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Power suppressed operators and gauge invariance in soft-collinear effective theory
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The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory
(SCET) is discussed. Using a field redefinition we show that it is possible to make any power suppressed
ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipula-
tions avoid gauge fixing. The Lagrangians@\?) are given in terms of these new fields. We then give a
simple procedure for constructing power suppressed soft-collinear operators in, SHEBINg an interme-
diate theory SCET.
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I. INTRODUCTION ries, SCET and SCET;, can be used8].! One thus distin-
guishes between

The soft-collinear effective theorfSCET) has been pro- SCET,: collinear fields with (p; ,p; ,ps)~Q(A2,1)\)
posed as a systematic approach for separating hard and soft

scales in processes with energetic quarks and gl{ibnd]. and usoft fields WitmﬁSNQ)\z wherex ~ \/m
The infrared physics is described in the effective theory in

terms of collinear, soft, and ultrasoft fields with well defined SCET,: collinear fields wittip_ ,p; ,ps)~Q(7?,1,7)
momentum scaling. These fields are used to construct opera-

tors such as Lagrangians and currents that describe long dis- and soft fields wittp£~Q » wheren~ A/Q.
tance effects, while hard corrections are contained in Wilson

coefficients. This formalism builds on and extends earlief0r clarity the power counting parameter is used for
techniques used for discussing factorizatih SCET, rather than\. In exclusive processes the energetic/

The degrees of freedom in SCET include collinearSOft hadrons are described by collinear/soft fields in SCET

quarks &, and gluonsA” with momentum scalingp Both field_s havep, ~ A which is gppropriate for descriping
B — ) po the constituents of hadrons of sizg~1/A. For exclusive
=(n-p.n-p.p,)~Q(A%1A), soft modesys,Ag with mO-  hicesses the theory SCEPlays an intermediate role by
mentapg~QA\, and ultrasoft(usofy modesqys,Afs With  gescribing in a local way the fluctuations wigi~ QA that
momentap/j;~Q\?. HereQ is the hard scale\<1 is the  are involved in interactions between soft and collinear fields
expansion parameter, ang ,n,, are two light-cone unit vec- in SCET; . In contrast, SCE[Tsuffices for describing factor-
tors satisfyingn?=n?=0 andn-n=2. The explicit set of ization in inclusive processes lik@— Xy, as well as some
required fields may differ depending on the relevant scales igxcluswe processes .IlkB%'er [4.9]. Interactlons_ In
CET, are discussed in Ref§4,10] and power corrections

a given process. For instance, in the Drell-Yan process it i o
useful to have collinear fields for two light-like directions in SCET, were st.ud|ed in Refs[8,11-17. Quark masses
were considered in Ref18].

and for multijet-production more than two directions are re- The symmetries of the effective theory provide an impor-

qU||red[6,7]. lusive h d ic I htant guiding principle for constraining the form of operators,
N many exclusive heavy meson decays to energetic lig éspecially at the level of power corrections. The SCET has a
hadrons there are important effects at the sc@és QA,

5 ) : rich symmetry structure, reflecting the interplay between the
andA*, whereA~0.5 GeV is a hadronic scale. To correctly giterent length scales it describes. The constraints include
account for these effects, a sequence of two effective theo-

ln Ref. [4] a version of SCET was constructed that simulta-
neously involves collinear, soft, and usoft fields. While it is possible

*Electronic address: bauer@physics.ucsd.edu that some physical process may simultaneously require these de-
"Electronic address: dpirjol@pha.jhu.edu grees of freedom, here we restrict ourselves to the degrees of free-
*Electronic address: iains@mit.edu dom of SCET-SCET, which suffice for most applications.
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TABLE I. Gauge transformations for the collinear and usoft fields from REf.whereiD*=(n*/2)P
+P#+(n*/2)in-Ds. The collinear fields and transformations are understood to have momentum labels and
involve convolutions, but for simplicity these indices are suppressed. The usoft transformations do not
change the momentum labels of collinear fields.

Object Collineari, Usoft U
gn Z/[C gn Uusfn
gA; UGAL UHULIDH U] Uus9AU
w UW U WU
qUS qus ULISqLIS
Al gAY UusgALU st Uud 19U ]
\% Y U,eY
power counting, collinear/soft/ultrasoft gauge invariance, re- ne__ Y
ductions in spin structures, and a reparametrization invari- iD#= 77D+ 7Df+?in.DuS (1)

ance[1-4,11,13,19(see Ref[20] for a brief review of the
symmetriegs At a given order in\ the most general set of
operators for a given process can be constructed using the the fundamental representation. Note that onlyrh8

following. component of the usoft gauge field appears here and that the
(i) Power counting:Restricts the type of fields and de- components o * have the same scaling knas the collin-
rivatives allowed in the operator. ear gluon field, so all transformations are homogeneous.
(i) Gauge invarianceRequires operators to be built out Thus, power counting strongly constrains the leading usoft-
of gauge invariant building blocks. collinear interactions. It also forces us to have a multipole
(iii) Reparametrization invarianceCorresponds to the expansion so that only the-k momenta of collinear par-
restoration of Lorentz invariance order by ordemin ticles can be changed by interactions with usoft gluons. In

(iv) Locality: The theory SCETis only nonlocal in  Refs.[1-4] this expansion is done in momentum space while
O(Q) momenta. Only inverse powers of the large label mo-in Refs.[10,14,15 it is done in position space. This leads to
mentum are allowed and collinear Wilson lines have to b&ormulations of SCET whose operators appear slightly dif-
built out of O(1) gluons. ferent, but whose final predictions for physical observables

Note that SCET is constructed in a local manner, but have to be the same.
after doing this it is useful to consider a field redefinition  |n this paper we discuss how gauge invariance is realized
é,— Y&, which introduces nonlocality at the usoft scale. Thefor power suppressed operators in both SC&Td SCET; .
locality restriction does not apply to SCETIntegrating out  SCET, is studied in Sec. Il where we clarify the nature of
p?~QA modes immediately results in operators involving collinear gauge invariance in power suppressed operators
the soft Wilson lineS[4], and it contains inverse powers of with ultrasoft derivatives. This is done by showing that it is
1/A momenta. In the following we will focus on gauge in- possible to arrange these power suppressed operators such
variance and discuss subtleties which arise in constructinghat only the originalleading ordergauge transformations
invariant operators at subleading order. are needed at any order in the power expansion. This was

The gauge transformations for the SCET fields were dealso the goal of a recent study by Beneke and Feldnash
rived in [4] and are summarized in Tables | and Il. Hereand a comparison is given with their results. The form of our
*FUA~Q(N%LN), d“Us~QN, and 9*Uys~QN? distin-  transformed fields is different from theirs, reflecting a free-
guish the collinear, soft and usoft gauge transformations redom in choice of viable field redefinitions. We found that it
spectively. Partial derivatives without a subscript are usoftwas not necessary to do any gauge fixing in our manipula-
s0id,~Q\2. In Table | we have used tions.

TABLE II. Gauge transformations for collinear and soft fields in SGE®m Ref.[4]. Momentum labels
are suppressed, and and 75 are defined to only pick out collinear and soft momenta, respectively. Here
i94#iD*# since usoft fields are not included in SGET

Objects Collineat/, Soft Ug
gn ucgn gn
gAY UgAUL+UTiatUl] gAY
w UW w
qs qS U SqS
gAY gAY UgALUL+U i a2, U]]
S S us
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In SCET, the soft and collinear gauge invariance alonejn choosing the basis vectorsandn, and in decomposing

allow a large number of operators, reflecting the more non: the momentan. (p+k) and (P“+k¥) into collinearp and

local nature of this theory. In particular, gauge invariance
does not uniguely fix the path of the Wilson lines. However usoftk component$11,19. This RPI connects collinear and

. . "usoft derivatives,
since SCET is matched on from SCETand not from full
QCD, one can obtain information about the operators rel-
evant for a given process from the structure of operators in

SCET,. We illustrate the SCEF>SCET, matching by sev-  ang also relates the Wilson coefficients of leading and sub-

P+in-a, PL+iok, (6)

To turn the derivatives in Eq6) into covariant deriva-
Il. GAUGE INVARIANCE IN SCET tives we make use of gauge symmetry. This forces the label

operator to be replaced by the collinear covariant derivative
iDZ, but as we shall see it allows some freedom in the usoft
term [12]. In Refs.[11,19 the usoft derivative was made
Y covariant with the choicéD;, so the RPI combinations in
Egn, (2) Eq. (6) become

At leading order the SCETLagrangian for collinear
quarks ig[2,3]

(0) gn

1
in-D+iDsW 77WJriDé

_ _ o , choice(i) in-D=in-D.+in-Dye,
where the collinear covariant derivatives arB{=P*

+gA4 with label operatorsP*, the full derivativein-D iD/=iD#, +iD/, . 7
=in-d+gn-A,stgn-A,, and the Wilson lind&Vis built out
of n-A, fields wheref(in-D.)=Wf(P)W, For the purpose of gauge transformations this corresponds to

promoting the ultrasoft field to a full background field of a
quantum collinear gauge field so that

W= )

E exp(—%n_-An’q(x)> .

perms

gAY —UGA U+ U PH+IDE, U], (8)

Under the gauge transformations in Table | covariant derivazng the combined field* = A%+ AX transforms as
tives acting in the fundamental representation transform un-

der collinear and usoft transformations as gAMHuCgA#uZJruC[Pﬂﬂaﬁs,u 1. 9
Ugs:  in-D—Ugin-DUL, iDg—UIDUL, With this choice one still has homogeneous gauge transfor-

o o mations in Table | at leading order, which we will c&f®,
in-DCHL{Cin-DCL{Z, 4 however one also induces subleading collinear transforma-

tions for A andn- A, suppressed by and\?, respectively

U, in-D—U.n-DUl,, iDi—U,DiU!

us? us?

_ _ G A/rf,L_> c[in,us’uZ]a
in-D—U,dn-DU/ B B
n-A,—Ulin-Dys, ULl (10)
It is straightforward to verify that all factors @f; or U
drop out ofﬁé%), which has been shown to be the mostThus, much like the reparametrization invariance, there are
general possible operator consistent with gauge invariancgiauge transformations that connect the leading and sublead-
power counting, and reparametrization invariarjggl9.  ing terms. This observation was first made in R&R|. For
The same is true of the leading order collinear gluon actiorexample, using the gauge completion given in Ef.the
O(\) Lagrangian is

o D A, LY

1
ﬁ((:%)_—'[l’{[IDM—FgA 1 1 )
2g° (1)_5”{@“%_|DCiDé+iDé_ﬁDciDts >én-

+2tr{c, p[iD, [iD +g AS 4 Capl Tt (11)

1 ) Under a collinear gauge transformati®{® from Table |
* Etr{['D“’A#'q]} ' ®) one finds
The terms on the second line are the gauge fixing terms for a
general covariant gauge, wherg are adjoint ghost fields. ﬁ(l)_)ﬁ(l)_gn|:[|mus’ UNU=—1D
Beyond leading order the form of the subleading n-iDe
Lagrangians can be determined by matching calculations and
use of the SCET symmetries. There is a reparametrization +iDé_.
invariance[21] (RPI), which in SCET is due to the freedom n-iD¢

» W
[lDu51 c] Efn (12)
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The second term cancels against B€" variation of the In Eq. (15) the collinear fieldsAL(X+x) are the Fourier
leading order Lagrangiaﬁ(g?, implying that the effective transforms ofAf ,(x) with X the conjugate variable tp.
Lagrangian is invariant up to this order. The other subleadinginder collinear gauge transformationg— U W, while un-

actions with usoft fields arg8,14,16,22 der usoft gauge transformationy— U, JWU/_. The pres-
1 r ence ofWWin Eq. (14) causes&n to be defined in terms of a
E(Za)zgn__ig[ M, +=n-M } Wa,s+ H.C., nonlinear function oA\, . Note that our transformation in Eq.
£ in-Dg 2 (14) differs from that in Ref[15], as we discuss in more

detail below. Under a collinear gauge transformation the

2 component of the new collinear gluon field transforms as
Liy)= ;tr{[iDg JiD3"[iDo,,iDys, 1} (suppressing momentum space labels
. AT~ UGAUL+UL Py +iD 3 U]
@) T TN e NPT .l .
Lg= gztr{[ng,|Dus][|DoM,|Dusv]} —UWIIDE WU
L {[iD42 iDL, iDL} ~UIAUE P UAUID
+ —tr{[i D[ ,iDg,
g? BT —UMDEW U
L [iDE in. DD, in. —Ug AU+ UP U] (16)
+—tr{[iD§,in-D][iDg,,in-Dysl} cIAnUT U U
9

Only hatted fields appear in the final result. With a similar set

1 indyn- A n-Aut Pyt
+Etr{[iDtg,iDé”][iDéﬂ,iDtsy]}, (19 of steps we finggn- A,—U.gn- AU . +UPU . Therefore
AL UGN UL+ Ui DU, (17

here igM#=[in-D.,iDA+n*gn-A,/2] and iDA=iD¥* = = : .
where 1g [in-De,iDgst n“gn-Aq/2] and iDo=iD¢ just like in Table I. Thus, in terms of the hatted fields, trans-

nAn. (1) (2b) . .
+in®n-D,J2. [The termsC oy’ and L ¢ do not depend on ¢4 ations that involve suppressed terms k&8 never ap-
ultrasoft covariant derivatives and are shown below in Eqpear. This is the desired result.

(27).] Similar manipulations show that the results in ELB)
are invariant with terms canceled by t6&") transformation
of £ and£ Y.

Although operators with usoft fields are gauge invariant
the presence B requires transformations of operators at
different powers in\ to cancel one another. This is unsatis-
factory since constraining operators at any particular order in.-DW= Wgﬁ- A (18)
requires transforming lower order operators. Furthermore us
this would mean we would only be able to assign an unamghich implies that in terms of the hatted fieldgy
biguous meaning to the sum of leading and subleading ma- y,,r— 2 — g :
tri(xl)elements. Instead, we would like to use fields with no_W[n.A”’n'AUS] satisfies the equation
G'" transformation, so that operators are manifestly invari- A — YA .
ant undeiG(©) at each order iix.. In other words the terms at 0=(In-DeMin-DugV HIV=1gN- Aus
a given order are invariant without needing the transforma- =in-DW. (19)
tion of lower order terms. To this end, consider the field
redefinitions

To express the Lagrangians in terms of hatted fields it is
useful to have the inverse transformation to Eigl). This is
complicated by the factors a=W[n-A,,n-A,¢] givenin
'EqQ. (14), which depend nonlinearly on the gluon fields. Now,
we know that

However, this equation has a unique solutidh Switching

TR o A VT + to momentum labels and residual coordinat¢3], this W is
gn-An=gn-An=Win-Dus W1, just the standard Wilson line in E¢B) expressed in terms of
gAﬁ=gAﬁ—W[iDﬁs,WT], (14) then- A, collinear field(since they are defined by the same

equation. This gives the remarkable result that after the field

where gn-A,=gn-A,, and A% are new collinear gluon redefinition we have to all orders i

fields. HereW is the product of Wilson lines defined in Ref.
[14] which in position space is W=W=

> exp( — %n_-An,q(x)> l (20)

perms

W(x)=P exr{ ig LO dsn- (A, +Aus)(Ns+x)

which is independent of the usoft gauge field. Under the

; gauge transformationsV— U W and W— U WU/ just

(15) like we had forW. Thus, the inverse transformation to Eq.
(14) can be written

X

o _ _
Pexp(igf dsn-A,(ns+x)
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gn-A,=gn-A,+W[in-D,¢,W'], while Eq.(24) has a normal derivative. The fact that both our
usoft and collinear fields are local in the coordinatepre-
gAL =gA: +W[ID L., W' 1) senting residual momente*~ Q)2 means that we did not
n n us? b

need to consider a matrix lik. Also, note that in our pro-
This corresponds to gauging the RPI combinations in(By.  ¢edure for transforming the fields we did not require any

to gauge fixing at intermediate steps. Finally, we comment that
the form of our field redefinition leads to an interesting result
choice(ii) in-D=in-D +Win-D W', for W in terms of the new fields, namely=W with no
higher order terms in..
iD#=iD#, +WiD# , W', (22 The use of position and momentum space makes a more

_ - _ direct comparison difficult. However, any field redefinitions
rather than using choic@) in Eq. (7). Under collinear and  that lead to the desired result are equally valid and both Eq.
usoft gauge transformations these derivatives transform ex24) and Eq.(21) satisfy this criterion. In general one knows

actly as in Eq(4) that field redefinitions should only affect the form of opera-
. A Al tors and the result for Green’s functions, but should not af-
U in-D—Ucin-DU;, iD;—UJID U, fect S-matrix elements. Thus, equivalent effective theories
o . are often realized with different fields. We expect that there
in-DC—>L{Cin~DCuI, (23 should be a field redefinition which would relate our fields
A A A A A, to the fieldsA, in Ref.[15], although we have not con-
Uwis in-D—U.in-DUl,, iDi—U.D:UL, structed it in closed form.
in- I50—>Uu5in_~ ﬁCUZS. Lagrangian results

In Ref.[15] transformations were also made with the aim Having established collinear gauge fields whose transfor-
of determining fields that could be used in power suppresseflations never mix orderszm, we now rewrite all sublead-
operators while avoiding gauge transformations that mix difi"g Lagrangians to ordex* using Eq.(21). For simplicity
ferent orders in\. Similar to the construction here their ini- W& Omit the hats in the following equations, however all
tial fields transform as in E8) and the desired final collin- collinear gauge fields should be understood to be the hatted
ear transformations are identical to the form in Ref], ~ ©nes. For the collinear quark Lagrangian we find
shown in our Table I. In Refl15] the new collinear quark

, : 1R
and gluon fields were defined as ﬁélg)=(§nW)'Dﬁs7—3( WTIDéESn)
£=RWE,,
A +(§i|z>iW)£iwL w*ﬂg
gA =RWiD  W!—ia))R, (24) e TS Fus| T g en

gn-A.=R[WIin-DW,—in-D,4n-xn/2)]R", B 1w
L =(EW)IDE iDL~ (WE)
where the fields on the left-hand side are understood to be in ~ ** ! tp "
a light-like axial gauge witm-A.=1. The matrixR is de- 1 Y
fined asR(x)=P expigfcdz,Al{z)) with the pathC a +(EDEW)=in-Dyss (WD LE,), (25)
straight line connectingn,,n-x to x. In Ref.[15] the collin- P
ear fields were constructed entirely in position space, and a

multipole expansion was performed on the usoft fieldsVhere we have used the fact that

Pus(X) = pys(X_)+ (X 19, ) pyg(X=)+---. The transfor-
mation with the matriXR was then necessary to connect col- _1 — _1 —Wiin_~ D WH+.... (26)
linear and usoft fields which are at different space-time in-D in-D¢ P? '

points. After inserting these fields into the effective Lagrang-

ian, operators involving the matriR were expanded using It is easy to see that the results in E25) are invariant under

the Fock-Schwinger gauge for the ultrasoft gluon field. the transformations in Table I. For the mixed collinear-usoft
The results in Eq(24) differ from our field transformation quark interactions we find the invariant results

in Eqg. (21) in several respects. First, we did not need to

redefine the collinear quark fielgl, ,(x) since our labeled = e

collinear fields carry residual ultrasoft momentum through L gnin_~D igB/Wa,stH.C.,

their x dependence. For the gluons our transformation ¢

changes- A, but not then- A, field, whereas Eq(24) does

the exact opposite. For thi, field our hatted field is not LG = ¢

surrounded by W’s, and we have a covariant usoft derivative

1
5 ign-MWgq,s+H.c.,

‘Y
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igM~=[in-D.,WiD*. W'
————igB°Wq,st+H.c., gME=I ¢ s W]

(27)

(2b)_§n_|Dc
2 —
(in-D¢) =[WPW' WiD%, W']
:W[ﬁiDgsL
=0. (29

whereigB$ =[in-D,iD¢] and we have used the fact that Finally, for the subleading terms in the mixed usoft-collinear
the transformation of &) makes gluon action we find

w'

W,

usy

2
L= ?tr{[iDg JiD¢"[IDg, ,WiD};

USVWT]}

1
@)= ;tr{[iDg JWiD; W' [iD g, ,WiDy;

L&D WD,

1 1 ) ) ) —
+ Etr{W[lD“‘ iDL ]+ ?tr{[ng ,in-D][iDg, ,Win-D, W'}

1 . .
+ Etr{[WungWT,uDg [iDg,, ,WiDy, W'}, (29)
|

whereiD§=iD*+gAf . £,=YED andAL=Y ALY,

. POWER SUPPRESSED SOFT-COLLINEAR (iii) Match SCET onto SCET, at a scaleu?~QA (with
OPERATORS p2~A?).

In SCET, the structure of operators with soft and collin- For the r;(seavy-to—light case "we havei) qFUbS
ear fields is still constrained by properties such as power>C(P)&WIhy®, and  then (i) C(P)&WIh}

counting, gauge invariance, and reparametrization invari=C(P)&OWOTYTh!S. For the final step we rename the
ance. However the nonlocal nature of the theory makes itsoft fields as soft fieIdS’Th,‘jS= SThi, and then lower the
more difficult to simply write down the most general opera- off-shellness of the collinear fields. Since the leading collin-
tors in an arbitrary case. To see this we consider a simplear Lagrangians in SCETand SCET, are the same all pos-
example, namely a heavy-to-light current. In the full theorysible time-ordered products agree exactly and we can simply

we havequ and in the effective theory rep|aceC(’]7)Ego)W(o)_,C(’]7)EEW”' The final result is iden-
tical to Eq.(30) but the steps are simpler than those carried
out in the Appendix of Refl4]. From the two-step approach

it is also clear why the Wilson coefficient does not pick up
any dependence on the soft momentum in this example.
The Wilson linesW and S are required to ensure collinear  The two-stage matching procedure becomes even more
and soft gauge invariance, respectively. However, neitheniseful in cases where SCETontains time-ordered prod-
gauge invariance nor power counting determines the exacicts, since these can induce nontrivial jet functions involving
path of Sfrom x to o, since allAZ fields scale the same way. p2~QA fluctuations. SCETgives a well defined set of
Thus, additional input is needed to constrain these operatorfeynman rules for computing these jet functions at tree level
From direct matching calculations, which integrate out fluc-and in loops, and does so in a manner independent of the
tuations withp?~ QA it is straightforward to determine that computation of Wilson coefficients at the hard scale

C(P éWrsth, . (30)

Sis a straight Wilson line along the direction built out of
n- A, fields[4]. An alternative procedure is as folloy8]:

(i) Match QCD onto SCEjTat a scaleu?~Q? (with p2
~QA).

~Q?Z. Since the operator in SCETs a time-ordered product
we are guaranteed that the running to the sgele QA is
determined by that of the product of the hard Wilson coeffi-
cients. A final benefit is that power counting in

(i) Factorize the usoft-collinear interactions with the field SCET, constrains the allowed scaling of operators in

redefinitions,

SCET,, and in particular, places a limit on the number of

034021-6



POWER SUPPRESSED OPERATORS AND GABG. . PHYSICAL REVIEW D 68, 034021 (2003

factors of 1A that can be induced from IYA) terms as we external collinear fields and thereby changing their power
discuss below. This provides a complementary procedure toounting. For example & ~\=\7)— (&'~ 7), which
constraining the powers of A/ with reparametrization in- agrees with the formula having=1/2. In generaE=1/2

variance as first described in R¢10]. , for externalé, or A, E=0 for externaln-A, or W, and
Let us consider a generic matching calculation E=1 for externaln-A, .
SCE'I][p§~QA,pﬁS~A2] _ To iIIus_trate these points we con_sider several examples.
First consider the example of factorization Ba—D 7 [23],
#2~QA but using the two-stage procedure. Matching the two

2 2 £2 2 — -
— SCET[p~A%ps~A°]. (3D (cb)y_a(du)y_a electroweak four quark operators onto op-

First construct all time-ordered product,, of SCET, op- erators in SCETgives

erators which contribute at a given order in the power count- | TS Lusi = +
ing. To match these onto SCEToperators we take matrix Qo= [N, T'hhy "I €np WCo(P )T Wy ],
elements, | s A _ _ -
i Qg=[h, ThTh,®I[€n o WC(P I TAW'E, o],
(1P~ ATl (pP~A). (32 " ' " (30

Here the states have particles with ultrasoft momepfia

A2 : : 2 a2
allgvx;ezustt\;vtlg; ??S:chlillg;?rsmsgegf% é\“éi.nggits)(ra :)f the hardp?~ Q? effects. Next decouple the usoft interactions
P G from the leading collinear Lagrangian with the field redefi-

ample pi momenta of this size correspond to having zero ..o+ _v 0 gnga“=y AOuyT 141 This leav
label L momenta, but nonzero residual momenta. These oNs =Yy andAy=YA, [4]. This leaves

are also obviously states in SCETASs in any matching
calculation, we can use any convenient states, and one usu-
ally chooses free particle states. Note that the external col-

whereP, =P'+ 7P and the Wilson coefficient€,, s contain

Qo=[hLTyhiSILEY, WOICH(P, )T WO,

linear particles in Eq(32) have reduced off-shellness, how- Q4= [FLU’,SFhYTAY*hl‘jS]
ever this is not in general the case for the internal —0) _ o
propagators. ><[fn,hW(o)CBU%)F|TAW(O)T§§1,;)3]- (35

As an additional constraint, the matching in E81) must
be carried out in a manner that accounts for the fact that onlyn this result the ultrasoft and collinear fields are completely
certain products of collinear fields hagauge invariania-  factorized. The collinear fields still have large off-shellness
bel momentum, and that these momentum components agg~QA, so we need stefiii). Taken with leading order
not lowered in matching these products of fields onto collin-Lagrangian insertions this example is just like the heavy-to-
ear fields in SCE]. This means that only gauge invariant light current, so we match directly onto the SGE®perators
products of collinear fields should be integrated out in the

matching (guaranteeing that gauge invariant products are 0=[hS ThS1[&n p WCy( P )T \WTE, ],

also left ovey. This automatically builds in the fact that the

low energy operators in SCTmust be built out of gauge Il _ s 1S

ari T ol ¥ g=[h; T',ST'S'h?]

invariant productsb,=W'§,, ®,=[W'D; W], $;=S'q;s, v

etc. This properly matches the theory SGERhto the subset X[Sn,erCg(P+)F|TAWT§n,p]- (36)

of phase space that is described by fields in SCEThis

matching will be perturbative as long as the scal@A  This is the same as the result originally derived in R28].
>A. It is easy to see that no other SCE®©perators are possible
A useful benefit of the two-stage procedure is that theat this order.

power counting is transparent. Thus even though we are in- This algebra was quite simple, however we have not yet
tegrating out an intermediate scaé~QA that involves  seen the full power of the intermediate theory with the above
factors of the hadronic scalé, we need not worry about example. The procedure becomes useful once we consider
missing operators that would be power suppressed but affime-ordered products in SCETsince then one can obtain
enhanced by explicit factors of A/ The power counting for nontrivial jet functionsJ in SCET, which lead to Wilson
the matching process is coefficientsC(z)J(z; ,X; ,yx) for the SCET; operators. This

T AL Ol ~ pk+E, (33) jet function hfils convolutions with variapla$ that corre- _

spond to thep™ momentum dependence in the hard coeffi-

where the final scaling is independent of how factorg@fre  cient C. It also can have dependence on tjemomentum
partitioned between coefficients and operators in SC&#®  fractions of collinear fields in the SCEToperators we
will choose to make Wilson coefficients in SCET@imen-  match onto. Finally, since collinear fields in SGEAre af-
sionless and order®). This equation says that T-products fected by thek™ usoft momentathrough thein- ¢ term in
which are ordei? in SCET, will match onto operators in their action the jetJ can depend on the momentum fractions
SCET, that are orden**E with E=0. Here the factor;®is  Yx which correspond to the soft-momenta of gauge invari-
the extra factor obtained by lowering the off-shellness of theant products of soft fields in SCRT
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An example of a more involved matching calculation was
given for the case of heavy-to-light form factors in Refs.
[8,16] and we will not repeat this example here. To illustrate
this case of matching further consider the toy example of q
light-light soft-collinear currents. In Ref10] these currents
were derived by direct matching from QCD, so we contrast > @ P_ - _*_p_
this procedure with the matching onto SGE®perators by
using SCET. Such operators are matched from contribu- £ 1. Examples of graphs contributing to the matching of the
tions in SCET which provide mixing between collinear and scgt T-products onto SCEToperators in Eq(43). The dots de-

usoft quarks. Consider note the insertion of a:(l) and the circled crosses in the two dia-
grams are)$2® operators respectively.

W, a

T<3>—f d*xT32(0),i (0] _ ,
power counting of thelL gluon is reduced from\ to %

, =\2. This agrees with Eq(33) with E=1/2, s0O,~
I =W qys, (37 just like O,.2
There are additional contributions in SCEthat one can

where JP =€ WI'W'¢, and £{)(x) is given in Eq.(27)  write down at ordern®, such asT[J12(0),i £ 2(x)],
(hard coefﬂments are suppressed since they are not crucial qt{J(2)(o) |/3(1)(x) ,/;(l)(y)] and T[J(3)(o) |£(1)(x)] At
our discussion The order in\ is denoted by the exponentin tree IeveI all these contrlbutlons contain factor@df which
brackets. To match these operators onto SCWE use the  receive an additional suppression factor when matching onto
procedure explained above. For the local operaf@tthis  SCET,. However, at higher orders in perturbation theory
matching is simple. We first perform the field redefinition these operators can contribute since more collinear fields are

En=YED andAL=YAP#YT to write contracted. For the operators displayed in E@9), (41)
they give rise to nontrivial jet functions. Consider for ex-
I =[EOWOT[ Y qy] (38 ample the time-ordered product

where we have indicated the gauge invariant blocks of fields (@) . 3) (1)

by the square brackets. The final step is to identify the usoft To :f d™XT[Jg(0),i L 5 (X)] (42)

fields with soft fields and to lower the off-shellness of the

collinear fields. At tree level this leads to the operator where J(s) (an\DF(l/P)(WTIDLV\D(WZ)(WT&n) Opera-
tors like T04) appear for example in the matching of QCD

ey +
O,=[&WIT'S'qs] (39 onto SCET for the electromagnetic current of light quarks
in SCET, which is order%2. This follows from Eq.(33) (see the second reference[Bl). Gauge invariant blocks of
with k=2 andE=1/2. collinear fields in the time-ordered product are contracted

when matching onto SCET An example is illustrated in the
second diagram in Fig. 1 where the factors of fields contain-
ing DS derivatives are contracted. Such a graph does not

For the time-ordered produféf’) we follow similar steps.
After the field redefinition

exhibit the additional suppression factor, as there is no col-
TBS):f d*X T{[ WO WO TED](0), [ €PWO] linear covariant perpendicular derivative left over. Thus, this
operator can contribute to the opera@y and induce a non-
X [WOTip WO YT g (x)}. (40)  trivial Wilson coefficientd. Therefore, the operatod; , in

SCET, contributing to light-light soft-collinear current at
Consider the matrix element between a collinear fermion, &ny order in the matching from SCETRave the form

1 collinear gluon and a soft fermion. To match onto
SCET, we contract the [WO O &OWO]  product, 0;=J3(0,y)(&W),I(S'gq)y,
lower the off-shellness of the remainig®W(®] and
[WOTip W] and rename thgY'q,q] to [S'q]. At tree - — . ‘
the two collinear fermion fields get contracted giving a 02~ J2(@i:¥)(&W), I'5 [W 'DLW]wz 5(S'As)y
propagator as shown in the first diagram of Fig. 1. This gives (43
the operator - o o
B 4 1 where T@nMw:[gnW5(w_PT)] and  S'qq), =[5y
0,=[EWIN Z(WIiDSW]—5[STa] (4~ PISal

in SCET, which S the same operator as Ref0]. Note t4hat Note that in matching we always expand the upper theory in a
while in SCETTS was larger by one power of thanJéq) v series of terms to match it onto the lower theory. Therefore, it is not
the resulting two operators are the same orden.iThis is  ynusual that operators in SCEThatch onto operators of different
because in lowering the off-shellness[#¥(?TiD W] the  orders in SCET.
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Finally, this procedure can also be used to match onto théhere is some freedom in splitting the QCD gluon field into
Lagrangian for mixed soft-collinear interactions in SGET collinear and ultrasoft fields in the effective theory. In Sec. Il
After making the field redefinition in stefi) there are no we showed that the choice which gives
usoft-collinear Lagrangian interactions at orda’ in

SCET,. Therefore from Eq.(33) it follows that it is not in-D=in-D.+Win-D W',
possible to construct a gauge invariant orde? soft- . ) . R
collinear Lagrangian. This is true for both quarks and gluons. inziDg’LﬂLWiD(,‘SYLWT, (45)

This very simple power counting argument clarifies the origi- _ ) _ )

in Ref.[4] and supplements the direct matching calculationdiomogeneous way under the gauge transformations at any
in Ref.[10]. In the language of the power counting formulas order in. This result uniquely fixes how power suppressed
in Ref. [13] the power Counting for soft-collinear Lagrangian ultrasoft derivatives appear which are related to the collinear
terms in SCEF corresponds to an index factok{ 3)V&c derivatives by reparametrization invariance. Using the new
in the equation fo which gives the power counting for an fields we.then gave results for the subleaging cqllinear and
arbitrary time-ordered product. Hewé counts the number UsOft-collinear effective Lagrangians ©(A%), which by

of insertions of soft-collinear Lagrangian operators that ardn€mselves are invariant under the collinear gauge transfor-

der »X. The factor of k—3 ith the ph mations in Table I. _ _
g:gﬁinnent ineR;([:l%r] of k=3) agrees wi € phase space A related construction was presented in Ré&6] using a

At order \> we have a time-ordered product position space multipole expansion. The collinear field re-

4 @Ay (1) ; : _definition adopted here differs from the one there. Our con-
i?at)(()-gﬁirfqﬂ(wg)gé f‘ll.()&}’r;v:I?:ncag(;:ﬁ:lggnsu?ﬁeresslﬁge?r struction has the benefit of avoiding gauge fixing in the deri-
B Lagrangian. 9 vation. The explicit form of the transformation relating the

quarks in aW'¢,(0)&,W(x) factor this gives an operator fig|ds in Ref[15] to the fields we have here remains an open
whose form agrees with E¢L7) of Ref.[10]. At tree level in g9 interesting question.
the matching we find For SCET,, power counting, RPI and gauge invariance
also give restrictions on allowed operators, which are how-
WTigBCWi) ﬂ(iwtiglsc W) ever not as strict as in SCETThe reason is that SCETis
R AR + local at the scale over which soft particles are propagat-
nonlocal a p propag
ing, whereas SCETis only nonlocal at the hard scal@.
(This is the case before we decide to induce by hand a non-
local Y in SCET, by making a field redefinition.Thus, ad-
] . ) ditional input is needed to construct operators in SEET
Here the factom/(2n-P) is again from the collinear quark and one has to carefully consider which modes are integrated
propagator, and from Eq33) we countE=1 since tWol  out in arriving at the low energy theory. In RéB] it was
gluons are external and have their power counting changelglroposed that soft-collinear operators in SGEJould be
in passing to SCE[T. The superscript (1) indicates that this constructed in an elegant manner by making use of factored
operator contributes at orderin SCET;, . The factor ofp is  yltrasoft-collinear operators in SCETIn Sec. Il we pre-
derived by noting that the operator in Eg4) is ~7* and S0 sented details of this matching calculation in several ex-
counts a8/¢c= 1. Thus subtracting three we see that it con-amples, and showed how the constraints from power count-
tributes an» to the 5 power counting formula. ing and gauge invariance on SCHestrict the form of the
operators induced in matching onto SGET

L fqlq)B B~ (ESS)

1 o
XW;(S Qds)- (44)

IV. CONCLUSION
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