eq.~2.10!#. The matricesGA are the
16 Dirac matrices, normalized to (GA)251, and we have
defined

sA
m5 1

4 Tr GAamGAam561. ~2.13!

This sign factor is61 according to whetherGA commutes or
anticommutes witham ; it will be a constant companion in
our calculations. As they appear inHeff

(2) , the indicesi ,l are
-

the same site and color but different flavors, and likew
j ,k. Leaving the flavor indices explicit, we obtain

Heff
(2)5

1

4Nc
(
nm
j Þ0

K~ j !sA
m~c† fGAcg!n~c†gGAc f !n1 j m̂

2d(
j Þ0

K~ j !(
n

~c† fc f !n . ~2.14!

Each fermion bilinear in parentheses is a color singlet
cated at a given site. The second term contains the ba
density6 Bn85Nc

21cn
†cn , and the sum(nBn8 is the total

baryon numberB8.
We now combine the Dirac indices with the flavor indic

and write

~c† fGAcg!n~c†gGAc f !n858~c†Mhc!n~c†Mhc!n8 .
~2.15!

We have defined new matricesMh as direct products of the
434 Dirac matrices and theU(Nf) flavor generators,

6This baryon number is positive semidefinite, and is zero for
drained state~see below!. The conventional baryon numberBn is
zero in the half-filled state, and thusBn85Bn12Nf .
1-4
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Mh5GA
^ la, ~2.16!

and we have normalized them conventionally according

Tr MhMh85
1

2
dhh8. ~2.17!

The Mh generate aU(N) algebra, withN[4Nf .
An alternating flip

cn→F)
m

~am!nmGcn ~2.18!

~spin diagonalization@16#! removes theam matrices from the
odd-j terms inHF , and hence removes the sign factorssA

m

from the odd-j terms inHeff
(2) . We have finally

Heff
(2)5

2

Nc
(
nm j

K~ j !~sh
m! j 11~c†Mhc!n~c†Mhc!n1 j m̂

2S dNc(
j

K~ j ! DB8. ~2.19!

The odd-j terms are of the formM•M which can be written
in any basis for theU(4Nf) algebra. The even-j terms, how-
ever, containsh

m which is defined only in the original basi
~2.16!.

B. Single-site states

In the zero-field sector in which we work, Gauss’ la
constrains the fermion state at each site to be a color sin
The drained stateudr&, with cn

a f udr&50 for all (a, f ), is the
unique state withB850. The other color singlet states ma
be generated by repeated application of the baryon crea
operator,

bf g•••
† 5eab•••cn

†a fcn
†bg

••• , ~2.20!

with Nc operatorsc. ~Here and henceforth, the indice
f ,g, . . . combine the flavor and Dirac indices.!

As noted above, at each siten the operators

Qn
h5cn

†Mhcn5cn
†a fM f g

h cn
ag ~2.21!

generate aU(N) algebra, withN54Nf . The drained state is
obviously a singlet under this algebra. The creation oper
bf g•••

† is in the symmetric representation ofU(N) with one
row andNc columns~see Fig. 2!.

Repeated application ofbf g•••
† to the drained state give

the state

ux&5b†b†
•••udr&. ~2.22!

FIG. 2. Young diagram of the representation ofU(4Nf) carried
by the baryon operator.
03450
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If there arem operatorsb†, then the stateux& lies in the
representation withNc columns andm rows ~see Fig. 1!. Its
baryon number isBn85m.

The second-order effective HamiltonianHeff
(2) preserves

Bn8 , the baryon number on each site. Thus any distribution
Bn8 defines a sector within whichHeff

(2) is to be diagonalized.
In other words, baryons constitute a fixed background
which to study ‘‘mesonic’’ dynamics. The baryon number
each site fixes the representation ofU(N) at that site, which
is the space of states in which the chargesQn

h act.

C. Global symmetries and doubling

The j 51 terms in Eq.~2.19! are of the formQn
hQn1m̂

h ,
and they commute with the generators

Qh5(
n

Qn
h ~2.23!

of a globalU(N) symmetry group. This symmetry is in fac
familiar from the lattice Hamiltonian of naive, neares
neighbor fermions: Spin diagonalization ofNf naive Dirac
fermions transforms the Hamiltonian into that of 4Nf stag-
gered fermions. In the weak coupling limit, there are in fa
8Nf fermion flavors—the doubling problem. This doublin
is partially reflected in the accidentalU(4NF) symmetry,
which is intact in theg→` limit and is respected by the
effective Hamiltonian. Retaining terms in the fermion Ham
tonian~and thus inHeff

(2)) that involve odd separationsj does
not break this symmetry.

The Nielsen–Ninomiya theorem@19# guarantees that an
fermion Hamiltonian of finite range will possess the full do
bling problem. This is a statement, however, about weak c
pling only, since the dispersion relation of free fermions
irrelevant if the coupling is strong and the fermions are co
fined. It is interesting that the accidentalU(4Nf) symmetry
nonetheless survives into strong coupling as a vestige of d
bling.

The terms in Eq.~2.19! with even j, on the other hand
break theU(N) symmetry, as do even-j terms in the original
fermion Hamiltonian. It is easy to see via spin diagonaliz
tion, which leaves the even-j terms unchanged, that the on
generators left unbroken are theQh corresponding to

Mh51^ la and g5^ la, ~2.24!

which form the U(Nf)L3U(Nf)R chiral algebra. This of
course makes no difference to the Nielsen–Ninomiya th
rem, which will enforce eightfold doubling in the perturba
tive propagator even without theU(4Nf) symmetry. If we
are interested in the realization of the global symmetries
the continuum theory, though, we can study this latt
theory which has the same symmetry. The simplest the
one may study is thus one containing nearest-neighbor
NNN terms. We shall proceed to discard terms with long
range; we shall begin with the nearest-neighbor theory, w
its accidental doubling symmetry, and later break this sy
metry toU(Nf)L3U(Nf)R with the NNN terms.
1-5



hi
n
is

fo
th

n
le
e
s
lit

n

x
en-
d

o-
p-

ical

n

ve
nd-
he

h

-

The

est

B. BRINGOLTZ AND B. SVETITSKY PHYSICAL REVIEW D68, 034501 ~2003!
Two essential differences will always remain between t
lattice theory and the continuum theory. One is the prese
of the axialU(1) symmetry on the lattice. This symmetry
exact, broken by no anomaly, and may make the drawing
conclusions for the continuum theory less than straight
ward unless it is broken by hand. The other difference is
fact that the effective Hamiltonian for baryons~see below! is
also a short-ranged hopping Hamiltonian. If the baryo
were almost free, we would say that they are surely doub
like the original quarks. The fact that the simplicity of th
hopping terms is only apparent, and that the baryons are
coupled strongly to mesonic excitations, offers the possibi
that doubling may not return.

D. Third order: The baryon kinetic term

The third-order term inHeff , which only exists in the case
of Nc53, is calculated via

Heff
(3)5P0HFDHFDHFP0 . ~2.25!

For a single link, we have

^0uUabUgdUezu0&5 1
6 eageebdz , ~2.26!

and the same can be proven for a chain of links,

^0u S) U D
ab

S) U D
gd

S) U D
ez

u0&5
1

6
eageebdz .

~2.27!

Thus @ f ,g, . . . are here~temporarily! flavor indices#,

Heff
(3)52 i (

j .0
K̃~ j !(

nm
~cn

† f aamcn1 j m̂
f b

!~cn
†ggamcn1 j m̂

gd
!

3~cn
†heamcn1 j m̂

hz
!eageebdz1H.c. ~2.28!

The kernel is

K̃~ j !5
~D~ j !!3

6~ 1
2 g2CFu j u!2

. ~2.29!

Again, spin diagonalization simplifies the odd-j terms, but
not the even-j terms. The result is

Heff
(3)5Hodd

(3)1Heven
(3) , ~2.30!

with

Hodd
(3)52 i (

j .0
j odd

K̃~ j !(
nm

bn
†Ibn1 j m̂

I hm~n!1H.c.,

~2.31!

wherehm(n) is the usual staggered-fermion sign factor, a

Heven
(3) 52 i (

j .0
j even

K̃~ j !(
nm

bn
†I@am ^ am ^ am# II 8bn1 j m̂

I 8 zm~n!

1H.c., ~2.32!
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wherezm(n)5(21)(nÞmnn . The baryon operators are

bI5eabgca fcbgcgh, ~2.33!

where we have writtenI to represent the compound inde
$ f gh%, taking values in the symmetric three-index repres
tation of U(N) ( f ,g, . . . once more combine flavor an
Dirac indices!. The odd-j part of Heff

(3) , like that of Heff
(2) , is

symmetric under theU(N) doubling symmetry. The even-j
part breaksU(N) to U(Nf)L3U(Nf)R .

Heff
(3) is a baryon hopping term. As mentioned in the Intr

duction, however, its simplicity is deceptive. The baryon o
eratorsbn

I are composite and hence do not obey canon
anticommutation relations, i.e.,

$bn
I ,bn8

†I 8%Þd II 8dnn8 . ~2.34!

The separation ofHeff
(3) into a canonical kinetic energy and a

interaction term is a challenge for the future.

III. s MODEL REPRESENTATION

Because of the complexity of the third-order effecti
Hamiltonian, we restrict ourselves henceforth to the seco
order theory, in which baryons are a fixed background. T
theory defined byHeff

(2) is a generalized spin model, wit
spins chosen to be in representations ofU(N) according to
the baryon distribution. We review@39# in this section how to
convert the spin model into as model. Thes field at each
site will move in a manifold determined by the baryon num
ber at that site.

A. Coherent state basis

We employ a generalization of spin coherent states@43# to
derive a path integral for the spin model ofHeff

(2) . We recall
that a given site carries generatorsQn

h of U(N) in a repre-
sentation withNc columns andm rows, withBn85m.

First we choose a basis for the Lie algebra ofU(N). This
consists of the generatorsSj

i , with i , j 51, . . . ,N, whose ma-
trix elements in the fundamental rep are

~Sj
i ! f g5d i f d jg . ~3.1!

The corresponding charges are

Qj
i 5(

a
ca

†Sj
i ca2

1

2
Ncd j

i

5(
a

c ia
† c j a2

1

2
Ncd j

i , ~3.2!

where we have subtracted a constant for convenience.
Cartan subalgebra consists of the operators

Hi5Qi
i . ~3.3!

We build the coherent states from the state of high
weight. The highest-weight stateuC0& in the representation
is an eigenstate of the Cartan generators,
1-6
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Hi uC0&5H (Nc/2)uC0& for i 51, . . . ,m,

2(Nc/2)uC0& for i 5m11, . . . ,N.
~3.4!

In this state, the generators take the simple form

^C0uQj
i uC0&5 1

2 NcL i j , ~3.5!

with

L5S 1m 0

0 21N2m
D . ~3.6!

The stateuC0& is invariant ~up to a phase! under the sub-
group ofU(N) that commutes withL; this is U(m)3U(N
2m). The most general rotation ofuC0& is carried out with
the generatorsQj

i that arenot in the corresponding subalge
bra. We choose parametersam

l , with lP@1,m# and mP@m
11,N#, and write

ua&5expS (
l51

m

(
m5m11

N

~am
l Ql

m2am*
lQm

l !D uC0&. ~3.7!

The only generatorsQl
m that appear in Eq.~3.7! are those

that lower anHi that starts fromNc/2 in Eq. ~3.4! while
raising anotherHi that starts from2Nc/2. Any other genera-
tor would annihilateuC0& and thus give no effect in the
exponential.

The coherent states are normalized,

^aua&51, ~3.8!

and over-complete,

E daua&^au51. ~3.9!

In Eq. ~3.9! the integral is over the coset spa
U(N)/@U(m)3U(N2m)# ~see below!. Matrix elements of
the generators are given by

^auQj
i ua&5 1

2 Ncs i j , ~3.10!

where the matrixs i j is given by a unitary rotation fromL,

s5U~a!LU~a!†. ~3.11!

The matrixU(a) is built out of them3(N2m) matrix am
l ,

U5expF S 0 a

2a† 0D G . ~3.12!

s is both Hermitian and unitary.
The manifold of matrices s is the coset space

U(N)/@U(m)3U(N2m)#, a submanifold ofU(N). This is
because for any matrixU(a), one can generate an orb
U(a)V by multiplying with a matrix

V5S X 0

0 YD , ~3.13!
03450
whereXPU(m) andYPU(N2m). All matrices in the orbit
will give the same matrixs when inserted into Eq.~3.11!,
and thus in integrating over the configuration space ofs one
must choose only a single representative of each orbit. T
set of representatives, the coset spaceU(N)/@U(m)3U(N
2m)#, is the quotient space of the noninvariant subgro
U(m)3U(N2m).

The measure over the coset space must be invariant u
unitary rotations,

ua&→R~V!ua&, ~3.14!

whereR(V) represents the rotationV in Hilbert space. Equa-
tion ~3.10! shows that this is a rotation

s→VsV† ~3.15!

and by Eq.~3.11!, this means that a measure inU must be
invariant underU→VU. This fixes the measure uniquely t
be the Haar measure inU(N), and thus one can integrat
over the coset space by integrating with respect toU over
U(N) and using Eq.~3.11!.

A representation whose Young diagram hasN2m rows is
the conjugate to the representation withm rows. Its coherent
state space can be constructed to look the same, with on
sign difference. To do this we start with thelowest-weight
state, which satisfies@cf. Eq. ~3.4!#

Hi uC0&5H 2(Nc/2)uC0& for i 51, . . . ,m,

(Nc/2)uC0& for i 5m11, . . . ,N.
~3.16!

This introduces a minus sign into Eq.~3.5!. The subsequen
steps are identical, with only the replacement of Eq.~3.10!
by

^auQj
i ua&52 1

2 Ncs i j . ~3.17!

Here, too,s is given in terms ofL andU by Eq. ~3.11!.

B. Partition function

The partition functionZ5Tr e2bH can be written as a
path integral by inserting the completeness relation~3.9! at
every slice of imaginary time. This gives

Z5E Ds~t!exp2S, ~3.18!

where the action is

S5E
0

b

dtF12^a~t!ua~t1dt!&
dt

1H~s~t!!G . ~3.19!

The HamiltonianH(s) is a transcription of the quantum
Hamiltonian to the classicals matrices. Starting with the
quantum operatorQn

h , we have

Qn
h5cn

†Mhcn5Mi j
h cn

†Sj
i cn

5Mi j
h Qj

i ~n!1 1
2 NcTr Mh. ~3.20!
1-7
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Expressed in these variables, the quantum Hamiltonian7

Heff
(2)5(

nm
j Þ0

JjQn
hQn1 j m̂

h
~sh

m! j 11, ~3.21!

whereJj5(2/Nc)K( j ). We transcribe this according to Eq
~3.10! to obtain the classical Hamiltonian,

H~s!5S Nc

2 D 2

(
nm
j Þ0

Jjsn
hsn1 j m̂

h
~sh

m! j 11, ~3.22!

where

sn
h5Tr MhTsn . ~3.23!

Recall that eachsn is anN3N matrix ranging over the cose
space appropriate to siten.

The time-derivative term inS is a Berry phase@39#. It can
be expressed in terms of the matrixU that determiness via
Eq. ~3.11!. The result is8

S5E
0

b

dtF2
Nc

2 (
n

Tr LnUn
†]tUn1H~s~t!!G .

~3.24!

Ln will vary from site to site ifm does. If one takes the rout
of Eq. ~3.17! for a representation withN2m rows, then the
kinetic term for that site acquires a minus sign~see below!.

The number of colors has largely dropped out of the pr
lem, sinces is just anN3N unitary matrix field. The ex-
plicit factors of Nc in Eqs. ~3.22! and ~3.24! invite a semi-
classical approximation in the large-Nc limit. This of course
neglects theNc-dependence of the couplingsJj;1/Nc

2 , but
the common scale of the couplings only serves to set
energy scale. The ground state will be independent of
scale, although correlations and the temperature scale
reflect it. We take the point of view that after allNc53, and
we are interested in properties of the effective theory for t
value only. TheNc→` limit, for fixed couplingsJj , will be
a device for investigating the properties of a generalized
fective theory.

IV. ZERO DENSITY

The simplest way to set the baryon density to zero is
to chooseBn50 on each site, meaningm5N/252Nf . It
turns out to be just as easy to consider a slightly general
case@17#, in which Bn is chosen to alternate,Bn56b, on
even and odd sublattices. This means to choose a repre
tation with m5N/21b rows on even sites andN2m5N/2
2b rows on odd sites, which gives a pair of conjugate re
resentations ofU(N). In view of Eq. ~3.17!, we can substi-
tute s→2s on the odd sites and thus have identical ma

7TheB8 term from Eq.~2.19! indeed disappears. We have dropp
an additive constant that is independent ofB8.

8This is correct only ifU is of the form given in Eq.~3.12!, and in
that caseU cannot be integrated over all ofU(N).
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folds on all sites. The Hamiltonian is then

H~s!5S Nc

2 D 2

(
nm
j Þ0

Jj~21! jsn
hsn1 j m̂

h
~sh

m! j 11. ~4.1!

m is a new parameter in the theory, and we can ask w
value ofm gives the lowest energy for the ground state. W
will see thatm5N/2 is indeed preferred, but only in th
next-to-leading order in 1/Nc .

A. Large-Nc limit

In the large-Nc limit, we seek the classical saddle poin9

of S. We assume the saddle is at a configurationsn(t) that is
independent of time, and so we drop the time derivative.
begin with the nearest-neighbor Hamiltonian,10

H52J( sn
hsn1m̂

h

52
J

2 ( Tr snsn1m̂ . ~4.2!

Again, the matricessn are Hermitian and unitary, and th
expansion coefficientssn

h are real and satisfy((sh)2

5N/2. The minimum ofH is clearly at a constant field,sn
5s0, which can be diagonalized tosn5L by a U(N) rota-
tion. This is a Ne´el state in the original variables. TheU(N)
symmetry is broken toU(m)3U(N2m) and there are
2m(N2m) Goldstone bosons.

The classical energy density~per link! is e052JN/2, in-
dependent ofm. Thus at leading order in 1/Nc , the optimal
value ofm is undetermined, and any alternating backgrou
of baryon number is equally good.

Since it turns out that the 1/Nc corrections selectm
5N/2, let us consider the effect of the NNN term inH for
this case only. The perturbation is

H85J8(
nm

sn
hsn1m̂

h
sh

m . ~4.3!

It breaks the U(N) symmetry to SU(Nf)L3SU(Nf)R
3U(1)A3U(1)B . Assuming thatJ8!J, we again seek the
minimum energy configuration in the form of a consta
field; we minimize

e85(
mh

shshsh
m ~4.4!

among theU(N)-equivalents5s0 states that minimize the
nearest-neighbor action. It is not hard to show~see Appendix
A! that e8 is minimized fors5g0^ 1. This is a condensate
that is symmetric under the vector generatorsMh51^ la

9Note that the kinetic term is pure imaginary.
10This classical Hamiltonian is ferromagnetic; the antiferroma

netic nature of the quantum Hamiltonian~3.21! is preserved by the
alternating signs in the time-derivative term.
1-8
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but not under the axial generatorsg5^ la, and thus it breaks
the chiral symmetry to the vector subgroup,SU(Nf)V
3U(1)B .

B. 1ÕNc corrections

Returning to the nearest-neighbor theory, we consi
fluctuations around thesn5L minimum of S. First we res-
calet→2t/Nc in order to put the kinetic and potential term
on an equal footing, giving

S5
Nc

2 E
0

b̄
dtF2(

n
~21!nTr LUn

†]tUn

2
J

2 (
nm

Tr snsn1m̂G , ~4.5!

with b̄5Ncb/2. Recalling Eq.~3.12!, we can write

Un5eAn, ~4.6!

whereAn is anti-Hermitian and anticommutes withL. It is
more convenient to work with the Hermitian matrix

Ln52AnL, ~4.7!

in terms of which we expand

sn5L1Ln2 1
2 L2L. ~4.8!

If we further expandLn in the basis of generators ofU(N),

Ln5(
h

l hMh, ~4.9!

we find that thel h corresponding to generators ofU(m)
3U(N2m) vanish; this is the subgroup under which t
vacuum is symmetric. The fieldLn thus contains 2m(N
2m) real degrees of freedom, corresponding to the Go
stone bosons.

We expandUn andsn in powers ofLn ; using Eq.~4.9!,
we obtain to second order

S5S01
Nc

2 E dt(
n

F ~21!n

8
Chh8l n

h]tl n
h8

1
J

8 (
m

~ l n1m̂2 l n!2G . ~4.10!

The coefficient matrix is

Chh85Tr~L@Mh,Mh8# !, ~4.11!

and the classical energy is

S052
J

2 S Nc

2 D 2

NNsdb.

C is antisymmetric and purely imaginary; we show in A
pendix B thatC has eigenvalues61, each with degenerac
m(N2m). We change basis so as to diagonalizeC, and write
03450
r

-

the indexh as the compound (a,6) with a51, . . . ,m(N
2m) and the6 corresponding to the eigenvalue ofC. Since
the originall h are real, we have

~ l a1!* 5 l a2. ~4.12!

Thus we eliminatel a2 and write

S5S01
Nc

8 E dt(
n

F ~21!ni Im l n
a1* ]tl n

a1

1
J

2 (
m

u l n1m̂
a1

2 l n
a1u2G . ~4.13!

The alternating sign in Eq.~4.13! is what makes the
theory antiferromagnetic. It forces us to differentiate betwe
even and odd sites, and we transform to momentum spac
follows ~dropping the1 superscript!:

l n
a5A 2

Ns
(

k
H l 1,k

a eik•n n even,

l 2,k
a eik•(n2 ẑ) n odd.

~4.14!

The even sites comprise an fcc lattice with lattice constan
and the momentak take values in its Brillouin zone. We
obtain

S5S01
Nc

8 (
k
E dt~ l 1* l 2* !k

aM~k!S l 1

l 2
D

k

a

. ~4.15!

Here

M~k!5S Jd2]t 2Jdg~k!

2Jdg~k! Jd1]t
D ~4.16!

andg(k)5(1/d)(m coskm .
The Gaussian path integral over thel field now gives the

free energy,

F5F01m~N2m!
Nc

2 (
k

F 1

b̄
logS 2 sinh

b̄v~k!

2
D 2

Jd

2 G ,

~4.17!

where v(k)5dJNcA12g2(k) and F05
2 1

2 JdNNs(Nc/2)2. For the ground state energy, we takeb
→` and obtain~restoring all constants!

E052JNsNdS Nc

2 D 2F11
1

Nc

m~N2m!

N

3E
BZ

S dk

2p D d

~12A12g2~k!!G . ~4.18!

This is exactly the result of Smit@17#. TheO(1/Nc) correc-
tions lift the degeneracy of the ground states with differe
values ofm. The integral in Eq.~4.18! is positive and its
coefficient contains the number of Goldstone bosons. T
the state of lowest energy is that withm5N/2, and the sym-
metry breaking scheme isU(N)→U(N/2)3U(N/2). Fur-
ther breaking by the NNN terms was discussed above.
1-9
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V. NONZERO BARYON DENSITY

The zero-density theories considered in the preceding
tion were defined by selecting representations withm and
N2m rows on alternating sites. For anym, this led to as
model with identical degrees of freedom on all sites—af
redefinition of the spins on the odd sublattice—and fer
magnetic couplings.11 We eventually settled onm5N/2 as
the background that gives the ground state of lowest ene

Introducing nonzero baryon density means changingm on
some sites of the lattice. Since in general there will be r
resentations on different sites that are not mutually con
gate, different sites will carrys variables that do not live in
the same submanifold ofU(N). We here limit ourselves to
the simpler case of uniformm, where adjacent sites carr
identical spins—but the coupling isantiferromagnetic.

In order to learn how to work with such a theory, w
begin by studying the two-site problem. The results of t
study will lead directly to anansatzfor the ground state of a
lattice with a fixed density of baryons.

A. The two-site problem

1. Classical solution

Consider, therefore, two sites with quantum spinsQ1 and
Q2 that carry representations ofU(N) with m1 andm2 rows,
andNc columns~see Fig. 3!.

The quantum Hamiltonian is

H5JQ1
hQ2

h , ~5.1!

an antiferromagnetic coupling. The corresponding class
s model has the interaction Hamiltonian

H~s!5
J

2 S Nc

2 D 2

Tr s1s2 , ~5.2!

where

s i5UiL iUi
† . ~5.3!

The twoL matrices reflect the different values ofmi accord-
ing to

11The (21)n factor in the kinetic energy retained informatio
about the antiferromagnetic nature of the quantum problem; it
not affect the classical analysis.

FIG. 3. TwoU(N) spins in different representations.
03450
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L i5S 1mi
0

0 21N2mi

D . ~5.4!

The Nc→` limit is the classical limit, in which we seek
values ofs1,2 that minimizeH(s). A global U(N) rotation,
viz.,

s i→Vs iV
†, ~5.5!

can be used to diagonalizes1 so thats15L1. Now we have
to minimize TrL1s2. The case of conjugate representatio
m25N2m1, is easy:s2 is a unitary rotation ofL2, which
~in this case! can be rotated into2L1. This is the unique
antiferromagnetic ground state.s1 ands2 can be copied to
the odd and even sublattices of an infinite lattice to give
classical Ne´el state considered in the preceding section.

The casem15m25m is more complex. We considerm
.N/2 for definiteness; the other case is similarly handl
We write explicitly12 @from Eqs.~3.11!–~3.12!#

s25S cos~2Aaa†! 2a
sin~2Aa†a!

Aa†a

2
sin~2Aa†a!

Aaa†
a† 2cos~2Aa†a!

D . ~5.6!

a†a is a square matrix of dimensionN2m and aa† is a
square matrix of dimensionm. Sinces2 is a rotation ofL,

2m2N5Tr s25Tr cos~2Aaa†!2Tr cos~2Aa†a!,
~5.7!

and hence the energy is

E5
J

2 S Nc

2 D 2

Tr Ls ~5.8!

5JS Nc

2 D 2

@Tr cos~2Aa†a!12m2N#. ~5.9!

E is minimized when all the eigenvalues ofa†a are equal to
p2/4. This means that theN2m column vectorsai form an
orthogonal set inm dimensions, with

ai
†
•aj5S p

2 D 2

d i j . ~5.10!

Since m.N2m by assumption, such a set of vectors c
always be found.

Sincea†a5(p2/4)1N2m , we have sin(2Aa†a)50 and so
the off-diagonal blocks of Eq.~5.6! vanish. The lower-right
block of s2 is the unit matrix1N2m . We know that (s2)2

51 sinceL251 and thus the upper-left block must hav
eigenvalues61. Equating traces ofs2 andL, we find that
the upper-leftm3m block must take the form

id
12This generalizes a parametrization found in@44#.
1-10
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FIG. 4. Coupling two spins in
a 7-row representation ofU(12)
to the representation with minima
Casimir operator.
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s (m)5U (m)L (m)U (m)†, ~5.11!

where

L (m)5S 12m2N 0

0 21N2m
D ~5.12!

and U (m)PU(m). s (m) represents the cosetU(m)/@U(2m
2N)3U(N2m)#.

We conclude that the classical ground state of thisBÞ0
two-site problem is degenerate, even beyond breaking
overall U(N) symmetry. The solutions can be written as

s15L15S 1m 0

0 21N2m
D ,

s25S s (m) 0

0 1N2m
D ~5.13!

@to which a globalU(N) rotation can be applied#. A particu-
lar instance ofs (m) is L (m), given by Eq.~5.12!. The sym-
metry of the vacuum is the set of rotations that leaves b
s1 and s2 invariant, namely, U(2m2N)3U(N2m)
3U(N2m).

2. Quantum fluctuations

The classical solution of the two-site problem will guid
us in approaching the problem of an infinite lattice belo
We expect that spontaneous symmetry breaking will giv
vacuum of the same character, with continuous degener
There are, however, two kinds of degeneracy in the two-
problem: that which results from breaking the globalU(N)
to U(m)3U(N2m), and that which comes of breaking th
U(m) subgroup toU(2m2N)3U(N2m). The latter de-
generacy is connected with freedom in choosing the orie
tion of s2 relative tos1. It is instructive to see how quantum
mechanical fluctuations lift the classical degeneracies.

The quantum two-site problem is easy to solve. We
write the Hamiltonian~5.1! as
03450
he

th

.
a
cy.
te

a-

-

H5
J

2
@~Q11Q2!22Q1

22Q2
2#. ~5.14!

Q1
2 and Q2

2 are constants, the quadratic Casimir operator
them-row, Nc-column representation ofU(N). The first term
in Eq. ~5.14! is minimized by couplingQ1 and Q2 to the
representation that minimizes the Casimir, which is the r
resentation with 2m2N rows andNc columns~see Fig. 4!.
The ground state has discrete degeneracy equal to the di
sion of this representation.

The exact quantum solution naturally shows no sign
spontaneous symmetry breaking and hence it is not of m
relevance to the infinite volume problem. More interesting
the problem where the state ofQ1 is fixedandQ2 is allowed
to vary. This breaks by hand the globalU(N) while allowing
quantum fluctuations to lift any remaining degeneracy in
relative orientation of the two spins, so it can be regarded
quantization in the presence of spontaneous symmetry br
ing. In effect, this is mean field theory.

We replace the Hamiltonian~5.1! by

HMF5J (
h51

N2

^Q1
h&Q2

h . ~5.15!

To minimize the energy we maximize the mean field
choosing the state ofQ1 to be the highest-weight state. Th
state diagonalizes the generatorsHi of the Cartan subalgebr
while other generators ofU(N) have expectation value zero
Thus

HMF5J(
i 51

N

^H1i&H2i . ~5.16!

The operatorsHi all commute, and their eigenvalues ma
up the weight diagram of the representation.13 HMF is a dot

13More precisely, the weight diagram shows eigenvalues of
N21 traceless diagonal generators ofSU(N). These can be ob-
tained by isolating theU(1) member of the setHi and taking linear
combinations of the rest.
1-11
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product of the weight vectors of the two spins. The energ
minimized by choosing forQ2 a state that lies opposite th
highest-weight state in the weight diagram. As shown in
example of Fig. 5, this still leaves a degeneracy, albe
discrete one. We stress that this degeneracy comes from
dom in the relative orientation ofQ1 andQ2; it remains after
quantum fluctuations lift the continuous degeneracy of
classical system.

In the Nc→` limit, the discrete degeneracy becomes
finite and presumably it is well described by the continuo
degeneracy of the classical problem.

B. Infinite lattice

At Nc5` we seek the saddle point of the action, whi
we assume to be a time-independent configuration. The c
sical Hamiltonian of thes model is

H5
J

2 (
n,m

Tr snsn1m̂ . ~5.17!

Seeking an antiferromagnetic ground state, we setsn5L on
the sublattice of even sites. The odd sites are then gove
by

Hodd5Jd (
n odd

Tr Lsn . ~5.18!

This is just the two-site problem studied above, replica
over the lattice. As we saw above, the ground state confi
ration is degenerate with respect to the configuration at e
odd site,

sn5S sn
(m) 0

0 1N2m
D . ~5.19!

A uniform choice for the odd sites,sn
(m)5L (m) for instance,

breaks the U(N) symmetry to U(2m2N)3U(N2m)
3U(N2m); a nonuniform choice can break the symme
all the way to U(N2m). The entropy of this classica
ground state is evidently proportional to the volume.

As noted for the two-site problem, the continuous deg
eracy of the ground state is an artifact of the classical,Nc
→` limit. Quantum fluctuations will spread each odd spin
wave function over theU(m)/@U(2m2N)3U(N2m)#

FIG. 5. Weight diagram forN53, m51, Nc52 @the sextet of
SU(3)]. Thehighest-weight state lies at the top of the triangle;
states at the base minimizeHMF. All values of Nc give the same
triangular shape, with multiplicity of one along the boundary. Th
are Nc11 states at the base. ForN54 the triangle becomes
tetrahedron, and there are (Nc11)(Nc12)/2 states at its base.
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manifold. A mean-fieldansatzfor the even spins, as noted i
the discussion of the two-spin problem, will still leave
discrete degeneracy for the odd spins; the symmetry bre
ing scheme will depend on how the odd spins are allocate
the available states. Furthermore, one can contemplate m
ing a nonuniformansatzfor theevenspins as well, reducing
the phase space available for odd spins with unequal ne
bors but adding entropy on the even sublattice. The situa
is reminiscent of that in the antiferromagnetic Potts mo
@45#, the phase structure of which is not yet understood.

This Potts-like discrete degeneracy, however, is an arti
of the mean-field approach that, like the classicalansatz,
assumes a fixed state for the spins on the even sites
essential difference between ours model and the Potts
model is that our degrees of freedom are continuous and
fluctuate as soon as they are allowed to do so. A given
spin will not be surrounded by a uniform fixed backgroun
the neighboring even spins will be influenced byall their odd
neighbors, and will induce an interaction among the o
spins that makes them rotate together. This should reduce
entropy of the ground state to zero. The systematic way
see this effect is to carry out a 1/Nc expansion around the
classicalansatz, which we do in Appendix C. The result is
ferromagnetic interaction among thesn on the odd sites.
Thus the ground state turns out to be the two-site solut
replicateduniformly over the lattice:

sn5L, n even,

sn5S s (m) 0

0 1N2m
D , n odd, ~5.20!

wheres (m)5U (m)L (m)U (m)† is a global degree of freedom.
The symmetry group of the vacuum isU(2m2N)3U(N
2m)3U(N2m).

VI. SUMMARY AND DISCUSSION

Let us summarize the results presented in this paper
the vacuum sector, we have rederived Smit’s result for
lowest-energy configuration of alternatingBn56(m2N/2)
sites. The result is indeedBn50; theU(4Nf) symmetry of
the nearest-neighbor theory is spontaneously broken
U(2Nf)3U(2Nf). We extended this result to the NNN
theory and found that itsU(Nf)3U(Nf) chiral symmetry is
broken to the vectorU(Nf) flavor subgroup. Adding ne
baryon number to the system, we examined the case of
form baryon density,Bn5m22Nf.0. Here our study was
limited to the nearest-neighbor theory, and we found a Ne´el-
like ground state that breaksU(N) to U(2m2N)3U(N
2m)3U(N2m). The number of Goldstone bosonsnGB
thus depends on the baryon densityBn as

nGB52~3uBnu210Nf !~6Nf2uBnu!. ~6.1!

Directions for future work begin with adding NNN inter
actions to theB.0 theory and extracting from it a predictio
for the breaking of the continuum-like chiral symmetry.@The
axial U(1) symmetry can be broken by hand.# Another di-
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rection is to gain greater freedom in fixing the baryon de
sity. A constant value ofBn.0 means a baryon density th
is close to the maximum allowed on the lattice; the dens
can be lowered by settingBnÞ0 only on a sparse sublattice
along the lines shown in@14#. An ultimate goal, as for the
Hubbard model, is the incorporation of the third-order te
in the effective Hamiltonian in order to have a theory w
dynamical baryons. Perhaps an instructive half-meas
would be to study the second-order theory in the presenc
a disordered baryon background.

The strong-coupling effective theory can be regarded a
QCD-like model, possessing gauge invariance and the
rect degrees of freedom. In that case the lattice spacin
merely a parameter, an overall scale. More insight can
gained by considering the strong-coupling theory to rep
sent QCD at large distances, derived by so
renormalization-group transformation from a weak-coupl
short-distance Hamiltonian. On the one hand, one would
pect any such effective Hamiltonian to contain many ter
of great complexity; on the other hand, a simple latt
theory such as ours might offer a qualitative approximat
to the real theory~as long as one accepts the loss of Lore
invariance!. We can estimate the lattice spacing to be so
scale at which the running QCD coupling is large, certai
greater than the radius of a proton. The limitation that
lattice puts on the density then becomes a physical is
Taking the lattice spacinga to be on the order of 1 fm, the
highest baryon density allowed by the lattice is 2Nf fm23.
For low values ofNf this may not be enough to see finit
density phase transitions, in particular a transition to co
superconductivity. Perhaps a way out is to consider an
physically large number of flavors.
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APPENDIX A: MINIMIZING THE
NEXT-NEAREST-NEIGHBOR TERM

The sh
m signs are defined only when thesh are written in

the basisMh5GA
^ la5ra

^ sb
^ la. We choose a chira

basis for the gamma matrices, so thatg55r3, a i5r3s i , and
b5r1. The energy~4.4! is a sum of squares,

e85(
h

Ah~sh!2, ~A1!

with the constraint(h(sh)25N/2. The coefficientsAh

5(msh
m take on the values$23,21,1,3%. The minimum of
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e8 occurs when allsh are zero except those corresponding
Ah523, namely, those forMh5b ^ la5r1

^ la and Mh

5bg5^ la5r2
^ la; the energy is independent of thesesh.

Thus the set of solutions can be written in the form

s05S 0 0 U 0

0 0 0 U

U† 0 0 0

0 U† 0 0

D 5
r11 ir2

2
^ U1

r12 ir2

2
^ U†.

~A2!

Recalling thats0
251, we haveUU†51, so UPU(Nf). A

chiral rotations0→V†s0V, with

V5S U 0 0 0

0 U 0 0

0 0 1 0

0 0 0 1
D 5

1

2
~11r3! ^ U1

1

2
~12r3! ^ 1,

~A3!

turns s0 into r15g0, which is invariant only under vecto
transformations generated by1^ la.

APPENDIX B: THE MATRICES C AND Dn

To analyze the matricesC andDn , given by Eqs.~4.11!
and ~C18!, we begin with theU(N) generatorsMh that lie
outside the subalgebraH5U(m)3U(N2m) that commutes
with

L5S 1m 0

0 21N2m
D . ~B1!

We choose for them a basisM pq1 and M pq2 with p
51, . . . ,m andq5m11, . . . ,N, given by

~M pq1! f g5
1

2
~dp fdqg1dpgdq f!, ~B2!

~M pq2! f g5
i

2
~dp fdqg2dpgdq f!. ~B3!

Since the coset spaceU(N)/H is a symmetric space, th
commutator @M pqa,M p8q8a8# lies in H; in order for
Tr(L@M pqa,M p8q8a8#) to be nonzero, the commutator mu
have a nonzero component in the Cartan subalgebra oH.
This is only possible ifaÞa8 and (p,q)5(p8,q8). Thus in
this basisC takes the form

C5 i S 0 1m(N2m)

21m(N2m) 0 D . ~B4!

DiagonalizingC gives eigenvalues61. The generators cor
responding to the basis that diagonalizesC are

~M pq1! f g5~M pq11 iM pq2! f g5dpgdq f , ~B5!

~M pq2! f g5~M pq12 iM pq2! f g5dp fdqg . ~B6!
1-13
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As for D: The only anticommutators among theM pq6

that do not vanish@note the bounds on (p,q)] are between
M pq1 andM p8q82, viz.,

$M pq1,M p8q82% f g5dqq8dp fdp8g1dpp8dq8 fdqg . ~B7!

Noting that M pq25(M pq1)†, we find that Dn takes the
block-diagonal form

Dn
pq6,p8q8652 (

m(n)
TrF $~M pq6!†,M p8q86%

3S sm
(m) 0

0 21N2m
D G ~B8!

5dqq8 (m(n)
~1m2sm

(m)!pp8 . ~B9!

We summarize this by writing

D5S En 0

0 En
D ^ 1N2m , ~B10!

whereEn is anm3m matrix given by

En5 (
m(n)

~1m2sm
(m)!. ~B11!

It is easy to prove that the eigenvalues ofE range from 0 to
4d. In particular,D is positive.

APPENDIX C: 1 ÕNc CORRECTIONS TO THE BÅ0
PROBLEM

We build on theNc5` vacua described in Sec. V b
allowing fluctuations around them. We let thesn on the even
sites fluctuate aroundL; we let the sn on odd sites roll
freely around theU(m)/@U(2m2N)3U(N2m)# manifold
covered by Eq.~5.19!, and also execute small oscillations o
the manifold into the U(N)/@U(m)3U(N2m)# coset
space. Our goal is an effective action for the classical p
~5.19! of the odd spins. To reach this, we integrate out
even spins; the off-manifold fluctuations of the odd sp
must be included for consistency in the 1/Nc expansion.

The counterpart of the action~4.5! for our problem has an
antiferromagnetic spin–spin interaction, with no (21)n fac-
tors. We separate it into odd, even, and coupled terms,

S5
Nc

2
~Sodd1Seven1SAF!,

Sodd5E dt (
n odd

Tr LUn
†]tUn ,

Seven5E dt (
n even

Tr LUn
†]tUn ,

SAF5E dt (
n even

J

2
Tr snsn

o . ~C1!
03450
rt
e
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Here sn
o5(m(n)sm , wherem(n) are the nearest neighbor

of the even siten. We expand the field on the even site
aroundsn5L in the manner of Eq.~4.8!,

sn5L1Ln2
1

2
L2L ~n even!, ~C2!

while for the odd sites we write~see Appendix D!

sn5UnS 12m2N 0

0 2L82L81
1

2
L82L8D Un

† ~n odd!,

~C3!

with

L85S 1N2m 0

0 21N2m
D ~C4!

and

Un5S Un
(m) 0

0 1N2m
D . ~C5!

Ln describes the fluctuations of the even spins around t
classical valueL. Un rotates the odd spins within the man
fold of their classical values, whileLn8 describes their fluc-
tuations outside that manifold. We further define

sn
cl5UnS 12m2N 0

0 2L8
DUn

†5S sn
(m) 0

0 1N2m
D , ~C6!

the classical field on the odd sites.
We leaveSodd alone and expandSevenandSAF around the

classical values of the fields,

Seven52
1

4E dt (
n even

Tr LLn]tLn , ~C7!

SAF5S01
J

2E dt (
n even

S Tr Lns̄n2
1

2
Tr Ln

2Ls̄n2Tr LnL̄nD
1dJE dt (

n odd
S 2Tr LL̃n1

1

2
Tr L̃n

2D . ~C8!

Here

L̃n5UnS 0 0

0 Ln8
DUn

† ~C9!

is the rotated fluctuation field on the odd sites, and the H
mitian matricess̄n and L̄n are sums over the odd neighbo
of the even siten,

s̄n5 (
m(n)

sm
cl , ~C10!
1-14
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LATTICE GAUGE THEORY WITH BARYONS AT STRONG . . . PHYSICAL REVIEW D68, 034501 ~2003!
L̄n5 (
m(n)

L̃m . ~C11!

Since boths̄n and L are block diagonal, the first trace i
each integral in Eq.~C8! is zero.

Now we organize the partition function as follows:

Z5E S )
n odd

dsnDexpF2
Nc

2 S Sodd1S0

1
dJ

2 E dt (
n odd

Tr L̃n
2D GZeven, ~C12!

with

Zeven5E S )
n even

dLnDexpF2
Nc

2 E dt (
n even

3S 2
1

4
Tr LLn]tLn2

J

4
Tr Ln

2Ls̄n2
J

2
Tr LnL̄nD G .

~C13!

Zeven is a product of decoupled single-site integrals. Aga
we expand in the group algebra,

Ln5 l n
hMh, ~C14!

where the sum is over the 2m(N2m) generators ofU(N)
that are not inU(m)3U(N2m). L̄n can be expanded simi
larly and we obtain the following form for the integral ove
the even fields:

Zeven5E Dl n expF2
Nc

2 E dt(
n

S l n
hMn

hh8l n
h81

J

4
l n
h l̄ n

hD G ,
~C15!

where

Mn
hh852

1

8
Chh8]t1

J

8
Dn

hh8 . ~C16!

The matrixC is the same as in Eq.~4.11!,

Chh85Tr~L@Mh,Mh8# !, ~C17!

while the new matrixD varies with the siten according to
the averages̄n of its neighboring spins,

Dn
hh852Tr~$Mh,Mh8%Ls̄n!. ~C18!

We study the two matrices in Appendix B. DiagonalizingC
as before, we arrive at

Zeven5)
nq

H E Dl exp2
Nc

2 E dtF l q†M̂nl
q

1
J

4
~ l q† l̄ n

q1 l̄ n
q†l q!G J , ~C19!
03450
whereM̂n is them3m matrix

M̂n5
1

4
~]t1JEn!. ~C20!

The quantitiesl q ~and l̄ q) for eachq51, . . . ,N2m are com-
plex m-component vectors; they are rotations of the 2m(N
2m) real componentsl h ~and l̄ h) into the basis that diago
nalizesC. The matrixEn is given by Eq.~B11!; it carries the
dependence ons̄n . Performing the Gaussian integration w
get

Zeven5)
nq

1

DetM̂n

expFNc

2 S J

4D 2E dt l̄ n
q†M̂n

21 l̄ n
qG .

~C21!

Finally we separate the integral~C12! over the odd spins
into an integral over the classical fieldsn

cl and an integral
over the fluctuations around it. We obtain

Z5E Dsm
cl exp2

Nc

2 S S01~N2m!(
n

Tr logM̂nD
3E D l̃ m exp2

Nc

2 H Sodd1E dtFdJ

2 (
mq

u l̃ m
q u2

2S J

4D 2

(
nq

l̄ n
q†M̂n

21 l̄ n
qG J . ~C22!

Herem stands for an odd site,n for an even one.
Equation~C22! gives an effective action for the classic

odd spinssm
cl . These enter the exponents throughM̂ @via

Eqs. ~B11! and ~C20!# and throughl̄ n
q @via Eqs. ~C9! and

~C11!#. The action in the first exponent is minimized whe
each matrixEn(sm

cl) has the largest number of zero eigenv

ues, each of which makes Tr logM̂n approach2`. It is easy
to check thatEn has 2m2N zero eigenvalues~the maximal
number! when thesm

cl on all the odd sitesm(n) align, i.e.,

sm
cl5s0PU~m!/@U~2m2N!3U~N2m!#. ~C23!

Moreover, when Eq.~C23! holds, all thel̃ m
q ’s align parallel

to each other andl̄ n
q is maximized; also the eigenvalues

M̂n
21 are maximized~to 1`). Thus the action in the secon

exponent also has a minimum at this point in configurat
space. These effects add up to an effectiveferromagnetic
interaction among the 2d nearest neighborsm of each even
siten. This effective interaction will align the classical spin
on the odd sublattice to the same direction in their subma
fold, U(m)/@U(2m2N)3U(N2m)#.

The divergences in the effective action have their origin
the fact that the semiclassical corrections are calculated
Gaussian integrals in the even fluctuation fieldsLn , and the
coefficient matrixMn acquires zero eigenvalues. The corre
range of integration overLn is of course not infinite, but
rather the volume of theU(N)/@U(m)3U(N2m)# mani-
1-15
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fold. This will regulate the divergences, but leave the eff
tive action for the odd spins attractive.

APPENDIX D: FLUCTUATIONS ON THE ODD SITES

In the classical analysis, the fields on the odd sites t
values in the submanifoldU(m)/@U(2m2N)3U(N2m)#
of the manifoldU(N)/@U(m)3U(N2m)#. We denote these
valuesscl,

scl5S s (m) 0

0 1N2m
D . ~D1!

Here

s (m)5U (m)L (m)U (m)† ~D2!

with U (m)PU(m), and

L (m)5S 12m2N

0 21N2m
D . ~D3!

s (m) contains 2(N2m)(2m2N) independent degrees o
freedom. AnysPU(N)/@U(m)3U(N2m)# can be written
as

s5S cos~2Aaa†! 2a
sin~2Aa†a!

Aa†a

2
sin~2Aa†a!

Aa†a
a† 2cos~2Aa†a!

D ~D4!

@cf. Eq. ~5.6!#, which coincides with Eq.~D1! if

a5U (m)S 0

~p/2!1N2m
D . ~D5!

Recall thata is anm3(N2m) matrix, so the zero block ha
dimensions (2m2N)3(N2m).

We allow motion out of the submanifold by allowinga to
vary further,
.

03450
-

e

a5U (m)S 0

ā
D . ~D6!

The 2(N2m)2 degrees of freedom inā complement the
2(N2m)(2m2N) degrees of freedom inherent inU (m) to
give 2m(N2m), the dimensionality of the entire
U(N)/@U(m)3U(N2m)# coset space.

Writing s with the generalizeda we have

s5US 12m2N 0 0

0 cos~2Aāā†! 2ā
sin~2Aā†ā!

Aā†ā

0 2
sin~2Aā†ā!

Aā†ā
ā†

2cos~2Aā†ā!

D U†,

~D7!

with

U5S U (m) 0

0 1N2m
D . ~D8!

We can also write this as

s5US 12m2N 0

0 s [2(N2m)]~ ā,ā†!
D U†. ~D9!

s [2(N2m)] is a matrix in the manifoldU(2(N2m))/@U(N
2m)3U(N2m)#. Indeed forā5(p/2)1N2m , we have

s [2(N2m)]5S 21N2m 0

0 1N2m
D[2L̄. ~D10!

Since U(2(N2m))/@U(N2m)3U(N2m)# is a self-
conjugate manifold, its structure nears [2(N2m)]52L̄ is the
same as its structure nears [2(N2m)]5L̄, which corresponds
to ā50. Expandings [2(N2m)] around2L̄ gives Eq.~C3!.
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