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Power suppressed operators and gauge invariance in soft-collinear effective theory
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The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory
~SCET! is discussed. Using a field redefinition we show that it is possible to make any power suppressed
ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipula-
tions avoid gauge fixing. The Lagrangians toO(l2) are given in terms of these new fields. We then give a
simple procedure for constructing power suppressed soft-collinear operators in SCETII by using an interme-
diate theory SCETI .
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I. INTRODUCTION

The soft-collinear effective theory~SCET! has been pro-
posed as a systematic approach for separating hard and
scales in processes with energetic quarks and gluons@1–4#.
The infrared physics is described in the effective theory
terms of collinear, soft, and ultrasoft fields with well defin
momentum scaling. These fields are used to construct op
tors such as Lagrangians and currents that describe long
tance effects, while hard corrections are contained in Wil
coefficients. This formalism builds on and extends ear
techniques used for discussing factorization@5#.

The degrees of freedom in SCET include colline
quarks jn and gluons An

m with momentum scalingpc
m

5(n•p,n̄•p,p');Q(l2,1,l), soft modesqs ,As
m with mo-

menta ps
m;Ql, and ultrasoft~usoft! modesqus ,Aus

m with
momentapus

m ;Ql2. Here Q is the hard scale,l!1 is the

expansion parameter, andnm ,n̄m are two light-cone unit vec-

tors satisfyingn25n̄250 and n•n̄52. The explicit set of
required fields may differ depending on the relevant scale
a given process. For instance, in the Drell-Yan process
useful to have collinear fields for two light-like direction
and for multijet-production more than two directions are
quired @6,7#.

In many exclusive heavy meson decays to energetic l
hadrons there are important effects at the scalesQ2, QL,
andL2, whereL;0.5 GeV is a hadronic scale. To correct
account for these effects, a sequence of two effective th
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ries, SCETI and SCETII , can be used@8#.1 One thus distin-
guishes between

SCETI: collinear fields with ~pc
1 ,pc

2 ,pc
'!;Q~l2,1,l!

and usoft fields withpus
m ;Ql2 wherel;AL/Q

SCETII: collinear fields with~pc
1 ,pc

2 ,pc
'!;Q~h2,1,h!

and soft fields withps
m;Qh whereh;L/Q.

For clarity the power counting parameterh is used for
SCETII rather thanl. In exclusive processes the energet
soft hadrons are described by collinear/soft fields in SCETII .
Both fields havep';L which is appropriate for describing
the constituents of hadrons of sizer';1/L. For exclusive
processes the theory SCETI plays an intermediate role b
describing in a local way the fluctuations withp2;QL that
are involved in interactions between soft and collinear fie
in SCETII . In contrast, SCETI suffices for describing factor
ization in inclusive processes likeB→Xsg, as well as some
exclusive processes likeB→gen @4,9#. Interactions in
SCETII are discussed in Refs.@4,10# and power corrections
in SCETI were studied in Refs.@8,11–17#. Quark masses
were considered in Ref.@18#.

The symmetries of the effective theory provide an imp
tant guiding principle for constraining the form of operato
especially at the level of power corrections. The SCET ha
rich symmetry structure, reflecting the interplay between
different length scales it describes. The constraints incl

1In Ref. @4# a version of SCET was constructed that simul
neously involves collinear, soft, and usoft fields. While it is possi
that some physical process may simultaneously require these
grees of freedom, here we restrict ourselves to the degrees of
dom of SCETI-SCETII which suffice for most applications.
©2003 The American Physical Society21-1
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TABLE I. Gauge transformations for the collinear and usoft fields from Ref.@4#, whereiD m[(nm/2)P̄
1P'

m1(n̄m/2)in•Dus. The collinear fields and transformations are understood to have momentum labe
involve convolutions, but for simplicity these indices are suppressed. The usoft transformations d
change the momentum labels of collinear fields.

Object CollinearUc Usoft Uus

jn Uc jn Uusjn

gAn
m U cgAn

m U c
†1Uc@ iD m,U c

†# UusgAn
mUus

†

W UcW UusWUus
†

qus qus Uusqus

gAus
m gAus

m UusgAus
m Uus

† 1Uus@ i ]m,Uus
† #

Y Y UusY
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power counting, collinear/soft/ultrasoft gauge invariance,
ductions in spin structures, and a reparametrization inv
ance@1–4,11,13,19# ~see Ref.@20# for a brief review of the
symmetries!. At a given order inl the most general set o
operators for a given process can be constructed using
following.

~i! Power counting:Restricts the type of fields and de
rivatives allowed in the operator.

~ii ! Gauge invariance:Requires operators to be built ou
of gauge invariant building blocks.

~iii ! Reparametrization invariance:Corresponds to the
restoration of Lorentz invariance order by order inl.

~iv! Locality: The theory SCETI is only nonlocal in
O(Q) momenta. Only inverse powers of the large label m
mentum are allowed and collinear Wilson lines have to
built out of O(1) gluons.

Note that SCETI is constructed in a local manner, b
after doing this it is useful to consider a field redefinitio
jn→Yjn which introduces nonlocality at the usoft scale. T
locality restriction does not apply to SCETII . Integrating out
p2;QL modes immediately results in operators involvi
the soft Wilson lineS @4#, and it contains inverse powers o
1/L momenta. In the following we will focus on gauge in
variance and discuss subtleties which arise in construc
invariant operators at subleading order.

The gauge transformations for the SCET fields were
rived in @4# and are summarized in Tables I and II. He
]c

mUc;Q(l2,1,l), ]s
mUs;Ql, and ]mUus;Ql2 distin-

guish the collinear, soft and usoft gauge transformations
spectively. Partial derivatives without a subscript are us
so i ]m;Ql2. In Table I we have used
03402
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iD m[
nm

2
P̄1P'

m1
n̄m

2
in•Dus ~1!

in the fundamental representation. Note that only then•Aus
component of the usoft gauge field appears here and tha
components ofD m have the same scaling inl as the collin-
ear gluon field, so all transformations are homogeneo
Thus, power counting strongly constrains the leading us
collinear interactions. It also forces us to have a multip
expansion so that only then•k momenta of collinear par-
ticles can be changed by interactions with usoft gluons.
Refs.@1–4# this expansion is done in momentum space wh
in Refs.@10,14,15# it is done in position space. This leads
formulations of SCET whose operators appear slightly d
ferent, but whose final predictions for physical observab
have to be the same.

In this paper we discuss how gauge invariance is reali
for power suppressed operators in both SCETI and SCETII .
SCETI is studied in Sec. II where we clarify the nature
collinear gauge invariance in power suppressed opera
with ultrasoft derivatives. This is done by showing that it
possible to arrange these power suppressed operators
that only the originalleading ordergauge transformations
are needed at any order in the power expansion. This
also the goal of a recent study by Beneke and Feldmann@15#
and a comparison is given with their results. The form of o
transformed fields is different from theirs, reflecting a fre
dom in choice of viable field redefinitions. We found that
was not necessary to do any gauge fixing in our manipu
tions.
ere

TABLE II. Gauge transformations for collinear and soft fields in SCETII from Ref.@4#. Momentum labels

are suppressed, and]c
m and]s

m are defined to only pick out collinear and soft momenta, respectively. H
i ]c

mÞ iD m since usoft fields are not included in SCETII .

Objects CollinearUc Soft Us

jn Ucjn jn

gAn
m U cgAn

mU c
†1Uc@ i ]c

mU c
†# gAn

m

W UcW W
qs qs Usqs

gAs
m gAs

m UsgAs
mUs

†1Us@ i ]s
m ,Us

†#

S S UsS
1-2
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In SCETII the soft and collinear gauge invariance alo
allow a large number of operators, reflecting the more n
local nature of this theory. In particular, gauge invarian
does not uniquely fix the path of the Wilson lines. Howev
since SCETII is matched on from SCETI and not from full
QCD, one can obtain information about the operators
evant for a given process from the structure of operator
SCETI . We illustrate the SCETI→SCETII matching by sev-
eral examples in Sec. III.

II. GAUGE INVARIANCE IN SCET I

At leading order the SCETI Lagrangian for collinear
quarks is@2,3#

L jj
(0)5 j̄nF in•D1 iD” c

'W
1

P̄W†iD” c
'G n”̄

2
jn , ~2!

where the collinear covariant derivatives areiD c
m5P m

1gAn
m with label operatorsP m, the full derivative in•D

5 in•]1gn•Aus1gn•An , and the Wilson lineW is built out
of n̄•An fields wheref ( i n̄•Dc)5W f(P̄)W†,

W5F (
perms

expS 2
g

P̄n̄•An,q~x!D G . ~3!

Under the gauge transformations in Table I covariant der
tives acting in the fundamental representation transform
der collinear and usoft transformations as

Uc: in•D→Ucin•DU c
† , iD c

'→UciD c
'U c

† ,

i n̄•Dc→Ucin̄•DcU c
† , ~4!

Uus: in•D→Uusin•DUus
† , iD c

'→UusiD c
'Uus

† ,

i n̄•Dc→Uusin̄•DcUus
† .

It is straightforward to verify that all factors ofUc or Uus

drop out of L jj
(0) , which has been shown to be the mo

general possible operator consistent with gauge invaria
power counting, and reparametrization invariance@4,19#.
The same is true of the leading order collinear gluon act

L cg
(0)5

1

2g2
tr$@ iD m1gAn,q

m ,iD n1gAn,q8
n

#%2

12 tr$c̄n,p8@ iDm ,@ iD m1gAn,q
m ,cn,p##%

1
1

a
tr$@ iDm ,An,q

m #%2. ~5!

The terms on the second line are the gauge fixing terms f
general covariant gauge, wherecn are adjoint ghost fields.

Beyond leading order the form of the subleadi
Lagrangians can be determined by matching calculations
use of the SCET symmetries. There is a reparametriza
invariance@21# ~RPI!, which in SCET is due to the freedom
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in choosing the basis vectorsn and n̄, and in decomposing
the momentan̄•(p1k) and (p'

m1k'
m) into collinearp and

usoftk components@11,19#. This RPI connects collinear an
usoft derivatives,

P̄1 i n̄•], P'
m1 i ]'

m , ~6!

and also relates the Wilson coefficients of leading and s
leading operators@11,14,16,19#.

To turn the derivatives in Eq.~6! into covariant deriva-
tives we make use of gauge symmetry. This forces the la
operator to be replaced by the collinear covariant deriva
iD c

m , but as we shall see it allows some freedom in the us
term @12#. In Refs. @11,19# the usoft derivative was mad
covariant with the choiceiD us

m , so the RPI combinations in
Eq. ~6! become

choice~i! i n̄•D5 i n̄•Dc1 i n̄•Dus ,

iD'
m5 iD c,'

m 1 iD us,'
m . ~7!

For the purpose of gauge transformations this correspond
promoting the ultrasoft field to a full background field of
quantum collinear gauge field so that

gAn
m→UcgAn

mU c
†1Uc@P m1 iD us

m ,U c
†#, ~8!

and the combined fieldAm5An
m1Aus

m transforms as

gAm→U cgAmU c
†1Uc@P m1 i ]us

m ,U c
†#. ~9!

With this choice one still has homogeneous gauge trans
mations in Table I at leading order, which we will callG(0),
however one also induces subleading collinear transfor
tions forAn

' andn̄•An suppressed byl andl2, respectively

G(1): An,'
m →Uc@ iD',us

m ,U c
†#,

n̄•An→Uc@ i n̄•Dus ,U c
†#. ~10!

Thus, much like the reparametrization invariance, there
gauge transformations that connect the leading and subl
ing terms. This observation was first made in Ref.@12#. For
example, using the gauge completion given in Eq.~7! the
O(l) Lagrangian is

L jj
(1)5 j̄nF iD” us

'
1

n̄• iD c

iD” c
'1 iD” c

'
1

n̄• iD c

iD” us
' G n”̄

2
jn .

~11!

Under a collinear gauge transformationG(0) from Table I
one finds

L (1)→L (1)2 j̄nF @ iD” us
' ,U c

†#Uc

1

n̄• iD c

iD” c
'

1 iD” c
'

1

n̄• iD c

U c
†@ iD” us

' ,Uc#Gn”̄

2
jn . ~12!
1-3
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The second term cancels against theG(1) variation of the
leading order LagrangianL jj

(0) , implying that the effective
Lagrangian is invariant up to this order. The other sublead
actions with usoft fields are@8,14,16,22#

L jq
(2a)5 j̄n

1

i n̄•Dc

igH M” '1
n”̄

2
n•M J Wqus1H.c.,

L cg
(1)5

2

g2
tr$@ iD 0

m ,iD c
'n#@ iD 0m ,iD usn

' #%,

L cg
(2)5

1

g2
tr$@ iD 0

m ,iD us
'n#@ iD 0m ,iD usn

' #%

1
1

g2
tr$@ iD us

'm ,iD us
'n#@ iD cm

' ,iD cn
' #%

1
1

g2
tr$@ iD 0

m ,in•D#@ iD 0m ,i n̄•Dus#%

1
1

g2
tr$@ iD us

'm ,iD c
'n#@ iD cm

' ,iD usn
' #%, ~13!

where igMm5@ i n̄•Dc ,iD us
m 1n̄mgn•An/2# and iD 0

m5 iD c
m

1 i n̄mn•Dus/2. @The termsL jq
(1) andL jq

(2b) do not depend on
ultrasoft covariant derivatives and are shown below in E
~27!.# Similar manipulations show that the results in Eq.~13!
are invariant with terms canceled by theG(1) transformation
of L jq

(1) andL cg
(0,1) .

Although operators with usoft fields are gauge invaria
the presence ofG(1) requires transformations of operators
different powers inl to cancel one another. This is unsat
factory since constraining operators at any particular or
requires transforming lower order operators. Furtherm
this would mean we would only be able to assign an una
biguous meaning to the sum of leading and subleading
trix elements. Instead, we would like to use fields with
G(1) transformation, so that operators are manifestly inva
ant underG(0) at each order inl. In other words the terms a
a given order are invariant without needing the transform
tion of lower order terms. To this end, consider the fie
redefinitions

gn̄•Ân5gn̄•An2W @ i n̄•Dus ,W †#,

gÂn
'5gAn

'2W @ iD us
' ,W †#, ~14!

where gn•Ân5gn•An , and Ân
m are new collinear gluon

fields. HereW is the product of Wilson lines defined in Re
@14# which in position space is

W~x!5P expS igE
2`

0

dsn̄•~An1Aus!~ n̄s1x! D
3FP expS igE

2`

0

dsn̄•Aus~ n̄s1x! D G†

. ~15!
03402
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In Eq. ~15! the collinear fieldsAn
m(X1x) are the Fourier

transforms ofAn,p
m (x) with X the conjugate variable top.

Under collinear gauge transformationsW→UcW, while un-
der usoft gauge transformationsW→UusWUus

† . The pres-

ence ofW in Eq. ~14! causesÂn to be defined in terms of a
nonlinear function ofAn . Note that our transformation in Eq
~14! differs from that in Ref.@15#, as we discuss in more
detail below. Under a collinear gauge transformation the'
component of the new collinear gluon field transforms
~suppressing momentum space labels!

gÂn
'→UcgAn

'U c
†1Uc@P'1 iD us

' ,U c
†#

2UcW @ iD us
' ,W †U c

†#

5UcgAn
'U c

†1UcP'U c
†1U ciD us

' U c
†

2UcWiD us
' W †U c

†

5UcgÂn
'U c

†1UcP'U c
† . ~16!

Only hatted fields appear in the final result. With a similar
of steps we findgn̄•Ân→Ucgn̄•ÂnU c

†1UcP̄U c
† . Therefore

gÂn
m→UcgÂn

mU c
†1Uc@ iD m,U c

†#, ~17!

just like in Table I. Thus, in terms of the hatted fields, tran
formations that involve suppressed terms likeG(1) never ap-
pear. This is the desired result.

To express the Lagrangians in terms of hatted fields i
useful to have the inverse transformation to Eq.~14!. This is
complicated by the factors ofW5W @ n̄•An ,n̄•Aus# given in
Eq. ~14!, which depend nonlinearly on the gluon fields. No
we know that

i n̄•DW5Wgn̄•Aus , ~18!

which implies that in terms of the hatted fieldsW
5W @ n̄•Ân ,n̄•Aus# satisfies the equation

05~ i n̄•D̂c1Wi n̄•DusW †!W2Wgn̄•Aus

5 i n̄•D̂cW. ~19!

However, this equation has a unique solutionŴ. Switching
to momentum labels and residual coordinatesx @3#, this Ŵ is
just the standard Wilson line in Eq.~3! expressed in terms o
the n̄•Ân collinear field~since they are defined by the sam
equation!. This gives the remarkable result that after the fie
redefinition we have to all orders inl

W5Ŵ5F (
perms

expS 2
g

P̄n̄•Ân,q~x!D G , ~20!

which is independent of the usoft gauge field. Under
gauge transformationsŴ→UcŴ and Ŵ→UusŴUus

† just
like we had forW. Thus, the inverse transformation to E
~14! can be written
1-4
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gn̄•An5gn̄•Ân1Ŵ@ i n̄•Dus ,Ŵ†#,

gAn
'5gÂn

'1Ŵ@ iD us
' ,Ŵ†#. ~21!

This corresponds to gauging the RPI combinations in Eq.~6!
to

choice~ii ! i n̄•D̂5 i n̄•D̂c1Ŵin̄•DusŴ
†,

iD̂'
m5 iD̂ c,'

m 1ŴiD us,'
m Ŵ†, ~22!

rather than using choice~i! in Eq. ~7!. Under collinear and
usoft gauge transformations these derivatives transform
actly as in Eq.~4!

Uc: in•D̂→Ucin•D̂U c
† , iD̂ c

'→UciD̂ c
'U c

† ,

i n̄•D̂c→Ucin̄•D̂cU c
† , ~23!

Uus: in•D̂→Uusin•D̂Uus
† , iD̂ c

'→UusiD̂ c
'Uus

† ,

i n̄•D̂c→Uusin̄•D̂cUus
† .

In Ref. @15# transformations were also made with the a
of determining fields that could be used in power suppres
operators while avoiding gauge transformations that mix
ferent orders inl. Similar to the construction here their in
tial fields transform as in Eq.~8! and the desired final collin
ear transformations are identical to the form in Ref.@4#,
shown in our Table I. In Ref.@15# the new collinear quark
and gluon fields were defined as

jn5RWc
†ĵn ,

gA'c5R~Wc
†iD̂'cWc

†2 i ]c
'!R†, ~24!

gn•Ac5R@Wc
†in•D̂Wc2 in•Dus~ n̄•xn/2!#R†,

where the fields on the left-hand side are understood to b
a light-like axial gauge withn̄•Ac51. The matrixR is de-
fined asR(x)5P exp„ig*CdzmAus

m (z)… with the pathC a

straight line connecting12 n̄mn•x to x. In Ref. @15# the collin-
ear fields were constructed entirely in position space, an
multipole expansion was performed on the usoft fie
fus(x)5fus(x2)1(x'• i ]')fus(x2)1•••. The transfor-
mation with the matrixR was then necessary to connect c
linear and usoft fields which are at different space-ti
points. After inserting these fields into the effective Lagran
ian, operators involving the matrixR were expanded using
the Fock-Schwinger gauge for the ultrasoft gluon field.

The results in Eq.~24! differ from our field transformation
in Eq. ~21! in several respects. First, we did not need
redefine the collinear quark fieldjn,p(x) since our labeled
collinear fields carry residual ultrasoft momentum throu
their x dependence. For the gluons our transformat
changesn̄•An but not then•An field, whereas Eq.~24! does
the exact opposite. For theAn

' field our hatted field is not
surrounded by W’s, and we have a covariant usoft deriva
03402
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while Eq.~24! has a normal derivative. The fact that both o
usoft and collinear fields are local in the coordinatex repre-
senting residual momentakm;Ql2 means that we did no
need to consider a matrix likeR. Also, note that in our pro-
cedure for transforming the fields we did not require a
gauge fixing at intermediate steps. Finally, we comment t
the form of our field redefinition leads to an interesting res
for W in terms of the new fields, namelyW5Ŵ with no
higher order terms inl.

The use of position and momentum space makes a m
direct comparison difficult. However, any field redefinition
that lead to the desired result are equally valid and both
~24! and Eq.~21! satisfy this criterion. In general one know
that field redefinitions should only affect the form of oper
tors and the result for Green’s functions, but should not
fect S-matrix elements. Thus, equivalent effective theor
are often realized with different fields. We expect that the
should be a field redefinition which would relate our fiel
Ân to the fieldsÂn in Ref. @15#, although we have not con
structed it in closed form.

Lagrangian results

Having established collinear gauge fields whose trans
mations never mix orders inl, we now rewrite all sublead-
ing Lagrangians to orderl2 using Eq.~21!. For simplicity
we omit the hats in the following equations, however
collinear gauge fields should be understood to be the ha
ones. For the collinear quark Lagrangian we find

L jj
(1)5~ j̄nW!iD” us

'
1

P̄ S W†iD” c
'

n”̄

2
jnD

1~ j̄niD” c
'W!

1

P̄ iD” us
' S W†

n”̄

2
jnD

L jj
(2)5~ j̄nW!iD” us

'
1

P̄ iD” us
'

n”̄

2
~W†jn!

1~ j̄niD” c
'W!

1

P̄2
i n̄•Dus

n”̄

2
~W†iD” c

'jn!, ~25!

where we have used the fact that

1

i n̄•D
5

1

i n̄•Dc

2W
1

P̄2
i n̄•DusW

†1•••. ~26!

It is easy to see that the results in Eq.~25! are invariant under
the transformations in Table I. For the mixed collinear-us
quark interactions we find the invariant results

L jq
(1)5 j̄n

1

i n̄•Dc

igB”'
c Wqus1H.c.,

L jq
(2a)5 j̄n

n”̄

2

1

i n̄•Dc

ign•MWqus1H.c.,
1-5
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L jq
(2b)5 j̄n

n”̄

2
iD”'

c 1

~ i n̄•Dc!
2

igB”'
c Wqus1H.c.,

~27!

where igB”'
c 5@ i n̄•Dc,iD”'

c # and we have used the fact th
the transformation ofL jq

(1) makes
n-
we
ar
s
a
p
ry

r
h
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to
c
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03402
igM'
m5@ i n̄•Dc ,WiDus'

m W†#

5@WP̄W†,WiDus'
m W†#

5W@P̄,iD us'
m #W†

50. ~28!

Finally, for the subleading terms in the mixed usoft-colline
gluon action we find
L cg
(1)5

2

g2
tr$@ iD 0

m ,iD c
'n#@ iD 0m ,WiDusn

' W†#%,

L cg
(2)5

1

g2
tr$@ iD 0

m ,WiDus
'nW†#@ iD 0m ,WiDusn

' W†#%

1
1

g2
tr$W@ iD us

'm ,iD us
'n#W†@ iD cm

' ,iD cn
' #%1

1

g2
tr$@ iD 0

m ,in•D#@ iD 0m ,Win̄•DusW
†#%

1
1

g2
tr$@WiDus

'mW†,iD c
'n#@ iD cm

' ,WiDusn
' W†#%, ~29!
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whereiD 0
m5 iD m1gAn

m .

III. POWER SUPPRESSED SOFT-COLLINEAR
OPERATORS

In SCETII the structure of operators with soft and colli
ear fields is still constrained by properties such as po
counting, gauge invariance, and reparametrization inv
ance. However the nonlocal nature of the theory make
more difficult to simply write down the most general oper
tors in an arbitrary case. To see this we consider a sim
example, namely a heavy-to-light current. In the full theo
we haveq̄Gb and in the effective theory

C~P̄!j̄nWGS†hv . ~30!

The Wilson linesW and S are required to ensure collinea
and soft gauge invariance, respectively. However, neit
gauge invariance nor power counting determines the e
path ofS from x to `, since allAs

m fields scale the same way
Thus, additional input is needed to constrain these opera
From direct matching calculations, which integrate out flu
tuations withp2;QL, it is straightforward to determine tha
S is a straight Wilson line along then direction built out of
n•As fields @4#. An alternative procedure is as follows@8#:

~i! Match QCD onto SCETI at a scalem2;Q2 ~with pc
2

;QL).
~ii ! Factorize the usoft-collinear interactions with the fie

redefinitions,
r
i-
it

-
le

er
ct

rs.
-

jn5Yjn
(0) andAn

m5YAn
(0)mY†.

~iii ! Match SCETI onto SCETII at a scalem2;QL ~with
pc

2;L2).

For the heavy-to-light case we have~i! q̄Gb

→C(P̄) j̄nWGhv
us , and then ~ii ! C(P̄) j̄nWGhv

us

5C(P̄) j̄n
(0)W(0)GY†hv

us . For the final step we rename th
usoft fields as soft fieldsY†hv

us5S†hv
s , and then lower the

off-shellness of the collinear fields. Since the leading coll
ear Lagrangians in SCETI and SCETII are the same all pos
sible time-ordered products agree exactly and we can sim
replaceC(P̄) j̄n

(0)W(0)→C(P̄) j̄n
IIWII . The final result is iden-

tical to Eq.~30! but the steps are simpler than those carr
out in the Appendix of Ref.@4#. From the two-step approac
it is also clear why the Wilson coefficient does not pick
any dependence on the soft momentum in this example.

The two-stage matching procedure becomes even m
useful in cases where SCETI contains time-ordered prod
ucts, since these can induce nontrivial jet functions involv
p2;QL fluctuations. SCETI gives a well defined set o
Feynman rules for computing these jet functions at tree le
and in loops, and does so in a manner independent of
computation of Wilson coefficients at the hard scalep2

;Q2. Since the operator in SCETI is a time-ordered produc
we are guaranteed that the running to the scalem25QL is
determined by that of the product of the hard Wilson coe
cients. A final benefit is that power counting i
SCETI constrains the allowed scaling of operators
SCETII , and in particular, places a limit on the number
1-6
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factors of 1/L that can be induced from 1/(QL) terms as we
discuss below. This provides a complementary procedur
constraining the powers of 1/L with reparametrization in-
variance as first described in Ref.@10#.

Let us consider a generic matching calculation

SCETI@pc
2;QL,pus

2 ;L2#

→
m2;QL

SCETII@pc
2;L2,ps

2;L2#. ~31!

First construct all time-ordered products,TI
j , of SCETI op-

erators which contribute at a given order in the power cou
ing. To match these onto SCETII operators we take matrix
elements,

^f I~pi
2;L2!uTI

j uf I8~pi
2;L2!&. ~32!

Here the states have particles with ultrasoft momentapus
2

;L2, but with small collinear momentapc
2;L2. These are

allowed states in the Hilbert space of SCETI , since for ex-
ample p'

2 momenta of this size correspond to having ze
label' momenta, but nonzero residual' momenta. These
are also obviously states in SCETII . As in any matching
calculation, we can use any convenient states, and one
ally chooses free particle states. Note that the external
linear particles in Eq.~32! have reduced off-shellness, how
ever this is not in general the case for the inter
propagators.

As an additional constraint, the matching in Eq.~31! must
be carried out in a manner that accounts for the fact that o
certain products of collinear fields havegauge invariantla-
bel momentum, and that these momentum components
not lowered in matching these products of fields onto col
ear fields in SCETII . This means that only gauge invaria
products of collinear fields should be integrated out in
matching ~guaranteeing that gauge invariant products
also left over!. This automatically builds in the fact that th
low energy operators in SCETII must be built out of gauge
invariant productsF15W†jn , F25@W†Dc

'W#, S15S†qs ,
etc. This properly matches the theory SCETI onto the subse
of phase space that is described by fields in SCETII . This
matching will be perturbative as long as the scaleAQL
@L.

A useful benefit of the two-stage procedure is that
power counting is transparent. Thus even though we are
tegrating out an intermediate scalep2;QL that involves
factors of the hadronic scaleL, we need not worry abou
missing operators that would be power suppressed but
enhanced by explicit factors of 1/L. The power counting for
the matching process is

TI;l2k→O II ;hk1E, ~33!

where the final scaling is independent of how factors ofh are
partitioned between coefficients and operators in SCETII ~we
will choose to make Wilson coefficients in SCETII dimen-
sionless and orderh0). This equation says that T-produc
which are orderl2k in SCETI will match onto operators in
SCETII that are orderhk1E with E>0. Here the factorhE is
the extra factor obtained by lowering the off-shellness of
03402
to

t-

su-
l-

l

ly

re
-

e
e

e
n-

re

e

external collinear fields and thereby changing their pow
counting. For example (jn

I ;l5Ah)→(jn
II;h), which

agrees with the formula havingE51/2. In generalE51/2
for externaljn or An

' , E50 for externaln̄•An or W, and
E51 for externaln•An .

To illustrate these points we consider several examp
First consider the example of factorization inB→Dp @23#,
but using the two-stage procedure. Matching the t
( c̄b̄)V2A(d̄ū)V2A electroweak four quark operators onto o
erators in SCETI gives

Q0
I 5@ h̄v8

usGhhv
us#@ j̄n,p8WC0~P̄1!G lW

†jn,p#,

Q8
I 5@ h̄v8

usGhTAhv
us#@ j̄n,p8WC8~P̄1!G lT

AW†jn,p#,
~34!

whereP̄15P̄†1P̄ and the Wilson coefficientsC0,8 contain
the hardp2;Q2 effects. Next decouple the usoft interactio
from the leading collinear Lagrangian with the field rede
nitions jn5Yjn

(0) andAn
m5YAn

(0)mY† @4#. This leaves

Q0
I 5@ h̄v8

usGhhv
us#@ j̄n,p8

(0) W(0)C0~P̄1!G lW
(0)†jn,p

(0) #,

Q8
I 5@ h̄v8

usGhYTAY†hv
us#

3@ j̄n,p8
(0) W(0)C8~P̄1!G lT

AW(0)†jn,p
(0) #. ~35!

In this result the ultrasoft and collinear fields are complet
factorized. The collinear fields still have large off-shellne
p2;QL, so we need step~iii !. Taken with leading order
Lagrangian insertions this example is just like the heavy-
light current, so we match directly onto the SCETII operators

Q0
II5@ h̄v8

s Ghhv
s#@ j̄n,p8WC0~P̄1!G lW

†jn,p#,

Q8
II5@ h̄v8

s GhSTAS†hv
s#

3@ j̄n,p8WC8~P̄1!G lT
AW†jn,p#. ~36!

This is the same as the result originally derived in Ref.@23#.
It is easy to see that no other SCETII operators are possibl
at this order.

This algebra was quite simple, however we have not
seen the full power of the intermediate theory with the abo
example. The procedure becomes useful once we cons
time-ordered products in SCETI , since then one can obtai
nontrivial jet functionsJ in SCETII which lead to Wilson
coefficientsC(zi)J(zi ,xj ,yk) for the SCETII operators. This
jet function has convolutions with variableszi that corre-
spond to thep2 momentum dependence in the hard coe
cient C. It also can have dependence on thexj momentum
fractions of collinear fields in the SCETII operators we
match onto. Finally, since collinear fields in SCETI are af-
fected by thek1 usoft momenta~through thein•] term in
their action! the jetJ can depend on the momentum fractio
yk which correspond to the soft1-momenta of gauge invari
ant products of soft fields in SCETII .
1-7
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An example of a more involved matching calculation w
given for the case of heavy-to-light form factors in Re
@8,16# and we will not repeat this example here. To illustra
this case of matching further consider the toy example
light-light soft-collinear currents. In Ref.@10# these currents
were derived by direct matching from QCD, so we contr
this procedure with the matching onto SCETII operators by
using SCETI . Such operators are matched from contrib
tions in SCETI which provide mixing between collinear an
usoft quarks. Consider

T0
(3)5E d4xT@Jjj

(2)~0!,iL jq
(1)~x!#

Jjq
(4)5 j̄nWGqus , ~37!

where Jjj
(2)5 j̄nWGW†jn and L jq

(1)(x) is given in Eq.~27!
~hard coefficients are suppressed since they are not cruc
our discussion!. The order inl is denoted by the exponent i
brackets. To match these operators onto SCETII we use the
procedure explained above. For the local operatorJjq

(4) this
matching is simple. We first perform the field redefinitio
jn5Yjn

(0) andAn
m5YAn

(0)mY† to write

Jjq
(4)5@ j̄n

(0)W(0)#G@Y†qus# ~38!

where we have indicated the gauge invariant blocks of fie
by the square brackets. The final step is to identify the u
fields with soft fields and to lower the off-shellness of t
collinear fields. At tree level this leads to the operator

O15@ j̄nW#G@S†qs# ~39!

in SCETII which is orderh5/2. This follows from Eq.~33!
with k52 andE51/2.

For the time-ordered productT0
(3) we follow similar steps.

After the field redefinition

T0
(3)5E d4xT$@ j̄n

(0)W(0)#G@W(0)†jn
(0)#~0!,@ j̄n

(0)W(0)#

3@W(0)†iD”'
c W(0)#@Y†qus#~x!%. ~40!

Consider the matrix element between a collinear fermion
' collinear gluon and a soft fermion. To match on
SCETII we contract the @W(0)†jn

(0)#@ j̄n
(0)W(0)# product,

lower the off-shellness of the remaining@ j̄n
(0)W(0)# and

@W(0)†iD”'
c W(0)# and rename the@Y†qus# to @S†qs#. At tree

the two collinear fermion fields get contracted giving
propagator as shown in the first diagram of Fig. 1. This gi
the operator

O25@ j̄nW#G
n”

2
@W†iD”'

c W#
1

n•P @S†qs# ~41!

in SCETII which is the same operator as Ref.@10#. Note that
while in SCETIT0

(3) was larger by one power ofl thanJjq
(4) ,

the resulting two operators are the same order inh. This is
because in lowering the off-shellness of@W(0)†iD”'

c W(0)# the
03402
.

f

t

-

to

s
ft

a

s

power counting of the' gluon is reduced froml to h
5l2. This agrees with Eq.~33! with E51/2, soO2;h5/2

just like O1.2

There are additional contributions in SCETI that one can
write down at orderl4, such as T@Jjj

(2)(0),iL jq
(2)(x)#,

T@Jjj
(2)(0),iL jq

(1)(x),iL jq
(1)(y)#, and T@Jjj

(3)(0),iL jq
(1)(x)#. At

tree level all these contributions contain factors ofDc, which
receive an additional suppression factor when matching o
SCETII . However, at higher orders in perturbation theo
these operators can contribute since more collinear fields
contracted. For the operators displayed in Eqs.~39!, ~41!
they give rise to nontrivial jet functions. Consider for e
ample the time-ordered product

T0
(4)5E d4xT@Jjj

(3)~0!,iL jq
(1)~x!# ~42!

where Jjj
(3)5( j̄nW)G(1/P̄)(W†iD”'

c W)(n”̄ /2)(W†jn). Opera-
tors like T0

(4) appear for example in the matching of QC
onto SCETI for the electromagnetic current of light quark
~see the second reference in@9#!. Gauge invariant blocks o
collinear fields in the time-ordered product are contrac
when matching onto SCETII . An example is illustrated in the
second diagram in Fig. 1 where the factors of fields conta
ing D'

c derivatives are contracted. Such a graph does
exhibit the additional suppression factor, as there is no c
linear covariant perpendicular derivative left over. Thus, t
operator can contribute to the operatorO1 and induce a non-
trivial Wilson coefficientJ. Therefore, the operatorsO1,2 in
SCETII contributing to light-light soft-collinear current a
any order in the matching from SCETI have the form

O15J1~v,y!~ j̄nW!vG~S†qs!y ,

O25J2~v i ,y!~ j̄nW!v1
G

n”

2
@W†iD”'

c W#v2

1

n•P ~S†qs!y ,

~43!

where (j̄nW)v5@ j̄nWd(v2P̄†)# and (S†qs)y5@d(y
2n•P)S†qs#.

2Note that in matching we always expand the upper theory i
series of terms to match it onto the lower theory. Therefore, it is
unusual that operators in SCETI match onto operators of differen
orders in SCETII .

, a

q

p

µ

p

FIG. 1. Examples of graphs contributing to the matching of
SCETI T-products onto SCETII operators in Eq.~43!. The dots de-
note the insertion of aL jq

(1) and the circled crosses in the two dia
grams areJjj

(2,3) operators, respectively.
1-8
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Finally, this procedure can also be used to match onto
Lagrangian for mixed soft-collinear interactions in SCETII .
After making the field redefinition in step~ii ! there are no
usoft-collinear Lagrangian interactions at orderl0 in
SCETI . Therefore from Eq.~33! it follows that it is not
possible to construct a gauge invariant orderh0 soft-
collinear Lagrangian. This is true for both quarks and gluo
This very simple power counting argument clarifies the ori
nal argument based on gauge invariance and power coun
in Ref. @4# and supplements the direct matching calculatio
in Ref. @10#. In the language of the power counting formul
in Ref. @13# the power counting for soft-collinear Lagrangia
terms in SCETII corresponds to an index factor (k23)VSC

k

in the equation ford which gives the power counting for a
arbitrary time-ordered product. HereVSC

k counts the numbe
of insertions of soft-collinear Lagrangian operators that
orderhk. The factor of (k23) agrees with the phase spa
argument in Ref.@10#.

At order l2 we have a time-ordered produ
*d4xT$L jq

(1)(0),iL jq
(1)(x)%, which can induce suppressed o

erators in the SCETII Lagrangian. Contracting the collinea
quarks in aW†jn(0)j̄nW(x) factor this gives an operato
whose form agrees with Eq.~17! of Ref. @10#. At tree level in
the matching we find

L qqBB
(1) 5~ q̄sS!S W†igB”'

c W
1

P̄†D n”

2 S 1

P̄W†igB”'
c WD

3
1

n•P ~S†qs!. ~44!

Here the factorn” /(2n•P) is again from the collinear quar
propagator, and from Eq.~33! we countE51 since two'
gluons are external and have their power counting chan
in passing to SCETII . The superscript (1) indicates that th
operator contributes at orderh in SCETII . The factor ofh is
derived by noting that the operator in Eq.~44! is ;h4 and so
counts asVSC

4 51. Thus subtracting three we see that it co
tributes anh to thed power counting formula.

IV. CONCLUSION

In this paper we discussed a few issues related to
gauge invariance of the soft-collinear effective theory b
yond leading order. Together with power counting and r
arametrization invariance, gauge invariance constrains
form of the allowed effective theory operators. Howev
s

a

03402
e

.
-
ing
s

e

ed

-

e
-
-

he
,

there is some freedom in splitting the QCD gluon field in
collinear and ultrasoft fields in the effective theory. In Sec
we showed that the choice which gives

i n̄•D̂5 i n̄•D̂c1Ŵin̄•DusŴ
†,

iD̂'
m5 iD̂ c,'

m 1ŴiD us,'
m Ŵ†, ~45!

corresponds to collinear and usoft fields which transform i
homogeneous way under the gauge transformations at
order inl. This result uniquely fixes how power suppress
ultrasoft derivatives appear which are related to the collin
derivatives by reparametrization invariance. Using the n
fields we then gave results for the subleading collinear
usoft-collinear effective Lagrangians toO(l2), which by
themselves are invariant under the collinear gauge trans
mations in Table I.

A related construction was presented in Ref.@15# using a
position space multipole expansion. The collinear field
definition adopted here differs from the one there. Our c
struction has the benefit of avoiding gauge fixing in the de
vation. The explicit form of the transformation relating th
fields in Ref.@15# to the fields we have here remains an op
and interesting question.

For SCETII , power counting, RPI and gauge invarian
also give restrictions on allowed operators, which are ho
ever not as strict as in SCETI . The reason is that SCETII is
nonlocal at the scale over which soft particles are propa
ing, whereas SCETI is only nonlocal at the hard scaleQ.
~This is the case before we decide to induce by hand a n
local Y in SCETI by making a field redefinition.! Thus, ad-
ditional input is needed to construct operators in SCETII ,
and one has to carefully consider which modes are integr
out in arriving at the low energy theory. In Ref.@8# it was
proposed that soft-collinear operators in SCETII could be
constructed in an elegant manner by making use of facto
ultrasoft-collinear operators in SCETI . In Sec. III we pre-
sented details of this matching calculation in several
amples, and showed how the constraints from power co
ing and gauge invariance on SCETI restrict the form of the
operators induced in matching onto SCETII .
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